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Introduction

The geometry of n dimensions has been a topic of mathematical interest
for the last century. Until very recently, however, little work has been
done on the application of geometric principles to the study of algorithms
or on the study of algorithms for geometric problems. In the research presented
here, models are proposed for the study of the complexity of higher dimensional
geometry problems. A major goal of these researches is the generation of
better lower and upper bounds on commonly performed operations which have
a geometric flavor. Typical of such operations are problems of linear and
integer programming as well as problems involving the searching of geometric
objects in Euclidian spaces. The results presented here comprise a set of
research projects undertaken at Yale over the past three years. While each
of these reports will eventually appear elsewhere in a format which may
differ from that given here, we have gathered all reports together here in
order to present a unified study of researches on the problem. The goal
of this section will be to present a unified introduction to the research
reported here.

The geometric results were derived from studies of the complexity
of problems with the flavor of searching in Euclidian spaces and of problems
involving properties of convex polytopes and point sets in Euclidian spaces.
The former studies are motivated by the integer programming knapsack problems
while the latter relate to the complexity of standard linear programming problems.
For neither of these problems is an algorithm known of complexity which grows
at less than an exponential rate in the size of the problem input. And no
lower bound of greater than linear complexity is known for deterministic

Tuing machine computation which solves either of these problems. Yet each is
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of major practical importance.

The knapsack problem can be simply stated as the problem of finding
whether a given point lies on any of a set of hyperplanes. We consider linear
search tree programs for solving general problems of this type. The model
is described in [3] along with methods of obtaining lower bounds on problems
of this type. Using these methods, lower bounds of nlogn on the 2-dimensional
knapsack problem and %nz on the general problem are given in [1] and [4]. A
method of obtaining upper bounds on such problems is given in [2]. This
method yields an upper bound of 3logn on the complexity of searching a set
of n lines in the plane which have been prepared in a manner which generalizes
sorting. Extensions of this methed to searching k—dimensional objects in
Buclidian n-spaces are also given. This algorithm gives insight into methods
of achieviﬂg upper bounds on the knapsack problems and into the framework
necessary to prove better lower bounds on the problem. This framework is
based largely on an undexrstanding of partitions of the plane by lines or
partitions of n space by hyperplanes. Properties of such partitions derived
from connections with threshold logic lead to the %nz lower bound of [4].
Further study of this problem in the plane, with the intention of fully
classifying partitions of the plane by lines is a first step towards a complete
understanding of partitions of n-space by hyperplanes. It is only through
this approach that better lower bounds on the knapsack problem can be obtained.
This first step is undertaken in [5] where all of these concepts are outlined
in detail.

A constant problem of interest in operations research is the
determination of the complexity of the linear programming problem. We consider

the time [7] and space [6] complexity of this problem. All known fast
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A non-linear lower bound on linear search tree programs

for solving knapsack problemsl

David Dobkin
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Abstract

By the method of region counting, a lower bound of n log,n
queries is obtained on linear search tree programs which solve
the n-dimensional knapsack problem. The region counting involves
studying the structure of a subset of the hyperplanes defimed by the
problem. For this subset of hyperplanes, the result is shown to be

tight.

1 Portions of this research were supported by the ONR under Grant
N00014-75-C-0450 and NSF Travel Grant DCR75-15624.

1. Introduction

In a previous paper [2], we showed that any linear search tree
which determines membership in a union of a disjoint family of k open
sets requires at least 10321( queries. This result can actually be
extended [4] to show that any search tree using queries which are poly-
nomials of degree < p requires at least %logzk queries to determine
membership in a union of a disjoint family of k open sets. In the
present paper we will use these results to show that any linear search
tree for solving the knapsack problem of dimension n requires at
least n logzn queries. This result will follow by showing that a sub-
set of this problem gives rise to at least %n! regions. Although
the linear search tree model does mot appear to have all of the power
of the Turing machine model for which the P vs. NP model was first pro—
posed, this pon-linear lower bound is derived om the model which is
actually used in practice for solving knapsack-type problems. To begin,
we review some definitions from [2] to set notation for this paper.

The knapsack problem of dimension n is commonly stated as follows:

Given an wtl-tuple ‘{xl, cees X, b}, does there exist a vector
n
(a;, -.., a_) all of whose components are 0 or 1 such that E a,x, = b?
1 n go1 1 i

We can restate this problem in a geometric fashion by observing that
determining whether the n¥l-tuple (xl, cees X b) gives rise to a
solvable knapsack problem is equivalent to determining whether the

point (x1/b, x2/b, caes xn/b) lies on any of a set of hyperplames im
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. . n
Rn, n dimensional Euclidean space. In particular, if 1< is 2°-1

is represented in its binary expansion as

1 = 1 2n—1 + i 2n—2 + ...+ 1 -2+ i, , we can represent the ith
n n-1 2 1
n
of these hyperplanes as Hi(x) - 1=0 where Hi(!) = z ijvj .
j=1

In all that follows we shall use this second formulation which is
trivially equivalent to the first.
The linear search tree model is defined as the set of programs

consisting of statements of three types

Li: if £(x) R 0 then go to Lj else go to Lk
Lm: Halt and accept

Ln: Halt and reject

where £(x) is a linear form in the components of the n-vector x and

R is ome of the relations >, < or =. This model was first studied by
Rabin [3]. This model can be extended to polynomial search trees of
degree $ p by allowing f(x) to be a polynomial of degree < p. The

result of [2] can then be stated as follows,

Theorem 1: Any linear search tree for determining membership in :LEI Ai

where each Ai is an open subset of JR“ and the Ai are pairwise dis-

joint requires at least logle[ queries in the worst case.
and as observed we have the corollary

Corollary: Any polynomial search tree of degree < p for determining

-8

. . n
membership in :LEI Ai for {Ai}isI a family of open subsets of R

which are pairwise disjoint requires % 1032|I| queries in the worst
case.

Our main result will be to show that a subset of the kmapsack
hyperplanes divide R’ into at least -]i'-n! disjoint open sets, so that
solving the knapsack problem (i.e. determining membership in these sets)
requires at least n logzn queries worst case. The hyperplanes which
we will consider are those Hi such that the binary expansion of i
has exactly 2 omes in it corresponding to solutioms of the problem:

i i i = b?
given (x.l, crer X, b) do there exist i # j such that x; + xj b?

Since the number of regions gemerated by all the hyperplanes is at
least as many as those generated by this subset, this lower boumd pro-
vides a lower bound on the entire problem. Furthermore, we will show
that this lower bound is tight for the problem at hand by demonstrating

an appropriate algorithm.




2. A Lower Bound

In this section, we give a characterization of the regions gen-
erated by the hyperplanes in the problem under consideration. To
begin, we observe that we are seeking to determine how many regioms

exist which can be expressed as the intersections of halfspaces of the

form x, +x, > 1 or xi+xj<1 for 1< i< j < n. We may repre-

i
sent these spaces by S, ={x ¢R"| Xt X< 1} and

S.. ={(xe¢ anlx.+x.>1}for 1< i< j< n. We may define 7
ij = i 3 n

as the set of all pairs of the form (i,j) for 1< i¢ j<n and

then for each subset of K of Tn’ we ask whether
>

.
6y

§ is empty or not. There are 2

N N_s

= . - T

K (i,j)eKegiJ n (i,5)eK “ij

such subsets and at first one is tempted to believe that each subset

gives rise to an open subset of an. However, we may observe that for
=4, if K ={(1,2),(3,4)}, then

n 513 ns ns ns is empty since a point in this

n
bk = S0 26 " %14 " P23

=12 7 =34
set would satisfy x1+x2<1, x3+x4<l as well as x._L+x3>l,
x, + x, > 1, a contradiction. Furthermore, it is clear that if Kl

and K2 are different subsets of ‘Tn such that GK_L and SK are
2

non-empty, then these intersections are disjoint open sets. Openness
follows since these sets are the intersections of finite collections of
open sets and to show that they are disjoint we observe that there is

an (4,j) which belongs to K, and not K, (or to K, and not Kl)

so that every point in § satisfies x; + x:i <1 and every point in

5

$ satisfies x, + x. > 1.
i ]

%

Now, we wish to determine conditions of Kc Tn such that 61( is
nonempty. We begin with one such set and apply the appropriate

permutations to generate at least %n! others.

Lemma: If K= {(1,5) { 1+ j s n + 1}, then 8¢ is mon-empty.

i , . ) .
Proof: Let x; —n+—3,2for 1 <4isn; then xi+xj < 1 if and only if
i+ j<n+3/2if and only if (1,j) € K. Hence the point (xl,...,xn) is

an element of K, which is therefore non-empty.

We observe that K d4s a subset of Tn consisting of l:—';—zj ele-
ments and that 1 occurs in exactly n - i pairs of K if isx le?
and n+ 1 -4 pairs if 1> %]. For each permutation 7 of n
elements we define w(K) as {(r(i) ,n(j)l (1,3) € K } and observe
that, for two permutations L and L 1r1(k) and wz(k) are different

if either of the following is not true:

@ m@=mw e 103 e,

a0 gCf3h, w31+ 01 = 0,215, nc 3]+ vy .
Thus, no three permutations generate the same w(k).

Theorem 2: There are at least %n! different subsets K of T
—_— n

which give rise to non-empty sets SK.
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Using this theorem in concert with Theorem 1, we obtain the main

result of this paper.

Theorem 3: Any linear search tree for solving the n-dimensional knap-
sack problem (or even the n-dimensional knapsack problem restricted to
solutions of the form Xy + xj = b) must require n logn - l.o.t.

queries in the worst case.

Furthermore, since polynomial queries can be simulated by linear

queries, we have

Corollary: Any polynomial search tree of degree < p requires at

least % n logzn queries in the worst case to solve the n-dimensional

knapsack problem.
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3. An Upper Bound

In this section, a method is given to match the lower bound given
in the previous section for the restricted knapsack problem mentioned
there. Given an input (x,, ..., %, b), we wish to
determine if there exist distinct integers i1 and j such that

Xy + xj =b. To do so, we may use the following

Algorithm KS2

I. Sort Xps eeeXy to yield a sorted list Vs -ee¥y such that for
. > .
i>3 v, 3
II. Test to determine if any 5 is % » 1if two or more are, halt and
accept the input. If one is, drop this element from the list and

proceed to Step III. If none is, proceed to Step III.

III. For each i, 1 § i € n, determine the least ji such that
vy + yji <1, if vq + yji_1 =1 halt and accept, otherwise

continue.

IV. Halt and reject.

Step I in this algorithm requires n logzn steps, Step II can be done
in logzn steps by binary search and Step III can be done in at most
2n  steps by a merging strategy. Therefore the entire algorithm requires

n logzn + l.o.t. steps matching the leading term in the upper bound.
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4. Conclusions and Research Problems

The major results of this paper are a lower bound of n logn
queries for the solution of the knapsack problem with a linear search
tree and a similar upper bound for the restricted version of the problem
under consideration. These results may possibly be improved by consider-
ing less restricted versions of the problem. For éxample, it is reason-
able to conjecture that a better lower bound could be obtained by conéi—
dering the regions generated by all 2" konapsack hyperplanes rather
than merely a subset of (;) such hyperplanes. Unfortumately, Strassen
[4] has observed that no better lower bound than O(nz) can be obtained
by applying Theorem 1, as at most O(an) regions will be generated by
a set of 2" hyperplanes in R"®. A lower bound of this type is given

in [2].

14—
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Multidimensional Searching Problems

David Dobkin and Richard J. Lipton

Research Report #34

Department of Computer Science
Yale University
New Haven, Connecticut 06520

Abstract

Classic binary search is extended to multidimensional search problems.
This extension ylelds efficient algorithms for a number of tasks such
as a secondary searching problem of Knuty, region location in plamar
graphs, and speech recognition.

An earlier version of some of the results presented here was given

in a paper titled "On Some Generalizations of Binary Search" and
presented at the Sixth Anmual ACM Symposium on the Theory of Computing,
Seattle, Washington, April 1974. Portions of the work of the first
author were supported by NSF Grant GJ-43157.
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1. Introduction

One of the most basic operations performed on a computer is search-
ing. A search is used to decide whether or not a given word 1s in a given
collection of words. Since many searches are usually performed on a given
collection, it is gencrally worthwhile to organize the collection into a
moxre desirable form so that searching is efficient. The organization of
the collection--called preprocessing--can be assumed to be done at no cost
relative to the cost of the numerous searches.

One of the basic searching mwethods is the binary searching method’

{Knuth [i]). For the purposes of this paper we can view bimary search as
follows:

Data: A collection of m points on a line.

Query: Given a point, does it eqeal any of the m points?
Binary search, since it organizes the points into a balanced binéry tree,
can answer this query in {logm| + 1 "steps™ where a step 1s a single com-
parison.* Note the preprocessing needed to form the balanced binary tree
is a sort which requires O{mlogm) steps. For the algorithms under con-
sideration here, we will definec a step in an algorithm as a comparison of
two scalars or the determination of whether a point in 2-dimensional Euclidean
space lies on, above, or below a given line. For notational simplicity we
will define g(m) as the number of steps necessary to pefform a search
through a set of m objects. Thus, g(m) = llogm] + 1 . !

This paper generalizes binary search to higher dimensions. Through-

*Throughouc this paper all logarithms are taken to base 2.
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out it is assumed that data can be organized in any manner desired at no
cost. Thus, our cost criterion for evaluating the relative efficiencies
of scarching algorithm; will be the number of steps required to make a
single query into the reorganized data.

The search problems considered are specif#ed by a collection of data
and a class of queries. These problems include:

1. Data: A set of m lines in the plane.

Query: Given a point, does it lie on any line?
D

2, ata: A set of n regions in the plane.

Query: Given a point, in which region does it lie?

3. Data: A set of m points in the plane.

Query: Given a new point, co which of the original points is
it closest? :

4, Data: A get of m lines in n-dimensfonal space.

