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Abstract: Motivated by neuronal modeling, the mathematical foundations of
consciousness developed in Miranker, Zuckerman, 2008 (M-Z) were characterized by an
axiomatic theory for consciousness operators that acted on the collection of all sets.
Consciousness itself was modeled as emanating from the action of such operators on the
labeled decoration of a graph, the latter set theoretic construct given the characterization
of experience. Since mental activity (conscious and unconscious)is a time dependent
process, we develop a discrete time dependent version of the theory. Specification of the
relevant dynamics illuminates and expands the development of the mathematlcal
framework in M-Z upon which our study of consciousness rests.

We review the Aczel theory for decorating labeled graphs, in particular that theory’s
application to the M-Z foundations. The relevant neuronal modeling concepts and
terminology are also reviewed. A number of simple examples are presented. Then an
extension of our considerations from graphs to multigraphs is made, since the latter
represent a more accurate model of neuronal circuit connectivity. The dynamics are
crafted for non-well-founded constructs by development of a hierarchy of systems,
starting with the McCulloch-Pitts neuronal voltage input-output relations and building to
a dynamics for the cognitive notions of memes and themata; these latter corresponding to
aspects of decorations of labeled graphs associated with neural networks. We conclude
with a summary and discussion of the semantics of the cognitive features of our
development: memes, themata, quale, consciousness operators, awareness field...

Key words: anti foundation axiom, consciousness, M-Z Theory, mental dynamics, neural
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1. Introduction

The mathematical foundations of consciousness developed in Miranker, Zuckerman,
2008 (hereafter referred to as M-Z) motivated by neuronal modeling are characterized by
an axiomatic theory for a collection of so-called consciousness operators that act on the
collection of all sets. Consciousness itself was modeled as emanating from the action of
such an operator on the labeled decoration of a graph, the latter set theoretic construct
given the characterization of experience. The interplay of the Platonic perspective on the
real (the physical) and the ideal (usually called the Platonic), which formed the
underpinning of the approach (Plato, 360 BCE), was modeled by the quality of sets being
well-founded or not-well-founded. We use this Platonic dichotomy to characterize those
aspects of our modeling that correspond to observable, measurable features of nature
(such as voltages, synaptic weights...) as the real (physical), while those aspects of our
modeling that correspond to virtual features (such as perceptual experience, qualia...) are
- characterized as the ideal Platonic, or simply the Platonic. This Platonic distinction has
been a basic constituent of much of the philosophical discourse on consciousness with the
Cartesian notions of the res extensa and the res cogitans being a conspicuous example
(Descartes, 1637). The present work along with M-Z contain developments that take the
Platonic dichotomy to the level of mathematical modeling and analysis.

The ability to study the interior of a set from the outside plays a key role in the
development. It was the consciousness operators (see the Appendix) introduced in M-Z
by means of which this ability was implemented. These ideas are characterized in
Fig. 1.1 (Fig. 5.2 in M-Z) that shows the flow of information from sensory input in
neuronal networks to conscious experience. The upper boxes in the figure describe the
syntactic level, the lower the semantic level of the modeling. Shading in the figure
distinguishes the ideal Platonic realm from the physical.
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Figure 1.1: Consciousness: Syntactic and semantic views of the processing proceeding
from the physical realm to the Platonic realm.




A non-well-founded graph is taken to model neural network connectivity in the brain.
The corresponding labeled decorations of such graphs are not recursively computable.
They are schematized in the box “Functions d, with values in virtual sets” in Fig. 1.1.
Connectivity is a static feature, and since consciousness is a time dependent process, it is
essential to develop a time dependent version of these decorations; an aspect of the theory
left open in M-Z. Moreover specification of the relevant dynamics (by dynamics, we
shall always mean discrete dynamics) will illuminate and expand the development of the
mathematical framework in M-Z upon which the modeling of mental activity (conscious
and unconscious) rests. In particular, the dynamics reveal a quality of reversibility
among many aspects of the framework. Specification and study of these dynamics is a
principle objective of this work, which itself is composed of two parts.

Part I, consisting of Sects. 2-6, contains a static version of our theory, while Part II,
consisting of Sects. 7-12, deals with the dynamics. In Part [ we review the Aczel theory,
a methodology for decorating labeled graphs. Since the extension of this theory in M-Z
1s motivated by questions of neural circuitry and consciousness studies, some of the
relevant neuronal modeling concepts and terminology are also reviewed. A number of
simple examples are presented. Then an extension of our considerations from graphs to
multigraphs is made, since the latter represent a more accurate model of neuronal circuit
connectivity. In Part II the M-Z Theory is exploited and extended from its static
description in M-Z to the dynamic version needed for a deeper understanding of the
structure of mental activity and in particular, conscious experience. These dynamics are
crafted for non-well-founded constructs by development of a hierarchy of systems,
starting with the McCulloch-Pitts neuronal voltage input-output relations (Haykin, 2008)
and building to a dynamics for the cognitive notions of memes and themata; these latter
corresponding to aspects of decorations of labeled graphs.

Part I: Statics

We begin in Sect. 2.1 with a review of the notions and terminology of sets and graphs
that are used. Our considerations involve non-well-founded (NWF) sets, the axiom of
anti-foundation and some key operators. We continue in Sect. 2.2, collecting the notions
and terminology of neural networks that motivate and in turn are modeled by the
development. A description of the M-Z Theory for developing histograms and
decorations that emerge from a neural network is included.

In Sect. 3, a number of simple examples to illustrate the M-Z Theory is given. Also
illustrated is the Russell operator, a key example of a consciousness operator.

In Sect. 4, the notions of memes and themata are introduced, and their connection to
our graphical constructs is specified. Examples of these cognitive and graphical
constructs are given. These include examples of the neuronal data histograms introduced
in M-Z, the latter framing the technical foundation of our approach.

A pair of neurons may exchange information through multiple connections. So in
Sect. 5, we extend the development from graphs to multigraphs and introduce a number




of simple examples. This is followed by a development of so-called special graphs
relative to which memes and themata are reciprocally specifiable.

Beginning in Sect. 6, multigraphs are restricted so that the decoration of any node is
NWE, enabling thereby the development of reversibility. This allows for the retrieval of
the M-Z histogram from the M-Z decoration. Examples are given. A particular
consciousness operator is used to develop an example of self-awareness of a neural state.

Part II: Dynamics

In Sect. 7, we begin with the description of the dynamics of neuronal input-output
relations in our framework. We develop a dynamics of histograms, which supervene
upon the underlying McCulloch-Pitts input-output voltage dynamics of a model neuron.
A notion of nodal activity along with its dynamics is introduced. A reciprocal
relationship among the voltage, histogram and activity dynamics is established.

In Sect. 8, the auxiliary notions of a crop and of crop space are introduced in order to
conceptualize the set of all M-Z histograms. These constructs along with the related crop
dynamics abstract and simplify the development. A further abstraction called the mean
(of a crop) and its dynamics is introduced. The reciprocal relationship of mean and crop
dynamics is established.

In Sect. 9, we introduce the Aczel transform, a construct that informs the development
of decoration dynamics. Then a review of the dynamics thus far developed, including an
illustrative diagram, leads to the development of the reciprocal relationships among
voltage, crop and decoration dynamics.

In Sect. 10, we introduce the space of all the memes (M-Z decorations) associated
with a given weighted multigraph. We also introduce the space of the associated
themata. This enables us to interrelate all eight of the spaces of our development.

In Sect. 11, we introduce a well-defined dynamics for memes. The relationship of
these dynamics to those already introduced is displayed in a three dimensional
commutative diagram. Following this the associated dynamics for themata (although not
single valued) is specified.

The foundations of consciousness developed in M-Z emanate from a framework of
static mappings associated with the M-Z Theory. These mappings describe an
irreversible passage from the physical realm to the Platonic. Dynamics enable the
introduction of reversibility in this passage along with a more detailed description of
mental activity and the relationship between those realms. In Sect. 12, we start with a
critical summary of those dynamical features developed in Sects. 7-11 that reside in the
physical realm, and we conclude with a discussion of the semantics associated with the
Platonic aspects of those features.




