
We introduce a multi-scale metric on a space equipped with a diffusion semigroup. We prove,
under some technical conditions, that the norm dual to the space of Lipschitz functions with
respect to this metric is equivalent to two other norms, one of which is a weighted sum of
the averages at each scale, and one of which is a weighted sum of the difference of averages
across scales. The notion of ‘scale’ is defined by the semigroup. For both equivalent norms,
bigger scales have greater contribution. When the function is a difference of two probability
distributions, the dual norm is equal to the Earth Mover’s Distance with ground distance
equal to the multi-scale metric induced by the semigroup.

Earth Mover’s Distance and Equivalent Metrics
for Spaces with Semigroups

R.R. Coifman† and W.E. Leeb†

Technical Report YALEU/DCS/TR-1481
July 22, 2013

† Dept. of Mathematics, Yale University, New Haven CT 06511

Approved for public release: distribution is unlimited.
Keywords: earth mover’s distance, lipschitz class, operator semigroup.



1 Introduction

Given a measure space Ω, we consider a family of operators defined on a suitable space
of functions on Ω satisfying the following properties:

1. A0 is the identity

2. For all t, s ≥ 0, AtAs = At+s (the semigroup property)

3. Each At is self-adjoint

4. If 1 is the constant function 1 on Ω, then for all t ≥ 0, At1 = 1

5. Each At is positive, that is, if f ≥ 0, then Atf ≥ 0

6. A∞f =
∫

Ω f(x)dx.

We will assume in addition that At is given by a (symmetric) kernel at(x, y) =
at(y, x); that is, for functions f on Ω in the domain of At,

Atf(x) =

∫
Ω
at(x, y)f(y)dy

where dy is the measure on Ω.
Operator semigroups are ubiquitous in pure mathematics; see, for instance, [1]. In

machine learning, the theory of diffusion maps [2] builds operators of this kind on ar-
bitrary data sets equipped with a kernel k(x, y) measuring the similarity of two points
x, y. The semigroup is described by powers of an affinity matrix built by normalizing
the matrix given by k(x, y). We note that although in the original construction there
is not in general a single matrix that is both stochastic and symmetric, one can easily
define a measure on the data with respect to which the symmetric operator defined in
[2] is also stochastic; see [3].

The diffusion distance at time t between x, y ∈ Ω can be defined as the L2 distance
between the probability distributions at(x, ·) and at(y, ·). As shown in [2], the eigen-
vectors of the operator At, weighted by their eigenvalues, give coordinates on Ω whose
Euclidean distance is equal to ||at(x, ·) − at(y, ·)||2, the time t diffusion distance. The
time t diffusion distance measures the connectivity of points at the given scale t.

The metric on Ω we consider in this paper replaces the L2 diffusion distance with L1

diffusion distance, and sums these over dyadic t, with weights depending on t. This new
distance incorporates all scales at once, giving higher weight to the larger scales. We
will define this distance in Section 2, and give alternate characterizations of functions
that are Lipschitz with respect to this distance in Section 3. In Section we will use these
characterizations to prove that the norm of a function viewed as a linear functional on
the space of Lipschitz functions is equivalent to two norms, one of which is a weighted
sum of the averages (by At) at dyadic scales, and one of which is a weighted sum of the
difference of averages across scales.
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2 Multi-scale Diffusion Metric

Suppose At is a symmetric diffusion semigroup on Ω with kernel at(x, y) = at(y, x). We
will consider discrete times t = 2−k, and define

Pk = A2−k

pk(x, y) = a2−k(x, y).

We define a metric on Ω. First, for each k we can consider the L1 diffusion distance at
time t = 2−k, defined by

dk(x, y) = ||pk(x, ·)− pk(y, ·)||1 =

∫
Ω
|pk(x, u)− pk(y, u)|du.