Query: Given a point does it lie on any line?

5. Data: A set of m k-dimensionalhobjects in n-dimensional space.

Query: Given a point does it lie on any of the objects?

6. Data: A set of m hyperplanes ( m-1 dimensional objects) in
n-dimensional space.

Query: Given a point does it lie on any hyperplane?

These examples form the basis for some important problems in diverse
arcas of computer science. Examples 1, 2, and 3 are fundawmental to certain
operations in computer graphics [2] and secondary searching. In particular
example 3 Is a reformulation of an important problem discussed by Knuth [1]

concerning information retrieval. Examples 4, 5, and € are generilizations
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of the widely studied knapsack problem.

The main results of this paper are that fast algorithms exist for
problems (1)-¢(6). 1In particular: problems (1)-(3) have 0(logm) algorithms;
problems (4)-(6) have 0(f(n)logm) algorithms where £(n) 1s some function
of the dimension of the space ( £(n) 1is dete;mined more exactly later).

The existence of these fast algorithms is somewhat surprising. For instance,
lines in the plane (problem 1) are not ordered in any obvious way; hence,

1t is not at all clear how one can use binary search to obtain fast searches.

I1. .Basic Alporithm in Ez

All of our fast algorithms are extensions of a fast algorithm for

computing the predicate:

315_151:1 [(x,y) 1is on L-i]

where L «ev, L are lines and (x,y) 1s a point in 2-dimensional Euclidean
™

11
space (Ez) . This predicate merely consists of querying whether a point in
the plane lies on any of a given set of linmes. Therefore, we begin with a

proof that this predicate'canbe computed in 0(logm) steps.

Theorem 1. For any set of lines Ll’ ceny Lm in the plane, there is an

algorithm that computes o 1<i<m [(x,y) s on L;] in 3g(m) steps.

Proof. Let the intersections of the lines be given by the points Zys eees z
(n < Ei%:ll ) and let the projections of these points onto the x-axis be
given by Pys =ver Pyo- These points define a set of intervals I =eey In+1
on the x-axis such that I1 = (-o, pl) B Ii = (pi-l’ pi) , 1=2, s n,

1 = (pn, @) and within the slice of the plane defined by each of these

ntl
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intervals, no two of the original lines intersect. Thus, we can define the

relation <, (1 <1i<nHl) as follows:

' 1
Lj <i I..k i1f and only if Vx ¢ E (if Py <x S-pi+1’ then Lj(x) < Lk(x)] .

-

(Note, L(x) is equal to the value of y such that (x,y) ¢L and we sct

Pop= "%, Pppy =% .) By a simple continuity argument it follows that each

< is a linear ordering on the lines 1L;, ..., L.- We can

thus define a set of permutations w(i,1), ..., T(L,m) such that
< <, e <, L
-Lﬂ(ill) i Ln(i,Z) i 1 n(i,m)

for 1 =1, ..., ol . An algorithm consisting of a binary search

m(m-1

into a set of at most :1??31 + 2 objects (the points {Pil ) and a binary
search into a set of m objects (thc lines Lﬂ(i;l)’ vesy Lﬂ(i,m) for

the proper choice of 1) requires at most g(m) + g(Eig:ll +2)

tteps and since g is a monotonically increasing

function with g(mz) < 2g(m) , this quantity is at most 3g(m) . Degencracies

vhich may be introduced into the above algorithm by lines perpendicular to
the x-axis may be removed by a rotation of the axes to a situation where mo

line is perpendicular to the new x-axis. []

Before studying applications of this algorithm to the problems men-
tioned above, it is worthwhile to examine its structure in more detail.
Wwhat we have done is to find a method of applying an ordering to a set of
lines in the plane. For a set of lines in the plane, no natural ordering
exists and thus it is reasonable to assume that any search algorithm which

is "global" (i.e. considers the entire plane at once) must use a number of
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of steps which grows linearly with the number of lines. The algorithm pre-
scnted in Theorem 1 defines a set of regions of the plane iIn which the lines
are ordered. 1In this sense, the algorithm is "local" and the two steps com-
sist of finding the region im which to search and then to do a local search
on an ordered set. The orderings are found duting preprocessing of the data.
The projections of intersection points (i.e. {pi7 ) define the Jlocal regions
into which the plane can be subdivided and the permutations (i.e. L, -)) )
define the orderings within each of the subdivisions of the plane. Morecover,
it is clear that the algorithm not only determines whether the point lies

on any line but also between which lines the point lies, 1f it does not lie
on any line. Using this information, we can detcrmine in which region of the

planc determined by the given lines the point lies. Thus, we have,

Corollary. Given a sct of regions foimed by m lines in the plane, we can

determine in 3g(m) steps in which region a ‘given point lies.

This algorithm forms the basis for what follows. We procecd by study-
ing extensions of this algorithm to higher dimensions and applications of
our basic algorithm and its extensions to some interesting problems of com-
puter science.

I1I. Extensions to E®

We have seen that searching in a set of m O-dimensional objects in
l-dimensional space can be dome in g(m) steps and that searching in a set
of m 1-dimensional objects in 2-dimensional space can be done in 3g(m)
steps given that the original objects can be preprocessed before any searches

are undertaken. In the present section, we extend the search question to
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seck methods of searching in a set of w k-dimensional objects in n-dimen-
sional spaces. In order to provide a clearer exposition, a series.of lemmas

will be presented, each of which can be viewed as a generalization of Theorem 1.

Lemma 1. For any set of lines Ll’ veey Lm in n-dimensional Euclidean space
(n >2), there is an algorithm which computes -] 1 <1i<m [x is on Li]

for x a point in En in (otl)g(m) steps.

Proof. The proof is by induction on n and follows from Theorem 1 for n = 2.
Now, suppose that n >2 . It is possible to find a hyperplane H sguch
that none of the lines is perpendicular to H . Projecting the lines onto

4 yie1d§ a set of lines L., <., Lm on H and projecting x onto H

1,
yields a point x' on H . Furthermore {f x lies on Li then x' 1lies

on Li . By the induction hypothesic, we can determine on which lines of

the set {Li, eeey Lé} , x'

lies on, in ng(m) steps. If x' doesn't

i 2
{L! 1!}, the 14
g0 ceer Ly ' e nes L
1 k

lie on any L then x doesn't lie on any L And £f x' lies on

ie

are linearly ordered at x'

vee, L
iy

2
4
with respect to the projected co-ordinate and with a logarithmic search we

can determine 1f x 1lies on any of {L,, ..., L, ¥ . Since { <m, this
11 1 k —

scarch requires at most g(m) steps and m lines in E" can be searched

in (n+l)g(m) steps. [_]

Lemma 2. For any set of hyperplanes H ooy Hm in E (n >2) , there

1,
is an algorithm which determines, for any point x , whether x is on any '

hyperplane or which hyperplanes it is between in at most (3-21.‘-2 + (m-2))g(m)

steps.,

-22-

Proof. Let h(m,n) be the time required to do the search. From

Theorem 1, we know that h(m,2) < sg(m) and we will show here that

h(m,n) < h(mz, n-1) + g(m). Let K be a hyperplane which is not identical
to any of the original hyperplanes. Then, we proceed by forming the set

J formed as intersections of

1 e e
pairs of the hyperplanes we considered. Thus, for example J1 = H1 n Hz,

of n-2 dimensional objects J

sees B = H n Ho and k < Eﬂ%:ll < mz . From these hyperplanes, we

form their projectious Ji, ooy Jé on to K . If the point x projects

onto x' , we can by the induction hypothesis determine in less than
h(mz, n-1) steps in which region of n-1 dimensional space x' 1lies. With

respect to each of these regions, the hyperplanes His veey Hn are ordered

and can be searched in g(m) steps. Thus, if x' doesn't lie on any Je s

the lemma holds. And, if x' 1lies on a hypurplanc Ji )

less than g(m) will determine In which region of E" the point x 1lies.

a scarch requiring

This proves that h(m,n) < h(mz, n-1) + g(m). Solving this recursion

yields h{m,n) < h(mZk, n-k) + kg(m) or

2n-2 _ n-2
h(m,n) < h(m » 2) + (@-2)gm) = 3-27 7 + (n-2))g(@) . O

Combining the results and proof techniques of Lemmas 1 and 2 yields the follow-

ing gencral theorem on searching k-dimensional objects in .

sheorem 2. For any set of k-dimensional objects 91, caey Qm in E° , there
iz an algorithm that computes EH 1<{i<ulx ison 8.1 iIn (3-2k-14-(n-2))g(m)
i

steps for any point x in .

Proof. Let f(m,k,n) be the number of steps required by the search. Then,
if k <n-1, we can by an argument similar to that used in the proof of

Lemma 1 projects the objects onto a hyperplane in E gnd proceeding as




—23~

there, it is clear that £(m,k,n) < f(m, k, n-1) + g(m) if k< n-1 . Con-
tinuing this induction yields £f(m,k,n) < f(m, k, k+l) + (n-k-1l)g(m) . Com-
bining this result with the result of Lemma 2 that £(m, k, k+l) <

3.2 + (k-1))g(m) yields the result f£(mk,n) < (-2 + (a-2))g(m)

as in the statement of the theorem where we make use of the identity

h(m,n) = £(m, n-1, n).

4., Applications in Ez

Before presenting any applications the basic zlgorithm nust be:
(1) examined with respect to preprocessing, (i1) examined with respect to
storage requirements, ({1i) also extended to a slightly more general case.

Instead of m 1lines assume that we are given u 1lines or line seg-
ments. The problem is then to search the regions formed by these generalized
lines. 1t is easy to see that the basic algorithm can be adapted here and
it operates in time 3g(m) . Let N bé thc.numbe} of interscction points
formed by the m lines. The preprocessing is:

1, Find the N {ntersection points formed by the m lines.

2, Store these intersection points after they are projected onto the

x-axis.
3. For each two adjacent intersection points T and t, find the

permutation of the m lines in the region <x<t

L 2 ¢

step (1) takes O(mz) since finding the intersection of two lines consists
merely of finding the solution of a simple linear system of equations. Step
(2) is a sort of N objects; hence, it takes O(NlogN) time. Finally,
Step (3) takes at most O(mlogm) for cach of the N regions: to determine

the order of the m 1lines takes at most a sort of m objects. In summary,

preprocessing takes
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O(mNlogm) + O(NlogN) .

The storage requircments are easily seen to be: O(N) £from Step (1) and
O(mN) from Step (3). "Thus the total storage needed is seen to be O(km) .

We will now study two applications of the basic algorithm.

4.1. Planar Graph Search
Suppose that we are given a planar graph G with m edges. How
fast can we determine which region of G a new point is in? For exawple,

this location problem is central to the finite clement method [3].

Theorem 3. In O(logm) time and O(mz) storage, it is possible to determine

in which region of a planar graph with m edges a gilven point lies.

Proof. By an application of Euler's relatioa {4] the = dines of G can
only intersect im O(m) points. Thercfore, the basic alporithm--as modified
--ghows that planar graphs can be searched in O(loga) time. The preprocessing

2
required is O(mzlogm) ; the storage required is 0O(m™) . [:]

4,2, Post Office Problem

The post office problem is a search problem for which Knuth [1] states
there fs no known efficient solution. Suppose that we are given mw cities
or "post offices." How fast can we determine which post off{ice is nearest
to a new point? This is the post office problem. We will now show how to
reduce it to the planar scarch problem of 4.1: Between each post offices
x and y construct the line secgment txy . Then construct the perpendicular
bisector of ny , call it bxy (see Figure 1). The line bxy divided
the plane into two regions. The points in the half plane containing x are
nearer to x than y ; the points in the other half plane are all nearer

to y than x .
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In order to solve the post office problem it is sufficient to determine,
for a given point, which region of the regions formed by the (g) lines
bxy it lies in. By the basic algorithm this can be done in 3g((g)) = 0(logm)
. ) time with O(ma) storage.
These applications of our basic algorithm are clearly optimal with
respect to time to within a constant. (This follows since it takes at least
g(m) time to Fearch m objects.) They, however, also demonstrate that
our algorithms tend to use a large amount of storage. An interesting open
question is therefore: can one search a planar graph's w regions in time
O(logm) with storage O(m) ? Or even 0(mlogm)?
n

5. Aopblicatione in F
=l Lrarnaone an

Most of the applications of thz above algorithms in E are straight-

- forward extensions of the applications given-in the srevious section. How~

ver Because of the exponential term in the operation count of Theorenm 2,
dicular bisector of £ . Therefore ever,

FIGURE 1. bxy is the perpendicular Xy ,

these extensions are only of interest 1f k the dimension of the objects
points below bxy are closer to x than y and points above bxy 3

1 th to be searched is small relative to m ; the number of objects to be scarched.
are closer to y an x .

Typically, we would require that m 1is larger than Zk and hopefully as large
as 22k + However, in cases where k and m do satisfy these criteria,
speedups do occur by applying the algorithms of Section 3. We study two
applications of these algorithms here.

Consider first the problem of finding closest point} in spaces of
swall dimension. An example of such a problem occurs in the area of speech
recognition., Sounds can be classified according to a set of less than 8

characteristics [5] and thus we may consider a data base for a speech recog-

8
nitlon system to consist of a ret of points in E . When such a s stem is
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used to understand a speaker, the method used is to find for cach sound
uttered the closest sound in the data base. In order to develop a real
time speech recognition system, it is reasonable to allow large quantities
of preprocessing and storage to be arranged in‘advance as a tradeoff so that
each sound uttered by the speaker can be identified as rapidly as possible.
Thus, for a set of m sounds to be in the data base, the speed up of
O(n/g(m)) afforded by an extension of the closest-point algorithm of the
previous section to E8 is very useful. Further studies of this extension
are nccessary to yleld improvements in the storage requirements.