PART I: STATICS

2. Preliminaries

We shall be concerned with sets and graphical constructs associated with sets, and so
in Sect.2.1, we introduce some relevant ideas and nomenclature. We refer to Aczel, 1988
(hereafter referred to as Aczel) and to M-Z for additional details. In Sect 2.2, we give a
description of the M-Z Theory, beginning by introducing the supporting concepts and
terminology of neural networks.
2.1 Sets, graphs and consciousness operators

A set §'is a primitive that obeys the axioms of set theory. In particular

SeS=S,0 S, (2.1)

where S is the class of sets, S, is the class of well-founded (WF) sets, and S oy 18 the
class of non-well-founded (NWF) sets. (WF sets and NWF sets are specified in Def. 2.2.)

A graph’ will consist of a collection N of nodes and a collection E of edges, each edge
being an ordered pair (n, n") of distinct nodes. We have no knowledge of the nature of

the elements of N. If (1, n') is an edge, we shall write n — n' and say that »' is a child
of its parent n. A path is a sequence (finite or infinite)

oy —> N —>H, > (2.2)
of nodes 7,1, n, ... linked by edges (n,,n,), (1, n,)...
A pointed graph is a graph in which a node called its point has been distinguished. A
pointed graph is accessible (is an accessible pointed graph (APG)) if for every node n

different from the point, say n,, there is a path n, — n, —--- — n from n, to the node .

A decoration of a graph is an assignment of a set to each node of the graph so that the
elements of the set assigned to a node are the sets assigned to the children of that node.

Equivalently, a decoration is a set valued function d : N — S, where
VR e N, dR={dQ|R— Q}. (2.3)

The set dR is called the decoration of the node R.

A picture of a set A is an APG that has a decoration in which 4 is assigned to the
point. A set may have many different pictures. A labeling of an APG is a mapping

"'We Shall extend our considerations from graphs to multigraphs beginning in Sect. 5.




A:N— S, thatis, an assignment of a WF set to each node. A labeled APG to be
denoted by the pair (I', 1) will be called an LAPG. A labeled decoration of an LAPG is a
set valued function d, : N —» S, where

Aczel equation: d,R=1{d,0|R—>Q}UAR, VReN. | (2.4)

A decorated LAPG is called a DLAPG. The map §: DLAPG — S takes the DLAPG
into the decoration d,P of the point P of the APG. We sometimes refer to d,Pas dP.

Remark 2.1: Throughout we make critical use of the anti-foundation axiom (AFA) of
Aczel, 1988. This axiom, every graph has a unique decoration, is a contemporary
replacement of the axiom of foundation (AF) of Von Neumann, 1925. Itis a
consequence of the AFA that every LAPG has a unique decoration.

The Russell operator Ris given by Rx={y € x|y ¢ y}. Itisakey example of a

consciousness operator, the notion of which is elaborated upon in both Sect.12 and the
Appendix.

We now formalize the notions of a WF set, and then we introduce the associated
operator ‘W that selects the WF part of a set.

Deﬁniﬁon 2.2 (WF set’): Aset Tis WFif VX< T, X # @, Ja € Xsuch that
anX=. Tis NWF otherwise. (See Hrbacek, Jech, 1999 and Jech, 2002.)

Alternative: If T is WF, then Vx € T, there does not exist an infinite chain of sets
where x3y,2y,3---3y, 3

Note that Def. 2.2 precludes the existence of loops in the picture of a WF set.
Definition 2.3 (WF part-of-a-set operator): The operator W that “takes the WF part of

a set” is given by:
Wx={yex|ye Swf}. (2.5)

Properties of the operator W and of the set Wx are the subjects of the following lemma.

Lemma 2.4: 1.Vx € S, Wx is WF and 2. Wx cRx  x, where R is the Russell
operator.

Proof: 1. An immediate consequence of Def 2.2, alternative.

2.Since ye S,,=y¢y,then WxcRxcx

? For completeness we state the foundation axiom of Von Neumann: Every set is WF. Recall that
we have replaced AF by AFA. (See Remark 2.1.)
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2.2 Neuronal modeling, M-Z theory

We now introduce some notions relating the set and graphical constructs of Sect. 2.1
to neuronal modeling. In Table 2.2 we collect terms that our subsequent discussion will
specify and make use of. Then a description of the M-Z Theory follows.

Construct Syntax Semantics Comment

APG IT.P) Neural Net Neuronal assembly

NAPG (F,v, w,P) Neural State Assembly of Mc-P neurons at
an instant of time

LAPG .4,.,) | Neural Labeling | VQ e N, O A4, O=H o
H o is a histogram

DLAPG (F,dl ) Neural VOQeN, O—d,

Decoration Meme: An instantiation of a

concept

Set dPe S The set Thema: A thought-meme, a

decorating the
point

state of mind, the set whose
picture is the meme

Table 2.2: Terms used in the development

A neural net, denoted (I, P) is a particular type of graph built upon an abstracted form
of a representation of a living neuron called the McCulloch-Pitts model (Mc-P), a simple
model, chosen for clarity (see (7.1) and Haykin, 2009). Each node of (I, P) corresponds
to a (model) neuron and each directed edge corresponds to an efferent (output) synapse of
that neuron (parent node). For convenience we shall at first restrict out attention to neural
nets whose graphs are APGs. This restriction will be relaxed later.

M-Z Theory: Let us now consider a finite APG along with a collection of so-called
voltage v and weight w data, that data being

Voltage and weight data:

(v:N->{01},w:E— Q). (2.6)

Here QQ denotes the set of rational numbers, a choice made for reasons of definiteness
and clarity. A node with the datum v =1 corresponds to a firing or active neuron. An
edge with weight w corresponds to an efferent (output) synapse with weight w. This
construct is a neural net at a fixed time instant with the efferent voltages and the synaptic
- weights are specified (at that time). This construct, denoted NAPG, will be called a
neural state, and it will be represented by the symbol (I',v,w,P). An NAPG models an

assembly of living neurons at an instant of time. Now construct a labeling of (F, v, w,P),
namely construct the LAPG denoted by the pair (T, 4, ), where

Histogram:

LoQ=H, . VOeN.
f Wo.w

(2.7)




Here the set H | is the histogram of w|, ,, namely the histogram (a WF set) of the
W o )

weight data of an active node and the edges that emanate from such a node. (See M-Z for
a discussion of histograms.) E, , will denote the set of so-called active edges; those

edges emanating from active nodes that lead into P:
Active edges: E,,={@.P)(Q)=1} (2.7)

Note that H 1 € (ran w)x|N| (see M-Z). Finally decorate the LAPG (T, 4,,,), using the
Wiow s

set valued function d, :N — S. The resulting DLAPG, denoted by the pair (F, d, . ) is
a neural decoration of the labeled neural state (the LNAPG). The mapping d, is called

the M-Z function. It is specified by the following M-Z equation obtained by replacing A
by 4,, in the Aczel equation (2.4).

M-Z equation: d, R={d, Q|[R>Q}u2, R VReN. (2.8)

Note that in passing from (F,v, w,P) to (F,d . ), the labeling data is replaced by the
set valued function d, . The construct (F, d wi) is associated with the NAPG. Since the

histogram makes no use of the data concerning inactive nodes, this passage occurs with a
loss of information. This information loss is illustrated by example 3 in Sect. 3.

Model: The NAPG, LAPG and DLAPG are successively more elaborate constructs upon
which we base our model of the state of an assembly of neurons. Each abstracts the form
and activity of an assembly of Mc-P neurons at an instant of time.

