The Yale Editor "E" —
A CRT-Based Text Editing System
(Preliminary Version)

P. Weiner, I. Singh, D. J. Mostow, E. T. Iroms

Research Report #19

This work was partially supported by grants from the Alfred
P. Sloan Foundation and the Exxon Education Foundation.

April 1973

The Yale Editor "E" -- A CRT-Based Text Editing System

Abstract

Editing programs designed for teletype interaction differ significantly
from editing programs designed for CRT interaction. This paper describes
the Yale Editor "E," a CRT-based editor, and gives both functional

characteristics and implementation details.

I. Introduction

Experience at Yale and elsewhere [1] has shown that low-cost CRT
(TV-like) terminals have considerable édvantage over any other computer
access method. But this is the case only when the CRTs' speed is used
properly; use of standard software designed for teletype interaction
is sometimes inconvenient on a high speed 'teletype equivalent' CRIT.

The user of an interactive time-sharing system spends a major
part of his time using the system editor. Here too, when teletypes are
used for access, it may be better to use an editor designed for
teletypes. But our experience shows that editing software designed for
use with low-cost high-speed CRTs can provide a capability unattainable
with slow speed devices. Indeed, such an editor provides mechanisms
for dealing with two-dimensional text in a very natural way. (This is
true in spite of the fact that the computer stores text in a compacted
linear form.)

This paper describes a CRT-oriented text-editing system
implemented on a PDP-10 time-sharing system at Yale University. It
functions as a user-mode program under the standard PDP-10 operating
system and uses its file structure. The editor has been operational
for over three years and it has, we feel, had a significant influence

on the way the computer system is used.

IT. Hardware

The host system is a typical medium-sized time-sharing system consisting
of a PDP-10 computer, disk storage, ana other peripheral equipment.

Users communicate with the system through Sugarman Laboratories' T-6
Cathode Réy Tube terminals. These are fairly typical of many teletype—
compatible CRT terminals currently on the market. ﬁach terminal consists
of a TV screen capable of displaying 1600 characters in 20 lines of 80
characters, and a teletype-like keyboard with additional function keys.

A basic 64 character font is provided. However, the terminals have an
upper/lower case mode in which the upper case characters are distinguished
by being displayed in reversed field (black characters on a white
background). In addition, characters can also be displayed blinking
(protected modé). The terminals are operated in a full duplex mode

and each time a key is operated the cofresponding ASCII code is
transmitted to the computer. Each time a text character is received

from the computer, it is written at the cursor position and the cursor

is moved to the right. If a contrxol character is received (codes with
octal values under 40 represent ASCII control characters), a corresponding
terminal control function (e.g., line feed, page clear, etec.) is

executed. In normal operation, most characters are echoed back by

the teletype service routine in the monitor. The terminal looks to the

operating system like a high speed (model 37) teletype.

III. Using the Editor

When a user is editing a file, his CRT screen appears to be a window

on the target file. This window can be'moved up and down, left or
right, or to a different file by operating the appropriate function keys.
Simple changes can be made by positioning the cursor at the degired
text and overﬁriting it with the new text. Other functions allow the
user to open or close the text, move pieces of text around, and perform
various other operations. The cursor is used to point to the place in
the file where the editor is to ﬁerform an editing function such as
inserting or deleting text. In most non-CRT ed;tors, this is
accomplished by typing a line number or the sﬁ}rounding text (conteﬁt),
neither of which is as convenient or natural as being able to point
directly using the cursor.

The various editor functions are;evoked through the use of
function keys that generate ASCIT control characters. Since some
control characters are not associated with unique keys on the keyboard,
many functions are executed by holding down a control-shift key while
striking one of the alphanumeric keys. The user can specify parameters
with the functions: E.g., when deleting lines, he can specify the number
of lines to be deleted. The parameter is preceded by the ENTER key
to distinguish it from normal text and is associated with the next

function key. For most functions, the system supplies a suitable default

parameter if none is specified, so that pushing a single button is
usually sufficient to invoke an editor function.
The editing functions available to the user are described very

briefly below. Some of them will be described in more detail in the

Appendix.

