The present paper describes an algorithm for the rapid evaluation of the potential and force fields

in systems involving large numbers of particles whose interactions are described by Coulomb’s law.
Unlike previously published schemes, the algorithm of this paper has an asymptotic CPU time
estimate of O(N), where NV is the number of particles in the simulation, and does not depend for
its efficient performance on the statistics of the distribution. The numerical examples we present
indicate that it should be an algorithm of choice in many situations of practical interest.

A Fast Adaptive Multipole Algorithm
for Particle Simulations

J. Carrier, L. Greengard, V. Rokhlin

Research Report YALEU/DCS/RR-496
September 1986. Revised January 1987

The authors were supported in part by the Office of Naval Research under Grant N00014-82-K-0184




1. Introduction

The evaluation of Coulombic and gravitational interactions in large-scale ensembles of particles
is an integral part of the numerical simulation of a large number of physical processes. Typical
examples include celestial mechanics, plasma simulations, the vortex method in fluid dynamics,
and the solution of the Laplace equation via potential theory (see [1], [2], [3], [8], [10]). In such
cases, the potential has the form

d= chternal + q)local + q:’fars (1)

where ®jo.q; is a rapidly decaying function of distance (such as the Van der Waals potential
in chemical physics), ®czternat is a function which is independent of the number and relative
positions of the particles (such as an external gravitational field), and @4, is Coulombic or
gravitational.

In the numerical evaluation of fields of the form (1), the cost of computing the terms
D,sternat and Byoeqr is of the order O(N), where N is the number of particles in the ensemble.
Indeed, @, termal is evaluated separately for each particle, and ®;,.4; decays rapidly, involving
the interactions of each particle with a small number of nearest neighbors. Unfortunately, eval-
uation of the term ®4,,, if done directly, requires order O(NN?) operations, since the Coulombic
potential decays slowly, and the interactions between each pair of particles have to be taken
into account. In many situations, in order to be of physical interest, the simulation has to
involve thousands of particles (or more), making the estimate O(N?) excessive in some cases,
and prohibitive in others.

Several different approaches have been used to reduce the cost of the Coulombic part of
the computation. For a detailed discussion of these algorithms, we refer the reader to [7], and
to the original papers [1], [2], [8], [10]. Here, we just observe that each of the algorithms [1],
[2], [7], [8], [10] imposes strong requirements on the statistics of the charge distribution. In
particular, the methods of [1], [7], and [8] require that the distribution be reasonably uniform
in a square-shaped region of interest, the algorithm of [10] assumes that the charges are located
on a curve in R?, and the algorithm of [2] works fairly well for highly clustered distributions,
but fails for uniform ones.

In this paper, we introduce an algorithm for the rapid evaluation of the potential and force
fields of large-scale ensembles of particles. To evaluate all Coulombic interactions of N particles
in R2, the algorithm requires an amount of work of the order O(NN), and this estimate does not
depend on the statistics of the distribution.

The procedure described here is an adaptive version of the algorithm of [7]. In the follow-
ing section, we introduce the analytical apparatus to be used. Section 3 contains a detailed
description of the algorithm and its complexity analysis, and in Section 4 we present numerical
experiments demonstrating the actual performance of the scheme.

Remark 1.1. Given a collection of points z;,---,2, in C, the Hilbert matrix associated with
the points {z;} is defined as follows:

A,'j = for 1 # j,

z,-—zj




A; =0.

It immediately follows from Lemma 2.1 and formula (3) that evaluating the fields of a set of
charges of strengths g1, - -, gn located at the points 21, - -, 2, at these same points is equivalent
to applying the associated Hilbert matrix to the vector (g1, ,qn). Therefore, the algorithm
of the present paper may be viewed as an order O(n) procedure for applying an n X n Hilbert
matrix to an arbitrary vector. Recently, several papers have been published on this subject,
also referred as the Trummer problem. (see [6], [4], [5], [9])-

2. Analytical tools

We consider a two dimensional physical model consisting of a set of particles whose pairwise
interactions are described by Coulomb’s law. More precisely, suppose that a point charge of
unit strength is located at the point xp = (20,%0) € R?. Then, for any x = (z,y) € R\ {x0},
the potential and electrostatic field due to this charge are described by the expressions:

dxo (%) = —log(||x — xol|) (2)
and
_ (x=x0)
Exo (x) - “X _ Xo||2 (3)
respectively.

It is well known that the function @y, is harmonic in any region not containing X, and
that for every harmonic function u, there exists an analytic function w : € — C such that u is
the real part of w. In particular, we have

éx,(X) = Re(—log(z — 20))- (4)

In the remainder of this paper we shall work with analytic functions in €, making no distinction
between a point (z,y) € R? and a point z + ¢y € C. Following standard practice, we will refer
to the analytic function log(z) as the potential due to a charge. For more complicated charge
distributions, we will use other analytic functions and we will refer to them as potentials as
well.