As a second application, we mention some extensions of the well-known
knapsack problem (see e.g., [6], [7]). We may state this problem in the pre~
sent contoxt

Knapsack Problem (KS_ .) . Given the hyperplanes' Hy, «vey H in E"
~RARERLE oot 1 2"-1

n n
-1
fined b e = h 2t .
defined by Hi(vl; y vn) jzfijvj-l where jflcij i for

£=1, ..., 2°1, the point (x,/b, ..., x_/b) 1lies on one of the H
1 n i

if and only if there are 0-1 valued numbers Cypr o Sn such that

n
T Cijxj = b which is true if and only if the knapsack problem with input
3=1"

(xl, ceer X b) has a solution.
Furthermore, we may consider the extended knapsack problem of secking

multiple solutions by

Knapsack Problem (Ksn ) . The point (xllb, ceny xn/b) lies on p of
¢d

P
the hyperplane Hl, «esy H a and therefore on one of the n-p dimensional
27-1
. A n
objects 8 =H, NH, N...NH 1<i. <i, <,,.<{ <2°-1
il""’ ip il 12 ip ’ =71 2 P =
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if and only 1if the knapsack problem with input (xl, cees Xy b) has p
(or more) different solutions.

We then can establish the results

Theorem 4. The application of the algorithm of Theorem 2 yields an algorithm

n-p-1 + (n-2))g(2np) steps to solve Ksn P"
)

using at most (3-2
Proof. On intersection, a set of (i?) objects of dimension at most n-p-1

are formed. Straightforward application of Theorem 2 then yields the desired

result. []

Further discussion of this result and its implications to an open

problem in automata theory will appear in a future paper.
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1. Introduction

The principal goal of research in computational complexity is the determination
of tight lower bounds on the complexity, in terms of primitive operation
executions, of solving problems oxr performing larger operations. While
algorithms now exist that yield better than naive upper bounds for various
operations (e.g. [1,9,11,12]), finding lower bounds for the solution of a
problem using a gemeral model has proved to be more difficult. In order to
circumvent these difficulties, many authors (e.g. [3,5,6,8,13]) have chosen to
work with models that place some restriction on the primitive operations that
can be used or on the flow of output that can occur. Typical of the
restrictions that have been placed on models are: allowing the use of only a
monotone basis of functions [6,8] or requiring that all circuits be restricted
to fan-out one [3,5,13]. The value of using such models is in the insights
they produce into the general process of finding lower bounds; many of the
actual lower bounds they produce are shown, however, to be invalid for more
general models.

The goal of the current research is the study of lower bounds on the
complexity of a set of searching problems under various restrictions on the
nature of the primitive operation used to determine each branch in a search
tree. Our model, to be described in more detail in the next section, has
programs consisting of two types of statements. Query statements are of the

form

Lk: if £(x) R 0 then goto Lm else goto Ln
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where R is one of the relations (> or =) and f is a function of restricted

form on the input of x. An output statement of the form
Ls: accept (or reject)

occurs for each possible outcome of the problem.

The problems we consider all involve searching a set of geometric
objects in Euclidean space to determine in which region of their partition of
space a given point lies or whether the point lies in any of the given regions.
Among the new results obtained are exponential lower bounds on searching for
solutions to a knapsack problem, viewed as a hyperplane search problem, using
various models involving restrictions on the primitive operations allowed. A
non-linear (in the number of hyperplanes) lower bound in given for a
generalized hyperplane search problem along with an O(n log n) bound for a

problem in the plane.
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2. Basic Model

Our model of computation is based on the notion of a search program. A search
program P with input (xl,. ..,xn) 1s a finite list of instructions of the

following three types:

1) Lk: if f(xl,...,xn) R 0 then goto L, R e {>,=}))

else goto Lp
2) Lk: accept
3) L : reject

Control initially starts at the first instruction. An instruction of type (1)
determines whether the indicated fest is true: If it is true, control passes
to the statement with label Lm; otherwise, control passes to the statement
with label Lp. An instruction of type (2) denotes that the program has halted
and it has accepted the imput. Correspondingly, an instruction of type (3)
denotes that the program has halted and it has rejected the input.

We will restrict search programs in two distinct ways. The functions
allowed in instructions of type (1) are called primitives. Often we will
restrict the class of allowed primitives. We will also restrict at times the
relations R allowed in instructioms of type (1). Thus amn equaﬁty search
program can have R equal only to =. On the other hand, a linear search
program can have only functions f that are linear.

The complexity measure we will use on our search programs is "time."

Each possible input (xl,. ..,xn) determines a computation through the search

34—

program. The length of this computation is the number of steps associated
with the input (xl,. ..,xn). We are always interested in the worst—case

behavior, i.e. the maximum number of steps required by a given search program.
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3. Restricted Linear Programs

In this section we will investigate the n~dimensional knapsack problem (KSn).
We can view this problem as follows: Given a point (xl,...,xnb) € En+1 we are

to determine whether there exists an index set I such that

I x, ~b=0.
iel i

The first question we ask is: If we restrict our search programs to queries

of the form

can we show that they must require an exponential number of queries? The

answer is yes:

Theorem 1: Any search program having as its primitive operation functions of
the form

z x5 - b
iel

for some index set I and any tests >, =, and < must require o(2™ primitive

steps to solve the n-dimensional Knapsack Problem.

Proof: We adopt an adversary approach and provide a set of data such that if
fewer than (n?z) primitive operations are executed the data can be altered so
as to make it possible for the solution of the problem to change without

changing previous results.
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Our adversary will return answers to queries according to the following
plan:

i) if 11] <3, then £ x; <b
ieX

. . n
ii) if 1] > 2> then -E X, > b

iel
iii) if |1 = % and fewer than (n72) - 1 tests on index sets of exactly %
elements have been done, then £ X > b.

iel
We now make the claim that it is possible to provide three sets of data
satisfying conditions (i), (ii), and (iii) such that each set yields a
different result on the final query. From this claim, the theorem follows
since although an algorithm knowing this adversary's strategy could eliminate

all tests of index sets with cardinality not equal to % the (n72) tests of

a

7 must all be performed.

index sets of cardinality

Claim: Assume the last test performed on an index set of exactly % elements
compar + + ... F H i =
pares Xy X, xn/Z to b; then there are choices of x Y,

Xy =%y = ... = xn/2 = a and x(n/2)+1 = x(n/2)+2 = ...=x 0= B for
0 <y <Sa<B <Db satisfying the three conditions of the adversary and

yielding any of the three possible results Xy + ... + xn/2 E b.

Proof: The conditions (i), (ii), and (iii) can be restated as

1) G-DeB<bd
ii)y+(%—1)-a+a>b

iii)y+(%-2)'a+ﬁ>bz
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and we observe that (iii) implies (ii), so that we need show only that

conditions (i) and (iii) can be met along with the result of one of the cases:

Case I: Yy + (% - 1e*a>b
Case II: ¥y + (% -D-a<b

Case TII: ¥y + (% - 1)-a = b.

In the first case, the choice y = a =8= é%% works since

D E&-0E = EHp<h

1) &y + G- &+ &) = Epb >b

and( )+(—-1)( =( )b > b.
The second case is handled by the choice y = b-(——ggzg—i),
(a -3
- ope(L 4 —2 = 2be( - — 1y gy
o =2b (n-Z + T 2), B =2b (n—2 T 2) since
(o -3 ®-3
D E-n@ g-—25 =ba-—22 5 <»
z 2 @-h? @-H?
2 2
141) be (—2B2 ) 4 (@ - 2)e2be (s + —2 5) + 2b- Ly - 1 _
1,2 2 n-2 1.2 n-2 1,2
@-2 (@-3) (n -3
=b‘(—ﬂ+l)>b
(-5
2
amd b2y 4 @ - pemely b —2) =T > b,
1.2 1.2
(n——) (-3 (-3
_ 2b (nt1)
Finally, the choices y = ZESE—ZL o = %?n’ and B = n2-4 settle the third

nZ—A n -4
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case via
I Y 2b(n+l) b(ntl) _
i) (E -1 ( - ) = e
1i1) 2b%n-2) + (% - 2)-( %?n Y+ 2b§n+1) > b
n -4 n =4 n -4
and 22D, @ . (22"") =b. D
n -4 —4

The result of this theorem is that any polynomial~time algorithm for
solving the knapsack problem mﬁst use comparisons to hyperplanes not in the
original set but generated from the original set. While such an algorithm is
possible, it is unlikely to exist as a general procedure but might rather
exist as a set of procedures {Pi}:=1 such that solving the n-dimensional
knapsack problem involves using procedure Pn to genmerate new hyperplanes and
solving the mtl-dimensional knapsack problem involves using (possibly

different) procedure P to generate new hyperplanes. Examples of such

o+l
procedures as well as a brief discussion of the implications of such a system
for the question "P = NP?" are contained in [2]. The present result in

conjunction with those discussions makes it extremely unlikely that P and NP

are the same.
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4. Linear Programs

Next we will study linear programs. That is, we will allow any test of the

form

Allv
[~}

f(xl,...,xn)

where f is a linear function. The next theorem allows us to obtain lower

bounds for the complexity of various membership problems.

Theorem 2: Any linear search tree that solves the membexship problem for a
disjoint union of a family {Ai}ieI of open subsets of R® requires at least

log, Il queries in the worst case.
82

Proof: We prove that any such search tree T with leaves Dl,...,Dr has
r 2 |I| and hence a path of depth 2 log, [I}. The leaves partition R™ and,

for each j, Dj is an accepting leaf if Dj s u Ai and a rejecting leaf
iel

otherwise. The theorem now follows from the observation that for each 2,

1 s % s r, there is at most ome i such that Dl n»Ai and Dl n kj are non-empty.

If we choose points X ¢ DE n Ai and y ¢ Dl n Aj then all points on the line

joining x and y belong to Dl by the convexity of DZ' However, since Ai and

A. are disjoint, there is a point on this line that does not belong to U Ai.
J iel

Hence Dl can be neither an accepting nor a rejecting leaf and the theorem

holds. 0

Let us now generalize the knapsack problem (KSn) to the generalized
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knapsack problem (GKSn): We are given 2° hyperplanes Hl""’Hzn in En+1 space
that form a simple arrangement, i.e. no n+2 hyperplanes have a common point.
For each new point x we are to determine whether x lies in any of these
hyperplanes. Note that we do Dot insist that the search tree determine which
hyperplane x lies in; it must determine only whether or not x lies in some
hyperplane.

From this result we obtain the following corollaries:

Coroliary 1: The membership problem for GKSn takes at least O(nz) queries for

any search tree.

Proof: Since the hyperplanes of this problem form a simply arrangement, we

can find a family {Ai}ieI of open subsets of R™ such that

Xe U Ai X ¢ GKSn
iel

and [I} 2 O(an) [4}. The corollary then follows from the theorem. 6]

This result improves a lower bound of O(n} due to Spira [}0}. Further

extensions of this result appear in [14,15].

Corollary 2 (Element Uniqueness Problem): Let E be the set of points in R"
that have two coordinates equal; then any algorithm for determining membership

in En requires at least O(n log n) queries.

Proof: Solving the membership problem for En corresponds to solving the

membership problem for the family
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v {A}

mes
n
where

AL = {(xl,...,xn) e R® | = <

7@ < Frey) < vee < xn(n)}

and Sn is the set of permutations on n objects. The result then follows from

]Snl =n!. [0

Applications of this result may be found in [16].
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5. Equality Programs

In the previous section, we considered the problem of determining whether a
point belonged to the union of a family of open sets allowing linear search
programs. Here, we extend our methodology to the problem of determining
whether a point belongs to the union of a family of varieties allowing search
programs that determine at each step whether the point is the root of an
irreducible polynomial. Before proceeding, we state some results from

algebraic geometry [7] that will be necessary to our development.

Definition: A variety V(fl,...,fm) is a subset of R" defined by

V(E e f)) = {Gxpyeesx) € RD | E10aeenX) = ol = £ Gxp, e,k ) = 0}

f .

for polynomials fl,..., o

Definition: The polynomials f and g are said to be equivalent iff there
exists a nmon-zero comstant A such that £ = Ag.

Fact I: 1If the dimension of v(fl""’fn) is denoted by dim(V(f "fn)) then

-

i)} dim(A) = 0 if and only if A is empty;
n k . . -
ii) if R = U V(fi), then one of the polynomials fi is trivial;
i=1

iii) if f and g are non-trivial irreducible polynomials that are not
equivalent, then dim(V(f,g)) < dim(V(f)).

Theorem 3: 1f £ f are irreducible polymomials of n real variables that

[ ERRREE
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are not equivalent, then any equality search program for

U Ov(E)
i=1 i

using only irreducible polynomials requires at least m queries.

Proof: Let T be a search program of depth k that determines for any x ¢ R

m
whether or nmot x ¢ U V(fi). Select the path in T that always takes the NO
i=1

branch; moreover, let gl(x) = 0,...,gz(x) = 0 be the queries on this path
(£ S k). Define F = V(fl) U...u V(fm) and, for 1 s i s &,
Gi = [V(gl) U ... U V(gi)]c (where A® = the complement of the set A). We now
assert that if % < m then
(¢B) Gl nF=zg

and (2) Gl n F¢ = ¢.

This will be a contradiction since x ¢ Gk

whether the leaf of this path is an ACCEPT or a REJECT we have a contradiction

implies that x takes this path; hence,

with either (1) or (2).
If (1) is false, i.e. if GR nF = ¢, then there is some i such that for
all j, V(fi) = V(gj). This follows since £ < m. Fix this i. Then
G2 n V(fi) = ¢, and hence V(gl) U ... U V(gl) u V(fi)c = R". Thus,
V(gl) n V(fi) U ... v V(gl) n V(fi) = V(fi)‘ But
dim(V(gj)n(V(fi)) < dim(V(fi)) by fact (iii). A comtradiction.