Platonism: All of the constructs in Table 2.2 are mathematical abstractions, that is, they
are ideal or Platonic entities. Those that model physical objects may in their
manifestation as a graph... be viewed as objects in reality, but when so viewed, we are in
fact contemplating the modeled object itself. Memes and themata are specified in Sect. 4.
A meme may be Platonic or physical in the sense just described, but since a thema is a set
that models a state of mind, it is taken as strictly Platonic. (See Fig 12.3.)

3. Specific Examples of Employing the M-Z Theory

In this section, we give a number of illustrative applications for employing the M-Z
equation. Properties of the Russell operator, a key consciousness operator (see the
Appendix) are also illustrated.

Applications
1. Consider the graph consisting of a single node P having no edges and with a zero

voltage datum. Since P is inactive and has no children,
oP=0. v (3.1




2. Consider the following neural net (I',P) with one node P and one edge (P,P).

P

When supplied with data v(P) and w(P,P), it becomes a neural state (I',v,w,P). When
(F, v, w,P) is labeled and then decorated using the M-Z equation, it becomes a neural

decoration (F,d - ) 6P 1s specified by that equations as follows.

oP ={6PYUH,,. (3.2)
i) In particular, if v(P)=0,
&P = {5PYUD. (3.3)

We see that decorating the neural net produces the Quine atom 6P = {6P}. The Quine
atom, denoted by €, is specified by the relation Q= {Q}. Note that in the case v=0 at
hand, the DLAPG, having no information about w, does not specify the NAPG.

i) If v(P)=1,
6P = {sPyu {(w(P.P)1)}
= {6P,(w(P,P)1)}
=D (w(P,P)1), (3.4)

where D is the duality operator”.

3. Consider the following APG with nodes P, the point, and 7, the point’s child.
p— T

i) If v(P)=v(T)=0, and w(P,T)=0, where (P,T) denotes the edge from P to T,
then {J} is the set decorating the point. Then {J}e—>eJ isa decoration of the graph
That is, {J} e — ¢ J a picture of the set, and so, a picture of the Von Neumann ordinal 1.

ii) Let v(P)=1. Then independently of the value of v(T), the set £, , = {(P,T)}, and
E,,=<. Now consider the mapping w,., : £, QJ Let s denote the synaptic weight
associated with the edge (P, T):

s=w, (P,T)e Q. (3.5)
Since s arises exactly once,

H, ={sD}, (3.6)

~ for the histogram H v, (previously denoted as H y ), where (s,l) is an ordered pair. We

*Let x" be the unique solution to x” = {x*,x}. Then x* = D x defines the duality operator D.




use the notation (4,B) to denote either the edge from 4 to B or an ordered pair; the
meaning clear from the context (see M-Z).

Since there is no edge leading to P, the histogram H, is empty,

H, =0. (3.7)
The M-Z equations are . ‘
dP={d,T}uD (3.8)
and ‘
d,T=0UH, ={sl)} (3.9

Solving these gives

d,P = {{(s1)}}- (3.10)

4. Now consider the neural state corresponding to the APG in the following diagram.

(L
Here (a) the set of nodes N = {P,0}, (b) the set of edges £ = {(®,0) (O.P)}, and (c) the
datav:N — {0,1} and w: E »Q.

i) If the voltages at both P and Q are zero, the histograms are empty, and so employing
both M-Z and the anti-foundation axiom (AFA, see Aczel), we see that decorating the
neural net produces the Quine atom at each node.

if) Take v(P)=1and v(Q)=0. Then the set of active edges £, , = @. The histogram
H,, =, since the voltage at Q is zero. Also £y, = {(P,Q)} is the set containing the

edge (P,Q). H,,= {(W(P,Q),l)}, since there is exactly one edge connecting P to Q.

Then the M-Z equations are :
’ d,P={d,0}VH,, (3.11)

and

d,0={d,P}o {(w(P.O))}. (3.12)
Recall that H,, =J. Then solving this M-Z system gives
d,0= {{de},(w(P,Q),l)}. (3.13)

Now introduce the abbreviations x =d,P, y=d,0, z= (W(P,Q)l), in terms of which

we have the following diagram generated by the M-Z equations (3.10) - (3.12), which in
particular is a picture of x. Sets of the labeled decoration are indicated in the diagram.
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x= &(neural state)

Notation: Throughout, a triangle with a dashed base is shorthand for a picture of the set
appearing at the vertex of that triangle.

iit) Take both voltages v(P)=v(Q)=1. Then E,, = {(Q,P)}, and H, , = {(w(Q,P}1)}.
E,, and H, are as in (ii). The M-Z system

d.P={d,0}UH,, (3.11)
and
d,Q={d,P}UH,, (3.12)
now becomes
d,P =1{d, 0y {(w(Q,P)1)} (3.13)
and ,
d,0={dPru{(w(P,0))}. (3.14)

Setting x=d,P, y=d,0, u= (w(Q,P),l) and making use of AFA, we assemble the,
DLAPG, a picture of the set d,P, in the following diagram and consider two cases.

Case a) u#z: In this case x # y, since z € y, but z ¢ x. Moreover since the set x

is NWF, but the set u is WF, we have x #u. So x contains u and y but not itself. This

example allows us to illustrate the action of the Russell operator R. In particular since
x contains no element that is a member of itself, Rx = x. Likewise, Ry = y.

11




Case b) u=z: In this case, redrawing the picture (shown below on the left) and
appealing to the uniqueness in the AFA, we conclude that x =y # z. The inequality
follows, since z is WF. This also implies that z ¢ z. Then x = {x,z}, a picture of x,

which is shown below on the right.

=

These observations allow us to conclude that
Rx={z}#x, (3.15)

the last inequality following since {z} is a proper subset of x.

4. Memes and Themata

A meme (Seemon, 1921, Dawkins, 1976, Blackmore, 1999) is a concept or an
instantiation of a concept. A thema (Miranker 2008) is an instantiation of a meme as a
conscious experience (a thought-meme). We shall associate these cognitive constructs
with our development, and in doing so; they should more properly be called neural
memes and neural themata, respectively. For clarity, we shall drop the adjective neural in
these cases. For the context of our development, we compose novel set theoretic
specifications for these constructs, beginning with the following definitions. (Semantic
interpretations of memes and themata are given in Sect. 12.)

Definition 4.1 (Meme): A meme is a neural decoration (DLAPG), a construct, the
mapping d, associated with a neural state (NAPG) of the LAPG into S.

Since there can be a loss of information in passing from an NAPG to a DLAPG, the
latter is not determinant of the former. Example 2(i) in Sect. 3 shows a case of such a
loss of information. A meme is a Platonic construct, but as we have seen, as a neuronal
model, it could be viewed as correlated with a physical instantiation, namely the physical
neural state modeled by the construct.

Definition 4.2 (Thema): A thema is the set 5P that decorates the point P of the graph
decorated by the meme.

12




A thema is strictly a Platonic construct (Miranker, 2008). Note that a thema may
correspond to an arbitrary number of (related) memes. (See the examples that follow.)

The following informal observation supplies semantic content to these concepts.

Observation 4.3: Viewing a meme as a field of sets (in the decoration), the thema as the
representation of each of the memes can be viewed as the literal theme of that field.

Example 2, Sect. 3 shows that (F, d - ) is a meme whose thema is the Quine atom.

(See Sect. 3, example 2i.)
Examples

1. The following are two decorated APGs. The symbols at each node represent the
sets of the decoration, each such set being the indicated Von Neumann ordinal.

2 2
1Y 0 1 0
oY

These decorated APGs represent two distinct pictures of the set corresponding to the Von
Neumann ordinal 2, and both have the integer 2 as a thema. If we label these graphs
using zero weight and voltage data throughout, the APGs become NAPGs. Should any of
the voltages be changed to unity, the decorations change, and we need to appeal to the M-
Z equation for their specification, in particular to determine the new memes and themata.
This example shows that a single thema may correspond to each of a collection of
multiple memetic instantiations.