Detailed proofs of Lemmas 2.1 - 2.4 and Theorem 2.1 below can be found in [7].

Lemma 2.1. If u(z,y) = Re(w(z,y)) describes the potential field at (z,y), then the force field
is given by

Vu = (uz,uy) = (Re(w'), —Im(w')),
where w' 18 the derivative of w.

The following theorem gives the expression for the multipole expansion of the potential due
to a set of charges and an estimate for the remainder of this expansion after k terms.

Theorem 2.1. Suppose that m charges of strengths g;, i=1,---,m are located at points
zi, i=1,---,m, with || < r. Then, for any z € C with |z| > r, the potential ¢(2) is given by




6() = Q- Log(s) + 3 %, (5)
where

m m _q‘_zlc
Q=Zq; and ak:Z"TL' (6)
i=1 i=1

Furthermore, for any p > 1,

P p+1 P
ag T A 1)
- -y | <al- < -
$(2) — Qlog(2) ;zk selzl = (0_1) (c : )
where
m
o= 2], A=l ) and o= —A_ ®
i=1 1- [;l

We will use a simple example to demonstrate how multipole expansions can be used to speed
up calculations with potentials. Suppose that X = {z1,z2, - -,2m} and Y = {y1,%2, -, ¥n}
are two finite sets of points in C. We say that the sets X and Y are well separated (Figure 1)
if there exist two points zo, yo € C and a real number r > 0 such that

|z; — 20| < 7 for all i=1,---,m,
lyi —wo|l <7 for all 1=1,---,n,
|zo — yo| > 3r.

Suppose now that charges of strengths {¢1, g2, - -, gm } are located at the points {z1,z2, -, Zm}
and that we wish to evaluate the sum

m

Z bz, (3/.1' ) (9)

i=1
for all j = 1,2, --,n. Clearly, this requires order n - m work (evaluating m fields at n points).
Now suppose that we first evaluate the coefficients of a p-term multipole expansion due to the
charges {g1,42, - *,qm} about zo, using Theorem 2.1. This requires a number of operations
proportional to m - p. Evaluating the resulting multipole expansion at all points y; requires
order n-p work, and the total computational effort is of the order O(m-p+n - p). Furthermore,

o a
> ¢=:(95) — Qlog(y; — z0) — ) ———

due to (7),
1\?
i=1 k=1 (¥j — ‘”O)k =4 (5) ’ (10

and in order to obtain a relative precision €, p must be of the order —logz(€). Once the precision
is specified, the amount of computation is reduced to O(n + m), which is significantly smaller
than m - n for large m and n.

The following three lemmas describe translation operators for multipole and power series
expansions in R2, and provide error bounds allowing the manipulation of these expansions in
the manner required by the algorithm. The first, Lemma 2.2, supplies a mechanism for shifting
the center of a multipole expansion.
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Lemma 2.2. Suppose that

¢(z) = aOIOQ(z - ZO) + Z (z — zO)k (11)

18 a multipole ezpansion of the potential due to a set of m charges of strengths q1,q2, -, qm,
all of which are located inside the circle D of radius R with center at zo. Then for z outside
the circle Dy of radius (R + |20|) and centered at the origin,

#(2) = aolog(z) + i %, (12)
I=1

Lt (() - (%) -

with (:c) the binomial coefficients. Furthermore, for any p > 1,

()

Lemma 2.3 describes the conversion of a multipole expansion into a local (Taylor) expansion
in a circular region of analyticity.

where

p+1

|20l + R ’ (14)

¥4

)4 bl
$(2) — aolog(z) = D_ 5

7
1=1 %

with A defined in Theorem 2.1.

Lemma 2.3. Suppose that m charges of strengths q1,q2,- -+ ,qm, are located inside the circle
D; with radius R and center at z9, and that |z0| > (c+1)R with ¢ > 1. Then the corresponding
multipole ezpansion (11) converges inside the circle Dy of radius R centered about the origin.
Inside D3, the potential due to the charges is described by a power series:

é#(2) = ibl 2 (15)

=0
where
bo = aolog(—20) + z ak -1)F, (16)
k=1
and
b= — (,z“"(’” )( 1)),forl_>_1. (17)
l 20 pe 2k

Furthermore, for any p > maa:(2, = 1) an error bound for the truncated series is given by




4(2) - Eb | 4e(p+c)(c+1)+c)(l)p+1’ (18)

iz c(e—-1) c
where A 1s defined in Theorem 2.1 and e s the base of natural logarithms.

Remark 2.1. In Theorem 2.1, the charges {g1,92,"-*,gm} can be replaced with dipoles, or
with finite linear combinations of multipoles of the form

ap - log(2) + Zn: —: (19)

In this case, the form of the expressions (5)-(8) is unchanged. However, the coefficients Q, A,
a, {ar}, k =1,2,---, now depend on ag,ay," - ,am, and can be easily determined by repeated
differentiation of (6) with respect to z;, ¢ =1,2,---,m

Remark 2.2. If'in Lemma 2.3, the field ¢(z) is generated by a single charge located at zp,
then the only non-zero term in the expansion (11) is ag, and ag = ¢;. Similarly, if the field
#(2) is generated by a single dipole located at 2o, then the only non-zero term in the expansion
(11) is a1, and a1 = q1.

