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An Overview of the Yale GEM System

Abstract

The Yale GEM system —— a Graphical Editing Machine —-- aims to provide
low cost, highly interactive computing to undergraduates. This report
discusses the philosophy behind the system, architectural issues, and

a few specific details.



I. Introduction

Since 1970, the Department of Computer Science at Yale has been engaged
in an effort to develop and demonstraté low cost,'highly interactive
computing techniques appropriate for the university setting. The first
major undertaking by the department was the acquisition of an off-the-—
shelf computer (a PDP-10) and character display CRT terminals (Sugarman
model T6). Using software supplied with the computer, augmented only
by an editing program designed to take advantage of the two~dimensional
capabilities of the CRTs, this system is managed by the department and
provides both educational and research computing to a large segment of
the Yale community. The cost of an hour's session on the machine is
between $2.50 and $5.00.

The unquestioned success of the Yale PDP-10 has led the department
into a more ambitious project: to design and deploy a computer system
that provides educationai computing to undergraduates at an hourly cost
of between 25 and 50 cents per hour. Moreover, the department aims to
parallel this cost reduction with an increase in interactive capability.
In particular, limited graphics facilities are provided, allowing, for
example, variable type fonts as well as the display of pictures.

The GEM system under development at Yale aims to achieve this
reduction in cost, together with the increase in interactive capability.

The system -— a Graphical Editing Machine -— has been designed to be



what its name suggests.

Almost all of the design specifications of the GEM system can
actually be realized with off-the—shelf hardwafe, but not at the cost
level wé have set. 1Indeed, we have fo;nd it necessary to undertake
extensive hardware (and software) work. Standard off-the-shelf
componénts are used in the GEM system, however, whepever cost
considerations permit. New technologies are also employed, but only
when strong evidence exists that they will be commercially available
as standard components in the near future.

In the design of any system, it ié necessary to trade off cost
considerations for capabilities. We follow a simple rule when such
decisions arise: Calculate the cost of provihing the eséential
capabilities apd do not add any improvement, no matter how significant,
if the cost rises more than a nominal amount (say ten percent). While
the proposed capabilities of the GEM s&stem exceed that of most modern
student time-sharing systems, it is not hard to imagine enhancements
that, while not without value, add significantly to the cost. We have
been firm in rejecting these enhancements.

Indeed, we designed the GEM system by first selecting the
essential components of a terminal system which permit limited graphical
capability at minimum cost. It is important to observe that a GEM

computer system is but a natural extension of a GEM terminal system.

That is, the basic components of the GEM system can be used to provide



inexpensive graphics without comprehensive computing, and that the
computing capabilities of the GEM system come at relatively little
incremental cost.

The next section describes the éssentials of a GEM terminal
system, and is followed by a discussion of ways to augment these basic
components to obtain a comprehensive computer system. The remainder
of the paper addresses architectural issues; the emphasis is on the
hardware aspects of the system. Software considerations played a
significant role throughout the hardware design, but we describe

software details elsewhere.



II. Essentials of the GEM terminal system

Almost by definition, a GEM system must contain a two dimensional output
device capable of displaying a sizable amount of text as well as
graphical information with reasonable resolution. A keyboard is
required to communicate with the system, and either special purpose or
general purpose hardware must be present to carry oﬁt the functions of
terminal control.

There are two inherently different methods for displaying material
on a two dimensional surface. The first uses vector line segments, and
the second forms images as a collection of dots, closely spaced together.
Cost considerations rule out vector systems, with the possible exception
of storage-tube devices. But while these displays are cheap enough,
we do not feel'they have the interactive capability or speed required
for flexible text editing. Several new technologies support dot
representation display, for example, plasma panels. It may well be that
some one of these technologies will eventually dominate the information
display field; for the moment, it seems better to watch with interest
from a distance.

Ordinary raster-scan TV technology also supports dot
representation display. Indeed, 20 lines of eighty characters may be
displayed using 240 horizontal bit lines and 640 vertical bit lines. If

this is done, then 9600 16-bit words must be stored in one form or



another. Different numbers of bit lines are also possible, and indeed
may be preferred if the emphasis is on graphics applications.