Now assume that (2) is false, i.e. that G, n F¢ = ¢. This is

equivalent to

V(g) U .ol U V(B U V(E) U .. U V(E) = "

by

which is impossible by Fact (ii). Hence £ 2 m. a

Corollary 3: Any equality search program for KSn that uses only irreducible

polynomials requires at least 2" queries.
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1. Introduction
The purpose of this paper is to establish the following theorem:

Theorem: For each n, any linear search tree that solves the n-dimensional

knapsack problem requires at least %nz comparisons for almost all inputs.

Previously the best known lower bound on this problem was nlogn [1].
The result presented here is the first lower bound of better than nlogn given
for an NP-complete problem for a model that is actually used in practice.
Previous non-linear lower bounds have been for computations involving only
monotone circuits [8] or fanout limited to one. Our theorem is derived by
combining results on linear search tree complexity [4] with results from
threshold logic [11]. 1In section 2, we begin by presenting the results on
linear search trees and threshold logic. Section 3 is devoted to using these

results to obtain our main theorem.

2. Basic Concepts

In this section we introduce the basic concepts necessary to the under-
standing of our main theorem. To begin, we present the model for which our

bounds hold. It has been previously studied in [6, 7, 10].

Definition. A linear search tree program is a program consisting of statements

of one of the forms:

~48-

(a) Li: if £(x) > 0 then go to Lj else go to Lk;
(b) Li: halt and accept input x;:

(c) Lj: halt and reject input x.

n
In (a) £(x) is an affine function (i.e., f(x) = I aixid-ao for some
i=1
ao, al ,...,an) of the input x = (xl,...,xn) which is assumed to be from some

euclidean space En. Moreover the program is assumed to be loop free.

In a natural way each linear search tree program computes some predi-
cate on E". The complexity of such a program on a given input is the number
of statements executed on this input. The complexity of such a program is

defined as the maximum complexity over all inputs.

In proving our results, we shall make use of the following theorem which

is proved here for completeness.

Theorem [4]: Any linear search tree program that determines membership in
the set
V] Ai
iel
where the Ai are pairwise disjoint nonempty open subsets of £ requires at

least log2 |I| queries for almost all inputs.

Proof: We prove that any such search tree T with leaves Dl,...,Dr has

ra |I| and hence a path of depth 2 log2 |I|. The leaves partition E and,

for each j, Dj is an accepting leaf if D,c U A, and a rejection leaf otherwise.

ieIl

The theorem then follows from the observation that the function Y: {I» 1,...,r}
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defined by Y(i)'s being the least i such that AinD is non-empty is an injective
function. This observation is true since if Y(i) =Y¥(j) =% for i=3j then there

exist distinct points x and y such that xel-\i n DlL and ye Aj nD By the

e

convexity of Dﬂ,' each point on the line joining x and y lies in D!. and hence

is accepted as a point of U A,. Defining the function g: L-+I by g(2)=k
jel

whenever Ze Ak yields the contradiction that g is the constant function i,

since A, is open and I is finite. ul

In this paper we shall study the complexity of linear search trees
for the n-dimensional knapsack problem, which we state as a geometric problem.
It should be noted however that our methods can be applied to many other problems.

We may state two equivalent versions of this problem.

Knapsack Problem (KSn) :

i} Given a point (xl,...xn) € En, does there exist a subset I such

that

Ix, =1.
iel

ii) Given the hyperplanes Ha.' ae {O,I}n where

A n n
H = (Yll---,yn)eEI z aiyi=l}

¢ i=t
does (xl,...,xn) lie on some hyperplane.
Clearly these two formulations are equivalent and they both correspond to
the usual knapsack problem which is NP-complete [5].

The lower bound established here is proved by appealing to results

from threshold logic. Before defining the necessary terms from this field, we
demonstrate our method and the chief obstacle in applying it.
Let T = {0, 1}"- {0"}. Say a point x is above (below) the hyperplane H,

with a el provided

I ax -1
i=1

is positive (negative). Also let E& for IST be the set
{xe En| x is above H with e ¢ I and below H with af I}.

Intuitively RI is one of the regions formed by the hyperplanes. There are
n
22 -1 possible such regions; however, many of these regions are empty. For

example,

+ + + < 5 <1
xl x2>l, x3 x4>l, xl x3 1, x2 x4
is empty. This example shows that the key problem is to determine how many

regions are formed by the hyperplanes {Ha}a el .

The answer to this problem lies in threshold logic. We will now sketch

the relevant results. Further details appear in [9].

s n
Definition. Let A be a subset of {0, 1}?. Then the partition of {0, 1} into

a and {0, 1}~ A corresponds to a threshold function provided there exist

weights WyreeeeW such that
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£1) x -eeX € A iff w.ox

+ .. +wx >1.
1 nn

- i + ... .
(2) x:L xntA iff wlxl +wnxn<1

Note that (2) does not follow from (1).
Let N(n) be the number of such threshold functions, then [11] shows that
ol a2
2 SN(n) s2" .

In the next section we use this result to obtain our lower bound.

3. Main Result

In this section we prove our main result, i.e., that any linear search

: 12 . : :
tree for xsn requires at least B comparisons. We first state a technical lemma:

Lemma: (1) RI is an open set.

(2) RI =RI implies that Il=12.
1 2
The proof of this is elementary and is omitted. This lemma shows

(part (2)}) that we need only prove that R_ is nonempty for many sets I in order

I

to prove our thecrem. The next lemma does this.

Lemma: Suppose that A partitions {0, 1}n and gives rise to a threshold function.

Then RA is nonempty.

Proof: Let wl....,wn be weights for A. Now we claim that w= (wl,...,wn)e RA'

(a) Let o be in A. Then w is above Ha since
n
z aiw.> 1
=3 **
by the definition of threshold function.
(b) Let o be in {0, 1} -A. Then w is below H, since
n
Z a,w, <1
i=1
and again this follows by the definition of threshold function.

Thus we have shown that we RA' ]

1
2n°
In summary we have shown that there are at least 2 distinct open sets

RI's. An appeal to our earlier theorem [4] yields the claimed lower bound.

Finding an upper bound on the linear search tree complexity of knapsack
problem appears to be a trivial problem. Two possible methods of attack are
available. In the first, an algorithm is sought that works uniformly in n.

That is, we seek a single method of solving knapsack problems of all dimensions.
The existence of such an algorithm that runs in polynomial time is unlikely
because this would imply that P = NP. But, for each n, it may be possible to
construct a linear search tree that solves all n-dimensional knapsack problems.
To construct such a tree, it is necessary to study partitions of the set of
knapsack regions by new hyperplanes in order to determine appropriate tests

at each stage of the algorithm. Based on considerations of the structure of
the regions of the knapsack problem, we conjecture that a polynomial~time
algorithm does exist for this problem. The existence of such an algorithm
would resolve an open question posed in [3] but would not show that P and NP

are equal for the reason given there.
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I. Introduction ask questions about a new point determining at each query whether it lies

to the left of right of ome of the given lines. Our procedure halts after

d ti i i e ing. ertainl . :
A fundamental operation of computer science 1s s arching Certainly enough queries have been made to know whether the given point lies on any

the jori tati inx the processing and or ization . . . : . . ; . .
majority of actual computation involves € processing gan of the lines or if not, which lines bound the region in which it lies. A

i i e repeated : . : .
of data into sets which are to be sorted in a manmer to make repea reasonable coniecture, given that any set of n lines of the plane in general

searches as simple as possible. TFurthermore, Knuth [5] has devoted an position forms exactly %(nzi-n+2) regions, is that the searching complexity

i t i n ic work on rogrammin the . . P :
entire chapter of his encyclopedic work on computer progr g to of any set of n lines in general position is the same. Yet, as we shall

study of methods of computer searching. Despite this enormous focus on . . . . . .-
4 P & P see in subsequent sections of this paper there is a set of n lines which

searching, a number of key mathematical issues regarding searching remain . ; ; . :
& ¥y & & & can be searched in O(logzn) queries while another set is shown to require

either unexplored or unanswered. Among these issues is the key issue of . . . c o
P g ¥ n queries, an exponential gap. Such anomalies together with the guiding

the searching of a set of geometric objects in Euclidian space. In addition . . o . .
& & J P principle that "intuition about geometric problems is seldom correct'

to the existance of such problems as extensions and embellishments to . . s
P characterize this as a difficult problem. However, recent . >sults [1,2,3,4,9]

i tudi lexi .g- [2 :
previously studied problems of geometric complexity (see e.g. [2], [9]). concerning searching complexities and lower bounds tend to characterize

this framework appears to be a natural setting for the generation of lower . 3
PP & & these as fruitful areas of research. Among the results reported in these

bounds on the knapsack, partition and travelling salesman problems as well . ) .
papers are upper bounds of practical importance on some searching problems

1 2

i i . th hi th L
as variants of the sorting problem Furthermore, this methodology has also as well as lower bounds of 1. and n logn queries on linear search tree

i ch t .
produced many good upper bounds which can be used to solve practical problems programs (i.e. each query is £(x) R O where f is an affine function on the

iverse are information retrieval, nume: al alysi d : . . .
of such dive areas as 1 L ’ ric analysis, an input X and R is >, = or < for the knapsack (i.e. Given S ERREEE b does

artificial intelligence. The main goal of this paper will be to lay the there exist I s {1,...,n} such that iEIxi = b) and Element Uniqueness
beginnings of a unified framework through which all questions of geometric (i.e. Given X seeraX s does thefe exist i#j such that xi=xj) Problems.

earchi be re . T i i f the xit . .
searching can resolved © glve an idea o comple y of such a In the current paper, we will focus our attention on problems

wi i e t ithi i . . . : :
theory we pause to give an example of an elementary result within this involving searching linmes in the plane. Such problems are of interest in

theory which appears very anomalous. Consider the problem of determining themselves as well as a gateway to problems invelving hyperplane searches

membership of a point on or among a set of n lines in the plane which are in higher dimensional Euclidian spaces. Our goal will be one of classification

i eneral ion. T 1 e are gi et i 1 . . o
s al positio bat is, we are given a s of n lines in the plane of the complexity of searching different sets of lines. Two distinct cases

ith the et : . . . o . .
wi he condition that mo three have a point in common and each pair has exist, in the first only queries may be made of the original lines and in

exactly one point in common (i.e. no two are parallel). We then wish to
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the second new lines may be added with queries made with respect to the

original or new lines. Thus, if we define c(A) and é(A) as the complexity

under the first and second measures of searching the set of lines A, then
A

Q(A) = m%n c(AUB) where B is any new set of lines. Among the results

presented here are

2 log [A| s ea) s 3 log |A| for any set A where |a] is the

numbexr of lines in A.
And the existence for each n of sets Ag and AIZl of n lines such that

c(A] s 3/4 log? 1A%

c(ay) = |a5] = n.

These results leave us unable to make general statements about the c(.)

. A
function as we could about the c(.) function. Hence we concentrate our
efforts on methods for determining for any set A, the value of c(4). To

do so, it is necessary to introduce new ideas to the standard mathematical

notions of general position. And it is at this point where our work diverges

from the standard mathematical literature on this subject. However, we
believe that some of the methods and new ideas introduced here will, in
addition to resolving questions regarding searching lines in planes,

yield insight into methods of extending the known lower bound of %-nz on
the complexity of the knapsack problem in n—dimensions, as the issues there
are merely higher—dimensional analogs of those introduced here.

The organization of the paper is as follows. In the next section,

the exact problem which we are considering is presented in detail. The
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concepts briefly spelled out above are concretely defined. Following
that, some definitions and results concerning the geometry of intersecting
lines in the plane are given. Some of these results belong to the
classical mathematical literature on the problem while others were derived
within the context of this problem. Results found by applying these

results to the problems at hand are also surveyed.

II. Problem Statement

Searching problems in the plane will be our focus. Such a problem
consists of a set of lines dividing the plane into regions. Our lines will
be in general position, hence mo two are parallel and no three have a point
in common. Thus the number of regions formed by a set of n such lines will
be %(n2+n+2). The searching problem for lines in the plame then consists
of determining for a mew point in which of these regions it lies. And our
goal is to determine the complexity of searching any given set of lines in
the plane. The algorithms we allow are linear tree progams which have been
widely used before [3,7,10,11]. Such programs consist of three types of

statements, branches of the form

S, : if £(x) R O then go to sm else go to Sn,

K
and decision statements of the form

Sp: point x belongs to one of the lines

Sq: point x belongs to region R and none of the lines
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where £ is a linear function on the input point x, R is one of the relations
{<,=,>}, and R is a specification of one of the regions formed by the
intersecting lines. The complexity of such an algorithm is defined as the
longest path from its root to any decision statement.

Within this model, we consider two complexity measures on the searching
of lines. In the first, the function f is restricted to represent onme of
the original lines. Thus, the problem here is to determine to which region
a point belongs with only comparison to the original lines. We define the
complexity of searching a set of limes, A, under this measure as c(A). One
is tempted to believe that ¢(A) = |A|, the cardinaltiy of A, but the

following example shows otherwise.

Figure 1: A set of 7 lines to be searched.

We observe that on the left of Ll’ the lines LA’ LS’ and L6 do not intersect
9 L3 and L7 do not intersect. Hence if x lies
we can search LA’ LS’ and L6 by a binary search algorithm

and on the right, lines L
to the left of Ll’
and similarly for LZ’ L3 and L7 if x lies to the right of Ll. Therefore,

in at most 6 comparisons we can search these lines. Since all sets of lines
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are taken to be in general position, it would be reasonable to assume that
c(4a) is fixed for fixed {A|. This is untrue, since a set of 7 lines forming

a septagon has a searching complexity of 7. We shall see in later sections

that c(A) varies greatly with A for fixed |a
The second complexity measure we use allows for the introduction
of new searching objects. The function f can now be any line in the plane.
For this case, we represent the complexity of searching a set A of lines as
é(A). It is easy to see that é(A) = m%n c(AuB) taken over all sets of lines,
B. In a previous paper [2], we showed that é(a) < 3 loglA]| and a simple
region counting arguments yields Q(A) 2 2 log|Al. However an exact bound
on Q(A) would be of value as this would yield insight into methods of
generating better than informatiom theoretic lower bounds on searching. In
a related paper, applications of such results to tight bounds on the knapsack
problem are studied [4].
Throughout, we shall use r(A) to denote the largest number of sides
of any polygon formed by intersections of the lines in A. Clearly r(a) is

a lower bound on c¢(A).