Lemma 2.4 provides a formula for shifting the center of a local expansion. The expression
(20) below is an exact one, and no error bound is needed.

Lemma 2.4. For any complez 29,z and {ar}, k= 1,2, -, n,

2": ak(z - ZQ)k Z (Z ak ( ) (—zo)k- ) 2. (20)
k=0 =0 \k=l

Remark 2.3. One of the advantages of using expansions of the forms (5) and (15) for repre-
senting potential fields is the fact that these expansions possess simple analytical derivatives.
This permits the force fields to be obtained from the potentials by Lemma 2.1, without the use
of numerical differentiation and the attendant loss of accuracy.

3. The adaptive multipole algorithm
3.1 General strategy

In this section, we describe an adaptive algorithm for the rapid evaluation of the potential
and electrostatic fields due to arbitrary distributions of charges and/or dipoles. The main
strategy is similar to that described in [7]. It consists in clustering particles at different spatial
lengths and using multipole expansions to evaluate the interactions between clusters which are
sufficiently far away from each other. The interactions between particles which are nearby are
computed directly.

To be more specific, consider the domain depicted in Figure 2. N charges are arbitrarily
distributed in R2, and, without loss of generality, we can assume that all of them are located
inside a square with sides of length one, centered about the origin of the coordinate system.
This square will be referred to as the computational box.




Given a machine precision €, we set the number of terms in all expansions to p ~ |loga(€)],
and specify that no interactions be evaluated via multipole expansions for groups of particles
that are not well-separated. This is precisely the condition needed for the error bounds (7),
(14), (18) to apply with ¢ = 2. In order to impose such a condition, we introduce a hierarchy of
meshes which refine the computational box into smaller and smaller regions (Figure 3). Mesh
level O corresponds to the entire computational box, while mesh level I + 1 is obtained from
mesh level [ by subdividing each region into four equal parts. A tree structure is imposed on
this mesh hierarchy, so that if b is a fixed box at level I, the four boxes at level / + 1 obtained
by subdividing b are considered its children. The four children of the same box will be referred
to as brothers.

However, unlike the algorithm of [7], we do not use the same number of levels for all parts
of the computational box. Instead, some integer s > 0 is fixed, and at every level of refinement
we subdivide only those boxes that contain more than s charges. Generally, this results in a
large number of empty boxes at finer levels of the procedure. At every level of refinement, a
table of non-empty boxes is maintained, so that once an empty box is encountered, its existence
is immediately forgotten and it is completely ignored by the subsequent process.

Observation 3.1. It should be noted that for a fixed machine precision €, only certain classes
of particle distributions can be modeled, independently of the algorithm used. Namely, suppose
that two charges c;, ¢z in a distribution have positions 1, z2 and that ||z; — z3|| < §-||z1+22]|.
Obviously, under these conditions the particles c¢;, ¢z can not be discerned, and no meaningful
simulation is possible. Since the smallest discernible distance between two particles depends
on the position of these particles in the computational cell, such position-dependent condition
can not be imposed a priori. In order to make the simulation possible, we will simply require
that 7pmin > €, where Tpmin is the smallest distance between any two particles in the simulation,
and ¢ is the machine precision. Therefore, the maximum number of ancestors for any box in
the computational cell is p = ||loga(€)| .

3.2 Notation

In this subsection, we introduce several definitions to be used in the description of the algorithm
below.

For any subset A of the computational box, T(A) will denote the set of particles that are
contained in A.

B; is the set of non-empty boxes at level . By consists of only the computational box itself.
We will denote by nlev the highest level of refinement at any point.

If a box contains more than s particles, it is called a parent boz. Otherwise, the box is said to
be childless.

A child boz is a non-empty box resulting from the division into four of a parent box.

Colleagues are adjacent boxes of the same size (at the same level). A given box has at most 8
colleagues (Figure 4).

With each box b at level I we will associate five lists of other boxes, determined by their
positions with respect to b. Following are the definitions of these lists (Figure 5).
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List 1 of a box b will be denoted by Uy; it is empty if b is a parent box. If b is childless, U
consists of b and all childless boxes adjacent to b.

List 2 of a box b will be denoted V; and is formed by all the children of the colleagues of b’s
parent that are well separated from b.

List 8 of a box b will be denoted by W,. W; is empty if b is a parent box, and consists of all
descendants of b’s colleagues whose parents are adjacent to b, but who are not adjacent to b
themselves, if b is a childless box. Note that b is separated from each box w in W by a distance
greater than or equal to the length of the side of w.

List 4 of a box b will be denoted by X3 and is formed by all boxes ¢ such that b € W,. Note
that all boxes in List 4 are childless and larger than b.