One approach to storing the bit images is to use rotating magnetic
storage mediums or solid-state shift régister circuits. Both methods
require a special purpose processor to keep track of the information
on the medium and provide flexible methods of access and modification.
Another approach is to use random access memory. Tﬁis method enjoys
the advantage of conyenient access and modification, and permits the use
of an off-the-shelf minicomputer for purposes of terminal control.
Indeed, use of random access memory allows other parts of the system
to be simplified considerably. Happily, the use of this form of memory
does not entail a price disadvantage; the plain fact is that with the
emergence of random access MOS integrated circuits, the current price,
under a penny ber bit, is no higher than that of less flexible
technologies.

Thus a basic GEM system consists of TV sets, standard keyboards,
a small minicomputer (for example, a PDP-11/05), and a large amount of
nemory. The prototype GEM supports 16 terminals, and has a 16K memory
segment for each terminal. Our somewhat novel use of this memory tempts

us to occasionally refer to it as the system's GEMory.



III. Peripheral devices in the GEM system

To serve as a comprehensive computer system, several peripheral devices
must be added to the basic GEM system.' First, some form of hard copy
must be available. Second, provision must be made to allow a student
to save aﬁd restore information created on the system. Finally, a file
system must be provided to store the files used during a session on the
computer. For each requirement, several alternative technologies are
available. We discuss some of the bhoices, together with our current
evaluations.

A standard line printer can be used to provide minimal hard copy
output for the student. A much better idea £s to employ.a dot—matrix
printer. With a device of this kind, anything displayable on the TV
screen can be replicated on paper. The cost of these devices seems to
be dropping rapidly, and may soon be léss expensive than more
traditional devices. The only major disadvantage of dot-matrix printers
is that special paper is used, and current prices are high, but this
is expected to change as production volume is increased. Indeed, we
anticipate that such a device will be a standard component of a GEM
system.

Our experience on the PDP-10 has confirmed that mini-tapes are
very useful in allowing the student to save and restore files that are

created on the system. Similar, but less expensive, tape cassettes



are now being marketed. Reliability is an absolutely critical
requirement, and only time will show if these devices measure up.
Another device, with unknown reliability, is the floppy disk. Comparable
amounts of information are stored on a'flexible record-size disk,
and may be easily mounted into a disk drive. The performance
specificaiions of these disks far exceed those of tape cassettes. If
reliability can be demonstrated, the floppy disk will dominate the other
approaches to file entry. Preliminary indications suggest good
reliability. We plan to have at least two in our prototype.

Another interesting use of floppy'disks is for secondary storage.

Here, each student is provided with his own drive, and once his disk is

&

mounted he works on the system having his own on-line file structure.
The performance of these devices in an editing environment is aided
by the fact that each has an independently controllable head which may
be pre—positioned to any track. But néw mass storage devices announced
quite recently, with very large storage capabilities on the order of 40
mega-bytes, may tilt the secondary storage decision in favor of one
high performance disk. Howeyer, a small GEM system with but a few
terminals may still find it advantageous to use the floppy disks for both
file entry and file storage.

Every GEM system should have at least one large computer available
as a '"peripheral device." In our own case, we will connect our GEM to

the PDP-10 through a high-performance communication link. Our PDP-10



is itself connected to a remote CDC 6600 and other large machines.
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IV. Architecture of the GEM computer system

Pérhaps the first important design decision is to choose the resolution
of display and the associated size of the GEMory. Of course, if only
character display is required, only a very small amount of GEMory is
required (assuming that hardware character generators are built into
the system). But we consider graphicél capabilitieé to be essential.

Text editing and other computations require workspace memory.
Previous experience indicates that 20 lines of text is an adequate,
though minimal, amount of text to display during editing. These
considerations suggest a resolution of 240 bit lines by 640 bit lines,
which is compatable with standard TV (non-interleaved) conventions. Bit
density along a horizontal line is exactly twice that along a vertical
line if the normal three to four aspect ratio is employed. Note also
that the use of 640 vertical bit lines allows eighty characters to be
displayed with each character in an eight bit field. This means that
software character generation is possible without the need for shifting
or masking‘by a computer with 8-bit bytes.