2. Consider the following APG with nodes called a, b, and c. The symbol a denotes

the point of the APG.
a

b

By labeling the graph with voltage and weight data and then decorating the result, we
obtain a DLAPG. One of the resulting M-Z equations 1s

da={dbdc}UH,,, (4.4)
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where H,, is the histogram of w! g, - Since there are no edges directed into a, E,, =J,

and so, the full set of M-Z equations is

da={db,dc},
db=H,,
and
de={db}yOH,. 4.5)

(1) Now suppose that all three voltages equal unity. (For clarity we shall drop the
second subscript v.) Let us determine #,, the histogram of w' e, - Ey={(ab)(c,b)}, the

set consisting of the two indicated edges. Then there are two relevant weights (one for
each of these edges). Let us suppose that these weights are different, i.e., that »

w(a,b)# w(c,b). Then
H, = {(w(ab)1) (w(c.b)1)}, (4.6)

and

H, = {(w(a,c)l)}. (4.7
Then ;

db = {(w(a,b)1) (w(c.b)1)}, (4.8)
and

dc = {db,(w(a,c),l)}. (4.9)

The following diagram shows the DLAPG corresponding to this NAPG. It is a meme
with da as its thema. :

(i) Other cases wherein not all voltages are unity can be readily. derived from this
case. For instance, take the case where v(b)=1, but v(a)=v(c)=0. Since both source

voltages are zero, all three histograms are empty. Then db =, de ={db}={J}, and
da= {@, {@}} We recognize the thema da as the Von Neumann ordinal 2, and one of
the two examples described earlier as Example 1 in this section.

da
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‘5. Multigraphs

A pair of living neurons may send information through multiple connections
(synapses), and in order for our modeling to capture this feature; we extend our
consideration, in particular, the M-Z Theory, from graphs to multigraphs. For clarity we
restrict ourselves to finite multigraphs.

5.1 Definitions and examples

Definition 5.1 (Multigraph): A multigraph is a quadruple (N, 4,s, /). Nis a set of
nodes, and 4 is a set of arrows, where nodes and arrows are primitives. s and fare
mappings from arrows to nodes. s(arrow) is a node called the initial point or the source
of an arrow, and f{arrow) is a node called the final point or the target of an arrow. The
mapping sx f: 4 — N x N is not necessarily 1-1. (Here x denotes the Cartesian
product.) By an edge in the multigraph, we mean an ordered pair of nodes connected by
at least one arrow. That is, there is an arrow such that s(arrow) is the first of these nodes
and f{arrow) is the second of these nodes. The set £, of edges is defined by

E,=(sxfXA)cNxN. (5.1)

So an edge corresponds to a collection of all of the arrows associated with an ordered pair
of nodes. Hereafter we write a — b if 3a € A4 such that s(@)=a, f(a)=b.

An accessible pointed multigraph will be called an APM. An NAPM will denote the
analog of an NAPG when the neural state for the latter (corresponding to voltage and
weight data) is replaced by a corresponding multigraph supplied with arrow data (a

weight function w: 4 - Q) and node data (a voltage functionv : N — {0,1}).

The following definition specifies the M-Z equatlons for decorating an LAPM (the
multigraph analog of an LAPG). ,

Definition 5.2 (M-Z equation for an NAPM): Let a,b,... denote the nodes of a
multigraph. Then the decoration of the LAPM is specified as follows.

da={dbla—>b}UH,, (5.2)
~and

H, , =histogram of w{AM: H . (5.3)
Here the active arrows, 4, are specified as follows.

Aa’; ={ arrows a,f(a)z a, v(s(a))z 1}. (5.4)

The collection 4, of arrows terminating in a node a will play a key role in what follows.
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We now give some examples both of NAPMs as well as of the sets decorating them to
produce DLAPMs (the multigraph analog of DLAPG). We shall see that when
specifying the histograms, it is the arrows that are directly involved with the edges
playing a subordinate role.

Examples

1. Now consider the following example of an APM with one node P (the point) and »
arrows, the latter arbitrarily numbered with j =1,...,r.

For the set of arrows 4, we have.
A, ={r arrows j|s(j)=P,1(j)=P}. (5.5)

If v(P): 0, the node P is inactive, and so SP is the Quine atom.

Now let v(P)=1. Then the point is labeled according to the data v(P) and the
associated weights. Take the weights as a vector of  distinct rationals ¢, j=1,...,r.
Then for the histogram H,, at P, we have

H,,={(g.1)--.(a,1)} | (5.6)

dP = {dP,(q,)1)....(g,-1)}, (5.7)

Then

and so ]dP{ =r+1. The thema dP has the following picture (meme).

2. Consider the following NAPM. If v(P)=1, then

H, = {(Sp/‘l)’(svﬂz),'”}- (5.8)
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Q

In(5.8), 4, e N, 5, € Q and the ordered pairs, = (n,,d,), wheren, € Zand d, € N ,.
The symbol i indexes the distinct weights s, (not necessarily the distinct arrows)
associated with the arrows in the multigraph. The n, and d, relatively prime. The
number of pairs (s,,z,) in the definition of H w,, 18 not necessarily the same as the number

of arrows in the graph. Then
(Si,ﬂi)z((ni,di),ﬂi) neZ, deN,,ue N, . (5.9)

That is, histograms of NAPMs are finite sets of ordered triples, i.e., are points in Z.*. The

M-Z equations are
dP ={dQ} and dQ= Hy, . (5.10)

Of course, the DLAPM is the indicated graph, labeled by the histograms and then
decorated using the M-Z equations. Extending the concepts of Sect. 4, we take the

‘resulting neural decoration as a meme with the set oP = {H Wy, }as its thema (the meme
being a picture of the thema).
3. Next consider the following graph with two nodes, P and Q, where P is the point

~ and where there are two arrows from P to P and two arrows from P to 0. The symbols
w,,...,w, denote the indicated synaptic weights.

With v(P)=1, the M-Z equations for the corresponding DLAPG are

dP = {dP,dQ} U H,,, (5.11)
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D)y wEw,
dQ - HQ.V —'{ {(an)}’ W, =w,, (512)
and
_ {(WJ,I),(W4,1)}, Wy EW,
e _{ (,.2)) wy=w,. (5.13)

With distinct w,, these equations imply

dP={dP.H, WO H,,
= (4P, {0m 0w {0 v DY)
= (PO O DO MO 1y

Note that |dP|= 4, and that the following three of its elements {(,1}(w,,1)} (w;,1} and
(w,,1) are distinct.

5.2 Special multigraphs

We have observed that in general a thema is not uniquely determined by a meme. A
pointed multigraph (T, w,P) is called special if this uniqueness prevails. More precisely,

consider the following definition.

Definition 5.3 (Special pointed multigraphs): A pointed multigraph (I, w,P) is said
to be special if for any WF labeling A of ', the thema (decoration of the point) d,P
uniquely determines the meme (the entire labeled decoration) d,.

We interpolate examples of special pointed multigraphs. Note that in these examples,
expressions of the form F (Q) for a node Q represent a generic WF label of the node Q.

Examples (con’t.)

4. . 0

dP = {dQ}U F(P) (5.15)

The Aczel equations are

and

dQ = {dP}U F(Q). (5.16)

Since both F(P) and F(Q) are WF, we have F(P)="WdP, and so, dP = {dQ}w WdP.
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Then dQ is the only NWF element of dP. Now, 4-"WA4= {x e Alx is NWF } for any
A e S.(See Sect 2.1 for the definition of W.) Then applying this last relation to dP , we

find -
{dQ}=dP-"WdP. : (5.17)
Then (5.14) may be written as®

dQ = U(dP-"WdP), | (5.18)
since U{A}=4 forany 4 € S. |

This example shows that for the graph in question we can recover the meme from the
thema no matter what the labeling (with WF sets).