1. TFile functions (SET-FILE, MAKE-FILE)
These functions specify the target file. MAKE-FILE is used to

create new files, and SET-FILE to examine or edit an existing file.

2. Screen movement functions (+LINES, -LINES, +PAGES, -PAGES,
SLIDE-RIGHT, SLIDE-LEFT, +SEARCH, -SEARCH, GOTO)

These functions move the window represenfed by the CRT screen
with respect to the file. +LINES, -LINES, -+PAGES, and -PAGES move the
window up or down a specified number ofllines or pages (a page is defined
as 20 lines -—- the size of the screen) while SLIDE-LEFT and SLIDE-RIGHT
slide the window sideways by a specified number of columms. The two
gsearch functions position the window at the nth accurence of a specified
key, searching forwards or backwards from the cursor position. The GOTO
function is used to position the window at a point that is at a
specified percentage of the way through the file. This is commonly used

to get to the beginning or the end of the file.

3. Cursor positioning functions (CURSOR-LEFT, CURSOR-RIGHT,

CURSOR-UP, CURSOR-DOWN, RETURN, LINEFEED, HOME, TAB)

These functions move the cursor around within the window without
moving the window with respect to the file. Théy share the property
that the response or the echo to the CR& terminal is generated at
monitor level by the teletype service routine. This ensures
instantaneous response to the user although the editor may not process
the functions till somewhat later. The four cursor keys are grouped
together on the keyboard and have a built-in auto-repeat which makes it

convenient to position the cursor rapidly at any desired place on the

screen.

4, Editing functions (INSERT-SPACES, DEﬁETE—SPACES, INSERT-LINES,
DELETE-LINES, PICK, PUT)
The first four are used to open or close the text. The PICK and
PUT functions are used to copy parts of.the file from one place to
another, or even to a different file. DELETE-LINES causes an automatic
PICK operation to take place. This makes it convenient to move a piece
of text from one place to another (rather than copy it). It also allows

the user to have second thoughts after doing a DELETE-LINES -- following

it by a PUT undoes its effect.

5., Miscellaneous functions (RESET, ENTER, DO-COMMAND, KNOCKDOWN,

EXPLAIN, EXIT)

ENTER is used for entering parameters. The DO-COMMAND function

is used to execute frequently used strings of other functions and text.
It effectively allows the user to define new functions, using the
existing ones. KNOCKDOWN is used to write control characters into the
file. EXPLAIN provides expanded descriétions of error messages. RESET
can be used to abort a partially specified editing function; it also

serves as a general panic button.

The basic way to execute a function is simply to push the button
corresponding to the function. However, it is sometimes necessary to
specify a parameter to the fumction such as the name of the file to
look at next in the case of SET-FILE. This is accomplished by typing
ENTER followed by the parameter and then the fuqction. The ENTER echoes
as a blinking ">" to indicate that the system is in parameter mode, and
any text typed in goes into a parameter buffer without affecting the
file. The parameter mode is terminated when any other function key is
typed and the parameters typed in are associated with that fimction.

For entering more than one parameter, the ENTER key is used between
successive parameters.

An alternative way to specify a parameter for a function is to
move the cursor to a point, hit the ENTER key, move the cursor to another
point on the screen, and hit the function key. Thus the user can point
out a piece of text to be deleted, or a search key on the screen, instead

of typing it in. Unfortunately, since the screen movement keys cannot

be used in parameter mode (because they take parameters themselves),
this method of specifying a parameter is limited to within the screen.

Entering a null parameter (ENTER'followe& by a function key)
is distiﬁguished from not entering a parameter at all and it is used
to provide‘a special mode for certain functions. For example, ENTER
+LINES is used to initiate scrolling. ENTER +SEARCHispecifies the text
between the current position and the next space or control character
as the search key. This method of specifying a text string on the screen
as a paraméter is available with the functions +SEARCH, -SEARCH, and
SET-FILE. Useful information retrieval aids can be provided to a user
by putting appropriate search keys and file names in convenient places.
(The system documentation of the PDP-10 is Qréanized this.way.)

