As demonstrated by Slepian et. al. in a sequence of classical papers (see [33], [34], [17],
[35], [36]), prolate spheroidal wave functions (PSWFs) provide a natural and efficient tool
for computing with bandlimited functions defined on an interval. As a result, PSWFs are
becoming increasing popular in various areas in which such function occur - this includes
physics (e.g. wave phenomena, fluid dynamics), engineering (e.g. signal processing, filter
design), etc.

To use PSWF's as a computational tool, one needs fast and accurate numerical algorithms
for the evaluation of PSWFs and related quantities, as well as for the construction of
quadratures, interpolation formulas, etc. For the last half a century, substantial progress
has been made in design of such algorithms - this includes both classical results (see e.g.
[4]) as well as more recent developments (see e.g. [38]).

The complexity of many of the existing algorithms, however, is at least quadratic in the
band limit c¢. For example, the evaluation of the nth eigenvalue of the prolate integral
operator requires at least O(c?) operations (see e.g. [38]); also, the construction of accurate
quadrature rules for the integration of bandlimited functions of band limit ¢ requires O(c?)
operations (see e.g. [6]). Therefore, while the existing algorithms are quite satisfactory for
moderate values of ¢ (e.g. ¢ < 10?), they tend to be relatively slow when c is large (e.g.
c>10%).

In this paper, we describe several numerical algorithms for the evaluation of PSWFs and
related quantities, and design a class of PSWF-based quadratures for the integration of ban-
dlimited functions. Also, we perform detailed analysis of the related properties of PSWFs.
While the analysis is somewhat involved, the resulting numerical algorithms are quite sim-
ple and efficient in practice. For example, the evaluation of the nth eigenvalue of the prolate
integral operator requires O(n+c) operations; also, the construction of accurate quadrature
rules for the integration of bandlimited functions of band limit ¢ requires O(c) operations.
Our results are illustrated via several numerical experiments.
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1 Outline

1.1 Quadratures for Bandlimited Functions

The principal goal of this paper is a quadrature designed for the integration of bandlimited
functions of a specified band limit ¢ > 0.

A function f : R — R is bandlimited of band limit ¢ > 0, if there exists a function
o € L?[-1,1] such that

1

flx) = / o(t) - et dt. (1)
-1

In other words, the Fourier transform of a bandlimited function is compactly supported.

While () defines f for all real z, one is often interested in bandlimited functions, whose

argument is confined to an interval, e.g. —1 < x < 1. Such functions are encountered in

physics (wave phenomena, fluid dynamics), engineering (signal processing), etc. (see e.g.

[33], [10], [29]).

By quadrature we mean a set of nodes

1<t o<t < (2)
and weights
wim, W, (3)

If f:(—1,1) — R is a bandlimited function, we use the quadrature to approximate the
integral of f over the interval (—1,1) by a finite sum; more specifically,

/ 11 F(t) dt ~ Zn: Wi (tg.")) . (4)
_ ~



About half a century ago it was observed that the eigenfunctions of the integral operator
F.:L?[-1,1] — L?[-1,1], defined via the formula

1
F, 4] (z) = / p(t)e dt, (5)

-1

provide a natural tool for dealing with bandlimited functions, defined on the interval [—1, 1].
Moreover, it was observed (see [34], [I7], [35]) that the eigenfunctions of F. are precisely
the prolate spheroidal wave functions (PSWFs) of band limit ¢, well known from the math-
ematical physics (see, for example, [24], [I0]). Therefore, when designing a quadrature for
the integration of bandlimited functions of band limit ¢ > 0, it is natural to require that
this quadrature integrate several first PSWFs of band limit ¢ with high accuracy.

We formulate the principal objective of this paper in a more precise manner, as follows.

Principal goal of this paper. Suppose that ¢ > 0 is a real number. For every integer
n > 0, we define a quadrature of order n (for the integration of bandlimited functions of
band limit ¢ over (—1,1)) by specifying n nodes and n weights (see [2), @l)). Suppose also
that € > 0. We require that, for sufficiently large n, the quadrature of order n integrate
the first n PSWEFs of band limit ¢ up to the error €. More specifically, we find the integer
M = M(c,€) such that, for every integer n > M and all integer m =0,1,...,n—1,

/_ 11 U (t) dt — Jzi; W, (tg.")) <e, (6)

where ¥y, : (—1,1) — R is the mth PSWF of band limit ¢ (see Section [2]]).

Quadratures for the integration of bandlimited functions which satisfy (@) have already
been discussed in the literature, for example:

Quadrature 1. Suppose that n > 0 is an integer. The existence and uniqueness of
n nodes and weights, such that (6l holds for ¢ = 0 and all m = 0,1,...,2n — 1, was first
observed more than 100 years ago (see, for example, [15], [16], [21], [22]) for all Chebyshev
systems, of which PSWF's are a special case (see [38]). Although numerical algorithms for
the design of this optimal quadrature were recently constructed (see [6], [20], [39]), they tend
to be rather expensive (require order n® operations with a large proportionality constant).

Quadrature 2. Another quadrature was suggested in [38]. The PSWF 4, has n roots
t1,...,t, in the interval (—1,1) (see Theorem [dlin Section 2.1]); the idea is to use these roots
as the quadrature nodes, solve the linear system of n equations

n—1
n 1
> mt)Ws = [ n(t) @
=1 - m=0
for the unknowns Wi, ..., W,, and use the resulting weights and nodes to define a quadra-

ture for the integration of functions of band limit 2c. This approach is justified by the
generalization of the Euclid’s division algorithm for PSWFs (see [38]), and is less expensive
computationally than the previous one (its cost is dominated by the cost of solving the



linear system (7). The same quadrature can be used to integrate functions of band limit
¢, since ([l) implies that (@) holds with e =0, for all m =0,...,n — 1.

In this paper, we describe another quadrature whose nodes are the n roots of v, in
(—1,1). However, its weights differ from the solution of (), and can be evaluated in O(n)
operations (see Section .4l and Section [ below).

Thus, the quadratures of this paper are much faster to evaluate than those described
above. Moreover, (0] ensures that their accuracy is similar to that of Quadrature 2. Also,
their nodes and weights can be used as starting points for the scheme that computes the
optimal Quadrature 1.

In order to define the weights, to make sure that (@) holds and to be able to compute
them efficiently, we need to analyze the PSWFs in a somewhat detailed manner. This
analysis will be preceded by a heuristic explanation, which provides some intuition as well
as prevents one from the danger of not seeing the forest for the trees (see Section [[L2 below).
Section contains a short overview of the analysis. Section [2] contains mathematical and
numerical preliminaries, to be used in the rest of the paper. In Section B, we summarize
the principal analytical results of the paper. Section M contains the corresponding theorems
and proofs. Section [B] contains the description and analysis of the numerical algorithms for
the evaluation of the quadrature and some related quantities. In Section B, we report the
results of several numerical experiments.

1.2 Intuition Behind Quadrature Weights

We recall the following classical interpolation problem. Suppose that t1,...,t, are n distinct
points in the interval (—1,1). We need to find the real numbers Wy, ..., W, such that

1 n
/ p(t)dt =YW ple), (®)
- =1

for all the polynomials p of degree at most n — 1. In other words, the quadrature with
nodes ty, ..., t, and weights Wy, ..., W, integrates all the polynomials of degree up to n—1

exactly (see (2), @), @)).

To solve the problem, one constructs n polynomials I1,...,[, of degree n — 1 with the
property
0 i#j,
Li(ti) = { T (9)
1 1=y
for every integer i,j = 1,...,n (see, for example,[14]). It is easy to verify that, for every
j =1,...,n, the polynomial /; is defined via the formula
wn(t)
i(t) = - : (10)
! wy(t;) - (t =)
where w,, is the polynomial of degree n whose roots are precisely ti,...,t,. The weights

W1, ..., W, are defined via the formula

! 1 Lw, (t) dt




for every integer j = 1,...,n. We observe that a single function w,, is used to define all the
n weights; also, w,, is a polynomial of degree n, and hence does not belong to the space of
the polynomials of degree up to n — 1.

In our case, the basis functions are the PSWFs and not the polynomials. Suppose that
the roots t1,. .., t, of 1, in the interval (—1, 1) are chosen to be the nodes of the quadrature.
If we choose the weights Wy, ..., W, such that the resulting quadrature integrates the first
n PSWFs exactly, this will lead to the linear system (), and hence to Quadrature 2 from
Section [[Jl Instead, we define the weights via using 1, in the same way we used w, in
(). More specifically, similar to ([I0)), for every integer j = 1,...,n, we define the function
¢; : (—1,1) — R via the formula

Yn(t)
p;(t) = : (12)
’ Wh(t;) - (t— 1))
We observe that, for every integer ¢,5 =1,...,n,
0 i#Jj,
@;j(ti) = {1 e (13)
1= ]7

analogous to ([@)). Viewed as a function on the whole real line, each ¢; is bandlimited with
the same band limit ¢ (see, for example, Theorem (9 in Section [£.4.1] or Theorem 19.3 in
[31]). On the other hand, ¢; does not belong to the span of ¢, ¥1, ..., 9¥n—1 (see Theorem[59]
in Section .4.1]). We define the weights W7y, ..., W, via the formula

1
Wj = /1 p;(t) dt, (14)

for j =1,2,...,n. The weights W1, ..., W, defined via (I4]), are different from the solution
of the linear system ([7). Nevertheless, the resulting quadrature is expected to satisfy (@)
with € of order |\,| (see Theorem [60] in Section A2, since the reciprocal of 1, can be
approximated well by a rational function with n poles. Making the latter statement precise is
the principal purpose of Section [ of this paper. While the analysis of the issue is somewhat
detailed, the principal idea is simple enough to be presented in the next few sentences.

If P is a polynomial with m simple roots z1,..., 2y, in (—1,1), then the function z —
P(2)~! is meromorphic in the complex plane; moreover,

(15)

I i 1
P(z) = P(z) (- z)
for all complex z different from zi,..., 2, (see Theorem 27 in Section [2.§). The right-
hand side of () is referred to as “partial fractions expansion of P~1”. Similarly, the
function z — 1,,(2)~! is meromorphic; however, it has infinitely many poles, all of which
are real and simple (see Corollary Bl in Section .I.1]), and exactly n of which lie in (—1,1)
(see Theorem [ in Section ZT]). Suppose that the roots of ¢, in (—1,1) are denoted by
t; < --- < t,. Motivated by (I5)), we analyze the partial fractions expansion of 1, 1. It
turns out that

1 " 1
U (t) :z_;z/z;l(tﬂ(t—m+o(‘)‘”|)’ (16)



for real —1 < ¢ < 1 (see Section and Theorem 27 in Section Z8)). In other words, (I6)
means that the reciprocal of v, differs from a certain rational function with n poles by a
function, whose magnitude in the interval (—1,1) is of order |\,|.

A rigorous version of ([I6) is established and proven in Section L3l The relation between
(©), (I2), (I4) and (I6]) is studied in Section L4l The results of these two sections rely on
the machinery, developed in Sections [4.1]

1.3 Overview of the Analysis
1.3.1 Partial Fractions Expansion of 1/,

To establish (I6)), we proceed as follows. Suppose that 1 < z9 < ... are the roots of 1, in
(1,00) (see Corollary B in Section ELTT]). Suppose also that M > 1, and R > 1 is a point
between zps and xpr41. In other words,

< <ry< - <ay<R<apys <.... (17)

Then, for all real —1 <t < 1,
1 - 1
Un(t) _; Pnty) - (t—t5)
M 1 1 1 dz
; (%(ﬂck) - (t — x) * Py, (=) - (t+$k)) " omi rp Yn(2) - (2 = 1)

where I'g is the boundary of the square [—R, R] x [—iR,iR], traversed in the counterclock-
wise direction (see Theorem 27 in Section 2.§]).

Suppose now that x > 1 is a root of v,,. We observe that v, is a holomorphic function
defined in the entire complex plane. We use the integral equation (37)) in Section [Z] and
Theorem 28] in Section 2.8 to show that

(18)

|(z +it)2 — 1]
(x4 it)? — xn|

\/ e+ I+ o+ i) 1
e - Jyn(1)] - V2
ct - |\ ’
(see Theorem [B6]in Section .2.2]). On the other hand, we use the differential equation (48]
in Section 2] and Theorem 22| in Section [Z5] to show that
|(z 4 it)? — 1]
(x+it)? — x| T

t— o0 (19)

\/ n(e+ 0P + e+ 0

et |y (z)] - (a® — 1)3/4
ct - (22 — (xn /)

(see Theorems B7 B8] B9, A0, A2] in Section A.2.2])). We combine ([9) and (20) to establish
the inequality

(20)

(22 — 1)%
(@2 = (xn/c2))1

1
< et h-

@) = 2D



(see Theorem 3] in Section .22). Then, we use (ZI]) to show that, for every integer M > 1,

M 1

= (t — xp) - Up (k)

<5+ [l - (log(2 - 2ar) + (xa)*) (22)

(see Theorems 4], 5] in Section EL3.] for a more precise statement).

We observe that (22]) provides an upper bound on the first summand in right-hand side
of (IR). While this bound is of order |\,| for zpy < O(|\,|™1), it diverges if we let M go to
infinity (see, however, (24]) below).

To overcome this obstacle, we use the integral equation ([@4)) in Section [Z1] to analyze
the behavior of 9, (x) and +/,(z) for x > |\,|~2 (see Section E3.2)). In particular, if x > 1
is a root of 1, and if z > |A\,| 72, then

[t ()] = ‘2%;1)‘ Jreo (e (23)

(see Theorem [B1] in Section E.3.2 for a more precise statement). More detailed analysis
reveals that, if y > z > |\,| 72 are two consecutive roots of v, and —1 < t < 1 is a real
number, then

1 1
‘%(w%(m—t)+wg(y)-<y—t)’320“" 2 (24)

(see Theorem [52 in Section 4.3.2).
In Theorem (3] of Section [1:3.3], we establish, for all real —1 < ¢ < 1, the inequality of
the form

i ¥ (zk) ‘1(a:k —t) = const- nl- <10g <|/\1n\) " (Xn)1/4) ’ (25)

where ([22), ([24) are used to bound the head and the tail of the infinite sum, respectively.
Eventually, we analyze the behavior of v, of the complex argument to demonstrate that,
for all real —1 <t < 1,

1 dz

371 B a3 1) < 2V2- A, (26)

lim sup
k—o00

where {R}} is a certain sequence that tends to infinity, and the contours I'g, are as in (IS])
(see Theorems [54] (5l in Section E.3.3] for more details). We substitute (25]) and (26]) into
(I8)) to obtain, for all real —1 < ¢t < 1, an inequality of the form

n

1 1 1
PRORD s sConst-|An|-(log (M)Hxn)l/‘*) (27)

J=1

(see Theorems (6] B8 in Section [4:3.3]). In the next subsection, we overview the implications
of ([27) to the analysis of the quadrature, discussed in Section



1.3.2 Quadrature Weights

Roughly speaking, (27)) asserts that, for all real —1 <t < 1,

ORI AR = iy = 0D, (28)

In other words, the left-hand side of (28)]) is uniformly bounded in (—1, 1), and its magnitude
is of order |A,|. If we multiply both sides of ([28) by %, (t) and use (2), we obtain

L=@1(t) + -+ @nlt) + ¢n(t) - O (|Aal) (29)

In other words, ¢1,..., @, constitute a partition of unity in the interval (—1,1), up to an
error of order |A,|. We integrate both sides of (29) over (—1,1) and use Theorem [ in
Section 21l and (I4]) in Section [[.2] to obtain

2=Wi+- -+ W, +0 (J\)) (30)

(see Section .44 for more details).
Suppose now that m # n is an integer. We multiply both sides of ([29]) by %, to obtain

On the other hand, for every integer j = 1,...,n, we use integration by parts to evaluate

1
JRCURTCr S

Am 2. m(t; )‘ —icxt;
‘|)\m|‘2 _1/}|)\(H|J2) ' [ it e / V() - € dx] (32)

(see Theorem [B9] in Section 41]). We combine ([21), (BI) and ([B2) with some additional
analysis to conclude that, for all integer 0 < m < n,

/1 G(t) dt =3 (1) - W | < const - [An] - (log ‘;' + Xn) (33)

(see Theorems [60} [62] in Section F.4.2).

According to (33), the quadrature error (@) in Section [l is roughly of order |A,|. It
remains to establish for what values of n this error is smaller than the predefined accuracy
parameter € > 0. In Section [£.4.3] we combine Theorems [0, [7, T1] with ([B3) to achieve that
goal. Namely, we show that, if

2 1
n> 25 4 const - log(c) - (log(c) + log > ) (34)
e g



then
1 n
/lwm@) dt = Y(ts) - W <z, (35)
i 2

for all integer 0 < m < n (see Theorem [63]).

Numerical experiments seem to indicate that the situation is even better in practice:
namely, to achieve the desired accuracy it suffices to pick the minimal n such that |\,| < ¢,
which occurs for n = 2¢/m+ O((logc) - (—loge)) (see Section[@ in particular, Conjecture
and Experiment 14 in Section [6.2.T]).

2 Mathematical and Numerical Preliminaries

In this section, we introduce notation and summarize several facts to be used in the rest of
the paper.

2.1 Prolate Spheroidal Wave Functions

In this subsection, we summarize several facts about the PSWFs. Unless stated otherwise,
all these facts can be found in [38], [30], [18], [34], [17], [25], [26].

Given a real number ¢ > 0, we define the operator F, : L?[-1,1] — L?[—1,1] via the
formula

1

Rl (@) = [ ol . (36)
-1

Obviously, F, is compact. We denote its eigenvalues by Ag, A1,..., Ay, ... and assume that

they are ordered such that |A,| > |A\ny1| for all natural n > 0. We denote by 1, the

eigenfunction corresponding to A,. In other words, the following identity holds for all

integer n > 0 and all real —1 <z < 1:

1
At (x) = /_ 1 Y (t)e't dt. (37)

We adopt the convention] that ¥nllr2i—1,1) = 1. The following theorem describes the
eigenvalues and eigenfunctions of F.

Theorem 1. Suppose that ¢ > 0 is a real number, and that the operator F. is defined via
Ba) above. Then, the eigenfunctions 1o, Y1, ... of F. are purely real, are orthonormal and
are complete in L?[—~1,1]. The even-numbered functions are even, the odd-numbered ones
are odd. Each function 1y, has exactly n simple roots in (—1,1). All eigenvalues X\, of F¢
are non-zero and simple; the even-numbered ones are purely real and the odd-numbered ones
are purely imaginary; in particular, A, = i" |\y|.

! This convention agrees with that of [38], [30] and differs from that of [34].

10



We define the self-adjoint operator Q. : L? [-1,1] — L?[~1,1] via the formula

Lsin (e (x —
Qi@ = [ D) o (38)

™ J_q T —1
Clearly, if we denote by J : L?(R) — L?(R) the unitary Fourier transform, then

Qe [¢] (2) = x-11(x) - T [X-eq(§) - T [0 (§)] (), (39)

where X[_q,q : R — R is the characteristic function of the interval [—a,a], defined via the
formula

(2) 1 —a<x<a, (40)
_aal(T) =
X-aal 0 otherwise,

for all real z. In other words, (). represents low-passing followed by time-limiting. .
relates to F, defined via (34]), by

Qc=y-F-F. (41)
and the eigenvalues u, of @, satisfy the identity
o= 5 Il (42)
for all integer n > 0. Obviously,
U < 1, (43)

for all integer n > 0, due to [BY). Moreover, Q. has the same eigenfunctions t,, as Fi.. In
other words,

1 /1 sin (¢ (z — 1)) bn(t) dt, (44)

Mnlbn(l’) = ; . Tt

for all integer n > 0 and all —1 < z < 1. Also, Q. is closely related to the operator
P.: L*(R) — L%*(R), defined via the formula

Rldw =1 [~ 2D a (45)

which is a widely known orthogonal projection onto the space of functions of band limit
¢ > 0 on the real line R.

The following theorem about the eigenvalues p, of the operator Q., defined via (B8],
can be traced back to [18]:

Theorem 2. Suppose that ¢ > 0 and 0 < a < 1 are positive real numbers, and that the
operator Q. : L?[-1,1] — L% [~1,1] is defined via [B]) above. Suppose also that the integer
N(c, ) is the number of the eigenvalues p, of Q. that are greater than a. In other words,

N(c,a) =max{k=1,2,... : ux_1 > a}. (46)

11



Then,

l—«

2c 1
N(c,a) = —+ <7T210g

) loge+ O (loge) . (47)

According to (A7), there are about 2¢/m eigenvalues whose absolute value is close to one,
order of log ¢ eigenvalues that decay exponentially, and the rest of them are very close to
Zero.

The eigenfunctions v, of Q. turn out to be the PSWFs, well known from classical
mathematical physics [24]. The following theorem, proved in a more general form in [35],
formalizes this statement.

Theorem 3. For any c > 0, there exists a strictly increasing unbounded sequence of positive
numbers xo < x1 < ... such that, for each integer n > 0, the differential equation

(1—2%) 9" (2) — 22 -/ (2) + (xn — #2%) (z) = 0 (48)

has a solution that is continuous on [—1,1]. Moreover, all such solutions are constant
multiples of the eigenfunction 1y, of F., defined via ([B6l) above.

Remark 1. For all real ¢ > 0 and all integer n > 0, B7) defines an analytic continuation
of Uy, onto the entire complex plane. All the roots of ¥, are simple and real. In addition,
the ODE (48)) is satisfied for all complex x.

Many properties of the PSWF 1), depend on whether the eigenvalue x, of the ODE
(@R) is greater than or less than ¢2. In the following theorem from [25], [26], we describe a
simple relationship between c,n and x,,.

Theorem 4. Suppose that n > 2 is a non-negative integer.
o Ifn < (2¢/m) — 1, then xn < 2.
o Ifn > (2¢c/7), then xn > c.

o If(2c/m) —1 < n < (2¢/m), then either inequality is possible.

In the following theorem, upper and lower bounds on y;, in terms of ¢ and n are provided.

Theorem 5. Suppose that ¢ > 0 is a real number, and n > 0 is an integer. Then,

nn+1)<xn,<n(m+1)+c (49)

It turns out that, for the purposes of this paper, the inequality (49) is insufficiently
sharp. More accurate bounds on Y, are described in the following three theorems (see [25],
[26], 1271, [28]).

12



Theorem 6. Suppose that n > 2 is a positive integer, and that x, > c>. Then,

9 1 — 2¢2
=
™ Jo 1—t
2 R E( < ) <n+3
— . /”L 5
- Xn o
where the function E :[0,1] — R is defined via (I09) in Section [Z.3.

Theorem 7. Suppose that n is a positive integer, and that

2c 2 dermc
n>—+—-0-log ,
T

T 1)
for some
5
0<5<Z7T-c.
Then,
4
xn>02+f-(5-c.
m

Theorem 8. Suppose that n is a positive integer, and that

2 2 2 4
C§n§6+2-5~log< ewc>—3,
T T T 1)

for some
3<o< —-c

Then,

8
Xn<62+;'6'c.

The following theorem is a direct consequence of Theorem [Gl

Theorem 9. Suppose that n > 0 is a positive integer, and that

2c
n>—+1.
T

Then,

Xn > ¢ + 1.

13
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(51)

(52)

(53)

(54)



Proof. Tt follows from (B0) of Theorem [l that

2¢ (1 -2 1
n <= \/1+X"2C~ dt
0 C

2 2 Lode
<?+;'\/Xn*02'

We combine (B9) with (57)) to obtain (G8]).

(59)

In the following theorem from [27], [28], we provide an upper bound on |A,| in terms of

n and c.

Theorem 10. Suppose that ¢ > 0 is a real number, and that

c > 22.

Suppose also that d > 0 is a real number, and that
we

3<0o .
<0< 1p

Suppose, in addition, that n is a positive integer, and that

2c 2 deme
n>—+—-0-log
T om 1)

).

Suppose furthermore that the real number £(n,c) is defined via the formula

¢(n,¢) = 7056 - ¢ - exp [—5 (1 - )] .

2me

Then,

[Anl < &(n,c).

In the following theorem from [27], [28], we provide another upper bound on |\,|.

Theorem 11. Suppose that n > 0 is a positive integer, and that

2
n>£+\/42.
T

Suppose also that the real number x,, is defined via the formula

o = Xn
n—in
62

Then,

[An| <

1195 - ¢ - (2n) - (zn — 1)

14
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The following theorem is a combination of certain results from [30] and [25], [26].

Theorem 12. Suppose that ¢ > 0 is a real number, and that x, > c*. Then,

1 1

<P <n+ <. (68)
2 2

The following theorem appears in [25], [26].

Theorem 13. Suppose that n > 0 is a non-negative integer, and that x,y are two arbitrary
extremum points of ¥, in (—1,1). If |x| < |y|, then

[Yn(@)] < [¢n(y)]- (69)

If, in addition, x, > c?, then

[ ()] < lthn ()] < lbn(1)]- (70)

The following theorem appears in [32].

Theorem 14. For all real ¢ > 0 and all natural n > 1,

<2vm. 1
,nax, I‘ﬂgi{’wm(t” <2vn (71)

In the following theorem, we provide a recurrence relation between the derivatives of v,
of arbitrary order (see Lemma 9.1 in [38§]).

Theorem 15. Suppose that ¢ > 0 is a real number, and that n > 0 is an integer. Then,
(1= £2) 417(t) — 407/(8) + (xm — €2 — 2) Pp(8) — 26305 (t) = 0 (72)
for all real t. Moreover, for all integer k > 2 and all real t,

(1= ) () =2 (k + DS (E) + (xn — k (k+1) — 82) P (1)
— Aktp*FD (@) — Pk (k= 1) pFD () = 0. (73)

We refer to the roots of ¢, the roots of ¢, and the turning points of the ODE (8] as
"special points”. In the following theorem from [25], [26], we describe the location of some
of the special points.
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Theorem 16 (Special points). Suppose that n > 2 is a positive integer. Suppose also that
t1 <ty < ... are the roots of P, in (—1,1), and that s; < sy < ... are the roots of 1!, in
(=1,1). If xn < 2, then
Vv Xn Vv Xn
c

1< <51 <1 <82 < <1 <8y <ty < Spy1 <
C

<1 (74)

In particular, vy has n roots in (—1,1), and ], has n + 1 roots in (—1,1). On the other
hand, if x,, > c?, then

VXn VXn (75)

— -l < <51 <tg < <t < Sp1 <tp, <1< .
C C

In particular, ¥y, has n roots in (—1,1), and ], has n — 1 roots in (—1,1).