III. Results

In this section the basic structure of c(A), Q(A), and r(A) is
investigated. In addition to proving a number of simple but basic facts, we
also demonstrate that understanding these functions is going to be a non—
trivial task. This follows for two diffent but related reasoms. First,
the classical literature on arrangements of lines in the plane is filled with
simple sounding assertions that are open. Indeed much of this literature is

still trying to answer questions of the form "how many ... are there?”. 1In
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contrast our research requires answers to questions of the form "how many
... are there and where are they with respect to ...?". Second, we are able
to prove at least two results that are unexpected. Moreover, these results
show that simple and intuitive arguments about even the function c(A) are
possibly going to be incorrect. In particular we show that complexity
behaves poorly with respect to disjoint union, i.e. there are disjoint

sets A and B such that
c(AUB) << c(A) + c(B)

( << means much smaller. See theorem 5 for details.) This result has a
similar flavor to the result of Schnorr [8] on the corresponding result
for Bookan circuits.

We first observe the following two easy lower bounds on c(4).

Theorem 1: Let A be a set of lines in the plane. Then c(A) 2 r(A) and

c(a) 2 logzlA].

Proof: Recall that r(A) is the size of the largest region formed by A.
Thus, a simple adversary argument demonstrates the lower bound of r(Aj. The

ower oun: o] og is the usua information t eory argument.
1 bdleIA]' h 1 inf i h 0

We now study a simple general method of obtaining upper bounds on

e(a), 2(a), and r(a).

Theorem 2: Let A and B be sets of lines in the plane. Then
(1) c(AuB) 5 c(4) + c(B)

(2) r(AuB) s r(a) + r(B).

Proof:

(@]

(2)
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Any search trees for A and B respectively can be combined to

form one for AuB of size at most c(A) + ¢(B). (This uses the
convexity of the regions that A and B form.)

We sketch a proof that r(AuB) < r(A) + r(B). Let R be the largest

region of AuB; let Tyseeesl be the sides of R. Partition

k
TyseeesTy into SyseersSp and Eyoeeenty such that each s; is
part of a line from A and each ti is part of a line from B. By
a convexity argument we can show that there is a region with at
least m sides in A (alone) and one with at least n sides in B
(alone). Thus, r(AuB) = mkn < r(A) + n(B). The convexity
argument is as follows: Consider the sides SpseeaS Now
extend them; they form a region with m sides. The other lines

from A can not cut any of Syae 08y by definition; hence, in A

we must have a region of at least m sides. [J

4 ’ N

e S
,,j/.'/ \\\\ .

&
~. N2 AN
. 53 I
/ss
K LU
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7 N>
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Figure 2: Only the shadowed regions can be cut by other lines of A;

hence, a region of 2m sides exists in A.
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If the last theorem were tight one might hope that c(4) would be
about |A]. This is of course trivially false if A contains parallel

lines. Thus a more interesting question is: Does c(A) equal about |A]

for A in gemeral position? We know from [2] that for Q(A) this is false, i.e.

2 <3 log, lAl.

We now show that c(A) can also be very small compared to |A|. Note
before we contianue that c(A) = |A| is possible for A in general position

since there are such A with r(4) = |af.

Theorem 3: For any n there is a set of linmes |A| = n in general position

such that c(A) = 0(1052]A|).

Proof: We proceed by induction. Let k be a constant such that for each
i<n, there is a set, x;, of i lines with c(xi) < k logzlxil . Construct
a set x as follows:

I. Choose two liunes Ll and LZ which divide the plane into four quadrants.

II. Choose four sets A, B, C and D suck that each is a copy of =

2a_m.i

4
all intersections between lines in A occur within the first quadrant

formed by Ll and L2, all B intersections in the second, ..., all D
intersections in the fourth.

This yields the structure

Ly
all A all B
intersections intersections
here here
)
all p all C
intersections intersections
here here
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Note that we put no restrictions on the locations of intersections
of lines from differeant sets.

Now, we may search this set by first determining in which quadrant
the point to be searched for lies. This requires 2 comparisons. Assume
without loss of gemerality that the point lies in quadrant 1. We then
consider the complexity of searching AUBUCUD in the first quadrant.

However,
¢y (AUBUCUD) s cl(A) + cl(B) + cl(c) + cl(D)

where ¢ represents the complexity of searching in the first quadrant.
We observe that cl(B), cl(C) and cl(D) are at most 1ogz(n;42) as the lines
in each of these sets have no intersections in the first quadrant and

hence are totally ordered here. By induction, cl(A) sk 1ogz(¥). Hence
n-2 2, n-2
c(xn) 2+ 3 logZ(T) + k log (T) s
k log?n + (3-4k) logn + (4k-4) S k LogZn  for k = 3/4

Q. E. D.

By methods of Lipton-Dobkin [6] we can use theorem 3 to demonstrate

that there is a hierarchy in the following sense:
Corollary 4: TFor any monotone £(n) such that f(a) S n and _Ef(n) > @
.—__11__.' >4 log

there is a family {An} such that IAnl =mn and
f(n) s c(An) s 0(f(n)).

As stated earlier we will now show that ¢(A) behaves poorly with

respect to disjoint union.
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Theorem 5: For any nl there are |A| = |B] = n sets of lines in general
position such that AuB is also in genefal position and
(1) c(AUB) = 0(log?n)

"(2) c(A) + c(B) 2 cn for some comstant ¢ > 0.

Sketch of Proof: Let A be a set of n lines in general position such that

r(A) = n; let R be this region with n sides. Let B be the set of m lines
constructed in theorem 3 positioned so that all the intersection points
formed by the lines of B lie within R. Now to search AUB we proceed as
follows: First, determine where with respect to B we are. This can be
done in 0(1ogzm) steps. Second, if we are in a bounded region of B,

then we must lie inside R and we are done. On the other hand, if we are
in an unbounded region we argue as follows. The mt+l unbounded regions of
B can be arranged.with respect to A so that we can determine where we

are in at most O(logzn) additional steps.
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In this note, we study the space complexity of linear programming. In

particular, we show that linear programming requires as much space to compute
its solutions as any problem in P - the set of languages accepted in deterministic
polynomial time by a multi-tape Turing machine. That is, if there exists a
constant k such that linear programming is solvable in space O(logkn), then
all languages in P are accepted in O(logkln) space for some constant k'.
This result is especially interesting since the membership of linear pro-
gramming in P is currently in doubt [3]. We prove this result by showing that
the problem of determining whether a contradiction can be reached by unit
resolution for a formula in Conjunctive Normal Form (CNF) is log-space
reducible to linear programming. Previously, this problem was shown to be
P-complete in [2]. Another proof of this result may be derived by combining
proofs that the hemisphere problem (i.e. given n points on the sphere in 4
dimensions, do all share a common hemisphere) is equivalent to lineaxr program-
ming [3] and that a restricted version of this problem (i.e. given the n points
as before and an integer k, do any k of the original n share a common hemisphere)
is NP-complete [1].

Our proof is based on a mapping from the clauses in CNF to inegualities.

We define this mapping via
Definition: Suppose that C= AIV...VAkV-BlV...V~B2 is a clause, we say that
C* is the equation associated with C if C* is the inequality

A1+ ...+Ak+ (1—Bl) + ..+ (1—32) z1.

Furthermore, if ¢ is a set of clauses, we denote by S(C) the set of inequalities

associated with clauses of C.

This leads to a statement of our main result.
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Theorem l: Let (= (cl,...,cm) be a set of clauses and S(C) represent the
set of inequalities associated with these clauses, then
i) If all clauses in C are simultaneously satisfiable, then all
inequalities of S(C) are simultaneously satisfiable on the interval
fo,1]
ii) If there is a unit proof of a contradiction in C, then S(C) has
no solution over the reals.
The proof of the first of these statements is trivial under the assignment of
1l to true literals and 0 to false literals. The second statement follows from

the following lemma.

Lemma: If Cl follows from CO by a unit resolution, then S(Cl) is solvable over

the reals if S(CO) is solvable over the reals.

Proof: Let CO be the set of clauses {Cl,...,cp} with Cl==A and C2= ~AVQ where

0 is a disjunction of literals. Then Cl can be represented as {CO, C3

where C0=0L. S(Co) is the set of inequalities {a21, 1-a+a21, c;,...,c;} and

S(Cl) is the set of inequalities {a=21, C;p}.»,cg}- Clearly, a solution of

S(CO} is & solution of S(Ci)’and hence the lemma holds.

P cp}

Now, Jones and Laaser [2] show that determiming whether a propositional
formula in conjunctive normal form yields a contradiction by unit resolution is
P-complete and this result may be combined with our theorem above tc show

ouf main result.

Theorem.2: Every language L in P is log-space reducible to linear programming.

~72-

Proof: By theorem 1, given a propositional formula in conjunctive normal form,
determining whether a contradiction is found by unit resolution is log-space

reducible to linear programming. And, by [2], this problem is P-complete.

This theorem is especially interesting since it is not known whether linear

programming belongs to P or not (see [3] for more details on this problem.)
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ABSTRACT

The complexity of linear programming and other problems in the
geometry of d-dimensions is studied. A notion of LP-completeness is
introduced, and a set of problems is shown to be of equivalent com—
plexity to linear programming. Many of these problems involve simple
extensions of constructions concerning convex hulls of polytopes, all
of which are doable in O(nlogn) operations for d = 2. Finally, known
results are surveyed in order to give an interesting characterization

for the complexity of linear programming.
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INTPODUCTION

Geometry is one of the oldest hranches of rathematics. The ceom—
etry of d-dimensions has been an important area of studv durinc the
last century. In the last thirty vears, this studv has recome far more
important because it has served as a mecium for investigating manv
prohlems. More recently, emphasis has heen placed on the study of
efficient cormputation for ageometric prohlems. While the traditional
mathematical approach to geometry gives us proofs of the eristence of
aloorithms for given problers, the current emphasis is on findina
efficient algorithms for these problems. In the two dimensional case,
Shamos [28] has aenerated fast and asymptoticallv optimal aloorithms
for many aqecmetric prohlems. One important extension of this work
involves studyina the complerity of some of these aecmetric prohlems
in hicher dimensions.

Four catenories arise in ertendina these pronlerms to arritrarv
dimensions. First of all, many prohlers which are of polvnomial
complexity in the plane simply remain of polynomial complerxitv in
d-dimensions hecause only a polynomial nurher of cases need re
considered. onsider, for example, the prokrlem of findino the cinsest
pair of a set of n points in Fa, d-dimensional Fuclidean space. Mt
most (2) pairs of points need to he considered, so the eristence of a
polynormial alcorithm in any dirmension is quaranteed. Tn contrast, some
easily solved planar prohlems hecome obviouslv evponential in hicher

: . : R . a .
dimensions. For example, given a set of n points in ¥ , their convex
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hull Day have as many as O(nd/2

) facets. Thus anv algorithm to find the
convex hull in Fd must be exponentiai in d. Our focus in this paper
will be on problems which belong to neither of these two classes. We
consider problems whose camplexity is not known to be either polynomial
or exponential. Typical of such problems are the commonly studied
problems of integer and linear programming. Karp and othexrs [14] have
shown that many problems of integer programming are NP-complete and,
hence, probably of exponential complexity. However, the complexity of
the rational analogs of many of these prohlems remains in doubt. In
this paper we will study these rational analogs.

Our study consists of two parts. We hecin by examining those
problems in the geometry of d~dimensions which are not trivially
polynomial or exponential in complexity and which are not known to be
NP-complete. Since the most important such problem is that of linear
programming, we first define a notion of IP-completeness and give the
necessary geometric terminology. We then define the classical linear
programming problem and some of its variations and discuss the geometric
interpretation of these problems. Next we introduce a family of
geometric problems that are not directly related to linear programming.
Finally we present our main theoremwhich states that all of these
pxoblems are LP-complete, and prove this theorem.

The latter part of the paper is concerned with the complexity of
these LP-complete problems, or, equivalently, of linear programming.
Here we briefly discuss what is known concerninag alaorithms for solving
linear programming problems and consider the location of linear pro-

gramming in the P-NP complexity hierarchy. Our main conclusion based

on current assumptions about the distinctions among P, NP and co-NP is
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that either a polynomial aloorithm erists for solvina linear proarammince

problems or linear programming is

NP-complete.

P-hard,

i

2.

not in P and not
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Section L. Defipitioms

To begin, we set forth the notions of reducibility which will be
used throughout this paper. Problems under consideration will be
phrased as language recognition problems where we are interested in
whether a given input is a member of the set of acceptable inmputs, or
as actual problems where we want to produce an answer. The length of
the desired answer will in all cases be short enough to make lower bound
arguments based on output length meaningless. Our basic notioms of
reducibility are equivalent to those used by Karp (1-1 reducibility){14]
or Ladner (many-one reducibility) [22] and are defined for recognition
problems as

Definition 1: Problem A is said to be (polynemial) reducible
to problem B, denoted A « B, if and only if there exists a
function f, computable in deterministic polynomial time, such
that x ¢ A if and only if £(x) ¢ B.
Definition 2: Problems A and B are said to be (polymomial)
equivalent, denoted A = B, if and only if both A = B and
B « A.
In the case of problems where an answer is required, we extend these
definitions to allow A to be reducible to B if and only if an algorithm
for solving B yields an algorithm for solving A after polynomial
transformation.