The total amount of GEMory required for terminal display is 9600
16-bit words. This means that the selection of a 16K GEMory segment
leaves over 6K of memory for workspace. Scftware considerations support
the choice of this amoumt, which also permits convenient GEMory

organization.



It is worth emphasizing that the GEMory size decision is dictated
by essential requirements of the GEM system. Much higher resolution
is technically possible, and in some circumstances quite useful, but
only at a significant increase in cost. This cost cannot be justified
for the student application we address.

The second major design decision regards that of computational
capability. The desire to have easy expansion of computer power suggests
that several processors be used rather than one large processor. Since
each processor needs convenient access to the central GEMory, a bus
structure is employed. The refresh of the TV screens does not pass
through this bus, and indeed our organization ensures that the GEMory
is available to the computers and other deviéeé on the bus most of the
time. Both bus and memory speeds are quite fast, so several computers
and devices can coexist without performance degredation.

At any given time, only one segment of GEMory can be directly
addressed by each computer on the bus. Context switching between
segments is conveniently done by loading a single register. We call the
bus the GEMbus. Figure 1 shows the over-all organization of the GEM

system.
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V. GEMbus conventions

For two reasons, the GEMbus closely resembles the PDP-11 UNIBUS. First,
several PDP-11s are connected to the GﬁMbus via an interface between

the GEMbus and the computers' UNIBUS. The complexity of this interface
is minimized by adopting similar conventions. Second, the similarity
of the two bus conventions makes it possible to convert a UNIBUS
interface to a GEMbus interface very easily. Specifically, this means
that interfaces to the GEMbus may be built and checked out on a UNIBUS
before construction of the GEMbus is comﬁlete.

An important difference between the GEMbus and a UNIBUS is the
number of address lines. While only 18 lines are provided on a UNIRUS,
we include 24 address lines on the GEMbus. 1In addition, there is a
separate bus arbitration unit that allows connection of several
independent computers. This unit allows control of the GEMbus to shift
from one processor to another without need for direct communicatioﬁ
between the two processors.

There are two types of operations that take place on the GEMbus --—
data transfers and control transfers. The bus is set up so that these
two types of operations can occur simultaneously; a new bus master may
be selected during a data transfer operation. There are four signals
involved in the transfer of bus control from one device to another:

1. the request line
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2. the grant line

3. the grant acknowledge line

4, the busy line.
When a device requests the use of the bus and the next owner has not
been selected, the arbitration unit sends out a grant to the requesting
deﬁice. if the next owner has already been selected the arbitration
unit waits until the previously selected user takes éontrol of the bus
before issuing the grant. The device selected takes control of the bus
after the current bus master releases it. Figure 2 shows a simplified
version of the bus arbitrator.

Data transfer operations on the GEMbus are quite similar to those
on a UNIBUS. When a device becomes master, it asserts address and
control information (read or write), and the data (in the event of a
write operation). After a delay to insure that all signals have settled,
the master asserts a sigqal that tells all potential bus slaves that the
bus lines are valid. At this point, the referenced device does one of
two things. If the current operation is a write, the selected device
takes the information from the bus, places it into a buffer register, and
then notifies the bus master that the data operation is complete. (The
information in the buffer register may be transferred to memory after
the bus cycle is finished.) If the operation is a read, the selected
device gets the data requested by the master, places it on the data

lines of the bus, and notifies the bus master that the data is valid.
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The bus master picks up the data, terminates the cycle, and releases

the bus.

15.



16.
VI. The UNIBUS to GEMbus interface

The UNIBUS to GEMbus interface contaiﬁs circuifry to allow the UNIBUS
to become master of the GEMbus as well as circuitry to conduct a data
transfer operation. These functions are illustrated in Figure 3.