List 5 of a box b will be denoted by Y, and consists of all boxes that are well separated from
b’s parent.

&, will denote the p-term multipole expansion about the center of b of the field created by all
particles in T'(b).

¥, will denote the p-term local expansion about the center of box b of the field created by all
particles located outside T'(Up) U T (W}3). ¥p(r) is the result of the evaluation of the expansion
VU, at a particle 7 in T'(b).

T, will denote the local expansion about the center of b of the field due to all particles in T'(V}).

Ay will denote the local expansion about the center of b representing the field due to all charges
located in T'(Xp).

o (r) will denote the the field at r € T'(b) due to all particles in T'(Uj).
Bs(r) will denote the field at r € T'(b) due to all particles in T'(W}).

3.3 Informal description of the algorithm

The algorithm can be viewed as a recursive process of subdividing the computational cell into
increasingly finer meshes (see Figures 2-3). For a fixed box b at level /, the computational cell
is partitioned into five subsets, Uy, Vi, W;, X3 and Y;, and the following procedure is applied
to the sets of particles T(Us), T (V3), T(W3), T(Xs) and T'(Y3).

1. For each childless box b we combine the particles in T'(b) by means of Theorem 2.1 to
form a multipole expansion ®;. For each parent box B we use Lemma 2.2 to merge the
multipole expansions of its children by, b2, b3 ,bs into the expansion ®p.

2. The interactions between particles in T'(b) and T'(U) are computed directly. For each
particle r € T'(b), the result of these calculations is a;(r).

3. We use Lemma 2.3 to convert the multipole expansion of each box in Vj into a local
expansion about the center of b, and add the resulting expansions to obtain T'.

4. For every particle r in b, we compute the field B;(r) due to all particles in T'(W;) by
evaluating the p-term multipole expansions ®,, of each box w in W} at r, and adding
them up.




5. We convert the field of each particle in T'(Xj}) into a local expansion about the center of
box b (see Remark 2.1), and add up the resulting expansions obtaining As.

6. We shift the center of the local expénsion I'p of b’s parent B to the centers of b and the
other children of B by means of Lemma 2.4. We add the local expansion obtained to T's.

7. For each box b, we evaluate the sum of the local expansions I'y and Ap at every particle
7 in b and add the result to a;(r) and B(r) obtaining the field at r.

Remark 3.1. Note that in the above procedure we never explicitly evaluate the interactions
between particles in T'(b) and these in T(Y}). Indeed, since all boxes in Y} are well separated
from b’s parent, the interaction between T'(Y;) and T'(b) have been accounted for during steps
3 and 5 at a coarser level.

3.4 Formal description of the algorithm

Algorithm

Comment [Choose main parameters]

Choose precision € to be achieved. Set the number of terms in all expansions to p ~ logy(e).
Choose the maximum number s of particles in a childless box.

Stage 1.

Comment [Refine the computational cell into a hierarchy of meshes.]

dol =12,
do b; € B;
if b; contains more than s particles then
subdivide b; into four boxes, ignore the empty boxes formed,
add the non-empty boxes formed to Bj4;.
end if
end do
end do

Comment [We denote by nlev the highest level of refinement, and by nboz the total number
of boxes formed in Stage 1.]

Stage 2.

Comment [For every box b at every level [, form a multipole expansion representing the field
outside b due to all the particles contained in b.]

Step 2.1

Comment [For each childless box b, use Theorem 2.1 to combine all charges inside b to obtain
the multipole expansion about the center of b.]



do i=1,nbox
if b; is a childless box, use Theorem 2.1 to form a p-term expansion Py,
representing the field outside b; due to all charges located in b;.

end do

Step 2.2
Comment [ For each parent box b, use Lemma 2.2 to obtain the multipole expansion &,
by shifting the centers of the expansions of b’s children to b’s center, and adding the resulting

expansions together.]

do l=nlev-1,1,-1
do b; € B;
if b; is a parent box then
use Lemma 2.2 to shift the center of each of b;’s child box’s expansion to
bi’s center. Add the resulting expansions together to obtain the expansion ®y,.
end if
end do
end do

Stage 3.

Comment [For all particles in each childless box b, compute the interactions with all particles
in T'(Up) directly.]

do i=1,nbox
if b; is childless then
for each particle r in b;, compute the sum a;(r) of the interactions between r
and all particles in T'(Us,).
end if
end do

Stage 4.

Comment [ For each box b, use Lemma 2.3 to convert the multipole expansions of all boxes
in V} into local expansions about the center of box b.]

do i=1,nbox
do b; €V},
Convert multipole expansion ®;; about b;’s center into a local expansion
about b;’s center using Lemma 2.3. Add the resulting expansions to obtain T,.
end do
end do

Stage 5.




Comment [For each childless box b, evaluate the multipole expansions of all boxes in W at
every particle position in b.]

do i=1,nbox
if b; is childless then
Evaluate the multipole expansion @, of each box b;j € Wy, to obtain
Bs, (r) for every particle 7 in box b;.
end if
end do

Stage 6.