5. For the following graph |

Pn » PZ
‘\
\“
P4 P3
we have
dP.={dP,}UF(P) i=l..n, (5.19)
where P, ¥P,. Next proceeding along the lines of Example 4, we have
dP, ={dP,} U F(F,) (5.20)
and
dP, = U(dP,-"WdP,). (5.21)

* Introducing the operator V="U(/-"W), dP, may be written as dP, ="VdP,. This may be

extended to give
dP.="Vdp, i=2,..n. (5.22)

This shows that the entire meme corresponding the graph in this example (that is, all of
the dP, can each be written in terms of the thema dF,.

6. An example of a non-special graph is given for completeness. Namely,

| G G

* The operator ‘U is defined as follows. U x = {yl 3z € xsuchthaty € z € x} .
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The Aczel equations are
dP ={dQ,dR} U F(P),

dQ={dP}u F(Q)
and

dR = {dP,dR}U F(R). (5.23)

From the first of these we can deduce that the unordered pair {dQ,dR} may be expressed
in terms of the thema dP,

(dO,dR}=(I-'W )dP. (5.24)
Then with any solution pair {dQ,dR}, the pair {dR,dQ} is also a solution.

7. The following diagram exhibits a well-founded graph that is not special.

P

The Aczel equations are
dP = {dQ,dR} U F(P),

dQ=F(Q),
dR={dT}UF(R)
and

dT = F(T). (5.25)

Then with any solution pair {dQ,dR}, the pair {dR,dQ} is also a solution.

6. Non-Well-Founded Neural States.

In this section multigraphs are restricted so that the decoration of any node is NWF.
This restriction enables development properties of reversibility and of self-awareness. In
particular, (i) it allows for the retrieval of the M-Z histogram from the M-Z decoration
and (ii) that corresponding to a particular so-called consciousness operator, an NAPM
corresponding to a NWF multigraph is capable of self-awareness.

To begin we prescribe the non-well-foundedness of multigraphs (neural states).
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Definition 6.1 (NWF multigraph, NWF neural state): A multigraph I" is NWF if
VP e N, there exists an arrow whose source is P. A neural state (LAPM) is NWF if its

underlying multigraph is NWF.

Recall that (a) for the weight function w, we have w:4 — Q, (b) for a decoration d,
we have d:N — S, while (c) for a histogram, we have H : Nx ran w — N, and that (d)

the set

H(a)={(g.n)q € Q,n € N, n is the frequency of g as a value of W‘AM } (6.1)

- is WF. However (e) the set da = {dbla — b} H(a) may be NWF. We further recall that
(f) 4,,={arrows al f(@)=av(s(a))= 1} and (g) H(a)c (ran w)x V| is a finite set.

Examples

1. Consider the following graphs.
P P

Q Q

The M-Z equations for the graph on the left are

dP ={dQ}V H(P)
and

dQ={dP}V H(Q).
From (6.3) we read off

dQe dP € dQ e dP,

- which shows that dP and dQ are NWF. Indeed we may write
WdP =H(P) and WdQ=H(Q).
The M-Z equations for the graph on the right are
dP ={dQ} U H(P),
dQ={dR,dP}w H(Q)
and

dR = H(R).
(6.6) and (6.7) give

(6.2)
(6.3)

(6.4)

(6.5)

(6.6)
(6.7)

(6.8)
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» dP € dQ € dP
and ' ,
dQ e dP € dQ. (6.9)

So dPand dQ are NWF. However since histograms are WF, the third M-Z relation (6.8)
shows that dR is WF. From these observations, we may write

WdP = H(P)
and
WdQ=dRrRo H(Q). (6.10)
(6.6) and (6.7) give
dP = {{dR,dP} U H(Q)}w H(P). (6.11)

All of this information enables us to compose the following picture of dP, where we
have assumed that v(P)=v(Q)=1.

dp
d H(P)=(w(@— P)})
dR H(Q)=(w(P — O)1)

H(R)=(w(Q— R)1)

2. The following diagram shows an example of a NWF graph with |N] = |E | =3.

P R

0

The M-Z equations are
dP ={dQ}w H(P),

dQ={dR}u H(Q)
and

dR = {dP}U H(R). (6.12)

We see that the sets dP, dQ and dR are NWF.
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Retrieval of the histogram from the decoration: Returning to the general case, the
concepts just developed allow us to retrieve the histogram from the decoration. This is
the assertion of the following proposition.

Proposition 6.2: If " is finite and NWF, then for every node a € I', da is NWF, and

da= W({dbla— b,db is WF }u H(a))= H(a). (6.13)
More generally,

Proposition 6.3: Let " be finite and NWF, and let be 4 a labeling of I" such that Aa is
WF for each a € N. Then d,ae S, ,and Va € N, Aa can be retrieved from d,a. In

particular, la=Wd,a.

Consciousness operators: As indicated in Fig 1.1, there is a class of operators called
consciousness operators (denoted generically as K) that play a fundamental role in the
foundations developed in M-Z. From Fig 1.1, we see that conscious awareness resides in
the Platonic realm. The Russell operator R and the well-founded-part-of operator ‘W
(Def 2.3) are examples of K. (See the Appendix for a proof as well as for a fundamental
characterization of 'W). We can apply Prop. 6.2 to aspects of the structure in Fig.1.1 to
frame an example of awareness that resides in the physical realm. We interpret these
observations as follows.

Observation 6.4: A NWF NAPM is capable of self-awareness.
This can be deduced from the diagram in Fig. 6.5, since the histogram is physical.

neural state (I, w,v)

primary experience d

A

conscious awareness Wd=H histogram
Figure 6.5: The histogram of a neural state as awareness

We claim that Obs. 6.4 addresses the following critique concerning awareness and
the mind in science.

“A physical scientist does not introduce awareness (sensation or perception)
into his theories, and having thus removed the mind from nature he cannot expect

to find it there.”
Schrodinger, 1958
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PART II: DYNAMICS
7. Voltage, Activity and Histogram Dynamics
In this section we show how the Mc-P equations that describe the voltage dynamics on
a neural net induce a corresponding dynamics for the associated histograms. That is, we
derive what is called the histogram evolution equation. A byproduct is the introduction

of a notion of nodal activity and its associated dynamics.

We begin with a statement of those (discrete time) Mc-P dynamics (Haykin, 2008),
which specifies the input-output voltage relationship for a model neuron. (See (2.5).)

Voltage dynamics: v(a,t+1)=h Zw(a)v(s(a) l) -0
{a|f(a)=a}

Xh, Zw(a)v(s(a), t) . ' (7.1)

{a]f(a):a }
In (7.1) « runs over those arrows in 4 for which f (a): a, t 1s an integer valued time, A
the Heaviside function and 6 the neuronal firing threshold. For clarity we take the

synaptic weights w(«) for each arrow in I to be time independent.
g

The Mc-P equation motivates introduction of a construct called nodal activity:

Definition 7.1 (Nodal activity): We call G(a) the activity at the node a € N, where

G(a)= Z w(a)v(‘s(a)). (7.2)

. {df(e)ra}
YG,,(vXa).

So G, is a mapping V,, -»Q . Combining (7.1) and (7.2) gives

v(at +1)=hy(G(a,1)). (7.3)

Then combining (7.2) and (7.3) produces a specification of activity dynamics. Namely,

Activity dynamics:  G(a,t+1)= Zw(a)hg (G(s(a), t)) (7.4)
{df(a)=a} :

Using (7.2) and (7.3), we deduce the followiﬁg proposition.

Proposition 7.2: The voltage trajectory determines the activity trajectory and conversely.
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As the voltage varies with time, so will the corresponding histograms. With the latter,
we can use the M-Z equation to decorate the graph (or multigraph) as time evolves. That
is, we can determine the dynamics for the associated memes and themata. (See Sect. 4.)
We now develop an expression for the histogram dynamics.

Letting «, denote what we shall call the Kronecker function, namely the function
whose values are specified by «, ()= 0, , where &, is the Kronecker-6. Then we may
write the following u independent representation of H (a,t), the histogram at node a at
time ¢. (See Def. 5.1.)