When a function that takes a parameter is executed without
specifying one, the system supplies a default value, which is usually
the value last used with the function (;r its complement, as explained
below). Thus one can do repeated searches_against a key, intermixed with
other functions, without retyping the key each time. Many of the
functions are divided into complementary pairs that share the same
default parameters (e.g., +LINES/—LINES, INSERT-SPACES/DELETE~SPACES,
etc.). When a parameter is specified for one member of such a pair,
it is stored as the default parameter to be used with both functions in

the Ffuture. This makes it very convenient to undo the effect of one

of these functions and get things back the way they were. Thus a +LINES

could be followed by a -LINES or an INSERT-LINES by a DELETE-LINES as
long as the second function was executed without an explicit parameter.
One can also do things like following an unsuccessful +SEARCH by a
~SEARCH without retyping the search key:

An interesting use of the default parameter mechanism, used in
our PDP-10 system, comes from initializing the parameter for SET--FILE
to a system file called NEWS. The editor is automatically run after
a user logs in and the first page of NEWS is presented on the screen,
which contains latest system information and a brief description on how

to use the system.

IV. TImplementation Details

The editor uses the standard file management syétem'provided by the
PDP-10 Operating System. The files consist of 128-word (640-character)
blocks containing packed ASCII characters, five to the word. The links
between the blocks are transparent to a user—-mode program; the whole
file has to be treated as a contiguous set of blocks. This means that
if data has to be inserted or deleted at some point in the middle of
the file, the remaining part of the file has to be rewritten. An
important design consideration is that a file being edited must survive
most system crashes.

A part of the file is kept in a core buffer, where the editing
operations are performed. The buffering is transparent to the user,
who can move his CRT window freely over the entire.file. The file is
updated periodically (after every 70 keystrokes) or whenever there is
need to access data outside the buffer. This updating involves two
operations: First any nulls (ASCIL code 0) in the buffer created by
the insertion and deletion operations have to be squeezed out, and then,
unless the resulting size of the buffer is exactly the same as the
corresponding old data on the file, the editor has to ripple down the
file reading and rewriting bufferfulls of data so as to move the
remaining parts of the file.

Figure 1 shows the mapping between the disk file, the core buffer,

\ FC
: ’ / QURS OR
BUFFZR , | /
ARE & B e : —s
e i
PTR— A | TN
7 7 T I
— PTL i e S ey \
. "~ 1
\ 1 \
- :
—— e ‘ < C P
| { T N
| | -)‘ - - ->:‘;.\4_
!
o
: \ OVERTLOW .
ARE A TN

X _Y

DISC FlLE CORE BRUFFER CRT SCREEN

Figure 1.

11.

and the CRT screen. The labels refer to variables and pointers that

are maintained when a file is being edited. These are briefly described

below:

NWF

PTIR

PTL

FC

LB

LN

cp

Number of words in the file

Address of first word in buffer

Pointer to the character at cursor position
Pointer to the beginning of line containing cursor
Pointer to the first character on the screen
Pointer to the last character in the buffer

Line containing the cursor

Column containing the cursor.

The pointers PTR and PTL can be computed using CP, LN, and FC.

They are usually recomputed when needed if they haye been modified by

some previous function. The remaining set of values along with the file

directory information, such as the file name, file extension, and the

project-programmer number, form the file vector which contains all the

information necessary to define the state of the system with respect

to the file, including the contents of the screen and the cursor

position. The editor maintains two file vectors, one for the current

file and another, the old file vector, for the last edited file. When

the user types SET-FILE without specifying a parameter the old file

vector is used to determine the file and the position of the screen and

the cursor within the file. The current file vector is saved as the

old file vector. Thus the user can ping-pong between two files with
single keystrokes. This can be quite uéeful dufing editing. TFor example,
if large parts of a file under construction already exist in another

file, the material can be picked out of that file and deposited in the
new file with but a very few button pushes.