In the following theorem, proven in [25], [26], we describe a relation between the mag-
nitude of ¢, and 1/, in the interval (—1,1).

Theorem 17. Suppose that n > 0 is a non-negative integer, and that the functions p,q :

R — R are defined via ([I40) in Section [2.80. Suppose also that the functions Q,Q :
(0, min {, /Xn/C, 1}) — R are defined, respectively, via the formulae

VAN Y 2
QW) =) + X (v = v + L1 U0 (76)
and
Q(t) =p(t) - q(t) - Q(t)
—(1-12)- ((Xn —P2) R+ (1—12) - (%(t))Q) . (77)

Then, @ is increasing in the interval (O, min {« /Xn/Cs 1}), and Q is decreasing in the interval
(O,min {, /Xn/C, 1})

2.2 Legendre Polynomials and PSWF's

In this subsection, we list several well known facts about Legendre polynomials and the
relationship between Legendre polynomials and PSWFs. All of these facts can be found,
for example, in [12], [38], [1].

The Legendre polynomials Py, Pi, P, ... are defined via the formulae

Po(t) =1,
Pi(t) =t, (78)
and the recurrence relation
(k+1) Prya(t) = (2k + 1) tPp(t) — kPr1(t), (79)
for all K = 1,2,.... The even-indexed Legendre polynomials are even functions, and the

odd-indexed Legendre polynomials are odd functions. The Legendre polynomials { Py},

16



constitute a complete orthogonal system in L? [~1,1]. The normalized Legendre polynomi-
als are defined via the formula

Py(t) = Pe(t) - vk +1/2, (80)
for all k =0,1,2,.... The L?[~1,1]-norm of each normalized Legendre polynomial equals
to one, i.e.

1
— 2
/ (Pe(t))” dt = 1. (81)
-1

Therefore, the normalized Legendre polynomials constitute an orthonormal basis for L? [—1, 1].
In particular, for every real ¢ > 0 and every integer n > 0, the prolate spheroidal wave func-
tion %, corresponding to the band limit ¢, can be expanded into the series

o L o0
=Y A" Pula) = Yo" i), (82)
k=0 k=0
for all —1 < x <1, where ﬂon),ﬂgn), ... are defined via the formula
1 E—
= / () - Pr(x) dz, (83)
-1
and a(() ), ozgn), ... are defined via the formula

Bk +1/2 (84)

for all k =0,1,2,.... Due to the combination of Theorem [l in Section 2.1 with (&), (82),
E3),

(A7) () () 1 )

The sequence B(()n),ﬂyl), ... satisfies the recurrence relation

Ao,0 ﬁén) + Aoz B = xn - ﬁé”),
Aiq ‘5?) + A3 5;@ = Xn " ﬂ;n),
Apgo B+ Apk - B + Ao By = xn - B, (86)
for all k =2,3,..., where Ay, Apiok, Ak k42 are defined via the formulae
2k(k+1)—1 9
. c s
(2k+3)(2k —1)
(k+2)(kE+1) &2 (87)
(2k +3)1/(2k + 1)(2k + 5)

A =k(kE+1)+

Apjivo = Apqok =

17



for all K = 0,1,2,.... In other words, the infinite vector (ﬁ((]n),ﬁgn),...) satisfies the
identity

(A—xal)- (87.80....)" =0, (38)

where [ is the infinite identity matrix, and the non-zero entries of the infinite symmetric
matrix A are given via (87]).

The matrix A naturally splits into two infinite symmetric tridiagonal matrices, A°Y¢™ and
A%d the former consisting of the elements of A with even-indexed rows and columns, and
the latter consisting of the elements of A with odd-indexed rows and columns. Moreover,
for every pair of integers n, k > 0,

B =0, if k+nis odd, (89)

due to the combination of Theorem [I] in Section 2.1 and (83). In the following theorem
(that appears in [3§] in a slightly different form), we summarize the implications of these

observations to the identity (B8], that lead to numerical algorithms for the evaluation of
PSWFs.

Theorem 18. Suppose that ¢ > 0 is a real number, and that the infinite tridiagonal sym-

metric matrices A" and A% qre defined, respectively, via
Ao Aoz
Asg Azz Aoy
AT = Ay Agy Aup (90)
and
A1n Aig
A1 Assz Ass
dd _ ) ) )
AT = Ass Ass Asz ’ (91)

where the entries Ay ; are defined via 7). Suppose also that the unit length infinite vector
B e 12 is defined via the formula

T
ﬁ(n), ﬂ(n), e n is even,
Ig(") — ( 0 2 ) (92)

<5£n)»ﬁ§n), . ..>T n is odd,

where B((]n),ﬂgn), ... are defined via [B3). If n is even, then

Aeven 5(71) = Yn - 5(71)' (93)
If n is odd, then

A0dd . g(n) — .. g, (94)
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Remark 2. While the matrices A" and A° are infinite, and their entries do not decay
with increasing row or column number, the coordinates of each eigenvector 8™ decay su-
perexponentially fast (see e.g. [38] for estimates of this decay). In particular, suppose that
we need to evaluate the first n + 1 eigenvalues xo, ..., xn and the corresponding eigenvec-
tors SO ..., B numerically. Then, we can replace the matrices A", A% ip ©3), ©4),
respectively, with their N x N upper left square submatrices, where N is of order n, and
solve the resulting symmetric tridiagonal eigenproblem by any standard technique (see, for
example, [37], [7]; see also [38] for more details about this numerical algorithm). The cost
of this algorithm is O(n?) operations.

The Legendre functions of the second kind Qq, Q1, Qo, ... are defined via the formulae

1 1+t
t) = = log ——
QO( ) 2 og 1_ ta
t 1+t
Q:1(t) = B log 1% 1, (95)
and the recurrence relation
(k+1)Qry1(t) = (2k + 1) tQx(t) — kQr_1(2), (96)

for all kK =1,2,.... In particular,

-1, 1+t 3
t) = 1 -t
Qa(t) 1 BTt 2"
563—3t 14+t 5, 2
1 A
;BT T2t T3 (97)

Qs(t) =

We observe that the recurrence relation (O6]) is the same as the recurrence relation (79I,
satisfied by the Legendre polynomials. It follows from (79), (@6]), that both the Legendre
polynomials Py, Pi,... and the Legendre functions of the second kind Qq,Q1,... satisfy
another recurrence relation, namely

t2Py(t) = Ag—2Pi—2(t) + BpPi(t) + Cri2Pria(t),
2 Qr(t) = Ar—2Qr—2(t) + BrQr(t) + Cry2Qr12(t), (98)
for all Kk =2,3,..., where
(k+1)(k +2)

A = (2k +3)(2k +5)’ (99)
C 2k(k+1)—1
B = (2k +3)(2k — 1)’ (100)
k(k—1)

Crp = (101)

2k — 3)(2k — 1)’

In addition, for every integer k = 0,1,2,..., the kth Legendre polynomial P, and the kth
Legendre function of the second kind @ are two independent solutions of the second order
Legendre differential equation

(1—t3) -y (t)—2t-9/(t) + k(k+1)-y(t) = 0. (102)
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Also, for every integer k = 0,1,... and all complex z such that arg (z — 1) < m,

1
Qu(2) = ;/1 f’“_(tz dt (103)

(see, for example, Section 8.82 of [12]).

Remark 3. For any real number —1 < x < 1 and integer n > 0, we can use the three-term
recurrences ([[9), (@6 to evaluate numerically Py(x), ..., Py(x) and Qo(x),...,Qn(z) with
high precision, in O(n) operations (see, for example, [7] for more details).

2.3 Elliptic Integrals

In this subsection, we summarize several facts about elliptic integrals. These facts can be
found, for example, in section 8.1 in [12], and in [I].

The incomplete elliptic integrals of the first and second kind are defined, respectively,
by the formulae

Y dt
Fly, k) = / S — (104)
0 v1— k2sin?t

y
E(y,k) = / V1 —k2sin?t dt, (105)
0

where 0 <y < 7/2 and 0 < k < 1. By performing the substitution x = sint, we can write

([I04) and (I03) as

F(y, k) e de (106)
Y Y T =D
sin(y) 1 _ f242
E(y, k) = / ka dz. (107)
0 X

The complete elliptic integrals of the first and second kind are defined, respectively, by the
formulae

/2 dt

m

(k) =F(3:k) / Vi kst e
w/2

Bk = £ (5 .k) = /0 V1= R2sin? ¢ dt, (109)

for all 0 < k£ < 1. Moreover,

E (\/1 - k2) —14 <—i +log(2) — log;k)> K2+ 0 (K* - log(k)) . (110)
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2.4 Oscillation Properties of Second Order ODEs

In this subsection, we state several well known facts from the general theory of second order
ordinary differential equations (see e.g. [23]).
The following two theorems appear in Section 3.6 of [23] in a slightly different form.

Theorem 19 (distance between roots). Suppose that h(t) is a solution of the ODE
y'(t) +Q(t) - y(t) = 0. (111)

Suppose also that x <y are two consecutive roots of h(t), and that

A? <Q(t) < B, (112)
forallx <t <wy. Then,

s i

— — —. 11

g <vy-r<7 (113)

Theorem 20. Suppose that a < b are real numbers, and that g : (a,b) — R is a continuous
monotone function. Suppose also that y(t) is a solution of the ODE

y'(t) +9(t) - y(t) =0, (114)
in the interval (a,b). Suppose furthermore that
<ty <tz<... (115)
are consecutive roots of y(t). If g is non-decreasing, then
to— 1y Sty —ty >ty —t3>.... (116)
If g is non-increasing, then

to—t) <ty —to <ty —t3<.... (117)

The following theorem is a special case of Theorem 6.2 from Section 3.6 in [23]:

Theorem 21. Suppose that g1, go are continuous functions, and that, for all real t in the
interval (a,b), the inequality gi(t) < ga2(t) holds. Suppose also that the function ¢1,do
satisfy, for all a <t < b,

1(t) +g1(t) - d1(t)
5(t) + g2(t) - pa(t)

0,
0. (118)

Then, ¢o has a root between every two consecutive roots of ¢1.
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Corollary 1. Suppose that the functions ¢1,d2 are those of Theorem [Z1] above. Suppose
also that

d1(to) = ¢2(to),  #1(to) = Ph(to), (119)
for some a < tg < b. Then, ¢2 has at least as many roots in (tg,b) as ¢1.

Proof. By Theorem 21l we only need to show that if ¢; is the minimal root of ¢ in (¢, b),
then there exists a root of ¢o in (tg,t1). By contradiction, suppose that this is not the

case. In addition, without loss of generality, suppose that ¢1(t), ¢2(t) are positive in (to, t1).
Then, due to (II8),

102 — Popr = (g2 — g1) 192, (120)
and hence
t1
0 < [ (05 = 01(s)) 41(5)oas)ds
= [$1(s)8a(s) — b1 (5)h(s)],
= ¢ (t1)a(t1) <0, (121)
which is a contradiction. |

2.5 Growth Properties of Second Order ODEs

The following theorem appears in [19] in a more general form. We provide a proof for the
sake of completeness.

Theorem 22. Suppose that a < b are real numbers, and that the functions w,u, 3,7 :
(a,b) — C are continuously differentiable. Suppose also that, for all real a <t < b,

(i) = G 0') (o) 2
and that
B(t) #0, ~(t) #0, (123)

for all a < t < b. Suppose furthermore that the functions R,Q : (a,b) — R are defined,
respectively, via the formulae

_ 8@
FO= L (124)
and
Q) = [w (O + R(t) - [u (1), (125)
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Then, for all real a < to,t < b,

(é%((t))) (. { / t (( a <(>)> MEUTIORS: (6(8)7(8))> : ds]
to to S

R(t) ) CREN L 186 )]+ R BEE)
<R(to)> P {/to <<4R(s)> + 5 ) d8]~ (126)

Proof. We note that, for a each fixed ¢, the formula (I25) can be written in the matrix
notation as

Q= w0) (5 piy) (401): (127

We differentiate Q(t) with respect to ¢ to obtain, by using (122I),

YO =080+ O+ ROUOTO + ROV KO
= A)B0)-+ HOwl) $ HOPOR) $ KOO + RO
5(8) + RO (w(t)
= @0 50) (34 7y o) () (128

Then, we define the functions z,y : (a,b) — R via the formulae

x(t) = w(t), (129)
y(t) = u(t) -/ R(t). (130)
We substitute (I30) into (I27]), (I28) to obtain
Q)
Q)
0 BH+RHY(E)
- _ t x(t 1
) (WR“”“) g ) () Fwrmar 0
R(1)

To find the eigenvalues of the matrix in (I3I]), we solve, for each a < t < b, the quadratic
equation

- };((;)) N (ﬁ(t) T g(t)v(t)) | <B<t> + R<t>v<t>> o, (132)
(t) R(t)
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in the unknown A. Suppose that A;(¢) < Ao(¢) are the roots of ([32)) for a fixed a < t < b.
We use (I24) to obtain

/ / 2
()= 20 (R“)) L2080 )] + RGOV

N

2R(t) I 2R(t) ]
_rm (RO K
alt) = e + _(2 ) 2801 b + wenon| - s
Due to ([I31]), for all a < ¢t < b,
M) < 2((;) < Ja(l). (134)
We substitute (I33]) into ([I34]), integrate it from ty to ¢ and exponentiate the result to
obtain (I26]). [

2.6 Priifer Transformations

In this subsection, we describe the classical Priifer transformation of a second order ODE
(see e.g. [23],[9]). Also, we describe a modification of Priifer transformation, introduced in
[11] and used in the rest of the paper.

Suppose that we are given the second order ODE

& (ot (1) + a(tyut) = (135)

where t varies over some interval I in which p and ¢ are continuously differentiable and have
no roots. We define the function 6 : I — R via

p)u'(t)
u(t)

where v : I — R is an arbitrary positive continuously differentiable function. The function
0(t) satisfies, for all ¢ in I,

=(t) tan 6(t), (136)

0(t) = —;Eg sin? 0(¢) — 38 cos? B(t) — (77/((;)) Sm@;(”). (137)
One can observe that if u/(¢) = 0 for ¢ € I, then by (L36)
O(t) = kmr, k is integer. (138)
Similarly, if u(f) = 0 for £ € I, then
0(t) = (k+1/2)m, k is integer. (139)

The choice (t) = 1 in (I30)) gives rise to the classical Priifer transformation (see e.g. section
4.2 in [23]).
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In [I1I], the choice v(t) = +/q(t)p(t) is suggested and shown to be more convenient
numerically in several applications. In this paper, this choice also leads to a more convenient
analytical tool than the classical Priifer transformation.

Writing (48)) in the form of (I30) yields
p(t) =t =1, q(t) = — xn, (140)
for all real ¢ > max {,/xn/c,1}. The equation (I36) admits the form

(w =/p t) tan O(t (141)

= atan ]ﬂ 210) ™
o) = ot ( ﬂﬂw@)+ ) 2

where m(t) is an integer determined for all ¢ by an arbitrary choice at some t = ty (the role
of mm(t) in (I42) is to enforce the continuity of # at the roots of 1,). The first order ODE
([I317) admits the form (see [11], [9])

0/'(t) = — f(t) — sin (20(1)) v(t), (143)

where the functions f, v are defined, respectively, via the formulae

t 2t2 _
— /4 0 ¢ X” (144)

which implies that

and
1 pt)d () +a)p'(t) 1 ([ ¢ c*t
o(t) = - Wte) _1 ——+ 55— |- (145)
4 p(t)a(t) 2\? =1 A —xn
Remark 4. In this paper, the variable t in (I4)), (I42), (I43) will be confined to the open
ray

(max {1, /xn/c},00). (146)

Nevertheless, a similar analysis is possible for t in the interval

(—min {1, /xn/c},min{1,/xn/c}). (147)
The following theorem from [25], [26]], summarizes such analysis for the case xn > c2.
Theorem 23. Suppose that n > 2 is a positive integer, and that x, > c*. Suppose also
that t1, ..., t, are the roots of 1\, in (—1,1), and s1,...,8,—1 are the roots of ¢}, in (—1,1)
(see Theorem [18 in Section [21]). Suppose furthermore that the function 0 : [-1,1] — R is
defined via the formula
(i—%)-w, ift =1t; for some 1l <i<n,
0(t) = (148)
atan (/525 - 58 ) +m() m,if Ya(t) £0,
where m(t) is the number of the roots of 1y, in the interval (—1,t). Then, 6 has the following
properties:
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e 0 is continuously differentiable in the interval [—1,1].
e 0 satisfies, for all —1 <t < 1, the differential equation
0'(t) = f(t) —v(t) - sin(20(t)), (149)
where the functions f,v are defined, respectively, via ([44), (I45]) in Section [Z.6.

o for each integer 0 < k < 2n, there is a unique solution to the equation

o(t) =k - g (150)

0(—-1) =0, (151)
o(t:) = <z - ;) o (152)
0(sj) =j-m, (153)
0(1)=n-m, (154)
foreachi=1,....,n and each j=1,...,n—1.
e Forall real —1 <t <1,
6'(t) > 0. (155)

In other words, 0 is monotonically increasing.

2.7 Numerical Tools

In this subsection, we summarize several numerical techniques to be used in this paper.

2.7.1 Newton’s Method

Newton’s method solves the equation f(z) = 0 iteratively given an initial approximation xg
of the root . The nth iteration is defined by

f(xn-1)
f(n-1)

The convergence is quadratic provided that z is a simple root and zq is close enough to Z.
More details can be found e.g. in [7].

Tp = Tp—1 —

(156)
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2.7.2 The Taylor Series Method for the Solution of ODEs

The Taylor series method for the solution of a linear second order differential equation is
based on the Taylor formula

k .
(@+h)=Y" w(z) ; + O(hFHY), (157)
j=0 :

This method evaluates u(x 4+ h) and /(x + h) by using (I57) and depends on the ability
to compute u)(z) for j = 0,...,k. When the latter satisfy a simple recurrence relation
like ([73]) and hence can be computed in O(k) operations, this method is particularly useful.
The reader is referred to [I1] for further details.

2.7.3 A Second Order Runge-Kutta Method

We use the following second order Runge-Kutta Method, which can be found, for example,
in [7]. It solves the initial value problem

y(to) =vo, ()= f(t,y) (158)

on the interval ty <t < tg+ L by computing

tiv1 =t +h,
kiv1 = hf (tiv1, vi + ki) ,
Yir1 = Yi + (ki + kiy1) /2 (159)
with ¢ =0,...,n and
L
h = 57 ko = f(tﬂay())' (160)

Exactly n + 1 evaluations of f are required for this algorithm, which results in the total
cost being O(n). The global truncation error is O(h?).

2.7.4 Power and Inverse Power Methods

The methods described in this subsection are widely known and can be found, for example,
in [7]. Suppose that A is an n x n real symmetric matrix, whose eigenvalues satisfy

1] > |o2| = |og| = -+ = |on|. (161)

The Power Method approximates o1 and the corresponding unit eigenvector in the following
way.

e Set vy to be a random vector in R™ such that [jvg|| = 1/vd v = 1.
e Set j =1 and 1y = 0.

e Compute v; = Avj_1.
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Set n; = ]T_lf)j.

Set v; = 0;/|9;]]-

If [n; — nj—1] is “sufficiently small”, stop.
e Otherwise, set j = j + 1 and repeat the iteration.

The output value 7; approximates o1, and v; approximates a unit eigenvector corresponding
to o1. The cost of each iteration is dominated by the cost of evaluating Av;_;1. The rate
of convergence of the algorithm is linear and equals to |o2| /|01, that is, the error after j
iterations is of order (|og|/ |o1])’.

Remark 5. A modification of the algorithm used in this paper defines n; by

i =argmax {|v;_1(k)| : k=1,...,n}, n;= (162)

The Inverse Power Method finds the eigenvalue o of A and a corresponding unit eigen-
vector provided that an approximation o of o) is known such that

lo —ok| <max{|loc —oj| : jF#k}. (163)

Conceptually, the Inverse Power Method is an application of the Power Method on the
matrix B = (A — oI)"'. In practice, B need not be evaluated explicitly and it suffices to
be able to solve the linear system of equations

(A—oal)vj =vj (164)
for the unknown 9; on each iteration of the algorithm.

Remark 6. If the matriz A is tridiagonal, the system ([I64) can be solved in O(n) opera-
tions, for example, by means of Gaussian elimination or QR decomposition (see e.g [37],

[7)-
2.7.5 Sturm Sequence

The following theorem can be found, for example, in [37] (see also [2]). It provides the
basis for an algorithm of evaluating the kth smallest eigenvalue of a symmetric tridiagonal
matrix.

Theorem 24 (Sturm sequence). Suppose that

ap by O 0
bQ as bg 0 0
o=|: o (165)
0 0 bn—l an—1 bn
0 0 b, ap
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is a symmetric tridiagonal matrix such that none of ba, ..., b, is zero. Then, its n eigen-
values satisfy

51(C) < -+ < an(C). (166)

Suppose also that Cy is the k x k leading principal submatriz of C, for every integer k =
1,...,n. We define the polynomials p_1,po, ..., pn via the formulae

p-1(x) =0, po(x) =1 (167)
and
pr(x) = det (Ck — 1), (168)
fork=2,...,n. In other words, py is the characteristic polynomials of Cy. Then,
pr(x) = (ar — &) pr—1(x) — bipr—2(), (169)
for every integer k = 1,2,...,n. Suppose furthermore, that, for any real number o, the

integer A(o) is defined to be the number of agreements of sign of consecutive elements of
the sequence

po(o),pi(o),...,pn(0), (170)

where the sign of pi(c) is taken to be opposite to the sign of px—1(o) if pp(o) is zero. Then,
the number of eigenvalues of C that are strictly larger than o is precisely A(o).

Corollary 2 (Sturm bisection). The eigenvalue o (C) of ([I63) can be found by means of
bisection, each iteration of which costs O(n) operations.

Proof. We initialize the bisection by choosing zg < o(C) < yo. Then we set j = 0 and
iterate as follows.

e Set zj = (iL‘j —I—y])/2
e If y; — x; is small enough, stop and return z;.
Compute A; = A(z;) using (I69) and (I70).

o If Aj >k, set x;11 = 2j and yj11 = y;.

o If A; <k,set x;11 =x; and yj41 = 2;.
e Increase j by one and go to the first step.

In the end |0 (C) — 2| is at most y; — x;. The cost of the algorithm is due to (I6J) and
the definition of A(o). [
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2.8 Miscellaneous tools

In this subsection, we list some widely know theorems of real analysis.

The following theorem can be found in section 6.4 of [3] in a more general form. In this
theorem, we use the following widely used notation. Suppose that g,h : (0,00) — C are
complex-valued functions. The expression

g(t) ~ h(t), t— oo, (171)
means that
lim @ =1. (172)
t—oo g(t)

Theorem 25 (Watson’s Lemma). Suppose that b > 0, and that the function f :[0,0] — R
is twice continuously differentiable. Then,

b
/ f(s) e Stds ~ f(to), t — oo, (173)
0
in the sense of (ITIl). In other words,
t b .
1im-/fs-e_sd5:1. 174
TR (s) (174)

The following theorem appears, for example, in [§] in a more general form.

Theorem 26. Suppose that xq is a real number, and u : R? — R is a function of two real
variables (t,z), defined in the shifted upper half-plane

Hyy={(t,x) : —c0o<t<oo, m<x<ox}. (175)

Suppose also, that u is bounded in Hy, and is harmonic in the interior of Hy,. Suppose
furthermore, that

/Oo lu(t, )| dt < co. (176)

—00

Then, for all real t and x > xg, the value u(t,z) is given by the formula

ult, ) = i/j: (s, w0) + 7 S)f;(";‘)_ o s (177)

and, moreover, for all x > xg,

/OO u(t, z0) dt = /OO u(t,) dt. (178)

—0o0 —00
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The following theorem is a special case of the well known Cauchy’s integral formula (see,
for example, [31]).

Theorem 27. Suppose that D C C is an open bounded simply connected subset of the com-
plex plane, and that the boundary ' of D is piecewise continuously differentiable. Suppose
also that the function g : C — C is holomorphic in a neighborhood of D, and that none of
the roots of g lies on I'. Suppose furthermore that z1,z2,...,2m € D are the roots of g in
D, all of which are simple, and that z € D is a complex number such that g(z) # 0. In
other words,

z€ D\ {z1,22,...,2m}- (179)
Then,

I - NN S B SRR S
15 ) 2 +2m7§g(<)-(c—z>’ (180)

Jj=1

where fr denotes the contour integral over I' in the counterclockwise direction.

3  Summary

In this section, we summarize some of the properties of prolate spheroidal wave functions
(PSWFs), proved in the rest of the paper, mainly in Section[dl The PSWFs and the related
notation were introduced in Section 2l Throughout this section, the band limit ¢ > 0 is
assumed to be a positive real number.

In the following proposition, we describe the location of “special points” (roots of i,
roots of 1/, turning points of the ODE (@), in the case x,, > c?. This proposition is
proven in Theorem 29 and Corollary Bin Section LIl (see also Theorem [I6lin Section 2.1]).
It is illustrated in Figures[I] 2] (see Experiment 1 in Section [6.1.1]).

Proposition 1. Suppose that n > 0 is a positive integer, and that x, > c>. Suppose also
that x1 < xa < ... are the roots of ¥y, in (1,00), and y1 < y2 < ... are the roots of Y, in
(1,00). Then,

VX

1<Tn<y1<x1<yg<x2<.... (181)

Also, ¥y, has infinitely many roots in (1,00); all of these roots are simple.