As shown in the figure, all transfers must be initiated by the
PDP-11; devices on the GEMbus can reference the PDP-11's memory only
if a separate interface is added. The entire cycle is started by the
signal called GET GEMbus which goeg into the box marked GEMbus CONTROL.
This box then goes through the sequence ;f requesting the bus, receiving
the grant, acknowledging the grant, and taking control of the bus the
next time it becomes free. When the GEMbus éONTROL module informs the
other modules that it is now bus master, several things happen. First,
the address and control lines (generated elsewhere in the interface)
are gated onto the GEMbus. If the ope;ation is a write, the data from
the UNIBUS is also gated onto the GEMbus. After a short delay to ensure
the validity of the data, the interface asserts MASTER SYNC on the
GEMbus. When it receives a SLAVE SYNC, it terminates the bus cycle and
releases the GEMbus. If no response is forthcoming, the interface
assumes that no such address exists on the bus, and the cycle is
terminated with the NXM (non-existent memory) flag set.

Other parts of the UNIBUS to GEMbus interface perform the address

translation from the 18-bit address space of the UNIBUS to the 24-bit
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address space of the.GEMbus, as shown in Figures 4 and 5. Note that
three registers are used. The first two, the lower limit register and
the upper limit register, are each ten bits long. The contents of these
two registers are constantly compared with the ten high order address
bits on the UNIBUS., Whenever the address on the UNIBUS is between these
two limits, the interface treats the current UNIBUS cycle as a reference
to the GEMbus. The GEMbus address is computed by adding the contents

of the 16-bit offset register to the ten high order bits of the 18-bit
UNIBUS address, yielding the high order 16 bits of the GEMbus address.
The low order eight bits of the UNIBUS address are passed directly to
the GEMbus, as are the two control bits, CO and Cl. Note that this
method of mapping allows a PDP-11 to fill any- part of its 28K address
space not taken up by its own memory with memory on the GEMbus; the
filled-in part consists of an integral number of 128-word blocks

relocated to an even 128-word boundary.-
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VII. The GEMbus to UNIBUS interface

The UNIBUS to GEMbus interface allows ‘the UNIBUS to become master of
the GEMbus, but not the other way rownd. Actually, if the interface
is made symmetrical with respect to control, it is possible for the

entire system to hang up in a "deadly embrace,"

unless special provisions
are made.

To see why this is so, suppose there are two PDP-1ls on the
GEMbus, and that each wishes to read data from the memory of the other.
Each initiates UNIBUS cycles, but only one can become master of the
GEMbus, say the first. Now the GEMbus cannot do an NPR (non-processor)
reference of the second PDP-11's memory becausé its UNIBUS is busy,
and it will stay busy so long aé the GEMbus is busy. Clearly, the three
buses are locked up. Hardware timers will break the deadlock, but at
the expense of an error trap. Clearly, the situation should not be
treated as an error condition.

One way to prevent such traps is to insert a set of switches
in each UNIBUS, placing devices which can be bus masters on one side
and NPR targets on the other. These switches are opened whenever a
UNIBUS requests control of the GEMbus, and the GEMbus is referencingV
the UNIBUS. Note that all cycles eventually complete and no timeout

traps occur.

In addition to the special circuitry described, the GEMbus to

21.



UNIBUS interface contains rather standard DMA components. These allow
NPR transfers to take place whenever the address on the GEMbus is in

an address window assigned to the PDP-11.
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VIII. The GEMory controller

Our 16-terminal GEM prototype has 256K of GEMory organized iq 16 16K
segments, one per terminal. The memor§ is constructed from 1024-bit
MOS RAM integrated circuits whose cycle time is 450 nanoseconds and whose
access time is 325 nanoseconds. Part of the memory interface is
replicated'l6 times, and part is common. The interface connects the
memory to the GEMbus, but it also controls the refreshing of the TV
screens. The data rates for refreshing are rather high —— each TV screen
needs a new data bit every 80 nanoseconds. But since each TV set may
be fed in parallel, this requires only one memory fetch every 1.3
microseconds. Even so, the memory would be ébnstrained from responding
to requests from other high speed devices on the GEMbus, if direct
memory fetches were permitted. Instead, we have organized the memory
to permit four fetches in parallel (fof each terminall!), and the memory
is consequently hit by the refresh circuitry only once every five
microseconds. Moreover, the memory demands of the TV sets are
predictable, and we are able to guarantee that the memory is available
for refresh purposes without disturbing the normal asynchronous mode
of the GEMbus.