Comment [For each box b, use Lemma 2.3 and Remark 2.2 to form local expansions about
the center b representing the field due to all particles in T'(X3).]

do i=1,nbox
Convert the field of every particle in T'(Xp,) into a local expansion about the center of b
end do

Stage 7.

Comment [Use Lemma 2.4 to shift the centers of local expansions of parent boxes to the
centers of their children.]

do l=1,nlev-1
do b; € B;
if b; is a parent box then
by using Lemma 2.4, shift the center of expansion Iy, to the center
of each of b;’s children b;. Add the resulting expansion to I',.
end if
end do
end do

Stage 8.

Comment | For each childless box b, obtain ¥; as the sum of local expansions I'y and Ap. For
each particle r in a childless box b, evaluate ¥;(r) and obtain the field at r by adding Uy(r),
ap(r) and Bs(r) together.) ‘

do i=1,nbox
if b; is childless then
Compute ¥y, =Ty, + Ay,.
For each particle r in b;, evaluate ¥ (7).
Add ¥, (r),05,(r) and B, (r) to obtain the field at r’s position.
end if
end do
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3.5 Complezity analysis

Stage

number

Stage 1

Stage 2
Step 2.1

Step 2.2

Stage 3

Step 4

Step 5

Step 6

Stage 7

Stage 8

Operation
count

Np

g 3N/s

18pNs

80p3N/s

32p’N

32p’N

10p3N/s

Np+ N

Explanation

Each particle is assigned to a box at every level.
There are at most p levels of refinement.

Each particle contributes to the p-term expansion of
one childless box.

The center of the expansion of each box is shifted to
the center of the parent box. The number of boxes

is bounded by 5pN/s (see Lemma A.5), and each shift
requires p?/2 work (see Lemma 2.2).

Each childless box b contains less than s particles

and the work required to compute all interactions between
particles in two boxes is s2/2 when Newton’s third

law is used. The number of boxes in all List 1’s is bounded
by 36pN/s (see Lemmas A.1 and A.4).

For each box, List 2 has no more than 32 entries (Lemma A.2).
There are at most 5pN/.s boxes (Lemma A.5) and
each shift requires p?/2 work (Lemma 2.3).

Each childless box b contains less than s particles.

The interactions of all particles in b and a

box in W require ps work. The total number of

boxes in List 3 is bounded by 32pN/s (Lemma A.3 and A.4).

Each box in Xj contains less than s particles.

The interactions between all particles in a box in Xj

and box b require ps work. The total number of

boxes in List 4 is bounded by 32pN/s (Lemma A.3 and A.4).

Each box has at most four children.

There are less than 5pN/s boxes (Lemma A.5)

and a shift requires p?/2 work (Lemma 2.4).

A p-term expansion is evaluated at each particle position.

The sums require an extra N work.

11




Summing up the CPU times for all stages above, we obtain the following time estimate:
T = N - (92.5ap>/s + 64bp? + 18cps + 3dp + ¢), (21)

where the coefficients a,b,c,d,e depend on the computer system, language, implementation,
etc. However, the parameter s (maximum permitted number of particles in a childless box)
in (21) is not determined by the problem and can be choosen so as to minimize the resulting
CPU time estimate. Differentiating (21) with respect to s, we obtain:

/92.5a
Smin = 18¢c 4 (22)

Tmin = N - (ap® + Bp+7) = N - (alog}(e) + B|logy(€)| + ), (23)

with the constants a,3,~ determined by the computer system, language, implemantation, etc.

The storage requirements of the algorithm are determined by the number of non-empty
boxes which is bounded by 5pN/s. For each box we store the coefficients of a p-term multipole
expansion and a p-term local expansion. The positions and charges of each particle also have
to be stored. Therefore the storage requirements are of the form:

S = N-(10fp/s+3g) = N - (10f|logy(e)|/s + 39), (24)

and

where the coefficients f,g depend on the computer system, language, implementation, etc.
4. Numerical results

A computer program using the algorithm described in the preceding section has been imple-
mented, and numerical experiments have been performed on a VAX-8600.

To evaluate the robustness of the adaptive scheme, we considered a variety of particle
distributions. For each distribution, the corresponding fields were computed in four ways: by
the algorithm of the present paper, by the algorithm described in [7], and directly in single and
double precision. The direct calculation of the field in double precision was used as a standard
for comparing the relative accuracies of the other three methods. In these experiments, the
number of particles varied between 100 and 25600, with charge strengths randomly assigned
between zero and one.