The following proposition summarizes the statements of Theorems BTl B2 in Section E.T1
It is illustrated in Tables [ 2 Bl

2

Proposition 2. Suppose that n > 0 is an integer, and that x, > c¢*. Suppose also that

x1 < g < ... are the roots of vy, in (1,00).

e For each integer k =1,2,...,

1 21
Tl < g — g S oy (182)
¢ 14 ¢ (27— 1) ¢
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e If, in addition, ¢ > 1/5 and

2 1
n > ?C + or (logc+1log(16 - €)), (183)
then
1»‘2—3U1Z$3—$2Z"'2xk+1—1‘k2"'ZE- (184)
c
e Also,
vV Xn ™
— > —. 185
e c 2c (185)
e Moreover,
21 2 VXn
23312<C‘<5”1— Xn)- (186)
i — (xn/c?) 7 c

The following proposition is an analogue of Proposition [ in the case x, < ¢%. Its proof
can be found in Theorem [33]in Section [Z.1]

Proposition 3. Suppose that n > 0 is an integer, and that x, < c*. Suppose also that
1 < x93 < ... are the roots of 1, in (1,00). Then,

To—T1 Sx3— T2 < oo S Tpy1 — T S0 S - (187)

o3

The following inequality is proved in Theorem [B5] in Section E.2.1] and is illustrated in
Tables [, Bl (see Experiment 5 in Section [G.1.2]).

Proposition 4. Suppose that n > 0 is an integer, and that x, > c¢*. Suppose also that
x <y are two roots of Py, in (1,00). Then,

2 -1
| ()] - A1

2—-1  A2y2—xn

: 188
Ar? —xn Y-l (188)

< o4t < oo

The following proposition summarizes Theorem [43] in Section E.2.2]
Proposition 5. Suppose that n > 0 is an integer, and that x, > c¢*. Suppose also that x
is a root of 1y in (1,00). Then,

2 3

Y (z)| (#2 — (xn/c2))1

. (189)
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The following two estimates are proven, in a more precise form, in Theorem E8 in
Section L3221 They describe the behavior of ¢, (z) for z > 1 and are meaningful only when
x is large compared to |A,| '

Proposition 6. Suppose that n > 0 is a non-negative integer, and that x > 1 is a real
number. If n is even, then

ton(z) = Qig(i) [Sin(ca:) +0 (W)] . (190)

If n is odd, then

Yn () = if;ii) [Cos(cx) +0 <W>} . (191)

The following proposition asserts that, in the interval (—1,1), the difference between
the reciprocal of ¢, and a certain rational function with n poles is of order |A,|. This is
an immediate consequence of Theorem B8 in Section B33 and the proof of Theorem [71] in

Section E.4.4

Proposition 7. Suppose that ¢ > 30, and that n > 0 is an even positive integer. Suppose
also that

2
n > f +7. (192)

Suppose furthermore that —1 < t; < --- < t, < 1 are the roots of 1, in (—1,1), and that
the function I : (—1,1) — R is defined via the formula

1 - 1
10 =50~ 20 5 (193)

for =1 <t < 1. Then,

11(2)] < |An] - <24 -log <A1) +130 - (Xn)l/‘*) , (194)

[Anl
for all real —1 <t < 1.

The following proposition is the principal analytical result of the paper. It is proven in
Theorem [65] in Section [£.4.3] Tt is illustrated in Table I8 and Figures [l 10 111

Proposition 8. Suppose that ¢ > 0 is a positive real number, and that
c > 30. (195)

Suppose also that € > 0 is a positive real number, and that

exp [—; (c— 20)] <e<l (196)
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Suppose furthermore that n > 0 and 0 < m < n are positive integers, and that

2c 3 1 1 c
n>—+ (10 + 5 log(c) + 5 - log €> -log (5) : (197)

Then,

1 n
/1%(3) ds =3 bty W;| < e, (198)
g 2

where t; < --- < t, are the roots of V¥, in (—1,1), and Wh,..., W, are defined via (I4) in
Section [L.2.

In Proposition [, we address the accuracy of the quadrature, discussed in Section
More specifically, it asserts that to achieve the prescribed absolute accuracy ¢ (in the sense
of (6))), it suffices to take n of the order 2¢/m + O (log(c) - (log(c) — log(e))).

The assumptions of Proposition [, however, have a minor drawback: namely, ¢ is as-
sumed not to be “too small”, in the sense of (I96). In the following proposition, proven
in Theorem [66] in Section [£.4.3] we eliminate this inconvenience. On the other hand, the
resulting lower bound on n is considerably weaker than that of Proposition [8l

Proposition 9. Suppose that ¢ > 0 is a positive real number, and that
c > 30. (199)
Suppose also that € > 0 is a positive real number, and that
0<e<l. (200)

Suppose furthermore that n > 0 and 0 < m < n are positive integers, and that

4 12 4 1
n-<1—0)>c—|—-log(c)+-log. (201)
e T T €
Then,
1 n
/1 Um(s) ds = > hm(t))W;| <e, (202)
_ =

where t1 < -+ < t,, are the roots of ¥y, in (—1,1), and Wh,...,W,, are defined via (I4) in
Section [I.2.

In the following proposition, we assert that the quadrature weights Wy,..., W, are
positive, provided that n is large enough. It is proven in Theorem [[3] in Section 4.4

Proposition 10. Suppose that ¢ > 0 is a positive real number, and that

¢ > 30. (203)
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Suppose also that n > 0 is a positive odd integer, and that
2c c
n> —+5-log(c) - log (7) . (204)
s 2
Suppose furthermore that Wi, ..., Wy, are defined via ([I4l) in Section [LA Then, for all
mteger j =1,...,n,

W; > 0. (205)

Numerical experiments seem to indicate that the assumptions (204]) and that n be odd
are unnecessary (see Remarks [[2] [[3]in Section A.4.4]).

4 Analytical Apparatus

The purpose of this section is to provide the analytical apparatus to be used in the rest of
the paper.

4.1 Oscillation Properties of PSWFs

In this subsection, we prove several facts about the distance between consecutive roots of
PSWFs and find a more subtle relation between n and x, (see (A8) in Section 2.I]) than
the inequality ([9). Throughout this subsection, ¢ > 0 is a positive real number and n is a
non-negative integer. The principal results of this subsection are Theorems [31]

4.1.1 Elimination of the First-Order Term of the Prolate ODE

In this subsection, we analyze the oscillation properties of 1, via transforming the ODE
(#8) into a second-order linear ODE without the first-order term. The following theorem is
the principal technical tool of this subsection.

Theorem 28. Suppose that n > 0 is a non-negative integer. Suppose also that that the
functions V,,, Qy, : (1,00) — R are defined, respectively, via the formulae

W, (t) = u(t) - VE2 1 (206)
and
22— Xn 1
Qn(t) = 21 + (t2 _ 1)27 (207)
fort > 1. Then,
Wi (t) + Qu(t) - Un(t) =0, (208)

for allt > 1.
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Proof. We differentiate W,, with respect to ¢ to obtain

t
21

U (t) = YR () V2 = 1+ () - (209)

Then, using (209), we differentiate ¥/, with respect to ¢ to obtain
26 () V2 —1-12/V12 -1
ve—-1 " 2 -1

= WLOVE =T+ ) =) (P - 1)
1 wn(t)}

= [(#1). ") + 2t -l () — o

t2 -1
n(t
= g [0 (o= ) - 2

_ . At =, 1
= —U,(t) < o +(t2—1)2>' (210)

U (t) = () VE2 = 1+ (t) -

1

To conclude the proof, we observe that (208]) follows from (210). [ |

Corollary 3. Suppose that n > 0 is an integer. Then, ¥, has infinitely many roots in
(1,00).

Proof. Suppose that @, : (1,00) — R is defined via (207). Then,
Jim Qn(t) = . (211)

We conclude by combining (211]) with (208) of Theorem above and Theorem in
Section 2.4 [
The following theorem is a counterpart of Theorem [T6l in Section 211

Theorem 29. Suppose that n > 0 is a positive integer, and that x, > c¢*. Suppose also
that x1 < xo < ... are the roots of ¥y, in (1,00), and y1 < y2 < ... are the roots of Y, in
(1,00). Then,

VX (212)

1< Y2 cy <z <yp<T2<....
C

Proof. Without loss of generality, we assume that
(1) > 0. (213)

We combine ([2I3)) with the assumption that x,, > ¢? and the ODE (@S)) to obtain

2

Y1) = X (1) > 0. (214)
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If, by contradiction to (212]),

L<y <~ Z(" (215)
then, due to (g,
2. .2
Xn —C Y
n(y1) = _1—7y21 “Pn(y1) >0, (216)
1

in contradiction to ([2I4]). Therefore, v/, is positive in the interval (1, VXn/ c); in particular,

VXn (217)

C

x>

and

Un (‘/27”> >0, (@) > 0. (218)

We combine ([2I7)) and (2I])) to conclude that
VXn (219)
c

<y <21

Suppose now that k is a positive integer, and y is a root of ¢/, in the interval (zj,zk41).

Due to (48]),

2,2
c Yy - X
n(y) = ——5—"" - n(y). (220)
ye—1
It follows from (220) that 1], has exactly one root between two consecutive roots of 1,,. We
combine this observation with (2I9) to obtain (212). [

In the following theorem, we describe several properties of the modified Priifer transfor-
mation (see Section 2.0]) applied to the prolate differential equation (4S)).

Theorem 30. Suppose that n > 0 is a positive integer, and that x, > c*. Suppose also

that x1 < x9 < ... are the roots of ¥y in (1,00), and y1 < y2 < ... are the roots of ),
in (1,00) (see Theorem[Z3). Suppose furthermore that the function 6 : [\/Xn/c,00) — R is
defined via the formula

_gv th = \/?7
1—5) -7, ift =x; for somei=1,2,...,

o(t) = (-2) ’ (221)
atan (— an:gtg . Zigg) +m(t)-m, otherwise

where m(t) is the number of the roots of 1, in the interval (1,t). Then, 6 has the following
properties:
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e 0 is continuously differentiable in [\/)Tn/c, oo).
o 0 satisfies, for allt > \/Xn/c, the differential equation
0'(t) = f(t) — v(t) - sin(26(¢)), (222)
where the functions f,v are defined, respectively, via ([44), (I45]) in Section [Z.6.

o for each integer k > —1, there is a unique solution to the equation

o(t) =k - g (223)
for the unknown t in [\/ﬂ/c, oo) More specifically,
Vi _
0 (c) =3 (224)
O(zs) = <z _ ;) - (225)
0(yi) = (i = 1) -, (226)

for each integer i > 1.

Proof. We combine (212) in Theorem 29 with (221]) to conclude that 6 is well defined for
all t > /Xn/c. Obviously, 0 is continuous, and the identities (224)), ([225]), ([226) follow
immediately from the combination of Theorem 29 and ([221]). In addition, 6 satisfies the
ODE [222) in (y/Xn/c,o0) due to (I37), (I4I), ([43) in Section 2.6l

Finally, to establish the uniqueness of the solution to the equation ([223), we make the
following observation. Due to (221), for any point ¢ > /Xy /c, the value (t) is an integer
multiple of 7/2 if and only if ¢ is either a root of v, or a root of 1/,. We conclude the proof
by combining this observation with ([224)), (225) and (220)). [

The following theorem is illustrated in Table [I (see Experiment 2 in Section .1.T]).

Theorem 31. Suppose that n > 0 is an integer, and that x,, > c*. Suppose also that x1 is
the minimal root of ¥, in (1,00). Then,

VXn T (227)

xr1 — .
c 2c

Moreover,

2_1 2 /Xn
$1<-c-<:c1— X>. (228)
v
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Proof. Suppose that y; is the minimal root of ¢/, in (1, 00). Due to Theorem 29

\/ZT” (229)

<y < x1.
Moreover, due to (22I]) in Theorem B0l and (2I8]) in the proof of Theorem 29

sin(260(t)) > 0, (230)
for all real y; < ¢ < x1, where 6 is defined via ([22I)). We combine [230) with ([222)), (225),
([226]) to obtain

T _ [ dt:/x1 (F(t) — v(t) - sin(20(t))) dt

2 Y1 9

1 r1 Xn — c2
< f(t) dt :/ 2 — 21 dt <c-(r1—1y1). (231)
y1 Y1

We combine (229]) with (231]) to obtain ([227)). It also follows from (231]) that

r1 _ 2 _ 2
72T</ 2 - X% g < (:Ul—"ML)- L (232)
\/E/C t-—1 C xry — 1

which implies (228). [

The following theorem is a consequence of Theorems 28 BIl The results of the cor-
responding numerical experiments are reported in Tables 2] B (see Experiment 3 in Sec-

tion [6.1.1]).
2

Theorem 32. Suppose that n > 0 is an integer, and that x, > c¢“. Suppose also that
x1 < w2 < ... are the roots of 1y, in (1,00) (see Theorem|[24). Then,

s 1 s 2 —1
— 1= < Tpyr — T < — 4| —E— (233)
c\/ 142 (a2 —1)° ¢\ 2f = (u/?)
for each integer k = 1,2,.... If, in addition, ¢ > 1/5 and
2 1
n>—c+ — - (logc+log(16 - €)), (234)
s 2
then

To—T1 2 X3 — T2 " 2 Tyl — L =+ = —. (235)

o3

Proof. Suppose that the functions ¥,,,Q, : (1,00) — R are those of Theorem 28 above.
Suppose also that k > 1 is a positive integer. Then, due to (207),
2T O/ _ o B (/)

<Cc <K
a:i—l 2 —1

Qn(t) < A + ;2 <+ (236)

(t*—1)
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for all real xp < t < xg41. We observe that ¢, and ¥, have the same roots in (1,00)
due to (200), and combine this observation with (208]) of Theorem 28 and Theorem [T9 of
Section 2.4] to obtain (233)).

Now we assume that ¢ > 1/5 and that n satisfies ([234]). Also, we define the real number
0 via the formula

5= %. (237)
We recall that ¢ > 1/5 and combine ([234)), (237) and Theorem [7] in Section 2] to conclude

that
Xn — C2
C

> 1. (238)

Next, we differentiate (),, with respect to ¢ to obtain

N e L o2y
QL (t) = @ 1) TR oRTE (xn—0c) (t?=1)—=2). (239)

We combine (238) with Theorem [B1] to obtain

—2\? 2
(xn—c2)(x%—1)—2><xncc> +r- X" 20, (240)
and substitute (240) into ([239) to conclude that
Qn(t) >0, (241)
for all t > x1. Thus (2353 follows from the combination of (24I) and Theorem in
Section 2.4] [ |

Remark 7. Ertensive numerical experiments seem to indicate that, if x, > 2, then (235)
always holds. In other words, the assumption [234]) is unnecessary.

The following theorem is a counterpart of Theorem B2 in the case y, < c.
Theorem 33. Suppose that n > 0 is an integer, and that x, < c>. Suppose also that
x1 < x93 < ... are the roots of 1, in (1,00). Then,

To—a1 <3 -T2 <o < Tpyy — a2 <o < — (242)

o3

Proof. Suppose that the functions ¥,,, @, : (1,00) — R are those of Theorem 28 above. We
observe that @, is monotonically decreasing in (1, 00), due to (207). Also, we observe that

U,, and 1, have the same zeros in (1,00), due to (206). We combine these observations
with (208) and Theorem 20 in Section 2.4] to obtain (242]). [
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4.2 Growth Properties of PSWFs

In this subsection, we find several bounds on [i),| and [¢],|. Throughout this subsection,
¢ > 0 is a positive real number and n is a non-negative integer. The principal result of this
subsection is Theorem

4.2.1 Transformation of the Prolate ODE into a 2x2 System

The ODE (48) can be transformed into a linear two-dimensional first-order system of the
form

Y'(t) = At)Y (¢), (243)

where the diagonal entries of A(f) vanish. The application of Theorem 22] in Section
to ([243) yields somewhat crude but useful estimates on the magnitude of 1, and 1!,. The
following theorem is a technical tool to be used in the rest of this subsection. This theorem
is illustrated in Figures [3] @ (see Experiment 4 in Section [6.1.2)).

Theorem 34. Suppose that n > 0 is a non-negative integer, and that the functions p,q :

R — R are defined via ([I40Q) in Section [2.8. Suppose also that the functions Q,Q :
(max {«/Xn/Q 1} ,00) — R are defined, respectively, via the formulae

(2 —1) - ()

02t2 — Xn

Q) = w2(1) + ggg W) = Y20 +

(244)

and
Qt) = p(t) - q(t) - Q(t)
= (2= 1) - (2 = xa) w20 + (2 1) - (U, 0)°). (245)

Then, @ is decreasing in (max {‘ /Xn/C, 1} ,00), and Q is increasing in (max {1 /Xn/C, 1} ,00).

Proof. We differentiate @, defined via ([244]), with respect to ¢ to obtain

2t (1 — 2
Q0 =2 wul0) i)+ (T — ) ()’
. _ 42
2L 0 ) (246)

Due to ([A8)) in Section 2]

2t Xn — C2t?

n(8) = T () — X (), (247)

for all —1 <t < 1. We substitute (247) into (246) and carry out straightforward algebraic
manipulations to obtain

2t

ey (w280 - (10)° (248)

Q'(t) =

41



Obviously, for all real ¢ > max {, /Xn/C, 1},

Xn + ¢ — 222 < 0. (249)
We combine ([248) with (249]) to conclude that
Q'(t) <0, (250)

for all real ¢ > max {«/Xn /¢, 1}. Then, we differentiate Q, defined via ([24%), with respect
to t to obtain

Q1) = =2t ((xn — ) - w2(1) + (1= ) - (W4(1)°)
(1= 82) - (=26 GR(0) + 2+ (on — ) - (1) - V(1)
=2t (Y, (1) + 2 (1= 1) (1) - 01 (0)) (251)

We substitute (247) into ([25I) and carry out straightforward algebraic manipulations to
obtain

Q'(t) = 2t - (2¢%* — x5 — %) - 2 (t). (252)

We combine (249]) with (252]) to conclude that
Q'(t) >0, (253)
for all real ¢t > max {/xn/c,1}. We combine [250) and ([253) to finish the proof. [ |

Remark 8. We observe that the statement of Theorem[3]) is similar to that of Theorem [17]
in Section[2.1. However, while in Theorem[17] the behavior of 1y, and 1)), inside the interval
(—1,1) is described, Theorem [3]] deals with (1,00) instead.

The following theorem follows directly from Theorem B4l It is illustrated in Tables @]
(see Experiment 5 in Section [6.1.2).

Theorem 35. Suppose that n > 0 is an integer, and that x, > ¢*. Suppose also that x < y
are two roots of ¥y, in (1,00). Then,

1, () \-2 < [ ()] < ¢ () W w1l 0w/ gy

(Xn/c?) y? -1
Proof. Due to Theorem 29,
VXn (255)
c

<r<y.

Due to Theorem [34] the function Q : (\/Xn /¢, oo) — R, defined via (244)), is monotonically
decreasing. We combine this observation with (255]) to obtain

\/W: W%x” \/ 22 fQ(;nl/Cz) 2 ‘7/)7,16(?/)‘ Y2 32(;711/02) = \/@ (256)

We rearrange (256) to obtain the right-hand side of ([254). Moreover, due to Theorem [34]
the function @ : (, /Xn/C, oo) — R defined via (243]), is monotonically increasing. Therefore,

V(@) = ¢ ()] («* = 1) < [en()] - (¥* = 1) = /Q(v), (257)

which yields the left-hand side of (254)). |
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4.2.2 The Behavior of ¢, in the Upper-Half Plane

The integral equation (37)) provides the analytical continuation of 1, onto the whole complex
plane. Moreover, the same equation describes the asymptotic behavior of v, (z + it) for a
fixed x as t grows to infinity (see Theorem [36] below). Comparison of these asymptotics to
the estimate obtained with the help of Theorem [22]in Section yields an upper bound on
[ ()|~ at the roots of 1, (see Theorem Bl below). The principal result of this subsection
is Theorem

Theorem 36. Suppose that n > 0 is an integer. Suppose also that x is a root of ¥, in
(1,00). Suppose furthermore that the function @ : (0,00) — R is defined via the formula

x +it)? —1]
1) = |, i+ 2 / i+ 2 ‘( 258
Q1) = liula -+ i) + v+ i) 3 (258)
where i = \/—1. Then, using the asymptotic notation (7)) of Section 2.8,
e ihn(1)| V2
t)~ ———————, 1 259
Q) ~ I o, (259)
where Ay, is the nth eigenvalue of the integral operator (37).
Proof. We use ([B1) in Section 2] to obtain
An¢n(x 4 it) — / wn(s)ezcs(:r+zt)ds — / wn(s)ewswefcstds
-1 -1
2 .
— / [wn(s . 1)ezc(s—l)ac:| e—c(s—l)tdS
0
2 .
_ ect/ [d}n(s . 1)ezc(s—l)x:| e~ Ctds
0
ect 2c )
- Un (S/C _ 1) ezc(s/c—l):ve—stds
¢ Jo
ectefica: 2c )
= U (5/c — 1) e 5 ds. (260)
¢ 0
Since ¥, (1) = (=1)" ¢, (—1), it follows from Theorem 28] in Section 2.8 that
e [¢n (1)
n )| ~ Sy . 261
o+ i) ~ L oo (261)
Also, we differentiate ([260]) with respect to ¢ to obtain
1 .
Antn (x4 it) = ic/ s (s)e e ds
-1
. 2C .
= jele " / (s/c— 1)y, (s/c—1) e *ds. (262)
0
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We combine ([262) with Theorem 25 in Section 2.8 to obtain

, ] ct nl
w%@+nﬂ~eﬁaiw t — 00. (263)

We substitute (261]) and (263]) into (258]) to obtain

o N(ect|wn<1>|>2+ (@ +it)* — 1] <ect|¢n<1>|>2 (264)

|An| ct |2 (z + it)? — xn| |An|t
et [y (1))
~2 — t 265
( 5L ) N (265)
which implies (259). [

The rest of this subsection is dedicated to establishment of an upper bound on |/, (x)|~!
at the roots of 1,,. We start with introducing the following definition.

Definition 1. Suppose that x > xo > 1 are real numbers. We define b.(x,xo) via the
formula

T 2 -1 1
b — A e 266
(2, @0) = exp 64c \| 22 — 22 z';l di(x, o) + 65(x, z0) (266)
with
61(z, z0) = = — o,
b2(z, z0) =  + o,
03(x,z0) = = — 1,
d4(z, o) = + 1. (267)
Next, we prove several technical theorems.
Theorem 37. Suppose that x > xg > 1 are real numbers. Then
o0 L(z+it)2—a3| 1. ((z+it)?—z?
SO R (L0 ) —1]dt=0 268
/0 (\/2 crig—1| 2" C@raz-1 ’ (268)

where i = \/—1 and, for any complex number z, we denote its real part by R(z).

Proof. We fix xp > 1, and view the integrand in (268) as a function of ¢t and x. We denote
this function by u(t, z). In other words, u(t, x) is a real-valued function of two real variables,
defined via the formula

u(t,x) = \/;

(x+it)? — 23
(x+it)2 -1

1 x +it)? — x?
+2%<1;;%2_f>—L (269)
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Obviously, for fixed real = > xg,

lim u(t,z) =0. (270)

[t| =00

Next, we observe that

(x—l—it)Q—x%) 9 t2+1— 22
R —L—") =1 —1)- 271
<(m+it)2—1 * (w0 -1) (12 — (22 — 1))% + 4222 (271)

and

(z +it)? — 23
(x +it)?2 -1

— 1+ (22 -1) 207 = 202+t ] (272)
0 (12 — (22 — 1))% + 42242

We combine ([269), (271) and ([272) to conclude that for all z > xo and ¢ > 0,

r3—1 4% -4’ +23+3

-1 <u(t,z) < . 273
< u(t@) 8 (12— (a2 —1))% + 4a2¢2 (273)

Therefore, u(t, z) is a bounded function in the “shifted” upper-half plane
Hy, ={(t,z) : =>xo}. (274)

Next, again due to (271) and (272)), for all z > zp and all real t satisfying the inequality
t2 > 22 — 1, we have

w%—l‘ 42 — 42 + 22 + 3

0<u(t,z) < . 275
< ult, ) 8 (12— (22 —1))% + 4222 (275)
In particular, the function t — u(t, zo) belongs to L'(R). In other words,
o0
/ lu(t, 20)| dt < oo. (276)
—0o0

By carrying out tedious but straightforward calculations, one can verify that in H,,, defined
via (274]), the function u(z,t) satisfies the Laplace’s equation

0%u 0%u

In other words, u(t,x) is a bounded harmonic function in the shifted upper-half plane Hy,.
We apply Theorem 26l in Section 2.8 to conclude that, for all real ¢ and z > x,

1 [*° T — To
t = — . d 278
utr) = 1 [ ulsmn) - e s (278)
and, moreover, for all x > z,
/ u(t, z0) dt = / u(t,) dt. (279)
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We integrate the right-hand side of (275]) by using the standard complex analysis residues
technique to obtain the inequality

/oou(tx)<”“%_1./oo W2’ g +3
T8 oo (12— (22 —1))2 + 42212

T (a§—1)°
= —. . 2
16z 22 -1 (280)
We take the limit 2 — oo in (280) and use (279) to conclude that, for all = > z,
/ u(t,z) dt <0. (281)

On the other hand, due to 271) and (272)), u(t,z) is a non-negative function whenever
t2 > 22 — 1 and an increasing function for 0 < ¢ < Va2 — 1. Therefore,

o0
/ u(t,z) dt >2-u(0,2) - Vaz—1

—0o0
2
_ xp — 1 2
=2 |41 —1] Va1
P Sk S p. o1 (282)
- x?2 -1 2 —1

By taking the limit x — oo in (282), we conclude that, for all x > x,

/ u(t,z) dt > 0. (283)
Thus (268)]) follows from the combination of ([280) and ([283). [ ]

Theorem 38. Suppose that x > xg > 1 are real numbers. We define the function R : R — R
via the formula

R(t)=|[((w+it)2 = 1) ((x+it)2 —2d)| . (284)
Then, for all real t,
R(t) ! 1
RO O ; 2 1 8 (x, 70)? (285)

where §;(x, xo) are defined via [267) for all j = 1,2,3,4. Moreover,

/0°° (};((f)> - % i (z, 70) +5 (@.70)" (286)
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Proof. We observe that

R'(t) d 1 d 9
=—1 —-—1
RO " dt og R(t) = 5 - o log R*(t)
1 d
= 5% logH|5 x,xq) + it|?
——1Zi10 16, 20) + it 2 (287)
- 2j:1 dt g J s L0 9

where 41, 2, 03,04 are defined via ([267). We note that, for any real number a,

d L, d , 2t
%log|a—|—zt| 7 log(a® + %) = pranl

and thus (285)) follows from the combination of ([287) and (288]). Next, for any real numbers
a,b> 0,

(288)

/°° 2 dt B
o (t2+a?)-(124+02)

22 22
R .z —ia| + R o—ib| ) =
(v [y oy = =) e [ e )
(ia)? (ib)? T 1
- = 289
i <2z‘a(b2 ) =) T2 axb (289)
and thus (286]) follows from the combination of (285) and (289). [ ]

Theorem 39. Suppose that x > x¢ > 1 are real numbers, and that the function R: R — R
is defined via (284) in Theorem [38. Suppose furthermore, that c,s > 0 are real numbers.
(z+ zt — x%

Then,
Al () - ()

cs + log be(x $0) (290)

where be(x, o) is defined via ([266]) in Definition [

Proof. Suppose that the function u : R? — R is defined via (269) in Theorem B7l Then the
left-hand side of (290]) can be written as

S e () () -
C/o dt—I—c/O u(t, x) dt+
c/os \/(u(t,m) +1)2 + <4§1§2)>2 V) + 12 | d, (291)
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where the function R : R — R is defined via (284]) in Theorem Due to Theorem 37 and
@73),

C/S u(t,x) dt < 0. (292)
0

Also, due to (271]) and ([272) in the proof of Theorem 7, for all real ¢t > 0,
z? — 23

2 -1
We combine ([293) with (286]) in Theorem B8 to conclude that

c/os \/( (t2) +1)2 + (R;())) (ult,2) £ 1) | dt <

/ —1/ R’t dt<
2,/ (u(0,x) +1)2 4CR 320 2 —:co R(t)

T xr2 —

64c \/ 22 — 2} ,25 xazo)—|—5(93:c0)

)=

(u(t,z) +1)% > (u(0,2) + 1)* =

(293)

= log b.(x, z), (294)

where 01, 09, d3, 04 are defined via (267), and b.(z, xo) is defined via (266]) in Definition [
Thus (290) follows from the combination of (291]), (292)) and (294). [ |

Theorem 40. Suppose that n > 0 is an integer, and that x, > c¢. Suppose also that x is
a root of ¥y, in (1,00). Suppose furthermore that the function @ : R — R is defined via the
formula

|(z + it)* — 1]

B N2 / . 2
QO = in(w+ 0P + [un(e i8] e

(295)

Then, for all real t > 0,

! (o 221 3/4 . -
am < <$z(_ <xn/)c2>>1/4 o (n2), (290

where b, is defined via (260]).