We will let P denote the class of problems that are solvable in
polynomial time on a deterministic multitape Turing machine and let NP
denote the class of problems that can be solved in polynomial time on
a nondeterministic multitape Turing machine. A problem is called NP-
complete if and only if it is in NP and every problem in NP is reducible
to it. A problem is called P-hard if and only if it is in NP, not in

P, and is not NP-complete. Finally a problem is said to be LP-complete

if and only if it is equivalent to the problem of Linear Programming (LP).
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As most of the problems we consider here have a geometric flavor, we

will define the necessary geometric concepts before proceeding. Ed denotes

d-dimensional Euclidean space and a point P in Ed is represented by

a d-vector (pl,...,pd). The function (,): Eﬂ b4 Pﬁ-ﬁ F is the usual dot
product, i.e. (P,Q) = igl Pid; - An affine sum of a set of points
Pl,...,Pn is a weighted sum ié; xiPi such that ié; xi = 1. N convex
sum of a set of points is an affine sum such that each », = 0. nn
m-flat in Ed, m<d, is an m-Jimensional surface. 7 0N-flat is a point:

a l-flat is a line; a 2-flat is a plane. A (d-1)-flat is called a
hyperplane and can be written as {XGEd |(a,X)=h} for some d-vector a
and some scalar b. A (closed) halfspace is the set of peints on or on
cne side of a byperplane. It can be written as {VGEH ,(a,Y)Zh} or as
{XeEd l(a,X)éb}. The corresponding hyperplane, \XEFH | (a,x)=r}, is
called the determining hyperplane of the halfspace. A recion in Fﬁ is
called convex if and only if for every pair of points in the reaion, the
line segment connectino them lies completely inside the resion. In
particular, halfspaces and all flats are convex reaions. The inter-
section of any number of convex regions is convex. Given a set of points,
their convex hull is the smallest conver set containinc these points.
Convex regions in Ed determined hy the intersection of a finite number of
halfspaces are called polvhedra. If a polvhedron is bounded it is called
a polytope. A hyperplane is called a supporting hyperplane of a polv-
hedron if and only if it has a non-empty intersection with the polyhedron
and the polyhedron lies totally in one of the two halfsnaces determined
by the hyperplane. The intersection of a supporting hvperplane with the
polyhedron is called a face of the polyhedron. &n m-face, m<d, is a face
that has dimension m, that is, the subspace that can be written as an

affine sum of points from the face has dimension m. A N-face is called
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Section II: Linear Programming Problems

a vertex and a (d-1)-face is called a facet. For further details the

A lot of literat ists concerni 11 i } .
reader is Teferred to [9, 10]. ature ex concerning linear proaramming ovrohlers
Throughout this literature the basic problem has heen formulated in
several different, although equivalent, ways. In this section we
will summarize these equivalent forms of the problem. Our basic

definition of the problem will be

LINEAR PROGRAMMING (LP)
Given: An integer nxd matrix A, integer n-vector b, integer d-vector c.

Find: A rational d-vector x such that Ax<b and &x is maxirized.

In this problem, Ax=b is a set of constraints of the form (a,x)=< hi and
¢"x is the objective function or the function to he maximized. The
classical variants of this problem allow the inputs to he rationals rather
than intéqers, allow the cbjective function to he minimizecd, or allow

the constraints to take slightly different forms, either Ax 2b or Ax=h,
x20. We can thus define a more general version of the linear prooramminca

problem, where any of the options in brackets may be chosen:

GENERAL LINEAR PROGRAMMING

Given: A rational nxd matrix A, rational n-vector h, rational
d-vector c.
Find: A rational d-vector x such that [Ax<h; Ax*h; Ax=b and x Z (]

and ¢Tx is [maximized; minimizedl].

If a problem is an instance of the general linear programming oroblem ve
will refer to it as a linear programming problem. A typical linear

programming problem and its variants are given in figures 1, 2, and 3.
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o In the classical literature on linear proararminu (see e.g. [4]) there is a good
Maximize 4x,+x

Subject to: 1 Solution: x,= % r Xy= % deal of discussion concerning the dual problem. Fach instance of a
:1 ;3:2 f Z. maximun=31/4 linear programming problem has a corresponding instance of a dual problem.
-in + xz < 3 For example, the dual to our.basic problem is
- x, =0

DUAL LINEAR PROGRAMMING

Figure 1. A Linear Programming Problem. .
Given: An integer n*d matrix A, integer n-vector b, integer

d-vector c.

Maximize (4 1) xy Find: A rational n-vector y such that A'y=c, yZ0, and hTy
x2 Solution: x = % is minimized.
Subject to: 3 Figure 4 here
y 4)
1-1 xl] <!
13 *5 4 maximun=31/4 . ]
-2 i g Note that this is a linear programming problem in itself with inputs
0 -
) AT, ¢, b, and, in general, the dual of a linear proaramming problem
Figure 2. MAtrix poym of Problem of Figure 1.
is a linear programming problem [4] .
So far we have considered basically unrestricted linear Programming
(a) Maximize (4 1) % (b) Minimize (-4 -1) xl] problems. We next want to consider two problems in which we restrict
X,
x, 2 the range of solutions and then, in addition, restrict the problem itself.
Subject to S'i.lbjictlto;L ;28 ranld N It is clearly possible to dexive a linear Programming problem where the
R A R 1 3-10 1 0 xl)— a ; ; s .
1.3 xl =, - x2 = maximum value of the ohjective function is unhounded by the constraints.
5 _1 2 -3 -2 1 2 0 0 1 Xy 3
o o » x, In some cases this is not desirable, hence we introduce the restricted
x
5
. . . 3/4 lxs form of the problem in which the solution is bounded:
Solution: x =|7( max.=31/4 Solution: g =x ; min.=-31/4
_3_ 0 BOUNDED LINEAR PROGRAMMING
4 23/4

] Given: An integer nxd matrix A, integer n-vector b, integer
Figure 3. General Forms of Pooblem of Fiaure 1.
T

d-vector ¢, rational M such that ¢'xS$M for all x such that
Ax $b.

Find : A rational d-vector x such that Ax%<b and c'x is maximized.
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Minimize (l 4 3 0) ¥y

Subject to:
[1 1-2 o) v, - [4]
-1 3 1-1 |y, 1
¥3
Ya
and
y=o0

Solution:
11/4
- 5/4
o]
0
Min.= 31/4

Figure 4. A Dual Prcblem to that of Figure 1.
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X,

Maximize.: (4 1) [xﬂ

Subject to:

1-1-1 X, 1

1 3-1 <| 4
-2 1 2 3

1 11 1000
-1 0 O [¢]
0-1 0 0
0 0 -1 o]

Figure 5. Bounded Version of Problem of Ficure 1.

Maximize (¢ 1 1000) x| - 1000

x2
3

L]

Subject to:

CoOO MMM
1
COoORFWH
]
Hi2HOO0O0
L]
Wb

Figure 6. A Bounded Positive Form of the Problem of Figure 1.

Solution:

7/4

x = 3/4

0

Max. = 31/4
Solution:

7/4

x = 3/4

1
Max = 31/4
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In addition it is helpful to consider this form of the problem with the

added restriction that the vector b>O0.

BOUNDED POSITIVE LINEAR PROGRAMMING

Given: An integer nxd matrix A, integer n-vector h>0, inteager
d-vector ¢, rational M such that ¢"x =M for all x such that
Ax < b.

Find: A rational d-vector x such that . Bxsb and c™x is maximized.

All the above characterizations of linear programming treat the
problem as that of actually finding a solution. As has been done in
complexity theory [14] we can also consider linear programming as a

recognition problem:

LINEAR INEQUALITIES (LI)

Given: An integer n*d matrix A, integer n-vector h.

Determine: If there is a rational d-vector x such that Ax £b.

In this problem we are only interested in detewmining if a solution exists

rather than actually finding the solution. In this sense a recognitien
problem seems easier. We can also consider simpler rinear programming
recognition problems. One such problem is the recoanition version of

the Bounded Positive Linear Programming problem. This is

BOUNDED POSITIVE LINEAR INEQUALITIES

Given: Integer nxd matrix A, integer n-vector b>0, integer

d-vector c, rational M such that ¢"x<M for all x such that
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Ax* b, rational E.

Determine: If there is a rational x such that Ax<b and Tx=F.

In addition we can consider simpler versions of LI in which the vectox

b is fixed at zero. These include

SIMPLIFIED LINEAR PROGRAMMING I

Given: An integer nxd matxix A.
Determine: If there is a rational d-vector x such that »x=0,

x # 0, x=0,

SIMPLIFIED LINEAR PROGRAMMING IIL

Given: An integer nxd matxix A.
Determing : If there is a rational d-vector x such that

Ax 20 and x # 0.

We will show that all of these problems are equivalent and hence IP-
complete, that is, that none of these simplifications can give a
significantly simpler problem.

One of the. questions that arises when a Iinear programming problem
is presented iIs whether or not the set of constraints is redundant. We
wilk say that this set is redundant if there is a constraint which is
always satisfied when all the other constraints are satisfied. The

problem of testing for this condition is

RELEVANCY

Given: A set of constraints (a.,x)<h_ , ... , (a_,x)<h_ .
(o} 0 n n
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Determine: If satisfying the last n constraints is egquivalent

to satisfying all n+l constraints.

We shall see that this problem is equivalent to linear programming.
Finally, we will consider a problem that would seem to he more com—
plicated than the basic problem of linear proaramming. This problem is
the complement of the problem of Linear Inequalities, and here, rather
than finding a solution or determining if one exists, we have to prove

that no solution exists. The problem is

LINEAR PROGRAMMING COMPLEMENT (IPC)

Given: An integer n*xd matrix A, integer n-vector h.

Bhow: That the system Ax £b has no rational solutions.

Again we will show that this problem is LP-complete. This result will
be important in our consideration of where LP-complete problems lie in
the P-NP complexity hierarchy for it will make it unlikely that IP-com-
pleteness and NP-completeness are eguivalent notions as it shows that

the former is closed under complementation while the lattexr is probably

not.
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Section III: Geometric Linear Programming Problems

It has long been known that linear programming prchlems can he
viewed as problems in the geometry of d-dimensional Euclidean space, Rd.
This fact has been the basis of much of the studv of linear programmina
and especially the study of the complexity of linear programming. Con-
sider our basic linear programming problem. The solution vector x can
be thought of as a point in Ed. Each of the constraints (a,x) 2 b,
restricts the set of feasible solutions (possible points x that satisfv
all the constraints) to a halfsgpace in Ed. As the sclution must satisfv
all the constraints simultaneously, the set of feasible solutions is the

intersection of the various halfspaces determined hv the constraints.

s s . . : a .
This intersection is a convex polyhedron in F~. Moreover, it can he

shown [4] that a solution to a linear programming probler corresponds
to a vertex of this polyhedron. Thus, we can reformulste linear pro-

gramming as a geometric problem (see figures 72, b) as

GEOMETRIC LINEAR PROGRAMMING

Given : A set of halfspaces {Hl""’HJ ané a d-vector x.
Pind: The vertex v of the polyhedron formed hy the intersection

of the halfspaces at which (v,x) is maximized.

Just as we demonstrated restricted forms of the linear programming
problem, we can consider restricted forms of cgeometric linear programming
problems. In particular the geometric form of Bounded Positive Linear

Programming is
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BOUNDED POSITIVE GEOMETRIC LINEAR PROGRAMMING

Given: A set of halfspaces {Hl,...,HJ such that their intersection

is a polytope containing the origin, and a d-wvector x.

Find: The vertex v of the polytope at which (v,x) is maximized.

In geometry there is a well-defined concept of a geometric dual.
; : . 4 4a
The dual is formed by a dimension-inverting mapping from E- to E . That

is, this mapping takes objects of dimension n in Ed into objects of

dimension d-n-1 in Ed. In particular, points are mapped into hyperplanes

and hyperplanes into points. There are several methods of constructing
such a mapping, but the most common one is that of the polar dual. This
mapping takes an object Q into an object 6 such that
T= fxer®|(uw =1l for all ueg}.

It is a well-known geometric result that this mapping has several nice
properties:
Lemma l: Let P be a polytope in Ed and let P be its polar dual. Then

(1) O0€P if and only if P is bounded, where 0 is the origin;

(2) There is a 1-1 onto mapping between the k-faces of P and

the d-k-1 faces of P.

(3) P, the dual of P, is P.

(4) If the supporting hyperplane to a facet of P is {erd](u,x)=l},

then the corresponding point in P is u.
(5) P is the convex hull of U where U = {uEEG’u corresponds to
a facet of P}.

Proof: These are known geometric results and can be found in [9].
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For any geometric problem it is generally possible to consider the dual
problem instead since we can map the original or primal problem into the
dual, solve the dual problem, and then apply the dual mapping, which by
(3) above is its own inverse, to construct the primal solution. In
particular, the dual to the geometric version of the linear programming

problem is

DUAL GEOMETRIC LINEAR PROGRAMMING

. . . d o
Given: A set of points x ,..., X in E such that the origin
1 n
is interior to their convex hull, and a ray r from the origin.

Find: The facet of the convex hull through which r passes.