The results are summarized in Tables 1, 2, 3, and 4. The first column of each table contains
the number of particles N for which calculations have been performed. In the remaining
columns, the upper case letters T, E and S are used to denote the corresponding computational
time, error and storage, with the subscripts alg, uni and dir referring to the adaptive algorithm,
the algorithm described in (7], and the direct (single-precision) calculation respectively. More
specifically, columns 2 through 4 show the times, in seconds, required to compute the field by
the three methods. The errors Egy, Eyp; and Eg;, for the adaptive, non-adaptive and direct
method, respectively, are presented in the next three columns. They are defined by the formula

12




1/2

E.]'\;l Ifz - .7:!2
N

where f; is the value of the field at the i-th particle position obtained by direct calculation in
double precision and f; is the result obtained by one of the three methods being studied. The
last two columns of the tables contain the storage requirements Sg1g and Syp;, in single-precision
words, for the two methods based on multipole expansions.

Remark 4.1. For the tests involving 12800 and 25600 particles, it was not considered practical
to use the direct method to calculate the fields at all particle positions, since this would require
prohibitive amounts of CPU time without providing much useful information. Therefore, we
have performed the direct calculations in double precision for only 100 of the particles, and
used these results to evaluate the relative accuracies. The corresponding values of Ty, were
estimated by extrapolation.

For the first set of tests, the positions of the charged particles were randomly distributed
in a square, and the resulting particle density was roughly uniform (Figure 6). The number of
terms in the expansions was set to 20, and the maximum number of particles in a childless box
was set to 30.

In the second set of experiments, the charged particles were distributed along a curve
(Figure 7). The number of terms in the expansions was set to 17 and the maximum number of
particles in a childless box was set to 30.

The third set of numerical experiments was performed on extremely non-uniform distribu-
tions of particles (Figures 8). A fifth of the N particles were randomly assigned in a square of
area one. Two fifths were randomly distributed about the center of the square in a circle of
radius 0.003. The rest of the particles were assigned positions inside a circle of radius 0.5 with
a density inversely proportional to the square of the distance from the center. The number of
terms in the expansions was set to 17 and the maximum number of particles per childless box
was set to 30.

In the last set of experiments, half of the particles were distributed along a curve similar
to that of the second set of experiments and the rest of the particles were distributed inside
four circles with a density inversly proportional to the square of the distance to the centers of
the circles (Figure 9). The number of terms in the expansions was set to 17 and the maximum
number of particles per childless box was set to 30.

The following observations can be made from Tables 1, 2, 3 and 4, where the results of the
experiments described above are summarized.

1. The accuracies of the results obtained by the algorithms using multipole expansions are
in agreement with the error bounds given in (7),(14) and (18). For the most part, the
fast methods are slightly more accurate than the direct calculation.

2. In all cases, the actual CPU time requirements of the adaptive algorithm grow linearly
with N. The CPU time requirements of the non-adaptive counterpart grow linearly,
except for extremely non-uniform distributions (see Tables 3-4).
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3. Even for uniform distributions of charges, the adaptive algorithm is about 30% faster
than the non-adaptive one.

4. The storage requirements of both fast algorithms are roughly proportional to the num-
ber of particles involved in the simulations. The storage requirements of the adaptive
algorithm are about four times less than those of the non-adaptive version.

5. By the time the number of particles reaches 25600, the adaptive algorithm is about 100
times faster than the direct version for the case of the uniform distribution (see Table 1).
When the charges are situated on a curve, the adaptive scheme is roughly 200 times faster
than the direct algorithm, and about 3 times faster than the fast non-adaptive scheme(see
Table 2). For the highly non-uniform case (see Table 3), the adaptive algorithm is slightly
more efficient than for the uniform distribution. The non-adaptive scheme displays an
almost quadratic growth of CPU time with N, and is about 25 times slower than its
adaptive counterpart by the time N = 25600.

6. Even for as few as 1600 particles, the adaptive algorithm is about ten times faster than
the direct calculation.

7. The performance of the algorithm does not depend on the shape of the region where the
charges are distributed (see Table 4.)

5. Conclusions

An adaptive algorithm has been constucted for the rapid evaluation of the potentials and force
fields due to large-scale ensembles of particles of the type encountered in plasma physics, molec-
ular dynamics, fluid dynamics (the vortex method), and celestial mechanics. The algorithm is
applicable whenever the fields to be evaluated are Coulombic or gravitational in nature, and
yields the potentials to within round-off error.

The asymptotic CPU time estimate for the algorithm is of the order O(NV), where N is the
number of particles in the simulation, and this estimate is independent of the statistics of the
charge distribution. Our numerical experiments indicate a tendency of the scheme to be more
efficient for non-uniform distributions than for uniform ones. The storage requirements of the
algorithm are of the order O(N), do not depend on the statistics of the distribution, and tend
to be quite acceptable even for very large numbers of particles.

In the present paper, a two-dimensional version of the algorithm is described. Generalizing
it to the three-dimensional case is fairly straightforward, and will be reported at a later date.

The authors would like to thank Professor M. H. Schultz for several useful discussions and
for his interest and support.
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Appendix

In this Appendix, we prove several combinatorial lemmas that are used in Subsection 3.5
to estimate the complexity of the algorithm described in Subsections 3.3 and 3.4. We begin by
introducing some additional notation.