The shared components of the interface are relatively simple.
They detect when the GEMbus wishes to reference the memory, and decode

the address to determine which of the 16 segments is being referenced.

23.
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The address is passed to the selected segment, together with any data
(in the event of a write). When the segment acknowledges selection, the
GEMbus cycle is completed.

There is also common circuitry ‘to provide timing and control of
the TV sets. A timing chain is started when the TVs require more data.
After about 4.3 microseconds, new memory cycles are inhibited. Another
450-500 nanoseconds are skipped to allow current memory cycles to
terminate. At this point, four words are fetched from each 16K segment
simultaneously and loaded into a 64-bit shift register.

The replicated components contain' the display shift registers
and video drivers as well as the circultry necessary to handle the memory
itself. To conserve I/O connections, the 64-bit shift register is

loaded in 16-bit blocks at 80 nanosecond intervals.
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IX. The keyboard controller

The GEM system uses standard keyboards as input devices. The sixteen
keyboards are connected to a PDP—ll/OS‘through a common controller, as
illustrated in Figure 6. The controller is completely separate from
the display controller -- any association of a keyboard to a TV screen
must be made by software. Characters typed on the keyboards are
transmitted to the computer. 1In addition, data may be passed from the
computer back to the keyboard to control four pairs of status lights
and a buzzer.

The keyboards contain a parallel-in serial-out shift register
that is used to serialize the 1ll-bit codes génerated hy é keystroke.
(Each button generates 6 bits and in addition 5 shift keys may be
pressed.) A bit is shifted out of the register upon receipt of a strobe
command from the controller. The presénce of a character is indicated
to the controller by the value of the low-order (first out) hit in the
register. This bit is normally set to 1, but when a key is struck it
is reset to 0. The common controller sequentially scans each register,
testing the low order bit, and determines if a character is present.
When a .zero value is seen, timing and control circuitry sends a
succession of strobe signals to pass the contents of the keyboard
register to a central register. When the entire code has been passed,

the terminal number is appended and an interrupt of the computer is
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requested. Finally, the controller continues scanning the keyboards
beginning with the next one in sequence.

The computer to keyboards part of the controller consists of
a parallel-in serial-out shift :egistef, a one-of-sixteen decoder, an
address register, and timing and control circuitry. The computer loads
the shift register and indicates the keyboard number by loading an
address register at the same time. Timing and control circuits send
the bits serially to an internal register in the keyboard. This register

controls the display lights and the buzzer.
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X. The floppy disk controller

This controller is a sophisticated micfo—progrémmed processor capable
of handling up to 16 floppy disks. By'using a micro-processor it
becomes possible for the floppy disks to share the same DMA logic and
to include several other very useful features.

The detailed operation of the floppy disk controller is too
involved to be covered here; we present only a brief description of
its most important capabilities. The controller is an interface between
the GEMbus and up to 16 floppy disks, coﬁtrolling the transfer of data
between the disks and any slave device on the bus as specified by a
command list. The four main commands are to }ead a sector into memory,
read a sector and compare with memory, write a sector from memory, and
seek a track. The command list of each disk is stored in the GEMory
and is automatically fetched by the disk controller.

Upon completion of a command the controller will either fetéh
another command for the same disk, branch to another point in a command
list, or inform the computer of the completion of a command list.
Control information is sequentially scanned by the controller to permit
initiation of a new command list, and 16 seeks can be done in parallel.
However, only 4 disks can read or write simultaneously. This number
is dictated by GEMbus efficiency considerations. Note that the computer _

has the capability of monitoring the progress of the controller and
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the command lists may be dynamically altered. This is an important
advantage since the computer can also read the rotational position of
each disk, and optimization based on this information is often
significant.

A more detailed description of the floppy disk controller will

be forthcoming in another paper.
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