H(a,t)= ZKW(a)

aed,,

= (@)t (7.5)

{a]f(a):a}
Recall that the argument of Kw(a)(/,t) is restricted to be rational (u € Q).

Increasing ¢ to ¢+1 in (7.5) and then using the Mc-P dynamics in (7.1), we obtain

H(a,t+1)= Zv(s(a),t + l)vw(a)

{a‘f(a):a}

= 2 k| ZwVEBM) K

{of(a)=a} (B)=s(2)

= he[ZuH(s(a),tXu))KW(a), (7.6)

{alf(@)=a} u
where (7.5) is used for deducing the last line in (7.6).

Here and hereafter, the summation variable u runs over ranw, a finite subset of Q.
The interior sum in the last expression in (7.6) has the form of an inner product that we

write as
D uF(u)=(LF), (7.7)

i

where L(p)=pand F=H (s(a),'t). Then a preliminary form of the histogram dynamics

are given by
Hat+1)= ke (LH@)0) Ko (7.8)

{elf(a)=a}

Noting that H: N xZxQ — N, we rewrite the histogram value H(a,¢ ) as H(a,t,u).
Then we also rewrite the equation (7.5) for the histogram as
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H(a,t,,u)z > v(s(a),t

{alf(a):a}

= Zv(s(a), t). (7.9

{df(@)aw(@)=u}

){1, w(a)=u

0, w(a)#u

This last sum takes its values in N, since it is a sum of zeros and ones. Rewrite (7.8) as

Har+lw)= 2k (LH(s(@)0) (7.10)

{a‘f(a):a,w(a): ;(}

Combining (7.7) with (7.10) we get the equation specifying the histogram dynamics.
Namely,

Histogram dynamics: H(a,t+1,u)= > he[z ﬂH(s(a),t,/l)J. (7.11)
{a!f(a):a,w(a):,u} i
Now note that

DAHBLA)= D A D v(s(at))

ren(4) rewd) {alf(@yam(ay2}

= Z w(a)v(s(a), t)

{al/(a)=b}
=G(b,t), (7.12)
the last following from (7.4). Combining (7.11) and (7.12) gives

H(at+lpw)= 2 h(G(s(@)r)) (7.13)

{al f(@yaw(@yn}

The relationships between the voltage, activity and histogram trajectories is specified
in the following Prop. 7.3 and Thm. 7.4. Prop. 7.3 follows from (7.12) and (7.13).

Proposition 7.3: The histogram trajectory determines the activity trajectory and
conversely. \

Combining Prop. 7.1 and ‘Prop. 7.2 yields the following theorem.

Theorem 7.4: Any one of the three trajectories (voltage, activity and histogram)
determines the remaining two.

26




We conclude Sect. 7 with the following expository observations.

Remark 7.5: To use the histogram dynamics, we must specify an initial histogram,

H (a,O, ,u). This can be determined from the weights and a specification of the initial
value of the voltage (zero or one) at each node of I". Finally consider the evolution of
the corresponding DLAPMs. As the net evolves, the corresponding DLAPMs evolve,
and so the associated thema (the set decorating the point of I") evolves along with them.
Note that even though the weights are frozen, the voltages evolve, and so, the time
development of the histogram may be different for different specifications of the initial
voltage values. In this way the temporal development of the neural net being modeled
may instantiate a number of different thema trajectories. That is, a neural net with frozen
weights may manifest one of a finite set of different evolving states of mind (see Table
2.2). This description is compatible with the customary role of a neural net as an
associative memory. A neural net can store a (finite) collection of different information
records in terms of its weights. The particular memory record that is delivered by the
Mc-P dynamics by accessing the net with voltage input cues depends on those inputs.

8. Crop Dynamics and Mean Dynamics

In order to conceptualize the set of all M-Z histograms, we introduce the auxiliary
notion of a crop. A crop is an abstraction of an M-Z histogram that eliminates the need to
specify such details as weight and voltage data. Then a specification of crop dynamics
that emerges as a natural generalization of histogram dynamics is given. The notion of
the mean of a crop is introduced, and the relationship of its dynamics to the crop
dynamics is developed.

To begin, fix the multigraph I = (N, 4) and the weight function w:4 — Q. Note

that the range of weights w(A4) is a finite subset of Q. Note also that there is a
corresponding WF finite set of possible histograms associated with I"and w, which we
write as follows.

(1+deg )", | (8.1)
where deg f = maz&‘ f "(aj.

Next we introduce a set F(a), an abstraction of a histogram. F'(a) is chosen so that

F(a) e (1+deg f)W(A). Note that £ (a) is a finite WF set. Let us alter the specification
of the function d: N — §, by replacing H (a) with F (a) and using the following relation

(compare (5.2)).
da={dbla—>b}UF(a) YaeN, (8.2)
where
F:N— (1+deg f)W(A). " (8.3)

We make use of the notions of a crop on a set and a crop space specified as follows.
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Definition 8.2 (Crop, crop space): A crop on a set Y is any function f:Y —-N. A crop
space is a collection of such functions. Given a multigraph supplied with a weight
function, (I',w), the crop space, Cr,,, associated with (I',w) is given by

w(A)xN

Cr, = (1+ degf)

= ((1 +deg f)w(”))[\,,, 84

Since [V,,|=2""" and C:..|=(1+deg f jw(A)”N', crop space is typically larger than

voltage space. The two are of the same size in the special case that deg f = lw(Aj =1

The form of the histogram dynamics in (7.11) suggests that the following dynamics be
taken for a function F.e Cp.,. (Recall that I is a generalization of a histogram.)

Crop dynamics:  F(a,t+ )= Z he(Z/lF(s(a), t l)j (8.5)
{df(a)=aw(a)u} A

In the non-degenerate case that w: 4 — Q is 1-1 (that is, when all arrows have different
weights), the expression for the crop dynamics in (8.5) simplifies to

Flat+1m)=5, (ﬂ))hg[ Z(:/}F(S‘(w_l (L))t A)J. (8.6)

Now consider the construct called the mean (of a crop) specified as follows.

Definition 8.3 (Mean of a crop): The mean of a crop M(b) € Q" is given by

M(b)= D AF(b,A)

Aew(a)
YM(F)b). (8.7)
We regard M as a mapping C.,, — Q". Next combining (8.5) with (8.7) gives

Flat+lu)= 2 h(M(s(@)r)) (8.8)

{a|f(a):a‘w(a)=,u}
Combining (8.7) and (8.8) gives an equation for the mean dynamics. Namely,

Mean dynamics: M(at+1)= D w(ah,(M(s(a)r)) (8.9)
{alf (@)a}
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The following proposition follows from (8.7) and (8.9). (Compare with Prop. 7.3.)
Proposition 8.4: A crop trajectory determines a mean trajectory and conversely.

Now using (8.7), rewrite (7.12) as
' G(t)= MH(t). (8.10)

We can retrieve the voltage from the histogram by combining (8.10) with (7.3). Namely
v(t+1)=h,MH(?). (8.11)

This demonstrates the reversibility of the M-Z Theory.

9. The Aczel Transform and Memetic Dynamics

We now complete the layering of dynamical systems (all of which are autonomous)
defined in terms of a weighted multigraph (I, w) by specifying decoration dynamics. In

order to introduce decoration dynamics, we specify a new tool A, called the Aczel
transform that for a given I associates d to F as follows.

Definition 9.1 (Aczel transform): Let F € SV, where S” denotes the class of all set
valued functions on N. Then with d specified in (8.2), the Aczel transform A is given
by -

Fr—> A.F=d. 9.1
Note that (2.8), which expresses the M-Z Theory can be written in terms of A as
follows. '

d=A. H. (9.2)

To illustrate these constructs consider the case I' = (P,P — P) displayed as follows.