Given a subdivision S of the computational cell and a childless box b in S, we will denote
by S; the subdivision obtained from S by subdividing b into 4 equal boxes, and refer to the
process of obtaining Sp from S as an elementary refinement of S.

For a subdivision S of the computational cell, we will denote by Bgs the set of all boxes in S.

Cs will denote the subset of Bg consisting of all childless boxes, i.e. boxes that are non-empty
and not subdivided.

Fg will denote the subset of Bg consisting of all non-empty boxes.
Dg is the subset of Bs consisting of all empty boxes that have a childless brother.

Ggs = CsU Dg is the subset of Bs consisting of all boxes b such that b is either childless or has
a childless brother.

For any set of boxes A, N(A) will denote the number of boxes in A.

Lemma A.1: For any subdivision S of the computational cell

> N(U;) <9 N(Gs). : (25)
beCs

Proof: We will prove the lemma by combining the following three observations:
a) Inequality (25) holds for the undivided computational cell.
b) Any subdivision of the computational cell can be obtained by a sequence of elementary
refinements of the computational cell. '
c) If an elementary refinement is applied to a subdivision for which (25) holds, it also holds in
the refined subdivision.
The statements a) and b) above are obvious, and following is a proof of c).

Consider a subdivision S of the computational cell such that (25) is true for S, and a box
b such that b € Cs. Obviously

N(Gs,) = N(Gs)) +3, (26)

and we will denote by U and U] the List 1’s of b with respect to S and Sj, respectively. The
following obvious observations can be made about the List 1’s of b and its children:

1) For any box ¢ € Cs, if b € U, then c € Us. ‘

2) Each child of b has its three brothers in its List 1.

3) In the subdivision Sj, b is not childless and Uj is empty.

4) Each box c in Up is in the List 1 of at least one child of b.

5) The number of boxes of Uy that are in the List 1s of two children of b is bounded by 8.

It immediately follows from observations 1)-5) above that

Y NU,) - Y NU)=4-3+2-[-N(Us) + (N(Us) +8)] = 28, (27)
p€Cs, 9€Cs
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and combining (26) and (27) we obtain

Y N(7,) <9 N(Gs,). (28)
PECs;,

Lemma A.2: For any subdivision S of the computational cell

> N(Vs) < 82 N(Fs). (29)
bEFs

Proof: Consider a arbitrary subdivision S of the computational cell, a box ¢ € Fg and its parent
box b. V. is a subset of the children of b’s colleagues, the maximum number of colleagues of ¢
(or any other box) is eight, and each colleague can have four children. Therefore, the number
of elements in V, is bounded by 32.

Lemma A.3: For any subdivision S of the computational cell

Y NW.,)= > N(X;) <8 N(Gs). (30)
c€ECs b€Fs

Proof: The first part of the Lemma is a direct consequence of the definition of List 4 (see
Subsection 3.2): If a box b belongs W, then ¢ belongs to X;. Now, consider an arbitrary box
¢ € Fs, and its parent box b. The number of colleagues of b is certainly bounded by 8. We
will denote by Zj the set of all childless boxes which are adjacent to b and whose size is greater
than or equal to that of b. The number of boxes in Z; is bounded by 8, since each box in Zj
contains at least one of the eight colleagues of b, and no two such boxes can contain the same

colleague. The second part of the lemma now follows from the the obvious observation that
Wc C Zb.

Lemma A.4: For any subdivision S of the computational cell produced by the algorithm of
Section 3,

N(Cs) < N(Gs) < 4-p. (31)

Proof: Each parent box b at level ! contains more than s particles (otherwise, it would not
have been subdivided any further). Therefore, the total number of parent boxes at level [ is
bounded by N/s. Each of these boxes can not have more than 4 children, and consequently the
number of boxes in Gg at any level ! is bounded by 4N/s. Now, the conclusion of the lemma
follows from Observation 3.1 and the obvious fact that N(Cs) < N(Gg).

Lemma A.5: For any subdivision S of the computational cell,
N
N(Fs) <5-p—. (32)

Proof: The number of parent boxes at any level l is bounded by N/s, and each of them can not
have more than 4 childless boxes at level [+ 1. Therefore, the sum of the numbers of non-empty
boxes (all childless and parent boxes) at all levels is bounded by p- (N/s+ 4N/s).
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N Talg Tuni Tair Ealg Eyni Egir Salg Suni
100 0.15 | 0.47 0.15 17105401077 [ 1.710°® 866 4179
200 0.43 | 0.65 0.61 9.31077 | 431077 | 441077 | 2503 5479
400 1.01 | 1.94 247 |[7.01077 |6.410°7 | 6.410°7 || 3763 16847
800 245 | 2.78 10.27 | 4.11077 | 4.01077 | 471077 || 11203 | 22047
1600 || 5.37 | 8.56 4235 |1 8.710°7 | 421077 | 541077 || 15923 | 67519
3200 || 10.60 | 11.80 | 152.95 || 5.010°7 | 5.310~7 | 8.7 1077 || 44423 | 88319
6400 | 23.38 | 33.49 | 601.18 || 7.01077 | 5.410°7 | 1.3 107° || 65907 | 270207
12800 || 45.34 | 48.02 | 2433.20 || 6.010°7 | 4.910~7 | 1.6 10~ | 176631 | 353407
25600 || 96.72 | 137.68 | 9694.45 || 8.3 107 [ 8.91077 | 2.2 107° || 268723 | 1080959