When the editing session is terminated by hitting the EXIT key,
the two file vectors are stored in an area of core inside the monitor
called TMPCOR. When the editor is néxt run, they are read in so that
the target file and the screen are restored to their state at the end
of the last session.

The main program modules and the flow of control are outlined
in Figure 2. The input handler picks up typed characters and on
receiving a control character passes it on to the command interpreter,
which is a straightforward dispatch tabie. Other characters are entered
at the current cursor position. When the ENTER key is pushed, the system
goes into parameter mode, and received characters are merely put into a
parameter buffer.

The Disk I/0 Routines pefform functions l1ike opening, closing,
and updating a file. Here opening a file includes initializing the
core buffer and the various pointers in Figure 1. Closing the file
includes updating if the data in the buffer has been modified. The

updating includes squeezing out nulls and performing the rippling—down

————— e me s

Input Handler
and

Command Interpreter i

romre e e

; Editing and |
! l\
! Travelling Routines ' e e
é ‘\\ 1
1 \ l
- =~ Disc 1/0
—] l Routines
|
! T .
i ’ e s
—— Y .
Display Update] -

Output

Routine [

Figure 2.

operation already described. The relevant pointers have to be suitably
updated during the above operations. All transfers between disk and
core are done without using a ring of ﬁser buffers; data is transmitted
between an integral number of logically contiguous blocks and a core
buffer area. Random access to any disk block is available through the
monitor calls USETI and USETO. The core buffer is moved forwards or
backwards by common routines. These routines are called by the various
editing, travelling, and display routines when they need to access data
outside the core buffer area.

Error messages are handled by a routine that is called by any
part of the editor that detects an error. When an error condition
occurs, the CRT screen is cleared and a shorg canned message such as
"Search failure" or "Bad parameter" is flashed on the screen. After
a few seconds, the previous screen image is restoréd. For a less cryptic
description of the error conditionm, thé user can push the EXPLAIN key.
This causes a SET-FILE to be performed to a system file containing a
page for each error condition. The appropriate page of this file is
displayed on the screen.

There is a group of routines that provide parameter values to
routines for functions that take parameters. The calling routine
effectively specifies the number and type of parameters that it needs
(this is actuwally accomplished by calling the appropriate subroutine)

and the address of the location containing the default value. The

14.

15,

different types of parameters include numbers, strings, and file
specifiers (a file specifier looks like DEV:FILENAME.EXT [PROJ.PROG]
(PROTECTION), where everything except the file name is optional). The
parameter routine picks the parameters'up from the parameter buffer,
performs the necessary conversions, and fills in default values where
possible.' For example, in the case of DELETE-LINES, if the user typed
in two numbers for the number of lines and charactefs to delete, these
are found in the parameter buffer and returned after ASCII-to-Integer
conversion. If only one parameter was typed, the second is set to zero.
If the user pointed out the text to be deleted by pushing ENTER and
moving the cursor over to a new position, the number of lines and
characters to be deleted is computed from the cursor position. Finally,
if the wuser did not specify any parameter at all, a pair of default
values is returned.

Insertion and deletion operatioﬂs take place during the execution
of INSERT-LINES, DELETE-LINES, INSERT-SPACES, DELETE-SPACES, and PUT.
To insert lines, of course, it is only necessary to insert carriage-—
return linefeed (CR-LF) pairs. Insertion also takes place when the user
types a character beyond the end of a line. In this case an appropriate
number of spaces followed by the typed character have to be inserted
just before the CR-LF pair that marks the end of the line, so as to make
the file identical to what is seen on the screen.