When it makes sense, we consider the weighted sum of diffusion distances at all scales
t = 2−k by

dα(x, y) =
∞∑

k=−∞
dk(x, y)2−kα. (1)

We note that a sufficient condition for this series to be finite is if there is a K for
which all the operators Pk, k ≤ K are all equal to P−∞, namely Pkf =

∫
f ; if we

view the operators At as describing a diffusion process over Ω, we can think of the time
T = 2−K as the diffusion time of the process, that is, the time it takes for any initial
distribution of mass to become spread out uniformly over Ω. Since pk ≡ 1 for all k ≤ K,
dk(x, y) = 0, and so

dα(x, y) =
∑
k>K

dk(x, y)2−kα ≤ 2
∑
k>K

2−kα <∞

where we have used that dk(x, y) ≤ 2 for all k, and the finiteness of geometric series. In
fact we only need to assume that Pk converges sufficiently fast to the operator f 7→

∫
f .

We can gain some intuition as to the behavior of this distance by considering the
special case of convolutions in Rn. It will be easier for these computations to view (1)
as a Riemann sum approximation to the following continuous version:

d̃α(x, y) =

∫ ∞
0
||at(x, ·)− at(y, ·)||1tα−1dt.

Suppose Ω = Rn and the kernel at(x, y) = at(x− y) (abusing notation) for a function at
of one variable defined by

at(x) = t−nβa1(t−βx)

for some constant β and some radial function a1. For example, if at is the heat kernel
in Rn defined by

at(x) = cnt
−n/2 exp

(
− ||x||

2
2

4t

)
,
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then β = 1/2; and if at is the Poisson kernel

at(x) = cn
t

(t2 + ||x||22)(n+1)/2

then β = 1.
For such kernels with sufficiently fast decay, we can show d̃α(x, y) is equivalent to

||x− y||α/β2 , the usual Euclidean distance raised to the power α/β. To see this, we have

d̃α(x, y) =

∫ ∞
0

∫
Rn
|at(x− u)− at(y − u)|du tα−1dt

=

∫ ∞
0

t−nβ
∫
Rn
|a1(t−β(x− u))− a1(t−β(y − u))|du tα−1dt

=

∫ ∞
0

∫
Rn
|a1(v)− a1(t−β)(y − x) + v|dv tα−1dt

where we have made the change of variable v = t−β(x − u). It is easy to see that the
assumptions a1 is radial implies that the function φ(w) defined by

φ(w) =

∫
Rn
|a1(v)− a1(w + v)|dv

depends only on ||w||2; hence we can denote it by φ(||w||2) (again abusing notation).
We then have

d̃α(x, y) =

∫ ∞
0

φ(t−β||x− y||2)tα−1dt

and making the substitution s = tβ/||x− y||2 gives

d̃α(x, y) = ||x− y||α/β2

1

β

∫ ∞
0

φ(1/s)sα+1/β−2ds.

3 Alternate Characterizations of Lipschitz Functions

Define the operator Qk by
Qk = Pk − Pk+1.

Suppose from that dα(x, y) <∞ for all x, y ∈ Ω.

Theorem 1. Suppose ||Pkf−Pk+1f ||∞ ≤ 2−kα for every k. Then ||f−Pkf ||∞ ≤ C2−kα,
where C is a constant depending only on α. Conversely, if ||f−Pkf ||∞ ≤ 2−kα for every
k, then ||Pkf − Pk+1f ||∞ ≤ C ′2−kα for some other constant C ′.

Proof. First, suppose ||f − Pkf ||∞ ≤ 2−kα for every k. Then ||Pkf − Pk+1f ||∞ ≤
||f − Pkf ||∞ + ||f − Pk+1f ||∞ ≤ 2 · 2−kα, proving the second part of the theorem with
C ′ = 2.
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For the first part, write f as a telescopic series:

f(x)−
∫

Ω
f =

∞∑
l=−∞

(Plf(x)− Pl+1f(x))

which holds since P∞(f) = A0(f) = f , and P−∞(f) = A∞(f) =
∫
f . Similarly we can

write Pkf as a telescopic series

Pkf(x)−
∫

Ω
f =

k∑
l=−∞

(Plf(x)− Pl+1f(x)).