Table 1: Uniformly distributed particles.
p =20 and s = 30
N Talg Tuni Tair Ealg Eyni Egir Salg Suni

100 || 0.11 | 0.38 0.16 | 3.410°°[3.210°°[3.4107° || 1149 3927

200 | 0.30 | 0.54 057 | 89107%|9.3107%|89107° || 2694 5227

400 || 0.64 | 1.31 220 |/5.6107% |5.610°% 561075 || 5103 15827

800 1.46 | 3.13 930 || 9.4107%|9510°% | 9.5107% || 10133 | 21027

1600 || 2.66 | 5.94 37.41 | 2.01075 |2.01075|2.01075 || 19241 | 63427

3200 || 5.93 | 12.50 | 149.21 || 7.8107¢ | 8.710°6 | 8.8 107% || 40055 | 84227

6400 || 12.42 | 29.66 | 597.95 || 4.2107% | 4.21075 | 4.2 107° || 84429 | 253827
12800 || 25.11 | 79.47 | 2425.48 | 8.7 1075 | 8.7 10~% | 8.8 105 || 167421 | 337027
25600 || 47.53 | 152.07 | 9581.20 || 8.9107% | 9.1 1075 | 8.9 10° || 332927 | 1015427

Table 2: Particles distributed on a curve.
p=17 and s = 30




N Talg Tuni Tair Ealg Eyni Egir Salg Suni
100 0.19 0.45 0.15 2.7107° ] 1.0107° | 2.8107% || 2508 3927
200 0.48 0.74 057 [/6.910°% (761076 |6.9107¢ || 4014 5227
400 1.13 2.26 2.33 1.9107%|9.0107% | 1.9107% || 8307 15827
800 2.25 5.15 9.34 4.3107% [6.0107% | 3.710°% || 13353 | 21027
1600 || 5.09 | 16.17 3774 || 2.4107%|1.6107%|2.110°% || 25588 | 63427
3200 || 9.98 | 50.23 | 149.86 | 3.7107¢ | 1.4107% | 1.7107% || 46806 | 84227
6400 || 21.80 | 177.13 | 606.14 || 5.8107% | 401076 | 591076 | 90505 | 253827
12800 || 41.93 | 663.21 | 2420.33 || 4.0 1076 | 4.0 1076 | 4.2 1076 | 186226 | 337027
25600 || 90.05 | 2317.93 | 9622.63 || 2.9 106 | 3.0 1076 | 4.0 1076 || 373639 | 1015427

Table 3: Highly non-uniform distribution of particles.
p=17 and s = 30
N Talg Tum' Tdir Ealy Eum’ Edir Saly Sum'

100 || 0.15 | 0.43 0.15 |[4.3107° [5510°° [5.010°° || 1145 3927

200 || 0.39 | 0.68 059 | 3.3107%|3.9107°%|3.310°% || 3224 5227

400 0.84 | 1.69 2.31 8.1107% [7.1107% | 8.110°° || 6939 15827

800 | 2.11 | 5.03 9.39 | 4.3107°% |4.3107° |4.3107° || 13406 | 21027

1600 || 4.35 | 11.34 | 37.74 | 9.2107% |9.21075{9.21075 || 24913 | 63427

3200 || 9.16 | 30.85 | 153.76 || 1.11075 | 1.1107% | 1.1 107% || 48902 | 84227

6400 || 19.22 | 48.62 | 611.82 || 5.4107¢ | 5.5107% | 5.4 10°% || 96153 | 253827
12800 || 37.92 | 155.75 | 2440.90 || 2.1 1075 | 2.0 1075 | 2.1 10~5 | 194377 | 337027
25600 || 80.02 | 248.90 | 9798.34 || 4.41075 | 4.4 1075 | 4.5 10~° || 388624 | 1015427

Table 4: Non-uniform distribution of particles in a region of complicated shape.
p=17 and s =30




----------------

Figure 1: Well-separated sets in the plane.




Figure 2: Non-uniform distribution of charges in the computational cell.




Figure 3: The hierarchy of meshes partitioning the computational cell.




Figure 4: Box (b) and its colleagues (c).
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Figure 5: Box (b) and the associated lists 1 to 5.
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Figure 6: 25600 uniformly located charges in the computational cell.
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Figure 7: 6400 particles distributed on a curve.
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Figure 8: Highly non-uniform distribution of 25600 charges.
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