Proof. We define the function ¢ : R — C via the formula
o(t) = Yn(x + it). (297)
Due to (48]), ¢ satisfies the ODE
((x+it)* —1) - " (t) + 2i(z +it) - Q' (t) + (xn — F(z +it)?) - p(t) = 0. (298)
We define the functions w,u : R — C via the formulae

wt) =), ult)=((z+it)>—1) (). (299)
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Due to (298)), the functions w, u satisfy the equation

w'(t)\ _ (0 ﬁ(t)) (w(t)>
<U’(t)> a (v(t) 0 ) \u(t)) (300)
where the functions 3,7 : R — C are defined via the formulae

Bty = (@+it)> =1)7", A(t) = A +it)® — xn. (301)

We combine Theorem 22] in Section with Theorem B9 above to conclude that, for all
real t > 0,

g((é)) < (gg)i e b, <x V(’?”) : (302)

where b, is defined via ([260]), @ is defined via (295]), and the function R : R — R is defined
via the formula
R(t) = (| +it)? — 1| - |[(x +it)? — (xu/P)]) " (303)

Since ¥, (z) = 0 by assumption, it follows that

| (@) z? — 1
20) c x% — (xn/c?) (304)
Moreover, for all real ¢t > 0,

RO (1) (= (/)

R(0) |z +it)? = 1] [(z 4+ it)* — (xn/c?)]
L @1 (@ = /)
< -

Thus (296]) follows from the combination of ([B02), (304) and (B05). [ |

In the following theorem, we derive a lower bound on |¢/ ()|, where x is a root of i,
n (1,00). It is illustrated in Tables [6] [0 (see Experiment 6 in Section [6.1.2]).

. (305)

Theorem 41 (A sharper bound on |¢/,(x)| at roots). Suppose that n > 0 is an integer, and
that xn > c2. Suppose also that  is a oot of 1y, in (1,00). Then,

1 Al . (22 — 1)% 3 ( m)
@ S V3 @ — eyt e\ e ) (306)
where b, is defined via (260]).

Proof. We combine Theorem B6] with Theorem (0] and take t — oo to conclude that

VI _ | (@ -Dt () (307)
ctal T e (2 (/)i N7 e )]
which implies ([306]). u

49



The following theorem provides a bound on b, (z, \/Xn/c), defined via (2G6]) in Defini-
tion [Il and used in Theorem (A1l

Theorem 42. Suppose that n > 0 is an integer, and that x, > ¢. Suppose also that x is
a root of ¥, in (1,00). Then,

be <x v f") < V4 (308)

where b is defined via (260]).

Proof. Obviously, b.(x,x), defined via (266]), is a decreasing function of x for a fixed real
number xg > 1. Therefore, for all real g > 1,

bc(.’E,$0) S bc(gjl)xO)a (309)
where 77 is the minimal root of v, in (1,00) (see also Theorem 29). We use (267)) to

conclude that

4

1 16 8
”21 0i (w, ‘/’T”) +0; (gg, \/X7> <3 (21— (/X /) T - (VXn/)’ (310)

Also, due to ([228)) in Theorem 31,
2 - ]. 2 A/ n
21— (Xn/c?) 7 c

We combine (309), (BI0) and (BII) to conclude that

be (x \/ZT") < exp [67;0 : m—(?/%/c) : %-0 <m1 - ‘/2(7’”‘)] = el/4, (312)

which implies (308). [ |

The following theorem is a direct consequence of Theorems 4], This is the principal
result of this subsection.

Theorem 43 (A sharper bound on |/, (x)| at roots). Suppose that n > 0 is an integer, and
that xn > c2. Suppose also that x is a oot of 1y, in (1,00). Then,

1 2_1)i
/ < e/t [An - (= ! I- (313)
|4 ()] (22 = (xn/c2))3
Proof. We combine Theorems [12] [41] 42] to obtain (B313]). |
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4.3 Partial Fractions Expansion of 1/1,

In this subsection, we analyze the function 1/v,,(z) of the complex variable z. This function
is meromorphic with n simple poles inside (—1,1) and infinitely many real simple poles
+x1, w9, ... outside (—1, 1) (see Theorems[I] [[6in SectionZ.Iland Theorem 29, Corollary [3]
in Section @.I.T]). For —1 < ¢t < 1, we use Theorem 27 of Section 2.8 to construct the partial
fractions expansion of 1/, (t) (see (I8) in Section [[31]). Then, we establish that the
contribution of the poles +x1, £x9,... to this expansion is of order |\,|. This statement is
made precise in Theorems [56] 58, which are the principal results of this subsection.

4.3.1 Contribution of the Head of the Series (I8

We use the results of Section .1l and Section to bound the contribution of the first few
summands of the series (I8) in Section [[3.l This is summarized in Theorem 45 below. In

Theorem (4], we provide an upper bound on the contribution of two consecutive summands
of (I8). Theorem (44 is illustrated in Table [§ (see Experiment 7 in Section [6.1.3]).

Theorem 44 (contribution of consecutive roots). Suppose that n > 0 is an integer, and
that xn > c2. Suppose also that x <y are two consecutive roots of 1, in (1,00). Then,

1 1 61/4. ' Yy (Z+1)2 dz
Tt ECROUNY e sermoero D

for all real t in the interval (—1,1).

Proof. Suppose that —1 < ¢t < 1 is a real number. To prove ([B314]), we distinguish between
two cases. In the first case,

1 1
=D R@] = =0T
We combine (BI5]) with Theorem B5 in Section E.2.1] and Theorem 29 to obtain
1 —
dp() - (t—y) %(y)‘ N
1 1 1 1
|

(315)

- D@ -DAw ~ @- D@ G- DLl

1 1 1 22 — (Xn/c?) y? —1
|1, () (x—l_y—l.\/ 72— 1 'yz_(Xn/02)>. (316)

We substitute ([BI3]) of Theorem 3] into (316) and carry out straightforward algebraic ma-
nipulations to obtain

’(t—x;wux) =) :xy)‘g

61/4'|)\ ’ (xZ_l)% 1 _ 1 \/x2_(Xn/CQ) X y2_1 <
" (x2—(xn/c2))i r—t y—t z? — 1 y2 = (Xn/c®) ) ~

eV Al - (22— 1)7 (22 — (xn/2)) (9(2) — 9(), (317)

NI
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where the function g : (y/Xn/c,00) — R is defined via the formula

_ z4+1
o) = \/ G- D /)

We differentiate (BI8]) with respect to z to obtain

J(2) = V(z=1) (22 = (xn/c?)) ‘ —22% — 222 + 22 4+ 2 (xn/?)
2vz+1 (2= 1? (2% = (xn/?))*
B (z + 1)2
(22 = (xn/e2)*? - V=T

We substitute ([B19) into (BI7) to obtain

‘(t—x;wm*( — n<>‘§
)

e/t Ml - (a: —1)‘11( - Xn/c i / lg' (2)] dz <

Voo (2+1)%dz
Ml | (22— (xn/2)?

which establishes (B14) under the assumption ([BI5). If, on the other hand,

1 1
< )
(@ =t)|[Pn (@) (v —1) [V (y)
then we combine (B2I]) with Theorem [BH in Section [£.2.] to obtain

e -
(t—a)vp(x) (=) vn)|
1 B 1 < 1 B 1 .
W=t (@@=t @)| ~ +Dln@ (+ 1))
1 .1.<1 y+1 a:—l)z 1 y-=z
[Yny)l y+1 e+l 2—1) [ -1

We substitute (B13) of Theorem A3 into ([322) to obtain

JEEHIN -
(t =) ¢r () (t—) n(y)
61/4-’/\71‘- (y _1) Yy—x <

(W2 — (xn/2)i ¥2 -1
Y dz
et / (22 — (xu/2))}

which establishes (BI4)) under the assumption (B21).

02

(318)

(319)

(320)

(321)

(322)
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The following theorem is a generalization of Theorem [441
Theorem 45. Suppose that n > 0 is an integer, and that x, > c>. Suppose also that
1<z <x9 <... are the roots of 1y, in (1,00), and that M > 0 is an even integer. Then,

for all real —1 <t < 1,

M

1 t - CEk wn(xk)

s

< 4eMh|n, - <log(2 caoa) + /1 + VX") . (324)

Proof. Due to Theorem [44] above,

M/2 +1)2de
1/4
kz (t — o) w' (k) =¢ Z/m ) (xn/c2))?/?
1/4‘ . ij (Z+1) dZ
sen Pl / (22 — (xaf @) 929

We observe that

2?2 dz
/ (=2 S = loE (2 VIl - e (320

— (xn/c? (Xn/ )’
and combine (326]) with ([825]) to obtain

< et I\, - log (2 s +# . 327
kz CEENETATY Y e 0

It follows from the combination of Theorem 29 and Theorem [31] that

Xn/CQ)
N Xn/02 — (xn/c?)
S\/Hm.c: Ty (328)
2c T ™

and we substitute ([328) into ([B27) to conclude the proof. [ ]

4.3.2 Contribution of the Tail of the Series (I8)
In the following theorem, we establish an upper bound on Yy, in terms of |\,|.

Theorem 46. Suppose that n > 0 is a positive integer, and that

¢ > 30. (329)
Suppose also that
| < — (330)
T
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Then,

o & (331)
Xn — € < 7. 331
[An]
Proof. Suppose first that
2c 2 10 64erm
n<7T+7T2-16'10g<10>‘c. (332)

We combine Theorems @] B in Section 211 with ([329]), (330) to conclude that
Yn — ¢ <10- ¢, (333)

provided that (B32]) holds. If, on the other hand,

2¢ 2 10 64derm
> I | . 334
e AT 0g<10> “ (334)

then we combine ([B34]) with Theorem [7l in Section 2.1] to obtain

4 10 5
2 2 2
- - = — . 335
Xn — C > 16 [ 5 c ( )

Suppose now that the function f : (0,00) x (1,00) — R is defined via the formula

Fle,y) = 1195410 ¢ exp [—W'(yz;l)'c] : (336)

We differentiate (336]) with respect to ¢ to obtain

of oy _fley) ([ 7 (P-1)-c

0G0y == 1 1 : (337)
Also, we differentiate (330 with respect to y to obtain

of f(ey) T (1) e

9 e y) = (o T 338

oy V) ., 1 (338)

We define the real number yg via the formula

5
yo =114 5, (339)

and combine [B37), (33]), (339) to conclude that

of of

50 (&) <0, @(c,y) <0, (340)
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for all ¥y > yo and all ¢ > 8. Also, we defined the real number ¢y to be the solution of the
equation

fle,y0) =1, (341)

in the unknown ¢ > 8 (this solution is unique due to ([B40)). We carry out elementary
calculations to conclude that

co < 30. (342)
We combine (339)), (840), (341]), (342]) to conclude that
fley) <1, (343)

for all y > yo and all ¢ > 30. Suppose now that n satisfies the inequality ([334]). We define

the real number y,, via the formula
Yn = A\/ %7 (344)

and combine (329), (334), (335)), (B34), B42), (343), (B44) with Theorem [I1]in Section 2]

to conclude that

Xn
7 : |)‘n| < f(cayn) <1, (345)

provided that ([334]) holds. We combine (329), (330), (332), (333), 334), (335)), (339), (BZH)

to obtain (B31]), and thus conclude the proof.

According to Theorem B2 the distance between two large consecutive roots of v, in
(1,00) is fairly close to m/c. In the following theorem, we make this observation more
precise.

Theorem 47. Suppose that n > 0 is a positive integer, and that

2
n> =41 (346)
7r
Suppose also that x,y are two consecutive roots of ¥, in (1,00), and that
1
— <z <y. (347)
[Anl
Suppose furthermore that
1
A — 4
Al < 75 (348)
and that
2 c?
- < —. 349
Then,
2
77§c-(y—x)§7r+m. (350)
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Proof. Suppose that the functions ¥,,, @, : (1,00) — R are those of Theorem We com-
bine Theorem [ of Section 2], (239)) in the proof of Theorem B2 Theorem 20 in Section 2.4

B46l), (347) and (348) to conclude that
<y-—uw. (351)

ol

On the other hand, we combine Theorem B2 with ([347), (348)), (349]) to obtain

(n/c?) — 1 T (w/c?) —1
y—2) <geqflg =) o R VA
cly—o) <m \/ I O R e cwy )
T 1
< . _—. 2
_7T+2.’)\n| 1:2_1_1/’)\n|<ﬂ-+‘)\n|'x2 (352)
Thus [B50) follows from the combination of ([B51]) and (B52)). [

The following two theorems are direct consequences of the integral equation (44]) in

Section 211

Theorem 48 (expansion of ¥, (x)). Suppose that n > 0 is a non-negative integer, and that
x > 1 is a real number. If n is even, then

2 (1) T 1 Usin (e(z — 1)) n ()t
U (z) = e [sm(c:v) + on(D) /_1 p— dt] . (353)

If n is odd, then

L sin (e(x — n
U (x) = 22};&1) [cos(ca?) + i)\niin(l) /1 ( - _t)t)w () dt} . (354)

Proof. We observe that

1 1 t
=4+ 355
x—t :c+a:-(x—t)’ (35)

for all real —1 <t < 1. We combine ([355) with (42)), (#4)) in Section 2] to obtain

2 1 ic(z—t) 1 _—ic(z—t)
Pt L[, 1,
27 w )1 2i(x—t) m )1 2i(x—1t)
6icm 1 6_i6t¢n(t) eic:r 1 €_i6t1/1n(t)t
- 2mi /_1 x dt + 27Ti/_1 x(x—t dt
—icT 1 ict —icx 1 ict
e / e wn(t)dt _e” / e d}n(t)tdt
2t ), = 2w ) x(x —1t)
_ eicx/\nwn(_l) . eiim)‘nwn(l)
2mix 2mix
1 ! sin(c(z —1))
— — ()t dt. 356
+7T/_1 G (356)
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Due to Theorem [l in Section 1]
¥n(1) = (=1)" - ¢Pn(=1), (357)
and
An? = (=1)" - A2. (358)
Thus [B53) and (B354) follow from the combination of ([B56]), (B57) and (B58)). |

Theorem 49 (expansion of ¢/, (z)). Suppose that n > 0 is a non-negative integer, and that
x > 1 s a real number. If n is even, then

~ ;nm /_11 sin (c(z — ;)()wwf(f;(t? — 2zt) dt] | 559)
If n is odd, then
¥ale) = _2ZinA(i : [Sin (ea) + cosc(;x) * Anwin(l) /_11 - (C(xx__ti) Bellar
= ;n(l) /11 sin (¢(x — ;)()x@bﬁ(:))Q(t? — 2xt) dt] | 560)

Proof. The identities ([359), ([B60]) are obtained, respectively, via straightforward differenti-
ation of ([B53), (B54) of Theorem M8 with respect to x. |

Remark 9. In the rest of this subsection, we will assume that n is even. The analysis for
odd values of n is essentially identical, and will be omitted.

Theorem 50. Suppose that n > 0 is an even integer, that

2
n> 41, (361)
i

and that x,y are two consecutive roots of 1, in (1,00). Suppose also that

1
|An] < 10’ (362)
and that
1
NP <z <uy. (363)
Suppose furthermore that
2
c
Xn — ¢ < DWE (364)
n

57



and that the positive integer K (x) is defined via the formula
c
K(x) = Round <; : x) , (365)

where, for any real number o, Round(«) is the closest integer number to a. Then,

]shﬂcw)]<i|An7.$, (366)
kw—nKtw-w|§|Ajix, (367)
(—UKWLC%QE)Zl—WAJ:x, (368)

and, moreover, for all real —1 <t < 1,
infe (y = ) +sinfe- (0 = )] £ 7. (369)
m%@my—wammp@—ong|fo? (370)

Proof. We combine Theorems [I [[2] of Section 1], (853]) of Theorem A8 with (362), (B63)
to obtain

) B 1 Usin (c(zp — 1)) - ¢n(t) - t dt
‘Sln(cxk” a ‘_)‘nwn(l) /—1 xp—1
1 1
oo (L siom) ([ )
< ——m——— tydt) - todt
2
< ; 371
= VAl D .
which implies (366). We observe that, for all real —7/2 < s < 7/2,
™ .
s/ < 7 fins). (372)

and combine ([B72) with (866]) to obtain ([B67)). The inequality (368) follows from the com-
bination of (360) and ([B67). Finally, both ([B69) and (B70) follow from the combination of

B6T), (362), [B63), [B64) and Theorem A7 u

Theorem 51. Suppose that n > 0 is an even positive integer, and that x,y are two consec-

utive roots of vy, in (1,00). Suppose also that the inequalities [B61)), (362), (363)), (B64) of
Theorem [20 hold, and that the integer K(z) is defined via ([B65l) in Theorem [50. Suppose
furthermore that

c> 1. (373)
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Then,

2(=1)"W (1)

An

Y (@) = - [1 = D(x)] (374)

and

_1\E(®)
vty = - 25 1 p) + G, (375)

where the real numbers D(x) and G(z) satisfy, respectively, the inequalities

6
[D(z)] < W (376)
and
24
G(z)| < pwe (377)

Proof. The proof is based on the identity ([B59) of Theorem A9 First, we combine Theo-
rems [I] 2] of Section 2.1 (B62) and ([B&3) to obtain

1 1 gin (c(a: — t)) dfn(t) (t2 . 2mt)
C)\nwn(l) /_1 €T (J} _ t)2 dt| <
3v2 1 4
Tl 1) ./l\wn(t)-ﬂdtgw. (378)
By the same token,
1 Usin (e(y — t) ¥a(t) (2 — 2yt)
cAnthn(1) /1 (Y —1) di| < — pWRE (379)

Also, we combine ([B50) of Theorem 7 and ([B62)), (363)), (B70) of Theorem (0] to obtain, for
all real —1 <t < 1,

cos(c- (x —1)) N cos(c- (y —1)) ‘

r—1 y—t
cos(c- (x —1t)) 4+ cos(c- (y—1)) cos(c(y—t)).(x_y)‘ B
r—1 (y—t)-(a:—t) =
2 2 2 2 8
Anl-xZ'x—1+x2’<”+W>§wz' (380)

We combine Theorems [I] [[2] of Section 2.1] with (B80) to obtain
1 /1 (cos(c'(x—t)) n cos(c- (y —t))

> wn(t)-tdt‘ <

Anc-Un(1) 4 x—t y—t

V2 8 1 10

. n(t) - < . 1
| 22 /_lw (t) t‘ldt_Mn,w2 (381)
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We substitute ([366]), (70) of Theorem B0, (B78), (B79), (B87) into (B59) of Theorem A9 and
use ([B73) to obtain

An / / ’
sin(ex) = sin(ey)| 444410 24
< . 382
|cos(cx) + cos(cy)| + o + e + a2 = ol 22 (382)
In addition, we observe that, similar to ([B78), (379), (380) above,
1 1 — ). .
JRELEDRAC R
)\n'(/)n(l) -1 x—t
V2 /1 2
V2 a(d) -t dt < 383
el 1) S S 959
Finally, we substitute ([B60), (368]), (382) and [B83)) into (359) of Theorem EI to conclude
the proof. [

In the following theorem, we provide an upper bound on the sum of the principal parts
of 1/v,, at two consecutive roots of ¥, in (1,00) (see (I8) in Section [[3T]).

Theorem 52. Suppose that n > 0 is an even positive integer, and that x,y are two consec-

utive roots of ¥, in (1,00). Suppose also that the inequalities (B361]), (362), B63), B64) of
Theorem [50 hold. Suppose furthermore that

c> 1. (384)

Then, for all real —1 <t < 1,

' ds

<20-c- .

! ’ (385)

1
‘wux) N Py ST Y ey

Proof. Suppose that the integer K (x) is defined via ([B65) in Theorem We combine
B74), (375), @B70), B0 of Theorem [5] to obtain

‘%(z) -1<x EORRTAD) -1<y —9 '

(—1)K(x) An [ x _ Yy ] <
20 (1) (=t)(1-D(z) (y—t)(1-D(x)+G)) ]|~

2l o (g = )1 = D) + Gl)) — y e — 0) (1~ Dla)| =
’2;’ NayG(x) +t(y — 2) (1 - D(x)) — t2G(x)| <
2\)\nG(az)|+W :2|AnG(a;)y+2|An|./yij. (386)
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where D(x),G(x) are those of Theorem We combine Theorem A7 and Theorem [0l to
conclude that

48 48(y — 50-¢ [¥d
2|MG2)| < = = A8ly—2) 'y < c. e (387)
2?2 xy-(y—x) x T . S2
We substitute ([B87) into ([B386]) and use (362) to obtain (B85]). [

4.3.3 Bound on the Right-Hand Side of (Ig)

The following theorem is a consequence of Theorem [43] in Section .31l and Theorem (2] in
Section {32

Theorem 53. Suppose that ¢ > 1 is a real number, and that n > 0 is a positive integer
such that

2
n> =41 (388)
T
Suppose also that
|An| < : (389)
n 107
and that
2
Xn — & < —. (390)
[ An]

Suppose furthermore that 1 < x1 < zo < ... are the roots of ¥y in (1,00). Then, for all
real —1 <t <1,

lim
N—oo

al 1 1
9] € e B e A3 o v t))' =

k=1

2 VXn
6 [Anl- (2-10g <|M> +4/1+ : >+20-c-|)\n|2. (391)

Proof. We combine (B88]), (389), (390) with Theorem [T to select a positive even integer M
such that

1 < < 2
STm =~ .
IE N PWE

(392)

We combine ([392]) with Theorem @ in Section [2.Iland Theorem 5] in Section 311 to obtain,
for all real —1 < ¢ < 1,

™

M 1 A -
;ka)-(xk—t) < 6- 1Al <log<|An,2> +/1+ W) (393)
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Next, we combine ([892]) with Remark @l and Theorem [52] in Section .32 to obtain, for all

real —1 <t <1,
N ) X )
k=(1\§;r2)/2 (1%(%2161) (zop_1 — 1) + 0! (on) - (T2p — t)) <
e /;—2 g' (394)
|

Thus ([B91)) follows from the combination of (393) and (394]).

The rest of this subsection is devoted to the analysis of the boundary term of partial
fractions expansion of 1/, (see (I8)) in Section[.3.1]). In the following theorem, we establish

a lower bound on |, (z)| for certain values of z.