Subtracting the two series gives:

||f − Pkf ||∞ =

∣∣∣∣∣∣∣∣ ∞∑
l=−∞

(Plf − Pl+1f)−
k∑

l=−∞
(Plf − Pl+1f)

∣∣∣∣∣∣∣∣
∞

=

∣∣∣∣∣∣∣∣ ∞∑
l=k+1

(Plf − Pl+1f)

∣∣∣∣∣∣∣∣ ≤ ∞∑
l=k+1

||Plf − Pl+1f ||∞

≤
∞∑

l=k+1

2−lα =
2−α

1− 2−α
2−kα

which is the desired result, with C = 2−α

1−2−α .

We have the following theorem:

Theorem 2. If ||Pkf − Pk+1f ||∞ ≤ 2−kα for every k, then f is Lipschitz with respect
to the metric dα.

Proof. Expand f in a telescopic series:

f(x)−
∫

Ω
f =

∞∑
k=−∞

(Pkf(x)− Pk+1f(x)) =

∞∑
k=−∞

Qkf(x) =

∞∑
k=−∞

(Pk + Pk+1)Qkf(x)

where we have used Lemma (1). Take any x, y ∈ Ω. Then

|PkQkf(x)− PkQkf(y)| =
∣∣∣∣ ∫ pk(x, u)(Qkf)(u)du−

∫
pk(y, u)(Qkf)(u)du

∣∣∣∣
=

∣∣∣∣ ∫ (pk(x, u)− pk(y, u))(Qkf)(u)du

∣∣∣∣
≤ 2−kαdk(x, y).

Similarly,
|Pk+1Qkf(x)− Pk+1Qkf(y)| ≤ 2−kαdk+1(x, y).
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Consequently:

|f(x)− f(y)| =
∣∣∣∣ ∞∑
k=−∞

(Pk + Pk+1)Qkf(x)−
∞∑

k=−∞
(Pk + Pk+1)Qkf(y)

∣∣∣∣
=

∣∣∣∣ ∞∑
k=−∞

(PkQkf(x)− PkQkf(y)) +

∞∑
k=−∞

(Pk+1Qkf(x)− Pk+1Qkf(y))

∣∣∣∣
≤

∞∑
k=−∞

2−kαdk(x, y) +

∞∑
k=−∞

2−kαdk+1(x, y)

= (1 + 2α)dα(x, y).

We can prove a converse to this result under the following assumption on Pk, namely
we assume that ∫

Ω
pk(x, y)dα(x, y)dy ≤ C2−kα. (2)

where C > 0 is a constant.
Before proving the converse, let us gain some intuition as to why condition (2) is

reasonable. Let us return to the case of continuous time. For a class of radial kernels in
Rn, we sketched the proof that d̃α(x, y) ∼ ||x− y||α/β2 , where d̃α is the distance given by
(2) and β defines the homogeneity of the kernel. For such kernels, we then have, for all
t, ∫

Rn
at(x, y)d̃α(x, y)dy ∼

∫
Rn
t−nβa1(t−β(x− y))||x− y||α/β2 dy

=

∫
Rn
a1(u)||tβu||α/β2 du

= tα
∫
Rn
a1(u)||u||α/β2 du

∼ tα.

Theorem 3. Suppose (2) holds. Then for any f that has Lipschitz constant 1 with
respect to dα, ||f − Pkf ||∞ ≤ C2−kα for all k.

Proof. Since pk(x, ·) has integral 1 for every x, we have

|f(x)− Pkf(x)| =
∣∣∣∣f(x)−

∫
pk(x, y)f(y)dy

∣∣∣∣ =

∣∣∣∣ ∫ pk(x, y)(f(x)− f(y))dy

∣∣∣∣
≤
∫
pk(x, y)dα(x, y)dy (since f has Lipschitz constant 1)

≤ C2−kα (from (2))

and consequently ||f − Pkf ||∞ ≤ C2−kα, as claimed.
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We note that condition (2) can be expressed in an equivalent form:

Theorem 4. Pk satisfies (2) if and only if for all k, x, y∫
Ω
pk(x, y)

k∑
l=−∞

dl(x, y)2−lα ≤ C ′2−kα (3)

Proof. That (2) implies (3) is obvious, since∫
Ω
pk(x, u)

k∑
l=−∞

dl(x, y)2−lα ≤
∫

Ω
pk(x, y)dα(x, y)dy.