In two dimensions this problem, and many others involving the
convex hull of a set of n points, can be solved quickly, generally in
time 0(n) or O(mlogn), as the convex hull has at most n facets and can
be found in time Q(nlogn). However, in the d-dimensional case these
arguments break down since the convex hull of a set of n points in Ed

d/2) facets. If a polynomial time algorithm is

can have as many as 0(n
to exist for linear programming, it must be able to circumvent this
difficulty by constructing only those portions of the convex hull
necessary to solve the linear programming problem. At present, no
subexponential algorithms are known which construct portions of the
convex hull which are sufficient to solve the linear programming

problem. For the remainder of this paper, we will give varying sets

of sufficient constructions for solving this problem.
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(a) Maximize 2x_+x

1%3
Subject to: 11 (xl x2) = 1
-2 0 1
-4 -2 1
-2 =4 1
0 -4 1
) 5 -4
Solution: (—4" K) MAX = 9/4
® 12,302 e
2
(-1/2,1/2)
(=1/6,-1/8) \. |
©,-1/4) 5/4r-1/4)
(c)
r
(L
(-2,00 _—TLY8/9,4/9)
4
(-4,-2)
(-2,-4) (©0,-4)

Figure 7. A Bounded Positive Linear Programming Problem (a), its
geometric form (b), and its geometric dual form (c).
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In addition to comsidering the geometric fo

rms of the linear

programming problem, we can consider the geometric versions of several

of the related problems. In particular, the geometric forms of the

problems of Linear Inequalities and of Bounded P

respectively are

INTERSECTION OF HALFSPACES

Given: Closed halfspaces Hl""’ Hn'

Determine: If Hl N eev N Hn is non-empty.
and

BOUNDED POSITIVE GEOMETRIC LINEAR INEQUALTITIES

Given: Closed halfspaces H Hn such

l""’
is a polytope containing the origin, and

Determine: If h n H is non-empty.

Finally, the geometric versions of the problems

Programming I and IT can be stated respectively

INTERSECTION OF FLAT AND ORTHANT

Given: An m-flat L through the origin in
Determine: If L n 0d contains any points

where 0d is the positive orthant.
and

INTERSECTION OF COMMON HALFSPACES

Given: Halfspaces Hl""’ Hn in Ed such that the origin is interior

to their intersection.

ositive Linear Inequalities

that H=H, n ... n K
1 n

a hyperplane h.

of Simplified Linear

as

.

other than the origin,

Determine: If the origin is their intersection.
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We shall see that all of these geometric versions of linear programming

problems are equivalent to linear programming and, hence, are LP-complete.
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Section IV: Geometric Problems

So far we have seen several forms of linear programming that are
polynomial equivalent and hence LP-complete. We have also seen several
geometric problems which are either restatements of some form of linear
programming or are the geometric duals of such restatements. In this
section we will consider several other geometric problems and will show
that they too are LP-complete. The first class of such problems involves
the identification of extreme points. We say that a point O is extreme
with respect to points Pl,...,Pn if and only if Q is exterior to the

convex hull of Pl""’Pn' The basic problem here is

EXTREME POINT (EP)

Given: A set of points PO'PI""'Pn in Ed.

Determine: If Po is extreme with respect to Pl,...,Pn.
We can consider several variations of this problem. First of all,

we can simplify the problem by placing all the points P "’Pn on the

1

unit sphere in Ed and lettirng F. be the origin. This yieléds

0

ORIGIN INTERIOR PROBLEM

- ; ; a
Given: A set of points Pl,...,Pn on Sd l, the unit sphere in F .

Determine: If the origin is extreme with rxespect to P P .

177" n

This version of the problem can also be restated as
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HEMISPHERE PROBLEM
Given: A set of points I’l,..., Pn on Sd-l.

Determine: If P Pn lie interior to some hemisphere.

122

This problem, as well as the previous two, can be solved in linear time (a)

in the plane, but remain LP-complete in the general case. It is interesting

to note that Johnson and Preparata [12] have shown that a modification

of this problem is NP-~complete. In particular, if we give as input the

n points on Sd_1 and an integer k < n and seek to determine whether

k(or more) of the n points share a common hemisphere, this problem is

reducible to MAXSAT2[7] which is known to be NP-complete. Furthermore,

by applying their reduction to the HEMISPHERE PROBLEM, we are able to

make contact with the work of Jones and Laaser [13] and show that if

linear programming is solvable in poly-log space, then all problems in

P are solvable in this space bound [5]. (b)

The geometric dual problem to EP is another variant here. It can

be stated as

HYPERPLANE-HALFSPACE INTERSECTION

Given: A set of halfspaces H En and a hyperplane h.

1’ ey
n
Determine: If h intersects f Hi.

i=1

This is the same problem as Bounded Positive Geometric Linear Inequalities.

It is interesting to note that the algebraic form of this dual problem is (@

Figure 8. An Extreme Point Problem; the correspondina Origin Interior

the linear programming problem of Relevancy, that is, the problem of -
pProblem: and the corresponding Hemisphere Prohlem.

determining if a given constraint is relevant.
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A second class of geometry problems that can be shown to be LP-
complete involves the notion of separability. Two point sets are said
to be separable if and only if there is a hyperplame H such that all
points of one set lie on one side of the hyperplane and all points of
the other set lie on the other side (i.e., the hyperplane separates the
points). Classical results show that two point sets in Ed are separable
if and only if every subset of d+2 points is separable. This yields
an algorithm of complexity 0(nd+2) for sets of n points in Ed. Shamos
[28] has shown that this problem can be solved in time O(nlogn) in two
dimensions. While this is a vast improvement over the classical n4,
applying the same techniques in higher dimensions means forming the
convex hull and hence yields an algorithm of expomential complexity in

E The basic problems here are

4

POINT-SET SEPARATION

Given: Points Po, Pl,..., Pn in Ed.

Determine: If P, is separable from {P

o Pn}

1200

and

SET-SET SEPARATION
Given: Points Pl,..., Pn, Ql,..., Qm in Ed.

Determine: If {P Pn} is separable from {Ql,..., Qm}.

PERRE)

We can also consider simpler versions of these two problems. First

of all we can restrict the points to the unit sphere. This gives

-100-

(a)

- (b)

R Rg R =Py

for k =

Figure 9. A Set-Set Separation Problem and the corresponding
Point-Set Separation Problem.

- 0.
J
3(i=1) + j
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SPHERICAL SEPARATION

Given: Poiats Pi,..., B, Q..+, Q om s¢1 40 4.

Determine: If {Pl,..., Pn} is separable from {Ql,..., Qm}.

In addition, we can restrict ourselves to one set of points and test
separation between it and its reflection through the origin. This

yields

HEMISPHERE SEPARATION

1200 Pn on Sd-l in Ed.

Determine: If {Pl,.. .y Pn} is separable from {-Pl,. .y _Pn}'

Given: Points P

All of the separability problems mentioned thus far have been stated
as recognition problems. We can restate each of them as computational
problems. Here we require that we not only determine if a separating
hyperplane exists, but actually find ome if it does. This gives us the

problems

FINDING POINT~-SET SEPARATION

; . . d
Given: Points Po, Pl’ ey Prl in E".

Find: A hyperplame separating {PO} from {Pl,..., Pn}.

FINDING SET-SET SEPARATION

Given: Points Bj,...s B, Qp,eee, Qp dn g,

Find: A hyperplane separating {Pl,. vy Pn} from {Ql,. ves Qm}'

FINDING SPHERICAL SEPARATION

Given: Points Pi,..., P, Q,.--, Q onm s4 1 4n g4,

Find: A hyperplane separating {Pl, cees Pn} from {Ql, vess Qm}.
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FINDING HEMISPHERE SEPARATION

d-1 . d
Given: Points Pl,..., Pn on S 1 in E7.

Find: A hyperplane separating {Pl,. ey Pn} from {-Pl, ceey -Pn}.

Again we will show that both the computational and the recognition forms

of these separation problems are LP-complete.
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Main Result

We axe now ready to present our main result:

Theorem 1:

(1)
(2)
(3)
(4)
(5)
(6)
()]
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17
(18)
(19)

(20)

The following problems are LP-complete:
Linear Programming
General Linear Programming
Dual Linear Programming
Bounded Linear Programming
Bounded Positive Linear Programming
Linear Inequalities
Bounded Positive Linear Inequalities
Simplified Linear Programming I
Simplified Linear Programming II
Relevancy
Linear Programming Complement
Geometric Linear Programming
Bounded Positive Geometric Linear Programming
Bounded Positive Geometric Linear Inequalities
Dual Geometric Linear Programming
Intersection of Halfspaces
Intersection of Flat and Orthant
Intersection of Common Halfspaces
Extreme Point

Origin Interior Problem

(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)

(30)
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Hemisphere Problem
Hyperplane-Halfspace Intersection
Point-Set Separation

Set~Set Separation

Spherical Separation

Hemisphere Separation

Finding Point~Set Separation
Pinding Set-Set Separation
Finding Spherical Separation

Finding Hemisphere Separation.
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PROOF OF MAIN THEOREM

Preliminary to proving the main theorem, we prove 21 basic

reductions.

1. Linear Programming is LP-complete

This is trivially true based on the definition of IP-complete.

2. General Linear Programming is IP-complete

It suffices to show that any instance of General Linear Programming
can be transformed into a problem like IP and vice versa. This is
accomplished by showing

(1) Integer inputs can be used in place of rational ones;

(2) B'x=b' can be used in place of Ax2b;

(3) A'X'2Db' can be used in place of Ax=b, x=0;

(4) ¢'"x maximized can be used in place of ¢Tx minimized.
That integers can be used for input rather than rationals follows since
we can express all rationals as ratios and then multiply 2, b and ¢ by
the greatest common denominator of the ratios involved and still have
the same problem. In place of BAx2b, let A' = - and b' = -b. Then
A'x=b' if and only if Ax2=b. In place of Ax=b, x=0 we can let
A' contain the constraints x=0, Ax2b, and -Bx =-b. Moreover,
constraints of the form BxZb can be replaced by constraints of the
form BAx=b, x=0 using the technigque of slack variables [4]. Finally
cTx is maximized if and only if (-¢)"x is minimized. This can be

seen in Figures 1, 2, and 3.
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3. Dual Linear Programming = LP

This is a classical result in the theory of linear proaramming
(see [4] and Figure 4).
4. sSimplified Linear Programming IIo< LP

This follows since the former problem is just a restricted form

of the latter.

5. LPax Bounded Linear Programming
First of all, classical transformations can he used to change IP

to a problem which includes the constraints x20 [see 4}. Then we can
add 2 constraint §xis M for some sufficiently larce M, and hence each
variable, X0 is constrained as OSxiS M. Such an M exists for it can
be shown [4] that if the problem has a solution, then that solution cor-
responds to solving a system of equations A'x=b for some submatrix 3’
of A, and hence each variable is bounded by the Jaraest possible deter-
minant of a submatrix of A, which in turn is hounded hv (d!) (ad) where

a is the maximum magnitude of any element of ». See also Figure 5.

6. Bounded Linear Programming o Bounded Positive Linear Proaramming
Let the original problem be

a X, + ... +a X s=b

1,171 1,n°n 1
a X+ ...+ X =
m,171 a111,n n bm
imi e+ R
Maximize ¢;x, + C ¥,

Now if all bi70 we are done. If not, choose r such that r) —hi for

all i. Then consider the new problem
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a, (X, + ... + a X + x = b +r
1,171 l,n"n n+l 1
x. + . X X +
am,l 1 a‘rﬂ,n n n+l = bm x
= r
xn+l
- B
xn+l
imi + ... * - .
Maximize €% e ¥, * Mxn+1 Mr

This new problem remains bounded since —1an+ls r and all other
variables remain bounded. Moreover, this problem is equivalent to the
original if X4y =¥ M hexe is chosen to be larger than the maximum
bounded value of ¢Tx of the original problem. WNow,.if we are able to
solve the new problem, then, by our choice of M, if it has a solution
wiﬁh X4 T r such a solution must be chosen. Hence it suffices

to solve the new problem and if Xa=T in the solution we are done,

while, if not, there is no solution to the original problem. See also
Figure 6.
7. a) Linear Inegualities = LP

b) Bounded Positive Linear Programming = Bounded Positive Linear
Inequalities

Pirst note that LI«LP is trivial. Hence it suffices to show that
we can find the exact solution to a LP problem by testing guesses to a
solution via the LI problem. This is done by adding a new constraint
cTx¥ 2B to the original problem, to test if the answer is less than B
or not. The argument used above to establish an upper bound on a possible
value also establishes an upper bound on the denominator of the solution
and hence, using binary search techniques, we can approach the solutien
with fewer than 4d(log d + log r) applications of LI, where r is the
largest magnitude in A and 4 is the numbex of variables. Hence LPt LI.

The reduction between Bounded Positive Linear Programming and Bounded
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Positive Linear Inequalities is essentially the same-

8. Linear Programming Complement is LP-complete

First note that LIGIPC trivially. To solve a LPC problem using
linear programming, one merely needs to add artificial variahles which
are all constrained to be greater than or egual to zero, and solve the
linear programming problem of minirﬁizing the sum of these new variables.
The details and the proof that this is conclusive is fundamental to the
classical study of linear programming as it represents phase one of the

Simplex algorithm [see 4]. This was also observed by Karp [22].

9. a) Geometric Linear Programming = LP

b) Bounded Positive Geometric Linear Programming = Bounded Positive
Linear Programming

c) Intersection of Halfspaces = LI
d) Intersection of Flat and Orthant = Simplified Linear Programming I
e) Intersection of Common Halfspaces = Simplified Linear Programming II

£f) Bounded Positive Geometric Linear Inequalities = Bounded Positive
Linear Inegqualities

g) Hyperplane-Halfspace Intersection = Relevancy
These are all simple reductions as they all represent simple
translations from an algebraic problem to the equivalent geometric one.

(see Figure 7)

10. a) Dual Geometric Linear Programming = Bounded Positive Geometric
Linear Programming

b) Extreme Point = Hyperxplane-Halfspace Intersection

¢) Extreme Point = Bounded Positive Geometric Linear Inequalities

These reductions are based on the geometric duality concept and
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follow from the properties of the polar dual.

11. Extreme Point® Simplified Linear Programming I

It can be shown [9] that Po is interior to the convex hull of

s : . L +xD
Pl, ,Pn if and only if P’:J can be written as lel + x P where

each xiEO and igl x = 1l . It is clear that the property of PO

being extreme is not affected by a simple transformation. Hence we can

assume that Po is the origin. Then it is sufficient to satisfy the

constraints lel + ... ann =0, x20, and B x =1. Suppose

we can find a sclution that satisfies xlpl + ...+ ann =0 and x20

such that igl x; = S # 0. Then we can let Yy

it

xi/s and then
n
= > = : .
ylpl L ynpn =0 and yZ<0 and i§l ¥s 1l . Hence it is enough

to satisfy lel+...+ann=0 , X0 and x = 0 and we are done.