Theorem 54. Suppose that n > 0 is an even positive number, and that

1
[An| < 10 (395)
Suppose also that k > 0 is an integer number, and that
8§ c+1
k>—- :
> = Tl (396)
Suppose furthermore that the real number Ry, is defined via the formula
Re="(k+? (397)
P 2/
Then, for any real number y,
, ¥n(1)]  cosh(cy)
n(Bg +1-y) > : —— 398
(it )| > | 0 (398)
where © = v/ —1 is the imaginary unit. Moreover, for any real number x,
, ¥n(1)]  cosh(cRy)
n R : . . 399
Proof. Suppose that z,y are arbitrary real numbers. We observe that
|sin(c(z + iy))[* = | cosh(cy) - sin(cx) 4 4 - cos(cx) - sinh(cy)|?
_ cosh(2cy) — COS(ch). (400)
2
On the other hand, we combine ([390), (397) and (E0T]) to conclude that
(401)

cos(2cRy) = cos(2wk + ) = —1.
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We combine ([@00) and [@01]) to conclude that, for all real —1 <t < 1,
|sin(c- (Rg + iy — t))| < |sin(c- (Rg + 1y))| = cosh(cy). (402)
Next, we combine (B895)), (396]), (397), (£02)), Theorems 1], I2 in Section 2] to conclude that

L / sin (¢ - (Ri, + iy — 1)) a ()t
)\nd}n(l) -1 Ry +iy—t

1
cosh(cy) 2 / o (£) - 1] dt < cosh(cy) 2 <
Ry, [ An] 1 Ry, [An

dt| <

2 |\ - cosh(cy)

cosh(cy) - s S 1 (403)
We combine ([402]), (03) and ([B53) of Theorem M8 in Section to obtain
(R i) > [ 22D e G (42, (404
which implies (398]). On the other hand, due to (400),
—1<2-|sin(c- (x +iRy))|* — cosh(2cRy,) < 1, (405)
for all real x. Also, due to the combination of (893]) and (396,
cosh(2cRy) > exp (,;\60 > 160, (406)

We combine (@05]), @04, [B395), (B96), (B97), Theorems [ 02 in Section 2] to conclude

that, for all real x,

1 Vsin(c- (z + iRy — 1)) n(t)t
At (1) '/1 v+ iR, —t dt‘ =
2 sin(c- (z+1iRy)) |sin(c- (x +iRg))|
z, z | < d | (407)

We combine ([@05]), [@06]), (#07) and (B353) of Theorem A8 in Section to obtain, for all

real x,

(408)

thn (x4 iRg)| > ‘Q-wn(l)-sm(c. WHRk))‘ ' ( 1) :

c-(z+iRg) - My
which implies (399). [

In the following theorem, we use Theorem B4l to establish an upper bound on the absolute
value of a certain contour integral.

Theorem 55. Suppose thatn > 0 is an even positive number, and that [895]) holds. Suppose
also that k > 0 is an integer number that satisfies the inequality ([B90), and that the real
number Ry, is defined via B9T). Suppose furthermore that Ty is the boundary of the square

[— Ry, Ri] x [—1 Ry, i - Ry] (409)
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i the complex plane, traversed in the counterclockwise direction. In other words, I'y, admits
the parametrization

Ry — iRy + 2isRy, 0<s<,
r (S) _ Ry + iRy — 2(s — 1) Ry, 1<s<2, (410)
T “Ry + iRy — 2i(s — 2)Ry, 2<s <3,

—R;, —iRk+2(8—3)Rk, 3<s<4.
Then, for all real —1 <t < 1,

1 dz
270 Jr on(2) - (2 — 1)

‘ <22 | A| - (1 +2¢Ry, - e ) (411)

Proof. Suppose that —1 <t < 1 is a real number. We combine Theorem [I2] in Section 2]

with (3953), (396]), (397), (BIY) of Theorem B4 to obtain

I/Rk dy '<
2mi J_p, Yn(Rp +iy) - (R +iy —t)| —
2

1 /°° dy /Oo c|An| dy
= . — < — LT = V2 412
7)o (Rt i) 1B Ty = 7 ) cosh(cy) e (412)

On the other hand, we combine Theorem [I2] in Section 21 with (B95)), (396)), (397)), (399)
of Theorem [54] to obtain

‘ 1/“k dz ’<
27 J_p, Un(z+iRg) - (x+iRg —1t)| —

Rk . Rk
1/ ,dm <€ [Anlv2 / dr <
7 J_g, [n(®x +iRg)| - |x +iRy| — m-cosh(cRg) J_p, — —
42| An| - cRy - e~

(413)

m
We combine (410), ([@12), (@I3)) with the observation that |¢,| is symmetric about zero to
obtain (EIT]). [

We are now ready to prove the principal theorem of this section. It is illustrated in
Table [@ and in Figures [B, [ (see Experiment 8 in Section [6.1.3]).

Theorem 56. Suppose that ¢ > 1, and that n > 0 is an even positive integer. Suppose also

that
2
n> = 41, (414)
T
that
| < = (415)
n 107
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and that

2

2 c
—c < —. 416

Suppose furthermore that —1 < t; < --- < t,, < 1 are the roots of ¥y, in (—1,1), and that
the function I : (—1,1) — R is defined via the formula

1 = 1
I(t) = —~ : (417)
Ua(t) = vn(ty) - (= 15)
for =1 <t < 1. Then,
’I(t)‘ < ’/\n‘ 'ImaX7 (418)
where the real number I,q. is defined via the formula
2
Tnax = 24 - log (MI) +13- (xn) Y 40 ¢ |Ap] +2V2. (419)

Proof. Suppose that 1 < x; < z3 < ... are the roots of 1, in (1,00), and that k is an
integer satisfying the inequality (B96]) in Theorem B4l Suppose also that the real number
Ry, is defined via ([897) in Theorem [54], the contour T'y in the complex plane is defined via
(#10) in Theorem (Al and that zps is the maximal root of v, in (1, 00); in other words,

<< - <ay<Ry<zyr1<.... (420)

(We observe that 1, (Ry) # 0 due to (398) in Theorem [54l) We combine (@17), (420) and
Theorem 27 of Section 2.8 to conclude that, for any real —1 < ¢ < 1,

M 1 1
=2 (wg<xk> T —a) U a) ( wk>> ’
1 dz

2ri Ty Yn(z) - (2 — 1)

We combine the assumption that ¢ > 1 with Theorem [ in Section 2.1l to conclude that

‘/1+\/?<(X”)1/4"/;§+71r' (422)

We obtain the inequality (4I8) by taking the limit ¥ — oo and using ([@21]), (422]), Theo-
rem [53] and Theorem [ |

(421)

Remark 10. The conclusion of Theorem [28 holds for odd values of n as well. The proof
1s essentially the same, and is based on Theorems [53, and obvious modifications of
Theorems [57), [54.
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Remark 11. Suppose that the function I : (—1,1) — R is defined via ([@I7). If n is even,
then I is an even function. If n is odd, then I is an odd function.

In the following theorem, we provide a simple condition on n that implies the inequality
|An| < 0.1.

Theorem 57. Suppose that ¢ > 30, and that n > 0 is an integer. Suppose also that

2
n> %15 (423)
T
Then,
| An| < L (424)
T
Proof. Suppose first that
¢ > 200- . (425)

We combine ([@25) with (#2)), (43]) in Section 2.1 to conclude that, in this case,

27 - 27 1
Anl =1/ \— < = 426
[Anl c < c < 10 (426)

On the other hand, suppose that

30 < ¢ <200 7. (427)

We observe that the interval [30,200 - 7] is compact, and use this observation to verify
numerically that, if (427)) holds,

1
|)‘ﬁoor(2c/7r+5)| < %7 (428)

where, for a real number a, floor(a) is the largest integer less than or equal to a. We combine

Theorem [ in Section 211 (428)) and (426) to establish ([@24]). [ ]
In the following theorem, we summarize Theorems 46l (6, 57 and Remark [I0L

Theorem 58. Suppose that ¢ > 0 is a real number and n > 0 is an integer. Suppose also

that
c > 30, (429)
and that
n > % + 5. (430)

Suppose furthermore that the function I : (—1,1) — R is defined via the formula ([@17) in
Theorem [50. Then,

’I(t)‘ < |)‘n| 'ImaXa (431)

where the real number I ., is defined via the formula (A19]) in Theorem [20.
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Proof. We combine ([@29]), [@30) with Theorem [57 to conclude that the inequality (EI5l)
holds. Also, we combine ([429]), (I5) with Theorem M@ to conclude that the inequality
([@16]) holds. We combine these observations with Theorem [56l and Remark [I0 to obtain

(@3, n
4.4 PSWF-based Quadrature and its Properties

In this subsection, we define PSWF-based quadratures of order n, find an upper bound
on their error, and show that a prescribed absolute accuracy can be achieved by a proper
choice of n.

The principal result of this section is Theorem [G5l

Definition 2. Suppose that n > 0 is a positive integer, and that
“l<ti<ta<---<tp,<1 (432)

are the roots of 1y, the interval in (—1,1). For each integer j = 1,...,n, we define the
function ¢; : (=1,1) — R via the formula

Un(t)
pilt) = (433)
’ Un(ty) (t = t5)
In addition, for each integer j = 1,...,n, we define the real number W; via the formula
1 1 L pn(s) ds
W-:/ wi(s)ds = z . 434
1= L= L ey )
We refer to the expression of the form
> Wy f(ty) (435)
j=1

as the PSWF-based quadrature rule of order n. The points t1,...,t, and the numbers
Wi, ..., Wy are referred to as the nodes and the weights of the quadrature, respectively. The
purpose of (38) is to approximate the integral of a bandlimited function f over the interval
[—1,1].

4.4.1 Expansion of ¢; into a Prolate Series

Suppose that n > 0 is a positive integer. For every integer j = 1,...,n, we define the
function ¢; : (=1,1) — R via @33). In the following theorem, we evaluate the inner
product (@;, m,) for arbitrary m # n. This theorem is illustrated in Tables [Tl 12 Figure [
(see Experiment 9 in Section [6.1.4)).

Theorem 59. Suppose that n > 0 is a positive integer, and that m # n is a non-negative
integer. Suppose also that 1 < j < n is an integer. Then,

! wn(t) wm(t) dt — |>\m|2¢]m(t]) . [ ! ¢n(t) dt

— R e U, (1, 85) |, 436
_1t—tj ‘)\mIQ—‘)\n‘Z . t—tj n TL( ]) ( )
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where t; is given via [@32) in Definition[d, and the complez-valued function ¥,, : (—1,1)* —
C is defined via the formula

T, (y.1) = /0  fa(@)e et (437)

Proof. We combine ([37)) with (437) to obtain, for all real —1 <y < 1,

1 Y d eicz(tftj)
t=—1 e=0 dz | ic(t —t;)

Y .
Ap, - / @bn(a:)e*thjdx =\ - Wy, ty). (438)
0

Y A 1 A
dx dt = / e~ et Uy (t)e"“tdt do =
=0 t=—1

On the other hand,

1 Y icr(t—t;) 1 .
Yn(t) / d [e] dwar— L [ ¢l (ewy“*tﬂ - 1) dt =

1 _o dx |ic(t —tj) ic J_1t—t;

—icyt; 1 (1) 1 1 (1 dt
€ i J lb ( )ezcytdt S w ( ) . (439)
ic 1t—t 1w J_g t—t;
We combine ([@38) and ([@39) to obtain, for all real —1 < z < 1,
1 1
Z'C)\neicmtj‘l/n(l‘,tj) + eicxt]- wn(t) dt — ¢n(t) eicztdt' (440)
L bt t—1
We combine ([B7), [@37) and (@40) to obtain
b 1 [t 1 ()
¢ (t) me(t) dt = / ¢m(1’)/ w (t) ezcmtdt dr =
1t Am Je=—1 t=—11t—1;
icAn 1 , 1 1 , Loabn(t) dt
S [ @ oty) da 5 ([ dmla)eida $al)
Am -1 Am -1 1 t— tj
ich, (1 OV, Loapn(t) dt
G e VU, (2, 1) dat + o (£ . 441
pun (z, =t;)Wn(z,t5) dx + pm(t;) firaary (441)

We observe that t¢,(—t;) = 0, and combine this observation with (37) in Section 2] and
([#37) to obtain

, 1
0= 7’[’”&_”) :/ Yn(t)e M dt = W, (1,t;) — U, (—1,t5), (442)
n —1
and also
1 .
Amwm(tj) = /;1 @bm(t)ewttjdt = \I’m(la _tj) - \Ijm(_lv _tj)‘ (443)
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We combine ([@42), (#43)) to obtain

[\I’m(xa _tj)\lln(x’tj)]i:_l = \Ijn(latj) (\Ijm(L _tj) - \Ilm(_L _tj))
= Am¢m(tj)wn(1vtj)' (444)

Also, we combine (37)), Theorem [Il in Section 2T and (37 to obtain

1 ov,,
\I/m s T Uy s by =
| o) G ) do

1 1 ) T . 1 )

)\/ wn(x)emmj/ ezcytj/ wm(t)ezctydt dy dr =
m Jx=—1 y=0 t=—1
1 1

1 z
— Y (t) / Y (z)e e / et dy do dt =
T

A Ji=—1

=1 y=0
1 1 1 eicmt _ e—icwtj
o Lm0 [ o) (S ) =
A 1 U@ a®)dt (=)™, [ (8
dm )1 dc(t+t;)  ichm Sy Ym(t) dt. (445)

We combine Theorem []in Section 2.1 with (444]), (@43]) to obtain

ich, [t OV,

)\m . W(IE, —t‘])an(x7t‘]) dr =

icAn ()" Xy [T ()

A A (E:) T (1, 25 : m(t) dt| =

o [t w1, + S [ 2
Anl? 1 bt

icAm () Wn(1,t5) + [ Yn(t) Y () dt. (446)
Aml? J 1t — tj

Finally, we recall that m # n and substitute (448]) into (441]) to obtain (430). [

4.4.2 Quadrature Error

For a positive integer n > 0, we define the PSWF-based quadrature of order n via (432]),
([#34)) in Definition 2l This quadrature is used to approximate the integral of an arbitrary
bandlimited function f : (—=1,1) — C over the interval (—1,1) (see () in Section [[.1l and
#39)). We refer to the difference

1 n
/ FOEE ORI (447)
i 2

as the “quadrature error” (for integrating f). The following theorem, illustrated in Ta-
bles [[5 [I6] provides an upper bound on the absolute value of the quadrature error (for
integrating 1, for arbitrary m < n). One of the principal goals of this paper is to investi-
gate this error (see see (@) in Section [[T]). The results of additional numerical experiments,
in which this quadrature is used for integration of certain functions, are summarized in

Tables [I6] I8 and Figures [@, [0, [1] (see Experiments 11, 12 in Section [6.2.T]).
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Theorem 60. Suppose that n > 0 and 0 < m < n — 1 are integers. Suppose also that
t1,...,tn and Wy, ..., Wy are, respectively, the nodes and weights of the quadrature, intro-
duced in Definition [d above. Suppose furthermore that the real number Py, ,, is defined via
the formula

n(1,t5), (448)
where the complez-valued function U, : (—1,1)? — C is that of Theorem[59 above. Then,
1 n
[ uls) ds =3 vt )W <
_ st

2
(1 ’“) e+ ol (2 1m0+ ¢ Pan) (449

[Am|”

where ||I||oo s the L -norm of the function I : (—1,1) — R, defined via ([&I7) in Theorem[56
in Section [{.3.3, i.e.

11]|oo = sup {|I(t)] : =1 <t<1}. (450)

Proof. Suppose that the function I : (=1,1) — R is defined via (#I7) in Theorem (6 in
Section We multiply (@I7) by 1, (t) - ¥ (t) to obtain, for all real —1 <t < 1,

Ym(t) = Y Um()9; () + Y ()Y ()I(1), (451)
j=1

where, for each j = 1,...,n, the function ¢; : (—=1,1) — R is that of Definition 2l We
combine (B7), Theorem (6, Definition 2] Theorem B9, ([@50), and integrate (E5]]) over the
interval (—1,1) to obtain

mwm( ) -

|)‘m’ \\ (1 ts ) .
|)\m‘ —|)\| Zwm <W +icAn ¢n( ) >+§ HIHom (452)

where —1 < ¢ <1 is a real number. We combine (452)) with (48] to obtain

An 2
(1 - ||Am||2> Amitm(0) =

n ) )\n 2
S U)W+ e P + (1= 520 ) € (453)
=1 "
Finally, we rearrange (453]) to obtain (449). [
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In the following theorem, we establish an upper bound on P, ,,, defined via ([#48)) above.
This theorem is illustrated in Table [[4] and Figure [§] (see Experiment 10 in Section [6.1.4)).

Theorem 61. Suppose that n,m are non-negative integers, and that 0 < m < n. Suppose
also that xn > c2, and that the real number P, is defined via ([A48)) in Theorem[60. Then,

¢|Pom| < V321 (454)

Proof. Since x, > ¢2, the inequality

1
Yu(t) < vn(l) <n+ g, (455)
holds for all real —1 <t < 1, due to Theorems [I2] I3 in Section 2.1l Therefore,
1
1 1 3
2
Hdt < -4 — < —. 456
/11/8nwn<> R (436)

We combine ([@50) with Theorem [Ilin Section 2] to obtain

1-1/8n 1 1 1 3 5
2 o 2 o 2 - =
| e [voa- [ doazz-g-g w)

—1/8n

We observe that

dx 1 x 1 r+1
/(1x2)2_2'1—x2+4log1—x’ (458)

and combine (457)) and (458]) to obtain

/11/8" de. 1 1-1/8n 1, 2= 1/8n _

0 (I-22? 2 1-(1-1/8n)? 4 ° 1/8n

1 8 8n—-1) 1

S 4 —log(16n—1) < 4 < 5n. 4
5 “Ton—1 +4og(6n ) <4dn+n <b5n (459)

Suppose that the functions Q(t),Q(t) : (—1,1) — R are defined, respectively, via the
formulae ([70)), (77) in Theorem [I7 in Section 2l We apply Theorem [ with ¢y = 0 and
0 <t <1 to obtain

Q(0) - xn = Q(0) - p(0) - g(0) = Q(0)
- Q) = & [w%(w LA (ﬁf”z] (1= ) (/e — )
> 2P2(t) (1-12) (xa /P = 12) > PY2(1) (1-12)". (460)
It follows from (@57), [@5Y) and [@60) that

1-1/8n g4 1-1/8n 5
Xn Xn X
Qo) g ze0) g [ e [ ez g e
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which, in turn, implies that

1 Xn
— <16
Q) =" e
Suppose now that j > n/2 is an integer, and t; is that of Definition 2l We combine (462])
with Theorem [[7] in Section 2.1] to obtain

(n(ts)? (L= 8 - (it ) 02
OV F: = Qlt) 2 Q(0) = 75—

(462)

(463)

Due to Theorem [I4] in Section 2] for all integer 0 < m < n and real —1 <t < 1,

[Ym(t)] < 2¢/n. (464)
We combine Theorem [ in Section [Z1] with ([@37]) of Theorem [9 above to obtain, for all

real 0 <t <1,
2
/ Un( o icxt dt‘ / |t ()] do < \2[ (465)

Finally, we combine (48], (463), (464) and (465) to obtain

wm(tj) n
o) 2v/n, (466)

which implies (454). [

W (1,)] =

¢|Ppm| < cn - max

>0 '\Iln(lvtj)

<cn-

16n Q
2

Cc

Corollary 4. Suppose that m is an odd integer. Then, P, ,, = 0.

Proof. Suppose that 1 < j < n is an integer, and t1,...,t, are the roots of ¢, in (—1,1).
We combine Theorem [[land (B7) in Section 2.1 with (437) to obtain, for every j =1,...,n,

( 1)n 2% (1) + ¥, n+1—3(1)

n —zcactj d o icxt; dr =

/ Yn( T + /0 Un(x)e x

/ VY (2)e" dr = N\ (t;) = 0. (467)
-1

We observe that v/, is odd for even n and even for odd n, and combine this observation
with (67) to obtain, for every integer j = 1,...,n,

Yy (1) _ Yanr-5(1)

Ot)  Upltngag) (468)
We combine (468]) with (48] to obtain
nj(1)
Zwm ti) - zb’ (tj)
i Z/ () -t S =0 (469)
[ |
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In the following theorem, we simplify the inequality ([449]) of Theorem[60l It is illustrated
in Table [[8 and in Figure [ (see Experiment 12 in Section [6.2.T]). See also Conjecture [2 and
Remark 26l in Section [6.2.]

Theorem 62. Suppose that n > 0 and 0 < m < n — 1 are integers. Suppose also that
t1,...,tn and W1,..., W, are, respectively, the nodes and weights of the quadrature, intro-
duced in Definition[d above. Suppose furthermore that

c > 30, (470)
and that
2
n> =45, (471)
T
Then,

/11 Ym(s) ds — gwm(tj)wj < Al - (24 log <|A1n) +6- Xn) . (472)

Proof. We combine Theorems [ @ [4lin Section 211 the inequality (471]) and Theorems [0,
[61] to conclude that

1 n
/ Ym(s) ds = > m(t)Wj| < [L]loo + [Aal - (V0 + V32 ), (473)
1 -
7j=1
where ||I||s is defined via ([@50) in Theorem [60l Next, we combine ([@70), (@71]), Theorem [

in Section 2.1] Theorems [57, (8 in Section 3.3 and ([@50) to conclude that

2

1 ]loe < |An] - (24 -log (M) +13 - (xa)Y* + 4/ xn + 2\/§> ) (474)

We combine (471]) with Theorem [@ in Section 2] to conclude that
n < /Xn- (475)
Also, we observe that, due to the combination of ([@T0) and Theorem [l in Section 211

V32 X 4 4 Xn + 15 (xn) /4 + 272 + 24 - 1og(2) =

Xn (\/33 P ATV 115 T (2V2 + 24 - 10g(2)) - X,;l) <6 Xn. (476)
Now ({AT2) follows from the combination of (A73), (474)), (@75 and ([A7T0). [

The following theorem is a conclusion of Theorem [I1] of Section 2.1] and Theorems 62,
B above.
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Theorem 63. Suppose that n > 0 and 0 < m < n — 1 are integers. Suppose also that
t1,...,tn and Wy, ..., Wy are, respectively, the nodes and weights of the quadrature, intro-

duced in Definition[d above. Suppose furthermore that

c > 30,
and that
2
n > i + 7.
T
Then,

5

1 n 2
Xn T Xn—C
/_1 Pm(s) ds — ]El m (t5)W;| < 14340 - 7 exp {—4 . } .

VXn

Proof. We combine ([{T7)), (478]) with Theorem [62] above to obtain

/_11 Yrn(s) ds — j}ijlwmuj)vvj <Al (24 log (,A ) 6. xn) |

Suppose first that

Then,
A - (24 log( ! >+6-xn> <48 |- log< ! )
[An] [An]
We combine (477)), (@81)) and Theorem [ in Section 211 to conclude that
|An| < exp [—ZZ] <e P <l

We combine (48T]), [@82)) and ([@83) to obtain

1
An] - <24 10g< )+6-xn>§48-|/\ 1og< )g
|An] |An]

48 - exp [—ﬁ—n} %le-Xn-eXp [—%]

Suppose, on the other hand, that
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(478)

(479)

(480)

(481)

(482)

(483)

(484)
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(note that the right-hand side inequality in ([@85]) follows from the combination of (@71,

([@78) and Theorem 7). It follows from (@8H) that, in this case,

1
[An - (24 log (|)\ |> +6'Xn> <12 xn - [l
We combine (@78) with Theorem [I1] to obtain

v - Xn—CT
Al < 1195 - . ex . .
Al p{ z

We combine (477)) with Theorem [ of Section 2] to conclude that

4 _ 2
exp[ )ZL}<1195 Xn exp[ T Xn C]

We combine (@81), @24), HE33), (430), (487), [@88) that

1
|An] - <24 log<‘)\ ’>+6'Xn> <

v )
12 yn - 1195 - X exp[—w An C].

4 VXn
Now (@T9) follows from the combination of (480) and (489).

4.4.3 The Principal Result

(486)

(487)

(488)

(489)

In Theorem [63, we established an upper bound on the quadrature error for integrating .,
(see ([@T9)). However, this bound depends on . In particular, it is not obvious how large
n should be to make sure that the quadrature error does not exceed given € > 0. In this

subsection, we eliminate this inconvenience.

The following theorem is illustrated in Table [[9 (see Experiment 14 in Section [6.2.T]).

Theorem 64. Suppose that ¢ > 0 is a positive real number, and that
c > 30.

Suppose also that € > 0 is a positive real number, and that

1 5
0< log < ¢ —3-log(c) — log(6° - 14340).

4x/€

Suppose furthermore that the real number « is defined via the formula

44/6 1
o = 77\[ . <log - + 3 -log(c) + log(65 . 14340)) ,

and that the real number v(a) is defined via the formula

2 1
v(ia) = —C + = -log < 666) .

2 I}
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Suppose, in addition, that n > 0 and 0 < m < n — 1 are integers, and that

n > v(a). (494)
Then,
1 n
/ () ds = 3 ()17 < (495)
: 2

where t;, W; are defined, respectively, via @32), [@34) in Definition [2.
Proof. Tt follows from (491]) that

4+/6
5¢ > a > 7\[ - (3 log(c) + log(6° - 14340)) , (496)
7T

where « is defined via ([@92]). We observe that

% [a log <1iec>] = log <12”> : (497)

and hence the function v : (0,16¢) — R, defined via (93], is monotonically increasing. We

combine ({90), (492), (496), (@97) to conclude that

2 2 5 16 5
£+30<u(a)<£+i-log ) <X (498)
m T 27 2

We combine Theorem [7 of Section 2.1 with (493), (494)) and ([496) to obtain the inequality
Xn >4 a-c (499)

Suppose now that the function f : (¢,00) — R is defined via the formula

2 _ 2

T oy —c
fly) =y'% - exp [—4 : ] : (500)

Y
We differentiate (GO0) with respect to y and use ([@90) to obtain

fw) m c?
") =222 10 —y-=- |14+ = 1
fay =L -y 7 (14 5) | <o (501)

for all y > c¢. We combine ([@90), (98), (@99), (G00), (B0I) with Theorem B3] to conclude
that

1 n
[ () ds = Y bt W) <
-1 =

5 2
Xn ™ Xn—C
14340 - X0 L oxp | =L .
c’ p[ 4 /Xn }_
a\? T o
14340-03.(1+—) cexp |- 2| 502
. PITY Arane (502)
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We combine ([@96), (502) to obtain

1 n
m(s) ds — > (t)W;| < 14340 - 67 - ¢* - ex [—W-O‘]. 503
[ s 3. vult W p|- (503)
Now (@95) follows from the combination of (492) and (B03). [

The following theorem is a direct consequence of Theorem This theorem is one
of the principal results of the paper. It is illustrated in Table [[9 (see Experiment 14 in
Section [6.2.T]). See also Conjecture 2] in Section [6.2]]

Theorem 65. Suppose that ¢ > 0 is a positive real number, and that
c > 30. (504)
Suppose also that € > 0 is a positive real number, and that
3
exp [—2 (c— 20)] <e<l (505)

Suppose furthermore that n > 0 and 0 < m < n are positive integers, and that

2c 3 1 1 c
n>— + <10 + 3 log(c) + 3" log 5) -log (§> . (506)

Then,

1 n
/1 Um(s) ds = > hm(t))W;| <e, (507)
_ =

where t;, W; are defined, respectively, via [d32), ([434) in Definition [2.