For the other direction, observe that

∞∑
l=k+1

dl(x, y)2−lα ≤
∞∑

l=k+1

2−lα =
2−(k+1)α

1− 2−α

and consequently∫
Ω
pk(x, y)dα(x, y)dy =

∫
Ω
pk(x, y)

k∑
l=−∞

dl(x, y)2−lαdy +

∫
Ω
pk(x, y)

∞∑
l=k+1

dl(x, y)2−lαdy

≤
∫

Ω
pk(x, y)

k∑
l=−∞

dl(x, y)2−lαdy +
2−(k+1)α

1− 2−α

≤
(
C ′ +

2−α

1− 2−α

)
2−kα

where we have used (3).

4 Three Equivalent Norms

We are now ready to introduce the three norms defined on the space of integrable
functions on Ω with integral zero. The first is simply the dual norm to Lipschitz class

||f ||L = sup

{∫
Ω
f(x)g(x)dx : g with Lipschitz norm 1

}
where ‘Lipschitz’ is with respect to the metric dα.

Now we define two equivalent norms by

||f ||P =
∞∑

k=−∞
2−kα||Pkf ||1 =

∞∑
k=−∞

2−kα
∫

Ω
|Pkf(x)|dx

and

||f ||Q =
∞∑

k=−∞
2−kα||Qkf ||1 =

∞∑
k=−∞

2−kα
∫

Ω
|Qkf(x)|dx.
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Theorem 5. || · ||Q and || · ||P are equivalent norms on the space of mean zero functions.

Proof. We first show ||f ||Q . ||f ||P :

||f ||Q =
∞∑

k=−∞
2−kα

∫
Ω
|Qkf(x)|dx =

∞∑
k=−∞

2−kα
∫

Ω
|Pkf(x)− Pk+1f(x)|dx

≤
∞∑

k=−∞
2−kα

∫
Ω
|Pkf(x)|dx+

∞∑
k=−∞

2−kα
∫

Ω
|Pk+1f(x)|dx

=
∞∑

k=−∞
2−kα

∫
Ω
|Pkf(x)|dx+ 2α

∞∑
k=−∞

2−(k+1)α

∫
Ω
|Pk+1f(x)|dx

= (1 + 2α)||f ||P

For the other direction, since f has mean zero, P−∞f = A∞f =
∫
f = 0. Then we can

write Pk as the telescopic series

Pkf(x) =
∑
l≤k

(Plf(x)− Pl−1f(x)) = −
∑
l≤k

Ql−1f(x).

Then ||Pkf ||1 = ||
∑

l≤kQl−1f ||1 ≤
∑

l≤k ||Ql−1f ||1, and consequently

||f ||P =
∞∑

k=−∞
2−kα||Pkf ||1 ≤

∞∑
k=−∞

∑
l≤k
||Ql−1f ||1

=

∞∑
l=−∞

||Ql−1f ||1
∑
k≥l

2−kα (by Fubini’s theorem)

=

∞∑
l=−∞

||Ql−1f ||1
2−lα

1− 2−α
=

2−α

1− 2−α
||f ||Q.

Hence, we have shown

(1 + 2α)−1||f ||Q ≤ ||f ||P ≤
2−α

1− 2−α
||f ||Q

for mean zero f .

We next relate the norm || · ||L to the norms || · ||P and || · ||Q. It is convenient to
introduce a fourth norm whose definition is similar to that of || · ||L; define

||f ||′L = sup

{∫
Ω
f(x)g(x)dx : ||Qkg||∞ . 2−kα for all k

}
.

From the equivalence (up to constants) of the condition ||Qkg||∞ . 2−kα to the Lipschitz
condition under condition (2) on the semigroup, it follows easily that || · ||L and || · ||′L
are equivalent norms. We have
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Theorem 6. For functions g, ||g||′L . ||g||P .

It is convenient to formulate the following lemma:

Lemma 1. (Pk + Pk+1)Qk = Qk−1.