D
Then -
d(P)=( A FXP)={ A F(P)}UF(P), (9.3)

where F(P) €S, and F(P)— (A, F)P) is a transformation on sets. If F(P)={x},

a singleton, then
d(P)={d(P)jv {x}

- 4Py}

=Dx. 9.4)
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(See footnote 3 for the definition of D.) The following hypothesis that abstracts features
of biological neural networks plays a critical role in the remaining development.

Hypothesis 9.2: We hereafter assume that I" is finite and NWF. (See Def. 6.1.)

We can now state the following proposition and corollary that characterize several
reciprocal properties of our constructs.

Proposition 9.3: Suppose F':N —S .. Then

d:N-> S, (9.5)

and
Wd=F, (9.6)

showing that F'(a) can be recovered from the decoration d.

The following corollary follows from (8.2) and (9.4).

Corollary 9.4 da={dbla—>byoWda. (9.7)

Next we specify the construct of decoration space, employing the following notation.
For O any operator and for any set B < dom O, let ’

O[B]={ Oblb € B}=ran O|,. (9.8)

Definition 9.5 (Decoration space): The set A[C.. , Jis called decoration space

associated to (I',w).
We continue by assembling three of the layers of the dynamics already available.

A) Voltage (Mc-P) dynamics: The collection of >Voltages associated with (F, w),

namely {0,1}Nis what we call the voltage space V. We symbolize the dynamics on this
space by introducing a voltage dynamics operator £, rewriting (7.1) as

v(t+1)= E (). ' 9.9)

B) Crop dynamics and Histogram dynamics: We introduce a crop dynamics
operator T;., , in terms of which we symbolize the crop dynamics of (8.5), (8.6):

F(t+1)=T.,,F(). (9.10)

Note that 7;,, is an operator on set valued functions on N. Note also that crop dynamics
are intrinsically determined by the weighted multigraph (I',w).
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We now introduce a mapping U, , that relates voltage data and crop data. Namely,

U, (v Xa,1)= ‘{a‘ v(s(a))z Lf(e)=aw(a)= ,u}. (9.11)
Since a histogram is a special case of a crop, we have in particular, that
H=U.v. (9.12)

For any voltage v, U, , takes values in the set 1+degs. So U, € Cr,,. Indeed the

mapping UV, — CRW gives the frequency of y for w A

For clarity we give an operator form of histogram dynamics obtained from (9.10) by
specializing £ to H as follows.

H(a,t+ 1) =(Tr.,, o H(t)Xa:12). (9.13)

C) Decoration dynamics: The Aczel transform A and the crop dynamics operator
T, ¢ along with Prop. 9.3 enable introduction of a dynamics for decorations. In
particular, »
' Cd(t+1)=5r,,,d(?), v (9.14)
where the decoration dynamics operator S, , is specified as follows.
Sr,w,(? = ﬂl" ]},W,G ﬂ F]' ' (915)
Using this with (9.6), and then using F = A . d, the last deducible from (9.1), we find
St d= AT, Wd, (9.16)

where d is specified in (8.2). Finally using (9.13) and (9.15), we obtain the following
operator form of the decoration dynamics.

d(at+1)=( AL Tp,, Wd(t)Xa)- (9.17)

For the definitions of A, T, and W, see (9.1), (9.10) and (2.5), respectively. Note
that W is a node-wise operator, while A and T;,, are operators on functions.

The developments in this section are summarized in Fig. 9.6.
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\4 Sr,w,b" 4
qur Cr,w] ’ Ar[cr,w]

Figure 9.6: Voltage, crop and decoration dynamics

10. Configuration Spaces (Statics)

We now complete the complement of spaces needed for our development by
introducing both a space that represents all of the memes associated with a given (F W)

and a space that represents all of the themata associated with a given (F, w,P).

First recall that U, (see (9.11)) is a mapping of voltage space into crop space (Def.

8.2).
U, :Vy = Cr,. (10.1)

The pair (F, U, (v)) constitutes a labeled multigraph. We continue with the introduction
of five additional constructs.

Definition 10.1 (Mapping of a voltage function to a meme): The mapping D, taking
a voltage function into a meme is given by

D, (v)=Ar(Ur,.(v)) (10.2)
We shall write
Dr,w: -ArUr.w, (10.3)
so that
d(t)= Dy ,v(t). (10.4)

The following definition is framed in terms of this construct.
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Definition 10.2 (Memetic space): Memetic space, Me.,, € S is defined by the following

relations. (See (9.8).)
Me; , = Dr,w [VN]

= AU V] (10.5)

Next recall that § maps neural states into S. In particular, é takes a DLAPM into the
decoration of the point P of the APM. Then we write (see (2.4)f)

S(@C,w,v,P)=D;,,(v)P. (10.6)
We define thematic space as follows.

Definition 10.3 (Thematic space): Thematic space Th.., , € Sis given by

Thr,w,P = 5l',w,p [VN]
X{S(C,w,v,PYv € Vy }. (10.7)

We next define R, , to be interpreted as a realization mapping, a mapping that takes

an unconscious neural state into a state of mind (see Table 2.2). That is, a mapping that
takes a meme into a thema.

Definition 10.4 (Realization mapping): The realization mapping Ry, ,, taking memetic
space Me,, into thematic space Th,, ,, is specified as follows.

RF,W,P : Dr,w [VN] - d‘,w,P [VN]? (108)

Dy, (V)= Dy, (v)P. (10.9)

where

Finally we introduce a notion called a summit that generalizes a thema.

Definition 10.5 (Summit space): The construct évapﬂr[Cr,w] is given the name
summit space and its elements are called summits.

The diagram in Fig. 10.7 shows relationships among our configuration spaces and
mappings. The constructs in the right column of the diagram are mathematical
abstractions that are more general than those in the left column, which in particular, also
depend on the voltage. The horizontal arrows (<—— ) represent the inclusion
mappings, I, 1,,, and 1,,,, respectively. These three injections are well defined since

is> T mem them >

every histogram is a crop, every meme is a decoration and every theme is a summit. The
dashed line separates sets in the diagram that are WF from those that are NWF.

The following theorem characterizes key properties of these constructs and mappings.
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Theorem10.8: The diagram of configuration spaces and mappings in Fig.10.7 is a
commutative diagram.

Gr

voltage space ¥V, ———> Q" vector space
A

U, M

W

W

v ‘
WF
histogram space U [V,] «— , C.,, crop space

memetic space Me. , = AU, [Vy] &—> AL [Cr,w] decoration space

Reop 5, NWF

v A\ 4
thematic space Th.,,, =6, ,[Vy] < y OA_[Cp, ] summit space

Figure 10.7: Relations among configuration spaces and mappings

11. Configuration Spaces (dynamics)

We shall now introduce a well-defined dynamics for memes. The relationship of

these dynamics to those already introduced (for voltage, crop and decoration) is displayed

in a three dimensional diagram shown in Fig. 11.2. Following this the associated
dynamics for themata (although not uniquely defined) are specified.

A) Memetic dynamics: Let

KERE G (11.1)

denote the memetic dynamics operator expressed in terms of the decoration dynamics
operator specified by (9.12) - (9.14). This operator is defined by the following diagram.

A [C.,, ] —— A_[C,,] decoration space |
S = SI‘,W,H

mem mem

_ > 1
Me. ; Me,, memetic space
S = Sr,wﬂ ¥S Iw
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Since a meme is a decoration, (9.17) is an explicit equation for memetic dynamics.

To illustrate the constructs thus far introduced, we combine this diagram with the one
in Fig. 9.6. The resulting diagram of the relationships of the dynamical systems of our
theory is shown in Fig 11.2, where for clarity, we have omitted most subscripts.

Cy, T C crop
voltage U ! space
space ' U
4 v !
E " Al A
|
1
D D A[Che . y A[C]
- ) S decoration
TS S space
‘,'—"—’—’ [mem
\ 28 ;V
Me S Me memetic space

Figure 11.2: Diagram of the dynamical systems

The following Theorem 11.3 characterizes key interrelationship properties of the
constructs in the diagram in Fig. 11.2.