Proof. We observe that, for all real z > 30,

3 5-m
= (z—20) < =——= -2 — 3-log(z) — log(6° - 14340). 508
5 )<y 7 g(x) — log( ) (508)
Also, we combine (504), (505) to conclude that
4/6 1 3 1 1
2\7TC . (log z + 3 - log(c) + log(6° - 14340)) <10+ 3 log(c) + 5 log - (509)
Furthermore, we combine (504)), (B05) to conclude that
4+/6 1
\—f . <log - + 3 - log(c) + log(6° - 14340)) >89 > 2 16e. (510)
T

Now (B07) follows from the combination of (504)), (505), (B06), (BO8), G0I), (BIO) and
Theorem [64 [
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The assumptions of Theorem [63] contain a minor inconvenience - namely, the parameter
¢ is not allowed to be “too small” (in the sense of (507])). In the following theorem, we
eliminate this restriction. On the other hand, for the values of ¢ in the range (503), the
resulting inequality for n is much weaker than (B06]).

Theorem 66. Suppose that ¢ > 0 is a positive real number, and that

c > 30. (511)
Suppose also that € > 0 is a positive real number, and that
0<e<l1. (512)
Suppose furthermore that n > 0 and 0 < m < n are positive integers, and that
n-(l—ii)>c+17r2'log(c)+i-logi. (513)
Then,
1 n
[ le) ds =3 bte)W <= (514)
_ =

where t;, W; are defined, respectively, via ([@32)), [@34) in Definition 2.

Proof. We combine (513]) with Theorem [6lin Section 2. Iland (I09]) in Section2.3to conclude
that

& <n? < xn. (515)

Also, we combine (BIT)), (5I12), (BI3), (BI15) with Theorem [63] and (B0I) in the proof of
Theorem [64] to conclude that

1 n
[ nls) ds = 3 vtt)W | <
] 2

5 9
14340-""-exp[7T-X" ¢ ] <

c’ 4 \Xn
14340 - &3 - (%)10 - exp [—Z c (% - g)} . (516)

We take the logarithm of both sides of (5I16]) and use (5IH) to obtain

1 n
log | [ tnls) ds = 3 (85| <
-1 =

ny w T
log(14340) + 3 - log(c) + 10 - log <E> ~ Tt ee<
n m m
log(14340) + 3 - log(c) + 10 - (E) —10 — Z.n+z.c<
T (12 40
4'<F-log(6)—n'<1—m>+c>. (517)
Now (5I4)) follows from the combination of (513) and (GIT). [ |
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4.4.4 Quadrature Weights

In this subsection, we analyze the weights W71,..., W, of the quadrature, defined in Def-
inition 2] in Section B4l This analysis has two principal purposes. On the one hand, it
provides the basis for a fast algorithm for the evaluation of the weights. On the other hand,
it provides a theoretical explanation of some empirically observed properties of the weights.

The results of this subsection are illustrated in Table20 and in Figure[I2] (see Experiment

15 in Section [6.2.2)).

In the following theorem, we describe a function, whose values at the roots t1,...,t, of
¥y, in (—1,1) are equal to the quadrature weights W1, ..., W,,, up to a certain scaling.

Theorem 67. Suppose that n is a non-negative integer. Suppose also that the function
®,: (—1,1) — R is defined via the formula

() = > o) Qult), (518)
k=0

where Qi (t) is the kth Legendre function of the second kind, defined in Section [2.2, and

oz,(fn) is the kth coefficient of the Legendre expansion of v, defined via (84) in Section [2.2.
Suppose furthermore that t; < --- < t, are the roots of 1, in (—1,1). Then, for every
integer 3 =1,2,...,n,

=1 Naa(t) dt

d,(t;) = . 519
=5 T2 (519)

Proof. Suppose that 1 < j < n is an integer, and that § > 0 is a positive real number. We

combine (5I8)) with (82), ([83]), (84), (I03]) in Section 2.2 to obtain

00 1
(n) Lo\ 1 wn(t) dt

) ti+id) == [ L 520

kzo% Qilt +i0) =5 i —t (520)

provided that § is sufficiently small. Suppose now that € > 0 is a real number, and that
1
8<§-min{|tj—1\, t; +1]}. (521)

We observe that, since t; is a root of 1, the right-hand side of (5I9)) is well defined. We
combine this observation with (520), (52I]) to evaluate

i 1 /tﬁf Pu(t)dt 1 /tﬁs Yn(t) dt\
5-0.050\2 )y . Gtio—t 2) . -t )

5—>(l),ng>02 o § st s) T
s (1 e
~ gim 2 %(W/ ds__
5—0, 6>0 2 _e S+1id

- L (L) - °) =
6—}&%>06 Y, (t;) - arctan (5) 0. (522)

We combine (518), (520), (522)) to obtain (GI19]). [
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The following corollary is a direct consequence of Definition 2l and Theorem

Corollary 5. Suppose that n > 0 and 1 < j < n are positive integers. Suppose also that
the function ®, : (—1,1) — R is defined via (5I8) in Theorem[67. Then,
D (ty)
Un(t;)’
where t;, W; are defined, respectively, via d32)), [@34) of Definition[2
Corollary [ is illustrated in Table We observe that Theorem [67] and Corollary
describe a connection between the weights Wy, ..., W, and the values of ®,, at t1,...,%,,
where the function ®, is defined via (5I8). In the following theorem, we prove that o,

satisfies a certain second-order non-homogeneous ODE, closely related to the prolate ODE

([“8)) in Section 211

Theorem 68. Suppose thatn is a non-negative integer, and that the function ®,, : (-1,1) —
R is defined via (518)) in Theorem[67. Suppose also that the second-order differential oper-
ator L, s defined via the formula

W, = —2 (523)

Ly [p] (1) = (1 = 1%) " (t) = 2t/ () + (xn — ¢*?) (t). (524)
Then, in the interval (—1,1) the function ®,, satisfies the nonhomogeneous ODE
Ln [én} (t) = - (ag% +al /3) : (525)

(n)  (n)

where the coefficients oy, are the first two coefficients of the Legendre expansion of

Yn, defined via [84) in Section 22
Proof. We combine (I02)), (98)) of Section 2.2l with (524) to obtain
Lo [Qr] = (xn — k(k + 1) = %) - Qx, (526)

where @) is the kth Legendre function of the second kind, defined in Section We
combine (O8]) of Section 2.2l with (526) to obtain

n[Za,(C”) ] Zak n—k(k+1) =) Qx =
k=0
>l (o — k(k + 1)) Qs

— 3" ol (Ap-2Qu2 + BrQr + Cri2Qrs2) =

k=0

> [(xn —k(k+1)al™ — 2 <a,§}32Ak +aB, +al" gck)] o)
k=2

| = 11+ )l = (of 41 +0f”By ) | 1
+ [t =00+ 1)) af” = ¢ (a§” 40 + a(n)Bo)] Qo
—c (aﬁ") (t°Q1 — B1Q1 — C5Q3) + 040 (t2Q0 — BoQo — 02Q2)> (527)
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where Ay, By, Cy are defined, respectively, via (@9)), (I00), (I0I) in Section 22l By the same
token, (527) holds, if we replace Qp’s with Py’s, where Py is the kth Legendre polynomial
defined in Section In other words,

L, [i o™ P,

S [Gn = b+ D)ol = 2 (ol 4s + By + alyc1) | P
k=2

+ [(xn —1(1+1)) ozg") — (agn)Al + agn)Bl)] P,

+ [t =00+ 1)) af? = ¢ (a§V 40 + "By ) | Py
— & (of” (PP - BiP - CsPy) + of” (PR~ BoPy— GaPy) ), (528)

We combine (78), ([O8) of Section 22| to conclude that

t2. Py(t) — By - P1(t) — C3 - Ps(t)

0,
tQ'Pg(t) —Bo'Po(t) —Cy Py (t) 0.

(529)

We recall that {P;} form an orthogonal system in L?[—1,1], and combine this observation

with ([A8)) in Section 1] (82) in Section 2.2, (524)), (528)) and (529) to conclude that, for

every integer k > 2,

Ot =k + 1)) o = 2 (), Ak + oV By + o, ) =0, (530)
and also
(xn — 11+ 1)) a{™ — &2 (ag% v agmBl) —0,
(xn — 00 + 1)) a{™ — &2 <a§”>AO + ag">30) = 0. (531)

We substitute ([530), (B31) into (G27) and use (GI])) to obtain
L 8] (1) = Ly [Zak a0

- al P (PQu(t) = BiQi(t) — C5Q3(1)
—2al" (t2Q0(t) BoQo(t) — CaQa(t)) . (532)
We combine (@3], ([@7), (I00), (I0T]) of Section to obtain

2Qo(t) — BoQo(t) — CaQa(t) =
, N1, 14t 2/1,, BESEAN
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and

£?Q1(t) — B1Q1(t) — C3Qs(t) =

3\ (t, 1+t 2 (1 1+t 5, 2
2 _ 2 - - R 3 _ > R
<t 5) (210g1_t 1) 5(4(5t 3t)log1_t 5t +3>

tl, 3\ 1, ., 14+t 5, 3 ., 4 1
(e -2) - = (52— 31) )1 T 534
(2( 5) 0 )> e L T (534)

Finally, we substitute (533]), (534]) into (532]) to obtain (525l). [

_In the following corollary, we establish a recurrence relation between the derivatives of
®,, of arbitrary order (compare to Theorem [I5]in Section 2.1]).

Corollary 6. Suppose that the function ®, : (—1,1) — R is defined via GIS) of Theo-
rem [67 Suppose also that —1 <t <1 is a real number. Then,

(L—#%) - @V(t) — 4t - () + (xn — P2 —2) - @I () — 26°t - Dy (t) =

— 2V, (535)
where aén) is defined via [84) in Section[Z2 (compare to ([[2) of Theorem[Id in Section[21).
Also, for every integer k > 2,

(1—t3) dFD(t) — 2 (k + 1) t@FETV () + (xn — k (k + 1) — *t%) W (1)
— AktdFV (1) — Pk (k— 1) dF2 (1) = 0. (536)

In other words, the higher order derivatives of ®,, and 1, satisfy the same recurrence relation

([@3) (see Theorem [ in Section [Z1).

Proof. To prove (630), we differentiate both sides of (525]) with respect to ¢. To prove (534,
we observe that the second derivative of the right-hand side of (525) is identically zero, and
combine this observation with Theorem [I5]in Section 211 [

The rest of this subsection is devoted to establishing the positivity of the quadrature
weights Wy, ..., W, defined via (434]) in Definition 2l The principal result of this part is
Theorem [73] (see also Remarks [2], [[3]).

Theorem 69. Suppose that ¢ > 0 is a real number, and that n > 0 is an odd integer.
Suppose also that ty,ta, ... t, and Wy, Wa, ..., W, are defined, respectively, via (432), ([@34)
in Definition[2. Suppose furthermore that the integer jo is defined via the formula

n—+1

Jjo = 5 (537)
Then, for every integer j =1,...,n,
(W, (1)) - (1 = 12) ichn (Y
W = W 4+ 1 n(t) dt. 538
woop T ety 55
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Proof. Suppose that the differential operator L,, is defined via (524]) in Theorem[68 Suppose
also that the function @, : (—1,1) — R is the solution of the homogeneous second-order
ODE

Lnlgl =0 (539)

in the interval (—1, 1) with the initial conditions

1
®,0)=———, & (0)=0. 540
0= g %0 (540)
Obviously, ®,, is an even function. Moreover,
1
D (1) - (1) — @ () - Yu(t) = 11—z (541)

for all real —1 < ¢ < 1 (this is the classical Abel’s formula; see e.g. Theorem 3.3.2 in [5]).
Suppose that the function ®;, : (=1,1) — R is defined via (518) in Theorem 67l We combine
([B25)) of Theorem [68 with (598)) to conclude that ®,, satisfies the non-homogeneous ODE

Ln [én} (z) = W, (542)

for all real —1 < x < 1. We observe that ,,, ®,, are two independent solutions of the ODE
((39), and combine this observation with (542]) to conclude that, for all real —1 < < 1,

D, (2) = Cy - Pp(x) + Co - Dy () +

wMQHO) <¢n<x> /0 "o, (t) dt — By (x) /0 ) dt) , (543)

for some constants C1,Cs. Out of the four summands on the right-hand side of (G43]),
the function C; - ¢y (z) is odd, while the other three functions are even. We combine this
observation with (5I8]) and (543]) to conclude that

Cy=0. (544)
On the other hand, we substitute 2 = 0 into (543]) to conclude that

©,,(0)

Cy = B (0)°

(545)

Suppose now that j is an integer between 1 and n. We recall that ¢; is a root of v, due to

([#32), and combine this observation with (540), (543), (544), (545) to obtain

(1) = a(t) - (2000030~ 22D [0 ar). (546)

We combine (523) of Corollary [{l with (537) and (548) to obtain
Wt = ) (W - (0)° + it [ vy a). (a7
Finally, we combine (54T) with (B4T7) to obtain (G38). n
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Theorem 70. Suppose that ¢ > 0 is a positive real number, and that
c > 30. (548)

Suppose also that n > 0 is an odd positive integer, and that

2
n > = + 7. (549)
™

Suppose also that ti,...,t, and Wi,..., W, are defined, respectively, via [@32), [@34) of
Definition[d. Suppose, in addition, that

Wiz <2 [Aal - V20, (550)
Then,

Wit < 20T (551)

Proof. We combine (549]), Theorems [, [I7 in Section 21 and (€62) in the proof of Theo-
rem [61] to conclude that

C

< 4v/n. (552)
[47,(0)]
We combine (552) with Theorem [ of Section 1] to conclude that, for any —1 < < 1,
ich, [T 1
0 (0) Un(t) dt| < 4Anlvn [ [ihn(t)] dt <2 [An| - V20 (553)
n 0 0

We combine (B50), (B53) with Theorem [69] to conclude that, for every integer 1 < j <mn,

| A TN -
IS g e o)

We combine (549), (554) and Theorems Ml [I7 in Section 2.1 to conclude that, for every
integer 1 < 5 < n,

W< — A V2. (555)

Xn —C t]
We combine (549) with Theorems [6] in Section [Z] to obtain the inequality
n < v/Xn- (556)

Now (B3] follows from the combination of (553]) and (B54). [
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Theorem 71. Suppose that ¢ > 0 is a positive real number, and that

c > 30. (557)
Suppose also that n > 0 is a positive integer, and that
2
n> —C +7. (558)

Suppose also that ty,...,t, and Wl,...,Wn are defined, respectively, via ([@32)), [@34) of
Definition[d. Then,

Wit ot Wiy > 2 — Al - (24 log‘)\ 130 W) (559)

Proof. Suppose that the function I(t) : (—1,1) — R is defined via ({@I7) in Theorem
Then,

Z i t - + I(t) - bu(t), (560)

for all real —1 <t < 1. We integrate (B60)) over the interval (—1,1) and use Theorem [ in
Section 2.1 Theorems [46], (0], 57 and Definition 2] to obtain

Wi+ Wy >2— [\ - <24 log —— 4 133/xn + 40c|Ap| + 2\/§.> (561)

|>\ |
We combine ([42), [43), Theorem [ in Section 2.1 with (558) to obtain
40c| A | < 40V27e < 40V 27 - Xn- (562)
We combine (B57), (B58)), (562)) with Theorem M in Section [2.1] to obtain
13¢/Xn + 40¢| Ay | 4 2V2 < 130 /X0 (563)
Now we substitute (B63) into (B61I]) to obtain (B59]). [
Theorem 72. Suppose that ¢ > 0 is a positive real number, and that
c > 30. (564)
Suppose also that the real number B is defined via the formula
90
= . 565
< log(30) (565)
Suppose furthermore that n > 0 is a positive integer, and that
2¢ [ -log(c) 16ec
—+—2"1 —_— 566
- + 27 °8 B - log(c) (566)
Then,
M| (24 log —— IA [+ 1309 + ﬂx;) <2.e710, (567)
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Proof. We combine (564), (565]), (566]) with Theorem [ in Section [ZI] to obtain the inequal-
ity

V2 ()™ 130 (i)™ +4v2 (0) ™ 10+ ()

130¢/xn
o Xn — €2 Xn — €2 Xn — €2 (568)
Also we combine (B64), (565), (566]) with Theorem [7 in Section 2] to conclude that
Xn > ¢+ (- log(c) - c. (569)
We combine (564), (565) and (B69) to obtain
)t _ 2 (14 8- log(e)/0)*t Ve (570)
Xn — € B -log(c) - c 3 -log(c)’
We substitute (Z70) into (B8] to obtain
42 (xa)™  10vBe- X
130 xn . 571
@ T o) o)
We combine (B64), (565), (G66]) with Theorem [I] to obtain
4 2
Xn T Xn—C
ol <1195 -2 Lexp | -2 . p
[An| < 1195 7 exp[4 Xn:| (572)
We combine (500), (501)) in the proof of Theorem [64] with (564), (565), (569), (G71)), (B72)
to obtain
42 ()™
Anl - | 130/ xpn + ————5—
[An] ( Xn + Y — 2 <
11950 - ¢3y/8c - (1 4 3 - log(c) /c)® exp |-~ B - log(c) <
B -log(c) 4 1+ log(c)/c
.3 .45 .6
11950 - ¢3v/8c - 4 coxn | T B -log(c) . (573)
B - log(c) 8
We take the logarithm of the right-hand side of (573]) and use (564), (565]) to obtain
11 .3 .45 .31
log 950 - 3v/8¢ exp _m-B-log(c) _
B - log(c) 8
11950+/8 - 4° 7 w0
1 _— ——— -1 —10. 4
og( 5 Tog(c) > + <2 5 ) og(c) < (574)
We combine (B73) with (574]) to conclude that
| Anl - (130\4/xn + m> <e 10 (575)
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We combine ([B64), (B65), (B75) to conclude that

|An| < e 1. (576)
It follows from (B70]) that
1
24 - | Al - 1ogm <24-16-¢710 < 710, (577)
Now (567)) follows from the combination of (575) and (E77). [ |

Theorem 73. Suppose that ¢ > 0 is a positive real number, and that
c > 30. (578)

Suppose also that n > 0 is a positive odd integer, and that

2c c
n>_ + 5 - log(c) - log (5) . (579)

Suppose furthermore that Wy, ..., W, are defined, via [@34)) of Definition[d. Then, for all
mteger j =1,...,n,

W; > 0. (580)

Proof. Suppose first, by contradiction, that

Then we combine (578), (579), (68I) with Theorems [7Q, [7T] to conclude that
4 7/4
Xn 02

1
> 2 — Ay (24 log — N + 130 - \4/Xn> , (582)
in contradiction to Theorem Therefore,

We combine (B83]) with Theorem [69 and (B53]) in the proof of Theorem [70] to obtain, for
every j =1,...,n,

(WL (t))* - (1 —2) ich,
wop W“”W*w' / Ynlt)

> 2. [An| - V20 ‘/ Un(t dt}>0 (584)

where t1,...,t, are defined via ([@32]) in Definition 2l Now (G80) follows directly from the
combination of (B84 and (B53) in the proof of Theorem 70 [ |
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Remark 12. The conclusion of Theorem[73 holds for even integers n as well. The proof of
this fact is similar to that of Theorem[73, and is based on Theorems|[71], [73 and the obvious
modifications of Theorem [69, [70,

Remark 13. Extensive numerical experiments (see e.g. Table [20 and Figure[I2) seem to
indicate that the assumption ([B09) is unnecessary. In other words, the weights W1y, ..., W,
are always positive, even for small values of n.

Remark 14. It follows from Theorem[69 that, if 1 < j, k < n are integers, then
2 2
(Un(t;) (L =) - W)= (¥ (tn) " (L= 7) - Wi + O (|Aul) (585)

(see also Experiment 15 in Section [6.2.3). We observe that for ¢ = 0 the quadrature in-
troduced in Definition [d is the well known Gaussian quadrature, whose nodes are the roots
ti,...,tn of the Legendre polynomial P, (see Section[2.2), and whose weights are defined
via the formula

2
W= PL(t))2 (1 - t§>

(see e.g. [1], Section 25.4). Thus, (588 is not surprising.

(586)

5 Numerical Algorithms

In this section, we describe several numerical algorithms for the evaluation of the PSWFs,
some related quantities, and the nodes and weights of the quadrature, defined in Definition [2]
in Section €4l Throughout this section, the band limit ¢ > 0 is a real number, and the
prolate index n > 0 is a non-negative integer.

5.1 Evaluation of x,, and ¢, (z), ¢/ (z) for -1 <z <1

The use of the expansion of v, into a Legendre series (see (82)) in Section 2.2]) for the eval-
uation of 1, in the interval (—1,1) goes back at least to the classical Bouwkamp algorithm
(see [4]). More specifically, the coefficients ﬁ(()n), ﬁln), ... of the Legendre expansion are pre-
computed first (see ([83]), ([84)) in Section [Z2). These coefficients decay superalgebraically;
in particular, relatively few terms of the infinite sum (82)) are required to evaluate 1, to
essentially machine precision (see Section 2.2] in particular Theorem [I8 and Remark 2, and
also [38] for more details).

Suppose that n > 0, and we are interested to evaluate the coefficients ﬁém, ﬁ%m), ... of
the Legendre expansion of 1), for every integer 0 < m < n. This can be achieved by solving
two N x N symmetric tridiagonal eigenproblems, where N is of order n (see Theorem [I§ and
Remark [2 in Section [Z2], and also [38] for more details about this algorithm). In addition,
this algorithm evaluates xgq,..., xn. Once this precomputation is done, for every integer
0 < m < n and for every real —1 < x < 1, we can evaluate ¥,,(z) in O(n) operations, by
computing the sum (82]).

Suppose, on the other hand, that we are interested in a single PSWF only (as opposed
to all the first n PSWFs). Obviously, we can use the algorithm mentioned above; however,
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its cost is O(n?) operations (see Remark 2. In the rest of this subsection, we describe an
algorithm for the evaluation of ﬁén), ﬂ%n), ... and Xy, whose cost is only O(n) operations.

This algorithm is also based on Theorem [I§] in Section It consists of two principal
steps. First, we compute a low-accuracy approximation Y, of x,, by means of Sturm’s
bisection (see Section 2.7.5 ([@3]), ([04) and Remark 2in Section 2.2 and also [2]). Second, we
compute Y, and 3™, defined via ([@2) in Section 22, by means of inverse power method (see
Section[2.7.4] and also [37], [7]). The inverse power method requires an initial approximation
to both the eigenvalue and the eigenvector; for this purpose we use, respectively, ¥, and a
random vector of unit length.

Below is a more detailed description of these two steps.

Step 1 (initial approximation Y, of x,,). Suppose that the infinite symmetric tridiag-
onal matrices A°V*" and A°% are defined, respectively, via (@0), [@1]) in Section 22l Suppose
also that A is the N x N upper left square submatrix of AY¢", if n is even, or of A%,
if n is odd.

Comment. N is an integer of order n (see Remark [2]). The choice

N =1.1:c+n+ 1000 (587)
is sufficient for all practical purposes.

e use Theorems [, B and [@ in Section 1] to choose real numbers xg < yo such that
o < Xn < ¥Y0- (588)

Comment. For a more detailed discussion of lower and upper bounds on x,, see, for
example, [25], [26]. See also Remark [I6] below.

e use Sturm’s bisection (see Section [Z77.5]) with initial values xg, o to compute X,. On
each iteration of Sturm’s bisection, the Sturm sequence (see Theorem [24)) is computed
based on the matrix A" (see above).

Comment. We only require that x, be a low-order approximation to x, in the
following sense: ¥, is closer to x, than to any x with k& # n.

Remark 15. The use of Sturm’s bisection as a tool to compute the eigenvalues of a sym-
metric tridiagonal matriz goes back at least to [2]; in the context of PSWFs, it seems to
appear first in [13].

The cost analysis of Step 1 relies on the following observation. This observation is based
on Theorems B, M Bl [6 [7, B in Section 2.1l as well as on extensive numerical experiments
and asymptotic expansions (see, for example, [38], [30], [36], [25], [26]).

Observation 1. Suppose that n > 0 is an integer.

If 0 <n < 2c¢/m, then (e.g. it seems 0 < xo < ¢)

Xn+1 — Xn = O(c). (589)
If n > 2¢/m, then

Xnt+1 — Xn = O(n). (590)
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Remark 16. If 0 < n < 2¢/n, then we combine Theorems [}, [A in Section 2] to obtain
n-(n+1) < xn < (591)

We combine (589), (591)) and Corollary[2in Section[2.7.9 to conclude that, in this case, the
cost of Step 1 is O(n -log(c)) operations. If, on the other hand, n > 2¢/w, then we combine
Theorems [}, [8, Corollary [ in Section [2.7.3 and [BI0) to conclude that, in this case, the
cost of Step 1 is O(n) operations.