Deletions are performed by overwriting characters in the core

buffer with nulls. These nullsrare subsequently squeezed out before
the file is updated, unless they are used up by insertion operations.
To perform an insertion, the editor searches for nulls up to a certain
distance (64 characters) on a charactef-by-character basis. If enough
nulls are found, the remaining non-—null characters are pushed down to
gather the nulls at the top. Otherwise, the rest of the data in the
buffer is moved down a word at a time to make room for the characters
to be inserted. Thus an attempt is made to take advantage of nulls
created by repeated deletions and insertions. The insertion routine
usually inserts a few more nulls than needed in the hope that they can
be used in the case of future insertions. In particular, when an
insertion is done as a result of typing past the end of a line, several
extra nulls are insefted -— there is a very high probability that the
user will type in several characters at a time, and one does not want to
go through an insertion operation for each one.

The routines that are used by the 4+SEARCH and -SEARCH functions
are also used by +LINES, -LINES, +PAGES, and -PAGES. The first two
search for a match against a search key while the last four search for
CR-LF pairs. The search is done in a straightforward way: The search
key is compared against the buffer contents a character at a time. Upon
detecting a mismatch the process is repeated starting the comparison
one character further down in the buffer. The calling routine can

specify the number of matches to search for and the location of the

16.

search key, The search key can include control characters and wild-card
(don't care) characters. The search routines return a pointer to the
place in the buffer where the mgtch océurred as well as the number of
lines that had to be travelled (CR-LF pairs encountered). This

information may be required by the calling routine to determine the

way in which the display has to be updated.

17.

18.

Appendix: Detailed Description of the Editor Functions

Some of the editing functions are described in more detail here. Those

that have been sufficiently covered are omitted to avoid repetition.

SET-FILE and MAKE-FILE

SET-FILE is used to begin editing a new file. It takes two
parameters: a file specifier and a number that specifies the position
of the CRT window within the file. If the second parameter is zero,
the first page of the file is displayed. A positive number m between
0 and 100 means that the window is to be positioned m percent of the
way down the file, while a negative number -m means the window is to
be positioned m lines from the beginning of the file. Thus SET-FILE
effectively includes a GOTO or +LINES operation.

If the file specifier does not include an extension, and a file
with the given name and a null extension does not exist, the editor
tries other extensions, such as F4, ALG, MAC, I10, and P11l. Finally,
if all these fail it repeats the same search in the system file area.

The file specifier can also be picked off the screen by pointing-
out the cursor to the beginning of the file name and hitting ENTER and
SET-FILE. The parameters for SET-FILE can also be read from a file
(indirect specification) by preceding the file name with an "@." Thus

if the user types the four keys ENTER @ A SET-FILE, where file A contains

DSKB:LINTRN.DOC[22,40],50, the editor will display a page at the middle
(50%) of the file LINTRN.DOC in the user area [22,40] on the DSKB file
structure, This indirect look-up can Be nested up to a depth of 8.

The initial target file for the editor when it is run can be
specified in the run command using a similar format -— R E; DSKB:
LINTRN.DOC[22,40],50 or R E; @A.

The MAKE-FILE function is used to create a new file. The file

is initialized with a single line:
This is the first line of XYZ

where XYZ is the file name. This line can be edited or deleted.

+LINES, -LINES, +PAGES, —~PAGES

These functions move the CRT window up or down by a specified
number of lines or pages. -+LINES and -LINES share a common parameter,
the number of lines to mo&e the window. This is initially set to 7.
Similarly +PAGES and -PAGES share a parameter, the number of pages to
move, which is initially set to 1. These last two functions simply

multiply the number of pages by 20 and transfer control to +LINES or

~LINES, which in turn call the search routines to search for the required

number of CR-LF pairs.
If the window is moved by more than 20 lines, the display routine

is called to rewrite the whole screen. Otherwise, an appropriate number

19.

20.

of ROLL-UP or ROLL-DOWN characters are transmitted to the terminal, and
the display routine is instructed to rewrite only the new lines that
are to be displayed.