12. Origin Interior Problem = Extreme Point

Note that an Origin Interior Problem is a special case of an
Extreme Point problem, and hence, © is trivial. We need only show then
that any Extreme Point problem can be solved by solving a problem where

P0 is the origin and all the other points lie on the unit sphere. We

first can do a transformation to insure that P, is the origin. Now P

0 0

is interior to Pl'""Pn if and only if the origin is interior to the

. . . : _a ' =
transformed points Pl,...,Pn if and only if ©0 i“El xiPi where x=0

’ / . .
and i%l x, = 1l . Let Qi = Pi/ ]Pif r be a point on the unit sphexe
corresponding to Pj’_. Now let r = igl xilP:'i.( and for each i, let

= Ipe = > : N > -
¥; xilPi' and let z; yi/r . Then *g 0 if and only if ¥i 0 if

and only if ziEO as r=0. Also
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zg n Yi Y n n
_ v - - < 0. = 0.
0 i1 xiPi Z _T—\P-l Pi 4_ yiQi (1/x) - lel z zlol
i=1ri i=1 i=1 i=1
while iél 2, = 1. Hence the origin is interior to Pl,...,Pn if and only

if it is interior to Qre--sQ + and we are done. See Figure 8.

13. Hemisphere Problem = Origin Interior Problem

It is easy to see t-hat these are actually the same problem as the
origin is an extreme point if and only if there is a supporting hyper-
Plane through the origin. But such a hyperplane exists if and only if

the points on the unit sphere share a common hemisphere. See Figure 8.

14. Point-Set Separation = Extreme Point
This is trivial as it follows from the definitions of extreme point

and separation that P is separable from {Pl,..., Pn} if and only if

o]

P is extreme with respect to {P

0 Pn}.

12000
15. a) Spherical Separation X Set-Set Separation
b) Hemisphere Separationocc Spherical Separation
¢) Finding Spherical Separation & Finding Set-Set Separation
d) Finding Hemisphere Separation cc Finding Spherical Separation
These reductions all follow as in each case one problem is a special

zase of the other.

16. Set-Set Separation ¢¢ Point-Set Separation
It is sufficient to show how to express a given Set-Set Separation
problem as a Point-Set Separation problem. Let the two sets to be

separated be {p pn} and {Ql"" , Qm}_ Let P be the convex hull of

IERREE
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P

1""'Pn and ©Q be the convex hull of 91""’911: . Then the sets are

separable if and only if PN Q is empty. Define

P-Q = Ix|x=p-q, PeP and geQ} -
Then PnNQ is empty if and only if the origin is exterior to P-0, or
altexrnatively, if the origin is an extreme point of P-0. It can be
shown [9, 30] that P-9 is the convex hull of U where

U = {ulu = P, - Qj for 1<€i<n and 1%3<“mf .
Hence it is sufficient to separate the origin from the set U, and since

|u| = mn, we are done. See Figure 9.

17. Hemisphere Problem & Hemisphere Separation

Let the points on the unit sphere be Pl" ..,Pn . Then these lie
interior to some hemisphere if and only if there is a rotation such that
every first coordinate is greater than zero. Then the hyperplane with
first coordinate zexo separates these points from their negatives, and

we are done.

18. Hemisphere Separation & Finding Hemisphere Separation
This is true since finding the separating hyperplane determines

separability.

19. Finding Set-Set Separation € Finding Point-Set Separation

Here we can use the same technigues as in our reduction from Set-
Set Separation to Point-Set Separation (reduction 16). We can thus
£find a hyperplane EO = ixGEd \ (a,x) =b0} that separates the origin from
P-Q. Now we assume, without loss of generality, that for all points y

in P-Q, (a,y)<0 . Thus for all p in P and all g in O we have
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(a,p) - (a,q) <0 or (a,p) < (a,q)

Next we compute x = max (a,Pi) and s = min (a,Qi) . Then r<s.
i i
Finally, let t = (r + s)/2, and let

e
B = {x” | (a,0=t} .
Now we claim that E separgtes P from Q0. For any p in P and g in § we

have (a,p)=zr<t<s=(a,q) .

20. Finding Point-Set Separation = Dual Gemoetric Linear Programming

Let {P Pn} be the set of points we are separating from PO- Then

JERRRE

n f s R
Q = (1/n) i P, is interior to the convex hull of Pl,...,Pn . We can

transform all the points such that Q is the origin. Let r he the ray

from @ through PO under the transformation. We can now find the facet

F that this ray passes through. Given this facet, its affine hull is

its supporting hyperplane. Let this hyperplane be F, = $x | (a,x)=b0}

Let a parallel hyperplane containing the point P_ be El = { * | (a,x)=blj

0

Then let E_ = {xl (a,x)=(bo+b1) /2} . Then F_ is a separatina hyperplane

2 2

P_}.

between P and {Pl,..., n

0
2l. Simplified Linear Programming I & Simplified Linear Programmina IX
It sufficies to show that we can solve the system Ax=0, x#0, x20
by solving some other system Bx=20, x¥0. Let the matrix B be a basis
for the null space of A. Such a B can be found in deterministic poly-
nomial time using technigques of linear algebra. Then the conditions
Ax=0, x#0, x2=0 can be rewritten as x=By, Ry#0, BvZ0 for some vector
y. In particular, as y exists if and only if x exists and we can compute
x given y, it suffices to find a y such that Ry 70 and Rv#0 , and we

are done.
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We can now prove the theorem using these reductions as follows:

Statement Reductions

Linear Programming = LP 1

General Linear Programming = LP 2

Dual Linear Programming = LP 3

Linear Inequalities = LP 7a

Linear Programming Complement =LP 8

Geometric Linear Programming = LP 9a

Intersection qf Halfspaces = LI 9¢

LP« Bounded Linear Programming 5,6,7p,9f,10¢,11,21,4

o Bounded Positive Linear Programming
o Bounded Positive Linear Inequalities
o« Bounded Positive Geometric Linear Inequalities
@ Extreme Point w Simplified Linear Programming I
o« Simplified Linear Programming II& LP

Bounded Positive Gecmetric Linear Programming 9b
=Bounded Positive Linear Programming

Intersection of Flat and Orthant °d
=Simplified Linear Programming I

Intersection of Common Halfspaces e
ZSimplified Linear Programming II

Dual Geometric Linear Programming 10a
=Bounded Positive Geometric Linear Programming

Hyperplane-Halfspace Intersection = EP 10b
Origin Interior Praoblem = EP 12
Hemisphere Problem = Origin Interior Problem 13
Point-Set Separation = EP 14
Relevancy = Hyperplane-Halfspace Intersection 9g
. Hemisphexe Problemoc Hemisphere Separation 17,15b,15a,16

o« Spherical Separation ¢« Set-Set Separation
o« Point-Set Separation
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Hemisphere Separation
¢ Finding Hemisphere Separation
&« Finding Spherical Separation
« Pinding Set-Set Separation
« Finding Point-Set Separation
e Dual Geometric Linear Programming

18,154,15¢,19,20



-115-

Section VI: Complexity of Linear Programming

The purpose of this section is not to introduce any new results, but
rather to take some known results and show their relevance to the various
problems that are LP-complete. It should first be noted that fast ( O(n)
or O(nlogn) ) algorithms exist for most of the prcblems mentioned here
when these problems are restricted to two and in some cases three dimen-
sions [8,11,26,28]. However, most of these algorithms depend on con-
structing the convex hull of a set of n points, and hence can only be
extended to d dimensions at a cost of becomino exponential.

In a more positive sense though, one class of algorithms stands out
in relation to linear programming problems. These are algorithms which
first find an approximation to the solution and then methodically proceed
to a new approximation until the actual solution is found. The most
widely known example of such an algorithm is the Simplex algorithm. This
algorithm solves a linear programming problem by finding an initial
feasible solution and then, if it does not maximize the objective function,
another feasible solution is found and the check for maximizing the
objective function is made again. The value of the objective function at
the new solution is always greater than or egual to its value at the
previous solution. Moreover, under the proper assumptions, the metheod
can be shown to always find the optimal solution if it exists. While
the Simplex algorxrithm itself solves a linear proagramming problem, it is
generally possible with the prcblems presented in this paper to find a

similar algorithm to solve the particular problem [1, 2, 24, 25, 31].
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Moreover, the nature of our notion of reducibility allows us to consider
any of the LP-complete problems as a linear programming problem and then
to apply the Simplex algorithm to solve it.

Empirical evidence for the complexity of the Simplex algorithm shows
it to be quite efficient, usually running in time linear with the number
of constraints and variables [4, 17, 23]. However, in recent years it
has been shown that there are cases where the Simplex algorithm will
take exponential time [20, 32]. Thus, although these problems can
generally be solved quickly, the best upper bound known for their worst-
case complexity remains exponential.

Given this behavior, we know turn to a2 study of the relationship of
LP-complete problems to NP-complete problems. To begin with, we observe

that all LP-complete problems belong to NP. This follows as
Lemma 2: LP ¢ NP

Proof: It has been shown [4] that a solution to a bounded linear
programming problem with n constraints and d variables corresponds to
a set of d of the n constraints. We can nondeterministically obtain
these d constraints and thus obtain a solution. We have seen that the
problem of Bounded Positive Linear Inequalities is LP-complete. As
this problem can be solved by the method described above it is in NP.
But then, by theorem 1, all LP-complete problems are in NP and in

particular, LP ¢ NP.

This lemma puts an upper bound on the complexity of linear programming.

It leaves four broad possibilities for the actual complexity. These can

be summarized as



-117-

Theorem 2: One of the following is true:

(=
(a) LP ¢ P NP
(b) LP is P-hard

(c) LP is NP-complete and NP is closed under complement

(d) LP ¢ P = NP

Proof: If P = NP, then L ¢ NP if and only if L ¢ P = NP. Assume

then that P # NP. Then either LP is doable in polynomial time or it
isn't. Ifit is, then LP ¢ P ; NP. If it is not, then either LP is
NP-complete or it is not. If it is not then L € NP-P and LP not NP-
complete implies that LP is P-hard. If LP is NP-complete then LI is

also NP complete and the complement of LI, LPC, is also NP-complete.

But then NP is closed under complement, and the theorem is proved.

Parts of this theorem have been alluded to in [22].

Of these four possibilities, the last two must be considered unlikely.
Although it is currently unknown whether NP is closed under complement or
if:P = NP, it is widely believed that both of these statements are false.
Hence, we may conjecture that either statement (a) or statement (b) is
true. If statement (a) is true, then polynomial time algorithms exist
for all of the problems that are LP-complete. This would be interesting
in terms of its impact on the study of geometric complexity as well as
being of possible practical interest in operations research. If however,
statement (b) is true, then we would have demonstrated a natural problem
belonging to NP-P which is not NP-complete (assuming P # NP). Such a
Thus, the

problem would be of considerable interest to theoreticians.

resolution of theorem 2 will be an important and intereésting result no
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matter which of the alternatives is true. Hence the problems associated
with determining the complexity of linear programming are indeed
important problems of complexity theory.

Thus, it seems unlikely that the notions of LP-completeness and
NP-completeness are equivalent. Yet, we may exfend the observation of
Johnson and Preparata [12] to transform each of these problems into an
NP-complete problem by merely adding an additional parameter, k. For
example, they showed that determining if any subset of size k of a set
of n points on Sd-l share a common hemisphere is NP-complete. Here we
observe that in the case where k = n, the problem becomes LP-complete.

Similarly, we could restate NP-complete versions of the other problem.

Typical of these statements would be

INTERSECTION OF COMMON HALFSPACES

Given: Halfspaces Hl,..., Hn in Ed such that the origin is

interior to their intersection, an integer k.
Determine: If there is a subset consisting of k of the halfspaces

which have the origin as their intersection.

EXTREME POINT

Given: A set of points P Pn in Ed, an integer k

0’ Pl,...,

Determine: If there exist 1 S il < 12 een < ik Sn

INTERSECTION OF HALFSPACES

Given: Closed halfspaces H Hn’ an integer k.

122

Determine: If there are 1 s il < i2 S ... < ik < n such that
k
7 H., is non-empty.
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RELEVANCY

Given: A set of comstraints (ao, %) S bgseees (an, x) $ b, an integer k.

Determine: If determining some set of k constraints is equivalent

to satisfying all of the constraints.

LINEAR INEQUALITIES

Given: An integer n x d matrix A, integer n-vector b, integer k.
Determine: If there is a ratiomal d-vector x such that k

components of Ax=b are negative.

These results, expressing linear programming as an interesting
limiting case of integer programming take on added interest as a
possible means of finding a hierarchy of natural problems in their
complexities. Furthermore, as observed in [5], conmections with log-

space completeness can also be made.
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CONCLUSION

The results in this paper can be divided into two sections. In the
first section we presented a list of LP-complete prohlems. These problems
are both interesting and important. Some of them are fundamental to the
study of d-dimensional geometry and others, especially those directlv
involved with linear programming, have vast practical applications.
Secondly, these problems are interesting because they represent a wide
range of gecmetric problems that all have the same intrinsic complexity.
Moreover, by our notions of reducibility, information regaxding the
complexity of any single problem, be it a fast alcorithm or a good lower
bound, is directly applicable to all the other IP-complete problems as
well.

The second part of the paper was devoted to a survey of known
results on the complexity of linear programming. Fere we have shown that
it is probable that linear programming is either of polynomial complexity
or is P-hard. In the light of the effortsthat hawbeen made toward
finding a polynomial algorithm, and considering that all efforts have

failed, it seems most probable that linear programming is indeed P-hard.
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