Step 2 (evaluation of x, and B(")). Suppose that ¥, is an approximation to g,
computed in Step 1 (in the sense that y,, is closer to x, than to any other eigenvalue yy).
Suppose also that N is that of Remark [ in Section (see also Step 1 above, and, in
particular, (587)), and that 3" € RY is defined via ([@2) in Section

e generate a unit length random vector B eRN.
Comment. We use Y, and ( as initial approximations to the eigenvalue x, and
the corresponding eigenvector, respectively, for the inverse power method (see Sec-

tion L7.4).

e conduct inverse power method iterations until y,, is evaluated to machine precision.
The corresponding unit eigenvector is denoted by B(”).
Comment. Each iterations costs O(n) operations, and only O(1) iterations are re-
quired (see Section [Z74]). In practice, the number of iterations is always less than
10.

e conduct additional K iterations of inverse power method, until the convergence of the
first coordinate of B(”).
Comment. Both analysis and numerical experiments (to be reported at a later date)
suggest that

where ¢ is the machine precision (e.g. £ ~ 1D-16 for double precision calculations),
and ceil(a) is the minimal integer greater than a, for a real number a. For example,
if |B(()n)\ ~ 1D-99, and ¢ ~ 1D-16, then K = 8. In practice, K does not to be known
in advance; rather, we iterate until convergence.

Remark 17. The cost of Step 2 is O(n) operations.

Remark 18. It is a well known fact (see e.g. [37], [7]) that x, is evaluated to essentially
machine precision by the inverse power method. In other words, suppose that € is the
machine accuracy (e.g. € ~ 1D-16 for double precision calculations); then, xy is evaluated
with relative accuracy €. In addition, B(”) approzimates 3" with relative accuracy .
However, this means that a single coordinate of 3™ is only guaranteed to be evaluated

o ]+ ot
log (<)

K =1+ ceil , (592)

with absolute accuracy €. More specifically, for every integer k=0,..., N,
(n) _ j3(n)
i (n)ﬁ Bl < (5”) . (593)
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We make the following observation from Remark [I8 If we use B to evaluate Legendre
series (see (82) in Section 2.2 and also (595), (596) below), the result will be obtained with
high accuracy. On the other hand, the small coordinates of 3™ are only guaranteed to be
computed with low accuracy. In particular, due to (B93)), if, for example, | ﬂ,in)\ < /10 for
some k, then, apriori, we do not expect B,(Cn) to coincide with ﬂ,i") in any digit at all!

The following conjecture states that the situation is much better than Remark [I§ seems
to suggest. This conjecture has been confirmed by both some preliminary analysis (see
e.g. [27], [28]) and extensive numerical experiments. The matter is a subject of ongoing
research; the results and proofs will be published at a later date.

Conjecture 1. The coordinates of 3" are evaluated with high relative accuracy. More
specifically, for every 1 < k < N,

B
k

where 3(”) is the numerical approzimation to 3™, computed in Step 2, and € is the machine
accuracy (e.g. € = 1D-16 for double precision calculations).

In particular, Conjecture [I] implies that, no matter how small ﬂlgn) is, it coincides with
Bl(gn) in all but the last log;, (1/c) decimal digits.

Evaluation of ¢, (z), ¢/ (x) for -1 < z < 1, given x, and ﬂén),ﬁ§n),... Suppose
xn and the coefficients B(gn) ) ﬂ%n), ... of the Legendre expansion of 1, defined via (83), in
Section 221 have already been evaluated. Suppose also, that the integer N is that of Steps
1,2 above (see, for example, (587)).

For any real —1 < x < 1, evaluate 9, (z) via the formula

2N 2N
Un(2) =Y Pi(a) o =3 Pulx) - Y - VE T 12, (595)
k=0 k=0

Also, we evaluate 1/ (x) via the formula

2N 2N
Unle) = Y Pi(x) o) =Y Pi)- 57 - VR 172 (596)
k=1 k=0

Remark 19. The cost of the evaluation of x, and ﬁ(()n),ﬁyb), ... via Steps 1,2 is O(n)
operations (see Remarks[I0, [I7 above). Once this precomputation has been done, the cost
of each subsequent evaluation of ¥y (x), ¥l (x), for any real —1 < x < 1, is O(n) operations,

according to (595, (B96) and Remark[3 in Section [2.2.

5.2 Evaluation of )\,

Suppose that the coefficients ﬁ(()n), ﬁln) , ... of the Legendre expansion of ¢, (see (83)) in Sec-
tion[22)) as well as 1,,(0), ¢}, (0) have already been evaluated by the algorithm of Section (.11
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If n is even, we compute )\, via the formula

1 1 O ONG
/\n—/ Pp(t) dt = —0— =20 . 597
Gu®) ) =50 T 6a0) (597)
If n is odd, we compute A, via the formula
ic [ 2 ical™ 2 icg™
A = /t- W) dt == —E = /2. L 598
RGO E A BTN (Rl M) (59%)

(see ([BT) in Section 2Iland (78, [80), (83), (B4) in Section 2.2).
Observation. According to (B97), (598)), the eigenvalue A, is evaluated in O(1) oper-

ations as a by-product of Steps 1,2 of the algorithm of Section [5.1] (the cost of these steps
is O(n) operations, due to Remarks [I0 [I7)). Obviously, A, and ﬁ(()n), 5§n) are evaluated to
the same relative accuracy. In particular, even though |\,| can be extremely small, A, is
evaluated with fairly high precision (see Conjecture [l in Section [B.1]).

5.3 Evaluation of the Quadrature Nodes

Due to Definition 2lin Section 44l the n quadrature nodes t1,...,t, are precisely the roots of
¥ in (—1,1). In this subsection, we describe a numerical algorithm for the evaluation of the
quadrature nodes. Since 1), is symmetric about the origin (see Theorem [ in Section 2.1I),
it suffices to evaluate the roots of v, in the interval (0, 1).

To evaluate the quadrature nodes, we use the fast algorithm for the calculation of the
roots of special functions, described in [11]. This algorithm is based on Priifer transforma-
tion (see Section 2.0]), Runge-Kutta method (see Section 2Z7.3]) and Taylor’s method (see
Section 27.2)). It computes all the roots of 1, in (—1,1) in only O(n) operations.

A short outline of the principal steps of the algorithm is provided below. For a more
detailed description of the algorithm and its properties, the reader is referred to [11].

The following observation is a direct consequence of Theorem 23] in Section

Observation 1. Suppose that the function 6 : [t1,t,] — R is defined via (I48) in
Theorem 23in Section 2.6l Suppose also that the function s : [7/2,7 - (n — 1/2)] — [—tp, )
is the inverse of 6. Then, s is well defined, monotonically increasing and continuously
differentiable. Moreover, for all real 7/2 <n < m-(n —1/2),

1
f(s(n)) —v(s(n)) - sin(2n)’
where the functions f, v are defined, respectively, via (I44]), (I45]) in Section 2.6l In addition,

for every integer i = 1,...,n,
o1
s<<2—2> -7r> =t;, (600)

s (%) —0. (601)

s'(n) =

(599)

and also

Suppose now that ¢y, is the minimal root of v, in [0, 1).
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Step 1 (evaluation of ty,,). If nis odd, then
tmin = t(ng1)/2 = 0, (602)
and this step of the algorithm is trivial. On the other hand, if n is even, we observe that
tmin = t(n42)/2 > 0. (603)

We numerically solve the ODE (599)) with the initial condition (601]) in the interval [7n/2,7 - (n +1)/2],
by using 20 steps of Runge-Kutta method (see Section 2.7.3). The rightmost value #y;, of
the solution is a low-order approximation of ¢y, (see (600), (G03])).

We compute tpyin via Newton’s method (see Section R.7.1]), using tmin as the initial
approximation to tymi,. On each Newton iteration, we evaluate 1, and 1], by using the
algorithm of Section (.11

Observation 2. The point i, approximates tmin to roughly three-four decimal dig-
its. Subsequently, only several Newton iterations are required to obtain t.,;, to essentially
machine precision (see [I1] for more details). Thus, the cost of Step 1 is O(n) operations.

Step 2 (evaluation of ¢ (tmin)). We evaluate 1) (tmin) by using the algorithm of Sec-
tion 5.1
Observation 3. The cost of Step 2 is O(n) operations (see Remark [[9in Section [5.1)).
The remaining roots of ¥, in (tyin, 1) are computed iteratively, as follows. Suppose that
n/2 < j < n is an integer, and both ¢; and v, (¢;) have already been evaluated.

Step 3 (evaluation of ¢;;1 and v, (¢j11), given t; and ¢ (t;)).
e use the recurrence relation ([73)) (see Theorem [I5lin Section2.1]) to evaluate zp,(f) (tj)s---s 1%30) (t5)-

e use 20 steps of Runge-Kutta method (see Section [Z.7.3]), to solve the ODE (599) with

the initial condition
1
s<7r~ <]—2>> =t (604)

in the interval [7 - (j — 1/2), 7 - (j + 1/2)], by using 20 steps of Runge-Kutta method
(see Section Z7.3). The rightmost value ;11 of the solution is a low-order approxi-
mation of ¢j41.

e compute tj41 via Newton’s method (see Section Z7.), using ;11 as the initial ap-
proximation to t;j41. On each Newton iteration, we evaluate v, and 1], by using
Taylor’s method (see Section 27.2]). The Taylor expansion of order 30 about t; is
used, e.g.

30 (k)
va) =3I g0 (). (605)
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e evaluate ¢/, (tj+1) by using Newton’s method, i.e. by computing the sum
(k+1)
Z ¥n ( i) (tje1 — t))E. (606)

Observation 4. The point t~j+1 approximates tj;1 to roughly three-four decimal dig-
its. Subsequently, only several Newton iterations are required to obtain ¢;4; to essentially
machine precision (see [11] for more details). The cost of Step 3 is O(1) operations.

Step 4 (evaluation of ¢; and ] (¢;) for all j < n/2). Step 3 is repeated iteratively,
for every integer n/2 < j < n. To evaluate t; and ¢/, (t;) for —1 < t; < 0, we use the
symmetry of 1, about zero, established in Theorem [1l in Section 21l More specifically, for
every 1 < j <n/2, we compute

tj =tnt1—j (607)

and
Un(ty) = (=)™ - (tagay)- (608)
Summary (evaluation of t; and ¢/, (¢;), for all j = 1,...,n). To summarize, to

evaluate the roots of ¢, in (—1,1) as well as v/, at these roots, we proceed as follows.
e run Step 1, to evaluate tyin (see ([602), ([G03)). Cost: O(n).
e run Step 2, to evaluate ¢}, (tmin). Cost: O(n).
e for every integer n/2 < j < n, run Step 3. Cost: O(n).
e for every integer 1 < j < n/2, run Step 4. Cost: O(n).

Remark 20. We observe that the algorithm of this subsection not only computes the roots
t1, ..y tn of Yy in (—1,1), but also evaluates v}, at all these roots. The total cost of the
algorithm is O(n) operations.

5.4 Evaluation of the Quadrature Weights

In this subsection, we describe an algorithm for the evaluation of the weights Wy, ..., W,
of the quadrature, defined in Definition 2] in Section [£4l The results of this subsection are
illustrated in Table 20 and in Figure [[2] (see Experiment 15 in Section [6.2.2]).

Obviously, one way to compute Wi,..., W, is to evaluate the integrals of 1,..., @,
numerically (see Definition ). However, each ¢; has n — 1 zeros in (—1,1), and this
approach is unlikely to cost less that O(n?) operations (see also Section [5.1). In addition,
each ¢; has a singularity (albeit, removable) at ¢;, which might be a nuisance for numerical
integration, especially if high precision is required.

Below we describe two additional ways to evaluate the weights, based on the results
of Section .44l One of them, based on Theorem [67] and Corollary [ is straightforward
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and accurate; however, its cost is O(n?) operations. The other way, based on Theorem
and Corollary [0 in addition to having high accuracy and being easy to implement, is also
computationally efficient: its cost is only O(n) operations.

We assume that the quadrature nodes t1, . . ., t, as well as ¢/, (t1), . . ., ¥/, (t,) have already
been computed (by the algorithm of Section 5.3 whose cost is O(n) operations).

Algorithm 1: evaluation of Wy, ..., W,, in O(n?) operations. Suppose that the coef-
ficients oz[()n), e ozg}\; of the Legendre expansion of 1, (see (84]) in Section 2.2]) have already
been evaluated, by the algorithm of Section 5.1} here N is an integer of order n (see (G8T)
in Section [5.1]). We compute W; by evaluating the sum

9 2N
T () > o Qu(ty). (609)
n k=0

where Qo, @1, ... are the Legendre functions of the second kind, defined in Section

Observation 1. The sum (609]) approximates the corresponding infinite sum to essen-
tially machine precision, due to the superexponential decay of aén) and the high precision
to which Qg (t;) are evaluated (see Sections 2.2, b.1], and also [12], [38], [1]). In combination
with Theorem [67] and Corollary [Bl this implies that (609) is an accurate formula for the
evaluation of W; (see also Experiment 15 in Section 6.2.2)).

Observation 2. For every integer j, we evaluate Qo(t;),...,Qan(t;) recursively, by
using (@3), ([@6) in Section 22 in O(N) operations (see Remark [ in Section [2Z2]). Since
N = O(n) (see Section [5.1]), the overall cost of computing W1, ..., W, via [@03) is O(n?)
operations.

Algorithm 2: evaluation of Wy,..., W, in O(n) operations. This algorithm consists
of the following steps.
Suppose that ty, is the minimal root of v, in [0,1). In other words,

tmin = t(n-i—l)/? K %S odd, (61())
tn+2)/2 M 1S even.

Suppose also that the function ®, : (—1,1) — R is defined via (5I8) in Theorem 67 in
Section .44

Step 1 (evaluation of ®,,(tyin) and &/, (tmin)).  Suppose that the coefficients aén), e ,ag}\;

of the Legendre expansion of ¢, (see (84) in Section 2.2) have already been evaluated by
the algorithm of Section Bl We evaluate ®,,(tmin) by computing the sum

2N
> o Qr(tunin). (611)
k=0

Also, we evaluate @ (tyin) by computing the sum

2N
3" ol Qh(tmin) (612)
k=0

95



(see Algorithm 1 and Observations 1, 2 above, Theorem [67]in Section .24 and Section 2.2]).

Observation 3. We evaluate Q((tmin), - - - » @5 (tmin) recursively (see Sections 2.2 511
and also [12], [38], [1]). Thus both (BII) and (GI2) approximate ®,(tmin) and P, (fmin),
respectively, to essentially machine precision, and are computed in O(n) operations (see
Observations 1, 2 above and Remark B in Section 2.2]).

We evaluate @, at all but the last four remaining roots of ¥, in [0,1) iteratively, as
follows. Suppose that n/2 < j < n is an integer, and both ®,(t;) and @/, (t;) have already
been evaluated.

Step 2 (evaluation of ®,(t;41) and &, (t;11), given ®,(t;) and @/, (t;)).

e use the recurrence relation (535]), (530) (see Corollary [l in Section E.47]) to evaluate
PO YCOMN
o (tg)s e P ().

e cvaluate i)n(tjﬂ) by using Newton’s method, i.e. by computing the sum

Z w" 2 (b — t)F. (613)
e evaluate i);(tjﬂ) by using Newton’s method, i.e. by computing the sum

Zw

(k+1)
) (hy00 =t (614)

Observation 4. For each j, the cost of the evaluation of (613)), (614]) is O(1) operations
(i.e. does not depend on n). Also, (613)), (614)) approximate, ®,(t;) and ®),(t;), respectively,
to essentially machine precision. For a detailed discussion of the accuracy and stability of
this step, the reader is referred to [11].

Step 3 (evaluation of @n(tj) for n —3<j<mn). Forj=n—-3n—-2n-—1,n, we
evaluate ®,,(t;) by computing the sum

2N
> o Qulty). (615)
k=0

(similar to (GIT]) in Step 1).

Remark 21. We compute ®,, at the last four nodes via [©I5) rather than GI3)), since the
accuracy of the latter deteriorates when (1—t§) becomes too small (see (B36]) in Corollaryld).
Since this approach works in practice, is cheap in terms of the number of operations and
eliminates the above concern, there was no need in a detailed analysis of the issue (see also
[11] for more details).
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Step 4 (evaluation of ®,(t;) for 1 < j <n/2). Suppose that 1 < j < n/2. We evaluate
®,,(t;) via the formula

Bu(tj) = (1) By (tsa—) (616)

(® is symmetric with respect to zero due to the combination of Theorem 7 in Section 4.4

and (0] in Section 2.2).

Step 5 (evaluation of Wy,...,W,). By performing Steps 1-4 of Algorithm 2, we evaluate
®,, at the roots t1,...,t, of ¢, in (—1,1). Now, for every j = 1,...,n, we evaluate W; via

([B23)) of Corollary Bl in Section 44
Remark 22. The overall cost of Steps 1-5 of Algorithm 2 is O(n) operations.

5.5 Evaluation of v, and its roots outside (—1,1)

The PSFWs provide a natural way to represent bandlimited functions over the interval
(—=1,1) (see Theorem [ in Section 21]). Therefore, even though each 1, is defined (and
holomorphic) in the whole complex plane, in applications (construction of PSWFs, quadra-
tures, interpolation etc.) one is mostly interested in the properties of 1, (t) for real ¢ inside
(—1,1) (see, for example, Section 211 [38], [25], [26], [27], [28]).

On the other hand, the properties of the quadrature rules studied in this paper (see
Definition 2lin Section [£4]) depend, perhaps surprisingly, on the behavior of v, outside the
interval (—1,1) (see Sections 2.2 43 [£4). Thus, while one is rarely interested in the
evaluation of 1, and related quantities outside (—1,1) per se, we do need such tools to
illustrate our analysis (see Section [6] below).

The rest of this section is devoted to the description of numerical algorithms for the
evaluation of 1, (z) and ) (x) for x > 1, as well as the location of the roots of 1, in
(1,00). These algorithms were developed as auxiliary tools, and are not meant to be used
in practical applications.

Throughout this subsection, we assume that ¢ > 0 is a positive real number, and n is a
non-negative integer.

5.5.1 Evaluation of ¢, (x) for z > 1

To evaluate ¥, (z) for z > 1, we use the integral equation ([37)) in Section 2] (as opposed
to using the Legendre series (82) of Section 2.2 to evaluate ), (x) for —1 < x < 1). Namely,
we evaluate 1, (x) via proceed as follows:

e Compute y, and the coefficients aén), agn), ... of the Legendre expansion of v, (see

Section [5.1).
e Compute A, (see Section [(.2]).

e Compute 9, (z) via evaluating the integral

1

numerically, by using m = O(n) Gaussian quadrature nodes in the interval (—1,1).
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We observe that the integrand in (GI7) is oscillatory: 1), has n zeros in (—1,1), and e**t is
periodic with period (27)/(cz). Moreover, 1, (z) itself is oscillatory with frequency of order
n (unless x is between 1 and /Xy, /c, see Theorems 29 32 in Section E.1.T]).

Thus, we used a fairly large number of Gaussian nodes to evaluate (6I7). For example,
for ¢ = 100 and n < 100 we used the Gaussian quadrature of order 500; for ¢ = 1000 and

n < 750 we used the Gaussian quadrature of order 3000.

Remark 23. For each of the m Gaussian nodes Ty, we compute 1, (7)) via evaluating the
sum

2N
S Pi(n) ol (618)
j=0

where N is of order n (see Section [51]). Thus, the resulting algorithm for the evaluation
of Yn(x) is fairly expensive: its cost is O(N -n) = O(n?) operations, as opposed to O(n)
operations to evaluate ¢y (z) for =1 < x <1 (see Remark[I9 in Section [51)).

5.5.2 Evaluation of ¢} (z) for x > 1
We differentiate the identity ([B7) in Section 2.1l to obtain, for all complex z,
ic ! et
()= — [ t-app(t) e dt. (619)
A Jo1

We use (619) to evaluate ¢/, (z) for > 1 in the same manner we use (617 to evaluate ¢, (z)
(see Section [5.5.1]). The resulting algorithm has the same cost as the one of Section (.51
(see Remark 23]).

5.5.3 Evaluation of the roots of ¢, in (1, 00)

Suppose that x, > c¢. Suppose also that £ > 1 is an integer. According to Theorem 29 of
Section ET.T],

VX (620)

=< <T2 < < Tk
C

where z1,...,z; are the k£ minimal roots of v, in (1,00). We define the function 6 :
[0, 2] — R via ([22I) in Theorem B0 of Section LTIl Then, € is monotonically increasing;
moreover,

™ ™

o) =5, Bler) =5, Blo) = (k - ;) . (621)

Also, 0 satisfies the nonlinear first order ODE (222]) (see Theorem B0). Furthermore, for
every integer j =0,1,...,k — 1,
T

Zi1 =y (622)

(see Theorems BT, B2 in Section E] for a more precise statement).

Suppose now that j is an integer between 0 and k£ — 1, and xo,...,x; have already
been evaluated (note that to evaluate the special point zp we only need to evaluate y,,, see
Section B.1)). We evaluate x4 as follows.
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e Define h via the formula

h=—"_.
100c¢

(623)

e Use Runge-Kutta method (see Section 73] to evaluate (x; 4 i - h) numerically (by
solving the ODE (222)) with the initial condition (621])), for i = 1,2,3,....
Comment. Due to (622)), h defined via (623)) is a reasonable step size of the Runge-
Kutta ODE solver.

e Stop when
1
0(xk+i-h)<7'r'<j+2)<9(:Ck+(i+1)-h). (624)
e Define Z;41 via the formula

- o1
Fi = ax+ ( n 2) h, (625)
where 7 is as in (624]). This is the initial approximation of x ;1.

Comment. Due to (622), ([623), we expect &1 to approximate x;4 roughly to
three-four decimal digits.

e Use Newton’s method (see Section 2.7.1]) with the initial point Z;41 to evaluate x4 1.
Comment. For each Newton iteration, we evaluate ¢, (z), ¢} (z) by using the algo-
rithms of Sections B.5.1] [5.5.2] respectively.

Remark 24. We observe that the algorithm of Section[5.5.3is similar to that of Section[5.3.
However, rather than solving the ODE for the inverse of 6 (see (599) in Section[5.3), here
we solve the ODE for 0. Also, rather than evaluating vy () and ), (x) by Taylor’s method
(see (608), ([€0Q) in Section[53), here we evaluate ¥y () and V), (x) by using the algorithms
of Section[5.5.1, [5.5.3, respectively.

6 Numerical Results

This section has two principal purposes. First, we illustrate the analysis of Section E by
means of numerical examples. Second, we demonstrate the performance of the algorithms
presented in Section 5l All the calculations were implemented in FORTRAN (the Lahey 95
LINUX version).

In all the experiments, the principal numerical algorithms of the paper, described in Sec-
tions B.I[5.2] were run in double precision. On the other hand, the auxiliary algorithms of
Section (whose sole purpose is to illustrate the analysis) were run in extended precision.

6.1 Properties of PSWFs

In this subsection, we illustrate the analytical results from Section Il Section and
Section .3l

99



6.1.1 TIllustration of Results from Section 4.1l

Experiment 1. In this experiment, we illustrate Theorem [I6] in Section 2.1 and Theo-
rem 29 in Section LTIl We proceed as follows. We choose, more or less arbitrarily, the
band limit ¢ > 0 and the prolate index n > 0, and evaluate 1, (z) at 1000 equispaced points
in the interval (—1.5,1.5). To evaluate ¢, (z) for —1 < x < 1, we use the algorithm of
Section [5.]] (in double precision). To evaluate 1, (z) for |z| > 1, we use the algorithm of
Section B5.1] (in extended precision).

We display the results of the experiment in Figures [I Bl corresponding to the choice
c=20,n=9and ¢ = 20, n = 14, respectively. Each of these figures contains a plot of the
corresponding ,,.

We observe that the relations (74]) and (75) hold for the functions in Figures [, 2]
respectively. The inequality (69) of Theorem [I3]in Section 2] holds in both cases, that is,
the absolute value of local extrema of 1,,(t) increases as t grows from 0 to 1. On the other
hand, (70) holds only for Figure 2l This is due to the fact that xg < ¢® and 14 > ¢ (see
also Theorem M in Section 2.I]). Also, we observe that the magnitude of the oscillations
outside (—1,1) is roughly inversely proportional to |Ay|.

v, ()
1.5 T

AL
T

; | | | | |
]:?.5 -1 -0.5 0 0.5 1 15

Figure 1: The function 1, (t) for ¢ = 20 and n = 9. Since x, ~ 325.42 < 2, the behavior
is as asserted in ([[4) of Theorem [I6. The points \/X,/c ~ 0.90197 and 1 are marked
with asterisks. The eigenvalue |\,| =~ 0.55978 is relatively large, and the oscillations of 1y,
outside (—1,1) have small magnitude. Compare to Figure[d. Corresponds to Experiment 1.
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Figure 2: The function 1, (t) for ¢ = 20 and n = 14. Since x, ~ 437.36 > ¢2, the behavior
is as asserted in ([8) of Theorem [IB. The points 1 and \/xn/c ~ 1.0457 are marked
with asterisks. Observe that |\,| =~ 0.12564, and the oscillations of 1, outside (—1,1)
have relatively large magnitude (of order |)\n]71). Compare to Figure . Corresponds to
FExperiment 1.