When any of these functions are'executed with a null parameter
(e.g., ENTER +LINES), a scrolling mode is initiated. 1In this mode, the
editor continuously repeats the specified operations (+LINES in this
case). The speed of the scrolling can be controlled by hitting different
nuneric keys. Hitting a "-" (wminus) changes the direction of the
scrolling. The effect is somewhat like operating a microfilm viewer
in that the user can moye the file past the screen at variable speeds

in either direction.

+SEARCH and -SEARCH

These two functions search forwards or backwards from the current
position as defined by the cursor for the nth occurence of a search
key. They take two parameters: a character string for a search key, and
a number that specifies how many matches to search for. The search string
may contain control characters which can be entered by using the
KNOCKDOWN key and wild-card characters entered by typing KNOCKDOWN 7.

The search key can also be picked up from the screen (i.e., the
current target file) in the usual way by pointing-out with the cursor.
If the search key is a single word (or a string not containing any

embedded spaces) the user can simply move the cursor to the start of

the word and hit ENTER +SEARCH or -SEARCH.

In the event of an unsuccessful search, the error message 'Search
failure" is flashed and the screen is réstored. " Since the editor has
to search up to the end (or the beginning) of the file and this involves
moving the core buffer with respect to the file, the current file vector
is saved at the beginning of a search operation and used to restore
things in the eyvent of a failure.

If a successful match is found within the text on the screen,
the cursor‘is positioned to point to.it. Otherwise, the CRT window
is moved so that the first line contains the string that was matched and

the cursor is left pointing to it.

PICK and PUT

These functions, along with DELETE-LINES (which automatically
executes a pick operation) allow pieces of text to be moved around
between different parts of the file or between different files. The
text to be picked up can be specified numerically by two numbers —-— the
number of lipes and characters starting from the current position:
Alternatively the user may point it out with the cursor. Thé teit
thus specified is copied into a put buffer one character at a time.
1f it is too long for the put buffer, which can hold only 1280 characters,
the put buffer is cleared and a temporary put file is created in the

user's area with the name "nnnPUT.TMP'" where nnn is the user's.job

21‘

nunber.,
The PUT function inserts the contents of the put buffer at the
current location. If the put buffer is empty, it tries to use the put

file and if that cannot be found an error message results.

DO-COMMAND

.The DO~COMMAND function provides an open-ended extension
mechanism: The user can define new fimctions utilizing other editor
functions in a very convenient way. This function effectively performs
a delayed interpretation of button ﬁushes. The editox is put in a
mode where it picks up characters from a.command buffer instead of
receiving thém from the keyboard and interprets them in the usual way.
The command string consisting of the sequence.of characters to be

interpreted can be entered into the command buffer in one of the

following ways:

a) It may be explicitly typed in as the first parameter
to DO-COMMAND using the KNOCKDOWN function to enter the

control characters.

b) It can be read in from a file (indirect mode) by entering

the file name with a "@" ahead of it as the Ffirst parameter
(e.g., ENTER @C DO-COMMAND where the file C contains the
command string).

c) The editor can create the command string by observing

22.

23.

the user execute the desired sequence of operations. The
editor is put into a learn mode by typing ENTER DO-COMMAND
(i.e., DO~-COMMAND with a null paraﬁeter); All subsequent
button pushes are recorded in the command buffer besgides
being normally interpreted. The mode is terminated with

another push of the DO-COMMAND button.

The second parameter to DO-COMMAND specifies the number of times
the command string is to be interpreted (or executed). Either of these
two parameters may be omitted in which case the default values are the
last ones used.

A third parameter, a file specifier, allows the contents of the
command buffer to be written out on a file. Thus the user can create
a command string using the learn mode, save it on a file, and call it
when required, using the indirect mode..

The display routines are inactivated during a DO-COMMAND
operation. Other than that the characters received from the command
buffer are treated in exactly the same way as if they were received from
the keyboard. The command string execution is terminated when it has
been executed the specified number of times and then the whole screen is

rewritten. Any error condition also terminates the operation.

Reference

Edgar T. Irons and Frans M. Djorup. A CRT editing system. Communications

of the ACM, volume 15, number 1, January 1972, 16-20.

24.