Theorem 11.3: The diagram of dynamical systems in Fig 11.2 is a commutative diagram.

B) Thematic dynamics: The realization mapping of (10.8) takes a meme x into its thema
7, say. Thatis,
T=Rp, M. (11.2)

More than one g, albeit a finite number, may satisfy (11.2). Each choice of u evolves to
give a memetic trajectory, x4, =S"u n=0,1..., generating thereby an autonomous

thematic trajectory. Namely,
t,=R.,,S"u, n=01.. (11.3)

In fact, given the value of the thema 7,, n=0,1..., 4 may be replaced by any meme u,
that satisfies the equation 7, = R, ,u,. This procedure generates a non-autonomous

trajectory. Namely,
T, =R, .S"u, n=0,.. (11.4)

12. Summary and Semantics

The foundations of consciousness developed in M-Z emanated from a framework of
mappings associated with the M-Z Theory. These mappings describe a static picture,
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showing an irreversible passage from the physical to the Platonic realm. That is, the
physical cannot be recovered from the ideal (Platonic) quality that is consciousness. The
introduction of dynamics introduces reversibility into our study, and so, it gives a more
detailed description of the relationship between physical and Platonic realms of mental
activity. The multigraph T" being NWF (recall Hyp. 9.2) is a critical requirement for
_reversibility. We start in Sect. 12.1 with a syntactic and semantic summary of the
physical aspects of the dynamical developments and conclude in Sect.12.2 with a
discussion of the semantics associated with the Platonic aspects of our constructs.

12.1 Review of the constructs

~ Dynamical variables: In Table 12.1 the semantics of the physical variables,
v(¢), G(t) H(r) as well as the Platonic variable d(r) are displayed.

Semantics Takes values in
v | voltage {0,1}
G | activity Q
H | intrinsic data | N © (crops on Q)
d | meme NWEF sets

Table 12.1: Semantics of the dynamic variables

Equations of the dynamics: These equations, specified in (7.1), (7.3), (7.11), (9.13) and
(9.17) are listed here.

Voltage? v(a,t+1)=h, Zw(a)v(s(a), t) . (7.1)

{a|[(a)=a}
Activity: Glat+D)= 2 w(a)h (G(s(@)t)). (7.3)
{a’f(a):a}
Histogram:  H(at+Lw)= Y.k, (Z AH (s(a)t, A)J. (7.11)
{alf(a)= a,w(a):/.z} A
= (T, H()Xa,1). (9.13)
Memetic: d(at+1)= (AT, Wd(t)Xa). (9.17)

Temporal structure: The dynamics allows us to express v in terms of H or G. The
temporal structure of the M-Z Theory is summarized in Table 12.2, where the
static/dynamic type (S/D) and semantics of the syntactical constituents are displayed.
The column of references indicates equation numbers in the text.
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Syntax Type Semantics Ref
1| G(t)= Zw(a)v(s(a) t) S Definition of neural activity | (7.2)
{dlf(a)=a}

2| v(t+1)=h,(G(2)) D | Mc-P dynamics (7.4)
31 G(t)= MH(r) S | Histogram — > Activity (8.8)

H(at+1,u)= Z h, (G(s(a), t)) D | Activity = Histogram (7.13)

falf(@Fas(@ru}

5| H(@)=U, () S | M-Z Theory (9.12)
6| v(t+1)=h,MH(?) D | Reversibility of M-Z.theory | (8.11)
7| d(t)=AH(r) S M-Z Theory (9.2)
8 | H()=Wd(r) S | Reversibility of A, (6.5)
9| d(t)=Dr,v(¢) S M-Z Theory (10.3)

Table 12.2: Temporal structure of the M-Z Theory

Mappings: The mappings in Table 12.2 that display interrelationships bf our constructs
are assembled in a reversible portion of a diagram of mental activity in Fig. 12.3.

Reversible Irreversible
A
awareness field
x ¥
> Kd(t
I
I
: E, E, "
|
| ‘
i d(P,t K d(P,t
| . P— p (P.1)
| /! ,
G(t) : I’/ I//
! thema ‘quale
Physical Platonic

Figure 12.3: Summary of constructs and mappings of mental activity, indicating the
partitioning into reversible/irreversible features and physical/Platonic features, resp.
All mappings in Fig. 12.3 are static except for L,, which is defined in terms of %, as

(Lof XO)=hy (£ (e -1)).

follows.

(12.1)
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The three constructs v(¢), G(¢) and H(t) and the six mappings Gy, Uy, Ly, Uy, Lo, M
and L,M appear in the triangle on the left in Fig. 12.3. The paired arrows express the
reversibility. A dashed line separates the physical realm from the Platonic. The middle
part of the diagram portrays the reversible passage between H(r) and d(t). The right
hand part of the diagram (separated from the rest by a dotted line) shows the Platonic
constructs from which, because of a loss of information in their formulation, the physical
cannot in general be recovered. (Do recall from Sect. 5.2 however, that the meme may be
recovered from the thema in the case of so-called special multigraphs.) Also shown in
the right hand part is K a generic consciousness operator (see the Appendix) as well as
the mapping £, :S"— S, where

E,d=dP. (12.2)

12.2 Semantics of awareness

Some of the constructs shown in the Platonic portion of Fig. 12.3 (see Fig. 1.1 also)
are labeled with semantic descriptors that connect the syntactical constructs of our
development to one or another of the philosophical aspects of consciousness studies. We
list these along with comments as follows.

Meme: A meme is a concept encoded physically in terms of synaptic weights. It arises
by application of Dy (entry 9 in Table 12.2), so we view it as an unconscious aspect of a
mental state. The concept corresponds to a DLAPM, and so, the meme could be viewed
as a field of unconscious primary experience (see Fig. 1.1) spread over a neural network.

Thema: The thema (Def. 4.2) is a primary experience (see Fig. 1.1), a preconscious
feature that can be viewed as the literal theme of a meme.

Consciousness operator: A consciousness operator (see M-Z and the axioms in the
Appendix) is a mapping that takes (a) a meme into an awareness field or (b) a thema into
CONsCious awareness.

Awareness field: Awareness is a conscious experience. An awareness field is a field
of conscious awareness spread over a neural network. It is the collection of results
obtained by applying a consciousness operator to a meme (the collection of sets
comprising a decoration).

Quale: A quale is a conscious manifestation such as a color, sound, wetness. .. or a

feeling such as hunger, pain, longing... It is the perceptual experience that we identify as
consciousness. A quale is an example of a conscious awareness derived from a thema.

Appendix

Intrinsic fundamental properties of ‘W are the subject of the following remark.
Remark: 1. For every consciousness operator K, Wc XK.
2. ‘W is the unique consciousness operator whose range consists of WF sets.
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To demonstrate that an operator is a consciousness operator, we must show that it
satisfies the following four consciousness operator axioms in M-Z.

Axiom Semantic interpretation Name of
of the axiom Axiom
a) | Vx, Kxc x | Experience generates its Generation

own awareness

b) | Vx, x ¢ Kx | Awareness does not generate Irreversibility
the primary experience

¢) | Vx, Kx ¢ x | Awareness is removed Removal
from experience

d) | If x < y, then | Awareness of a sub-experience is Selection
Kx=xNnKy determined by the sub-experience
and awareness of the primary
experience

Table A1: The axioms for a consciousness operator.

Such a demonstration for R is found in M-Z. The demonstration for ‘W is straight
forward, but for the convenience of the reader, we shall show b) and c).
b) Since Wx < Rx, we deduce that x € Wx = x € Rx, a contradiction
¢) Now suppose Wx € x. Then either 1) Wx € Wx or2) Wx € x=Wx.
1) Wx € Wx = Wx is NWF, which contradicts Lemma 6.4.
2) Wx € x — Wx. Then by definition Wx is NWF, contradicting Lemma 6.4.
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