Proof of Lemma 1. This is a simple algebraic computation

(Pk + Pk+1)Qk = (Pk + Pk+1)(Pk − Pk+1) = PkPk − PkPk+1 + Pk+1Pk − Pk+1Pk+1

= A2−kA2−k −A2−(k+1)A2−(k+1) = A2−k+2−k −A2−(k+1)+2−(k+1)

= A2−(k−1) −A2−k = Pk−1 − Pk = Qk−1.

Proof of Theorem 6. Suppose f satisfies ||Qkf ||∞ ≤ 2−kα. Using Lemma 1 and the
self-adjointness of Pk gives:∫

f(x)g(x)dx =

∫ ∞∑
k=−∞

(Qk−1f(x))g(x)dx =

∞∑
k=−∞

∫
((Pk + Pk+1)Qkf(x))g(x)dx

=
∞∑

k=−∞

∫
(Qkf(x))(Pk + Pk+1)g(x)dx

≤
∞∑

k=−∞
2−kα

(∫
|Pkg(x)|dx+

∫
|Pk+1g(x)|dx

)
= (1 + 2α)||g||P .

So taking the supremum over all f with ||Qkf ||∞ ≤ 2−kα yields ||g||′L ≤ (1+2α)||g||P .

Note that this also proves ||g||′L . ||g||Q, from Theorem 5. Since || · ||L and || · ||′L
are equivalent, this proves || · ||L . || · ||Q and || · ||L . || · ||P .

For the other direction, we write || · ||L in an entirely different form, using the
Kantorovich-Rubinstein Theorem for metric spaces:

sup
g

{∫
f(x)g(x)dx

}
= inf

π

{∫ ∫
d(x, y)dπ(x, y)

}
where the supremum on the left is over Lipschitz f , and the infimum on the right is over
all non-negative measures π on Ω× Ω satisfying the difference of marginals condition

π(A× Ω)− π(Ω×A) =

∫
A
f(x)dx (4)

for all measurable A ⊂ Ω. (We assume as always that f has integral zero.) The theorem
holds for a large class of metric spaces; see [4] for a proof. In applications where Ω is a
finite set, the theorem is a result of duality from linear programming.

8



We can use this alternate description of ||f ||L to prove that it bounds above ||f ||P
and ||f ||Q. Take any measure π on Ω × Ω satisfying (4). This condition says that
the measure µ(A) = π(A × Ω) − π(Ω × A) on Ω has Radon-Nikodym derivative f(x);
consequently, for any function g on Ω,∫

Ω
g(x)f(x)dx =

∫
Ω
g(x)dµ(x) =

∫
Ω

∫
Ω
g(x)dπ(x, y)−

∫
Ω

∫
Ω
g(x)dπ(y, x).

Using this identity gives

||Atf ||1 =

∫
Ω

∣∣∣∣ ∫
Ω
at(x, y)f(y)dy

∣∣∣∣dx
=

∫
Ω

∣∣∣∣ ∫
Ω

∫
Ω
at(x, y)dπ(y, u)−

∫
Ω

∫
Ω
at(x, y)dπ(u, y)

∣∣∣∣dx
=

∫
Ω

∣∣∣∣ ∫
Ω

∫
Ω

(at(x, u)− at(x, y))dπ(u, y)

∣∣∣∣dx
≤
∫

Ω

∫
Ω

∫
Ω
|at(x, u)− at(x, y)|dπ(u, y)dx

=

∫
Ω

∫
Ω

∫
Ω
|at(u, x)− at(y, x)|dxdπ(u, y)

=

∫
Ω

∫
Ω
||at(u, ·)− at(y, ·)||1dπ(u, y).

When t = 2−k this shows

||Pkf ||1 ≤
∫

Ω

∫
Ω
dk(u, y)dπ(u, y)

Using the definition of dα =
∑

k 2−kαdk, we then have∫
Ω

∫
Ω
dα(x, y)dπ(x, y) =

∑
k

2−kα
∫

Ω

∫
Ω
dk(x, y)dπ(x, y)

≥
∑
k

2−kα||Pkf ||1

= ||f ||P .

Taking infimums over all suitable π gives the desired result, completing the proof that
all three norms are equivalent.
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