2_ 2_ 2
¢ || = Rale | B\ mtm | @ V) By [T
10 15 | 0.46561E4-00 | 0.22542E+00 0.20655E401
10 19 | 0.51090E4-00 | 0.24279E+00 0.21043E+-01
10 24 | 0.55570E+00 | 0.26055E4-00 0.21328E4-01
100 | 76 | 0.49260E-01 0.23935E-01 0.20581E4-01
100 | 84 | 0.57274E-01 0.27070E-01 0.21158E+-01
100 | 92 | 0.63570E-01 0.29602E-01 0.21475E401
1000 | 652 | 0.52819E-02 0.23016E-02 0.22949E4-01
1000 | 664 | 0.56889E-02 0.27295E-02 0.20843E+-01
1000 | 676 | 0.63367E-02 0.30338E-02 0.20887E+01

Table 1: The relation between the left-hand side and the right-hand side of the inequality
@28) of Theorem [31. For each value of the band limit c, the three values of n are chosen

such that |\,| =~ 107°5,1072,10713, respectively. Corresponds to Experiment 2.
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Experiment 2. In the following numerical experiment, we illustrate Theorem [B1] in Sec-
tion LT.Jl We proceed as follows. For each of the three values of band limit ¢ (namely,
¢ = 10,100, 1000), we pick three values of the prolate index n. The values of n are chosen
to satisfy n > 2¢/7 (which implies that x, > ¢2, due to Theorem [ in Section Z1]). Then,
we evaluate the eigenvalue x,, of the ODE (&) of Section 2] by using the algorithm of
Section 5.1l Also, we evaluate the minimal root x; of ¥, in (1,00) (see Theorem 29 in
Section L.1.1]), by using the algorithm of Section [(.5.3l

The results of this experiment are displayed in Table [l This table has the following
structure. The first two columns contain the band limit ¢ and PSWF index n. The third
column contains the difference between the x; and the special point /X7 /c (see Theorem
in Section [.1.0]). This difference is the left-hand side of the inequality (228]) of Theorem 311
On the other hand, the fourth column contains the right-hand side of ([228)) (a lower bound
on this difference). The last column contains the ratio of the value in the third column to
the value in the fourth column.

We observe that the value in the fourth column is smaller than the value in the third
column roughly by a factor of 2, for all the choices of ¢,n. In other words, the lower bound
on 1 — /Xn/c, provided by Theorem [31] is rather inaccurate, but is of correct order.

k Thtl — Tk i) T,/ = zi -1 lower error upper error
\/1+c2(x§—1)2 e\ zr—(xn/c?)
1 | 0.51496E-01 | 0.31410E-01 | 0.58023E-01 | 0.39005E+00 | 0.12676E-+00
2 | 0.45166E-01 | 0.31412E-01 | 0.47546E-01 | 0.30452E400 | 0.52703E-01
3 | 0.42078E-01 | 0.31413E-01 | 0.43379E-01 | 0.25345E+00 | 0.30936E-01
4 | 0.40179E-01 | 0.31414E-01 | 0.41019E-01 | 0.21815E400 | 0.20908E-01
5 | 0.38872E-01 | 0.31414E-01 | 0.39466E-01 | 0.19185E+00 | 0.15285E-01
6 | 0.37908E-01 | 0.31415E-01 | 0.38354E-01 | 0.17129E+00 | 0.11754E-01
7 | 0.37164E-01 | 0.31415E-01 | 0.37512E-01 | 0.15470E+00 | 0.93670E-02
8 | 0.36570E-01 | 0.31415E-01 | 0.36851E-01 | 0.14097E400 | 0.76646E-02
9 | 0.36084E-01 | 0.31415E-01 | 0.36315E-01 | 0.12939E+400 | 0.64016E-02
10 | 0.35678E-01 | 0.31415E-01 | 0.35872E-01 | 0.11949E400 | 0.54352E-02
11 | 0.35334E-01 | 0.31415E-01 | 0.35499E-01 | 0.11090E+400 | 0.46772E-02
12 | 0.35038E-01 | 0.31415E-01 | 0.35180E-01 | 0.10338E+400 | 0.40703E-02
13 | 0.34780E-01 | 0.31415E-01 | 0.34905E-01 0.96745E-01 | 0.35761E-02
14 | 0.34554E-01 | 0.31416E-01 | 0.34664E-01 0.90835E-01 | 0.31677E-02
15 | 0.34354E-01 | 0.31416E-01 | 0.34451E-01 0.85540E-01 | 0.28261E-02
16 | 0.34176E-01 | 0.31416E-01 | 0.34263E-01 0.80768E-01 | 0.25372E-02
17 | 0.34016E-01 | 0.31416E-01 | 0.34094E-01 0.76444E-01 | 0.22905E-02
18 | 0.33872E-01 | 0.31416E-01 | 0.33942E-01 0.72510E-01 | 0.20780E-02
19 | 0.33741E-01 | 0.31416E-01 | 0.33805E-01 0.68913E-01 | 0.18937E-02

Table 2: lllustration of Theorem [32 with ¢ = 100 and n = 90. |\,| =~ 1071°. Corresponds

to Experiment 3.
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k Tht1 — Tk m(#i—1) N 21 lower error upper error
\/1+02(a:%—1)2 zp—(xn/c?)
1 | 0.59672E-01 | 0.31414E-01 | 0.68077E-01 | 0.47355E4-00 | 0.14086E4-00
2 1 0.51323E-01 | 0.31415E-01 | 0.54472E-01 | 0.38790E+00 | 0.61363E-01
3 | 0.47161E-01 | 0.31415E-01 | 0.48918E-01 | 0.33387E+00 | 0.37253E-01
4 | 0.44558E-01 | 0.31415E-01 | 0.45710E-01 | 0.29496E4-00 | 0.25858E-01
5 | 0.42740E-01 | 0.31415E-01 | 0.43566E-01 | 0.26496E4-00 | 0.19329E-01
6 | 0.41383E-01 | 0.31415E-01 | 0.42010E-01 | 0.24087E400 | 0.15150E-01
7 | 0.40325E-01 | 0.31415E-01 | 0.40820E-01 | 0.22094E4-00 | 0.12275E-01
8 1 0.39472E-01 | 0.31416E-01 | 0.39874E-01 | 0.20410E+00 | 0.10193E-01
9 | 0.38767E-01 | 0.31416E-01 | 0.39102E-01 | 0.18964E+00 | 0.86267E-02
10 | 0.38174E-01 | 0.31416E-01 | 0.38457E-01 | 0.17705E+400 | 0.74127E-02
11 | 0.37667E-01 | 0.31416E-01 | 0.37910E-01 | 0.16597E+00 | 0.64491E-02
12 | 0.37229E-01 | 0.31416E-01 | 0.37440E-01 | 0.15614E4-00 | 0.56691E-02
13 | 0.36845E-01 | 0.31416E-01 | 0.37030E-01 | 0.14735E+00 | 0.50273E-02
14 | 0.36506E-01 | 0.31416E-01 | 0.36670E-01 | 0.13943E+00 | 0.44920E-02
15 | 0.36204E-01 | 0.31416E-01 | 0.36350E-01 | 0.13225E+00 | 0.40401E-02
16 | 0.35933E-01 | 0.31416E-01 | 0.36065E-01 | 0.12572E+00 | 0.36546E-02
17 | 0.35690E-01 | 0.31416E-01 | 0.35808E-01 | 0.11975E+00 | 0.33228E-02
18 | 0.35469E-01 | 0.31416E-01 | 0.35576E-01 | 0.11426E+00 | 0.30349E-02
19 | 0.35267E-01 | 0.31416E-01 | 0.35365E-01 | 0.10921E+00 | 0.27833E-02

Table 3: Illustration of Theorem [32 with ¢ = 100 and n = 110. |\,| ~ 10725, Corresponds
to Experiment 5.
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Experiment 3. In the following numerical experiment, we illustrate Theorem [32] in Sec-
tion LTIl We proceed as follows. We choose the band limit ¢ and the prolate index n.
For each such choice, we compute the first 20 roots z1,...,x2 of ¥, in (1,00), using the
algorithm of Section Also, for each k = 1,...,19, we compute the upper and lower
bound on xy41 — 2k, established in Theorem

The results of the experiment are displayed in Tables 2] [ that correspond to ¢ = 100
and n = 90, 110, respectively. These tables have the following structure. The first column
contains the index k of the root xp of v, in (1,00). The second column contains the
difference between two consecutive roots zy1 and xy of ¢, in (1,00). The third and fourth
columns contain, respectively, the lower and upper bound on zyi1 — xg, as in ([233) of
Theorem The last two columns contain the relative errors of these bounds.

We observe that the upper bound is more accurate in terms of relative error. Moreover,
the relative accuracy of both bounds improves monotonically as k grows. On the other
hand, for a fixed k, the accuracy in Table 2] is slightly higher than that in Table Bl which
suggests that the bounds worsen as n grows. We also observe that the difference xx11 — xg
between two consecutive roots decreases monotonically to 7/c, as k grows (see (235) in
Theorem [32] and Remark [7]).

6.1.2 Illustration of Results from Section

WA + (W, () A1) / (x - ¢*1)
80

40 ]

1 15 2 2.5

Figure 3: Q(t) defined via ([244)), with ¢ = 10 and n = 8. See Experiment 4.

Experiment 4. In this experiment, we illustrate Theorem B4lin Section 2.1l We proceed
as follows. We choose the band limit ¢ = 10 and the prolate index n = 8. Then, we compute
Xn by using the algorithm of Section (Il Also, we evaluate v, and ¢/, at 500 equispaced
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(1-1%) ((x,, - ) W20 + (1YW, (1)?)
15000 ‘ ‘

100007

50007

1 15 2 2.5

Figure 4: Q(t) defined via (248), with ¢ = 10 and n = 8. See Experiment 4.

points in the interval

(Vﬁé“,‘/ﬂc“ +1>. (626)

For each such point x, we compute @Q(x) and Q(x), where the functions Q, Q are defined,
respectively, via (244]), (245) in Theorem B34l

In Figures 3], @, we plot, respectively, Q and Q over the interval (626]). We observe that,
as expected, Q is monotonically decreasing and @ is monotonically increasing. On the other
hand, we observe that the second derivative of each of @, Q does not have a constant sign
in this interval.

Experiment 5. In the following experiment, we illustrate Theorem B3l in Section L.2.11
We proceed as follows. We choose, more or less arbitrarily, the band limit ¢ and the prolate
index n. For each choice of ¢,n, we evaluate x, by using the algorithm of Section [E.1I
Then, we evaluate the first 20 roots xy, ...,z of ¥, in (1,00), by using the algorithm of
Section (in extended precision). For each such root zj, we evaluate ¢}, (zx) by using
the algorithm of Section (in extended precision).

We display the results of the experiment in Tablesdl [l corresponding to ¢ = 100, n = 80
and ¢ = 200, n = 160, respectively. These tables have the following structure. The first
column contains the index k of the root xy of ¢, in (1,00). The second column contains the
absolute value of the ratio of ¢, (zg4+1) to ¥, (x). The third and fourth columns contain
the lower and upper bound on that ratio, respectively, established in ([254]) of Theorem
The last two columns contain the relative errors of these bounds.

We observe that the ratio in the second column is always less than one. Moreover, it
first decreases up to a certain k£ and then increases as k grows. Both bounds have roughly
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/ 2 2 2.2 —
k %&22 )1) xgi 1_11 \/ CQ‘Z’% _;n S ;g;l X" | lower error | upper error
1 | 0.93958E4-00 | 0.74737E+00 0.11909E+-01 0.20457E+00 | 0.26750E400
2 1 0.93463E4-00 | 0.81017E+00 0.10796E+4-01 0.13317E+400 | 0.15516E+400
3 | 0.93943E+00 | 0.84386E4-00 0.10463E4-01 0.10172E4-00 | 0.11373E+00
4 1 0.94463E+00 | 0.86575E400 0.10309E4-01 0.83504E-01 | 0.91326E-01
5 | 0.94920E4-00 | 0.88139E+00 0.10223E4-01 0.71439E-01 | 0.77048E-01
6 | 0.95309E+00 | 0.89325E400 0.10170E4-01 0.62785E-01 | 0.67058E-01
7 1 0.95639E4-00 | 0.90260E+00 0.10134E4-01 0.56236E-01 | 0.59629E-01
8 | 0.95922E+00 | 0.91021E+00 0.10109E4-01 0.51085E-01 | 0.53864E-01
9 | 0.96166E+00 | 0.91655E4-00 0.10090E4-01 0.46915E-01 | 0.49244E-01
10 | 0.96380E+00 | 0.92191E4-00 0.10076E4-01 0.43460E-01 | 0.45449E-01
11 | 0.96568E+00 | 0.92653E4-00 0.10065E4-01 0.40545E-01 | 0.42269E-01
12 | 0.96735E+00 | 0.93055E4-00 0.10056E+-01 0.38048E-01 | 0.39561E-01
13 | 0.96885E+00 | 0.93408E4-00 0.10049E4-01 0.35883E-01 | 0.37225E-01
14 | 0.97019E+00 | 0.93722E4-00 0.10043E4-01 0.33984E-01 | 0.35185E-01
15 | 0.97141E+00 | 0.94003E4-00 0.10038E4-01 0.32304E-01 | 0.33386E-01
16 | 0.97252E+00 | 0.94256E4-00 0.10034E4-01 0.30805E-01 | 0.31788E-01
17 | 0.97353E+00 | 0.94485E4-00 0.10031E401 0.29459E-01 | 0.30356E-01
18 | 0.97447E+00 | 0.94694E4-00 0.10028E4-01 0.28242E-01 | 0.29065E-01
19 | 0.97533E+00 | 0.94886E+-00 0.10025E4-01 0.27136E-01 | 0.27895E-01

Table 4: [llustration of Theorem [33, with ¢ = 100, n = 80, |A,| = 0.58925E-07. See
FExperiment 5.
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Table 5: Illustration of Theorem[33, ¢ = 200, n = 160, |A,| = 0.17136E-13
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0.99507E4-00
0.97042E4-00
0.96628E4-00
0.96620E4-00
0.96726E4-00
0.96863E+-00
0.97004E4-00
0.97139E+-00
0.97265E4-00
0.97382E4-00
0.97490E4-00
0.97588E4-00
0.97679E4-00
0.97763E4-00
0.97840E4-00
0.97912E4-00
0.97978E+-00
0.98040E4-00
0.98098E+-00

0.81420E+00
0.85769E+00
0.88122E+00
0.89669E+00
0.90789E+00
0.91647E+00
0.92332E+00
0.92894E+00
0.93365E+00
0.93768E+00
0.94116E+00
0.94421E+00
0.94691E+00
0.94932E+00
0.95148E+00
0.95344E+00
0.95522E+00
0.95684E+00
0.95834E+00

0.12260E4-01
0.10994E+01
0.10600E4-01
0.10413E4-01
0.10306E4-01
0.10238E+01
0.10192E4-01
0.10158E+01
0.10133E+01
0.10114E4-01
0.10099E+01
0.10086E4-01
0.10076E+01
0.10068E4-01
0.10061E+01
0.10055E4-01
0.10050E+01
0.10045E4-01
0.10042E4-01
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0.18177E4-00
0.11618E4-00
0.88030E-01
0.71944E-01
0.61380E-01
0.53843E-01
0.48159E-01
0.43700E-01
0.40096E-01
0.37115E-01
0.34603E-01
0.32453E-01
0.30590E-01
0.28957E-01
0.27514E-01
0.26228E-01
0.25073E-01
0.24030E-01
0.23082E-01

0.23205E+00
0.13292E+00
0.96998E-01
0.77728E-01
0.65503E-01
0.56971E-01
0.50637E-01
0.45725E-01
0.41791E-01
0.38560E-01
0.35854E-01
0.33550E-01
0.31562E-01
0.29826E-01
0.28297E-01
0.26938E-01
0.25721E-01
0.24624E-01
0.23630E-01

. See Experiment



the same relative accuracy and become sharper as k grows. Even for k = 1 the errors are
about 20%, while already at k& = 7 they drop to about 5%. We also observe (not shown
in the tables) that the magnitude of |/, (z)| is about 10% for Table @l and about 10 for

Table [l (see also Experiment 6 below).

‘)\n|(xi_1)3/4

/ -1 VXn
k [ (k)| (xi*(xn/CQ))l/lewn(l)h/ﬁ €k be (xka P )
1 | 0.57349E-19 0.81518E-19 0.72340E-02 | 0.10181E+01
2 | 0.56895E-19 0.80550E-19 0.15530E-02 | 0.10106E401
3 | 0.58182E-19 0.82319E-19 0.64593E-03 | 0.10081E401
4 1 0.59907E-19 0.84743E-19 0.34935E-03 | 0.10067E+01
5 | 0.61785E-19 0.87390E-19 0.21744E-03 | 0.10059E+01
6 | 0.63718E-19 0.90120E-19 0.14767E-03 | 0.10052E+01
7 | 0.65667E-19 0.92874E-19 0.10641E-03 | 0.10048E+01
8 | 0.67615E-19 0.95627E-19 0.80051E-04 | 0.10044E+01
9 | 0.69553E-19 0.98367E-19 0.62211E-04 | 0.10041E401
10 | 0.71477E-19 0.10109E-18 0.49596E-04 | 0.10039E+01
11 | 0.73385E-19 0.10379E-18 0.40358E-04 | 0.10036E+01
12 | 0.75277E-19 0.10646E-18 0.33400E-04 | 0.10035E+01
13 | 0.77154E-19 0.10911E-18 0.28034E-04 | 0.10033E401
14 | 0.79015E-19 0.11175E-18 0.23815E-04 | 0.10032E+01
15 | 0.80861E-19 0.11436E-18 0.20441E-04 | 0.10030E+-01
16 | 0.82693E-19 0.11695E-18 0.17703E-04 | 0.10029E+01
17 | 0.84511E-19 0.11952E-18 0.15453E-04 | 0.10028E+-01
18 | 0.86317E-19 0.12207E-18 0.13584E-04 | 0.10027E401
19 | 0.88112E-19 0.12461E-18 0.12015E-04 | 0.10026E+01

Table 6: Illustration of Theorem [{1 with ¢ = 100, n = 100.

An = 0.94419E-18. See

Ezperiment 6.

Experiment 6 In this experiment, we illustrate Theorems ATl in Section We
proceed as follows. We choose, more or less arbitrarily, the band limit ¢ and the prolate index
n. For each such choice, we evaluate x, and A\, by using the algorithms of Sections 5.1 [5.2]
respectively (in double precision). Then, we compute the first 20 roots x1, ...,z of ¥, in
(1,00), by using the algorithm of Section [5.5.3] (in extended precision). For each such root
xy, we evaluate ] (x)) by using the algorithm of Section (in extended precision).

We display the results of the experiment in Tables[6l],[7, corresponding to ¢ = 100,n = 100
and ¢ = 1000,n = 700, respectively. These tables have the following structure. The first
column contains the index k of the root xy of ¥, in (1,00). The second column contains
the reciprocal of |1}, (zx)|. The third column contains the quantity

Aol (22 — 1)

627
(@2 — (xn/e)) ' [n(1) V2 (920
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/ -1 VXn
k [ (k)| (-T%_(Xn/CQ))l/4|'l/}n(l)|\/§ €k be (xkra P )
1 | 0.10723E-23 0.15242E-23 0.72932E-02 | 0.10140E+01
2 | 0.10407E-23 0.14734E-23 0.15865E-02 | 0.10077E401
3 | 0.10464E-23 0.14805E-23 0.67023E-03 | 0.10056E401
4 | 0.10621E-23 0.15025E-23 0.36864E-03 | 0.10045E401
5 | 0.10817E-23 0.15300E-23 0.23349E-03 | 0.10038E401
6 | 0.11028E-23 0.15598E-23 0.16142E-03 | 0.10033E+01
7 | 0.11246E-23 0.15905E-23 0.11843E-03 | 0.10029E+01
8 | 0.11466E-23 0.16216E-23 0.90717E-04 | 0.10027E+01
9 | 0.11685E-23 0.16527E-23 0.71782E-04 | 0.10025E4-01
10 | 0.11903E-23 0.16835E-23 0.58262E-04 | 0.10023E+01
11 | 0.12119E-23 0.17140E-23 0.48264E-04 | 0.10021E4-01
12 | 0.12332E-23 0.17441E-23 0.40656E-04 | 0.10020E+01
13 | 0.12542E-23 0.17738E-23 0.34730E-04 | 0.10019E4-01
14 | 0.12750E-23 0.18031E-23 0.30020E-04 | 0.10018E+01
15 | 0.12954E-23 0.18320E-23 0.26215E-04 | 0.10017E+01
16 | 0.13156E-23 0.18606E-23 0.23094E-04 | 0.10016E401
17 | 0.13355E-23 0.18887E-23 0.20502E-04 | 0.10015E+01
18 | 0.13551E-23 0.19164E-23 0.18325E-04 | 0.10015E401
19 | 0.13745E-23 0.19438E-23 0.16479E-04 | 0.10014E+01

Table 7: Illustration of Theorem [{1] with ¢ = 1000, n = 700.

Ezperiment 6.
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An = 0.12446E-21.
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(see (B06) in Theorem [T]). The fourth column contains &g, defined via the formula

2 [ (D)] (22— (xa/e)
[, (2x)| = ™ ($%_1)3/4 (1 + &) (628)

(we observe that ¢, in (628) is obtained via multiplying GZ7) by [/, (xx)|/v2 and sub-
tracting 1 from the result). The last column contains b.(zx, /Xn/c), defined via (266]) of
Definition [Il in Section 2.2

According to Theorem [41] the product of the values in the third and fifth columns is an
upper bound on |1/, (x1)|~! (the second column). However, (627) alone (the third column)
already overestimates |¢/,(x1)|~! by roughly v/2. We also observe (see the fourth column)
that the parameter ¢, defined via ([62§), is fairly small, and decreases as k grows. According
to Theorems M9 [51] in Section E32] we expect e to tend to zero as k grows to oo, since

1/4
2- [Ya(D)l (2~ Con/*)" 2+ (1)
3/ ~ , k— o0. (629)

| (22 — 1) An - k|
On the other hand, the fact that e, ~ 10™* already for k = 7 is somewhat surprising. In
other words, the left hand side of ([629) is a fairly tight estimate of [¢/,(x))|, even for small
k.

We also observe that b.(zk, \/Xn/c) (see the last column) is very close to 1 even for k = 1,
and becomes even closer to 1 as k increases. In other words, the upper bound e'/* ~ 1.284
on this quantity (see Theorem [42]in Section €.2.2]) is somewhat overcautious.

6.1.3 Illustration of Results from Section 4.3

Experiment 7. In this experiment, we illustrate Theorem [44lin Section .31l We proceed
as follows. We choose the band limit and the prolate index to be, respectively, ¢ = 100 and
n = 100. We evaluate y,, and \,, by using the algorithms of Sections 5.1l 5.2 respectively
(in double precision). Then, we compute the first 40 roots 1, ..., x40 of ¥, in (1,00), by
using the algorithm of Section [(.5.3] (in extended precision). For each such root zj, we
evaluate v/, (zy) by using the algorithm of Section (in extended precision).

For each kK =1,3,5,...,39, we evaluate

1 1
AEG =2 v (=) - @)

(630)

(it turns out that the maximum is attained at ¢ = 1.) Then, we evaluate the upper bound
on (630), provided by Theorem [A4

We display the results of the experiment in Table[®. The first column contains the index
k of the root xy of ¥, in (1,00). The second column contains the quantity (630). The third
column contains the upper bound on (630), provided by (BI4]) in Theorem [44l The last
column contains the ratio of the third column to the second column.

We observe that the quantity (630) (in the second column) decreases with k. On the
other hand, the bound on (630) (in the third column) gets tighter as k increases from 1
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Table 8: Illustration of Theorem [44] with ¢ = n = 100. A, = 0.94419E-18. See Ezperiment
7.

2

k Efili m e/t |\l f% ratio

1 0.29442E-19 0.31341E-17 0.10645E4-03
3 0.99172E-20 0.85727E-18 0.86442E4-02
5 0.57139E-20 0.46271E-18 0.80980E+-02
7 0.39054E-20 0.30749E-18 0.78735E4-02
9 0.29098E-20 0.22656E-18 0.77861E4-02
11 0.22851E-20 0.17760E-18 0.77720E4-02
13 0.18596E-20 0.14509E-18 0.78022E4-02
15 0.15530E-20 0.12209E-18 0.78614E4-02
17 0.13226E-20 0.10503E-18 0.79407E4-02
19 0.11441E-20 0.91920E-19 0.80345E4-02
21 0.10021E-20 0.81564E-19 0.81393E+-02
23 0.88694E-21 0.73193E-19 0.82524E4-02
25 0.79193E-21 0.66300E-19 0.83720E4-02
27 0.71242E-21 0.60534E-19 0.84969E4-02
29 0.64507E-21 0.55645E-19 0.86261E4-02
31 0.58742E-21 0.51451E-19 0.87588E4-02
33 0.53762E-21 0.47818E-19 0.88944E+-02
35 0.49425E-21 0.44643E-19 0.90325E4-02
37 0.45620E-21 0.41846E-19 0.91727E+-02
39 0.42261E-21 0.39365E-19 0.93147E4-02
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to 11, and then deteriorates, as k increases further on, roughly linearly in k. The latter
observation is not surprising, since

Y z4+1)2dz T |\
- [f B (631)
z (2% = (Xn/c?)) € Tk

due to Theorem 32 in Section E.1.T], while, for sufficiently large k,

1 1
+
’ (t —ap) - Yp(zr) (= hs1) - U (Tpt1)
due to Theorem (2] in Section In other words, the upper bound on (630), provided

by Theorem [ is of a wrong order (O(z; ') instead of O(x;?)). In particular, it can be
used only to bound the head of the convergent series

<20'7T“)\n’

2 bl
Ly

(632)

. (633)

> 1
Z (t — zg) -y (k)

k=1

Of course, this is precisely how Theorem [4] is used (see the proof of Theorem 45 in Sec-
tion L3 and the proof of Theorem (3] in Section [£.3.3)).

x10 ™

—The whole series
- - -First 50 terms

8

-1 -0.5 0 0.5 1

Figure 5: lllustration of Theorems[58 with ¢ =100, n = 80. |\,| = 0.58925E-07.

Experiment 8. In this experiment, we illustrate Theorem [B8in Section d.3.3] We proceed
as follows. We choose, more or less arbitrarily, the band limit ¢ and the prolate index n.
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Figure 6: Illustration of Theorem [58 with ¢ = 100, n = 81. |\,| = 0.19431E-07.

x10 ©

—The whole series
- - -First 50 terms

n

[[]loo

0

[Anl

0.5

Anl /1 loo

1

Imax

100
100
100
100

80
81
90
91

0.99408E-08
0.28195E-08
0.63405E-13
0.14648E-13

0.58925E-07
0.19431E-07
0.45487E-12
0.12985E-12

0.59276E+-01
0.68914E+4-01
0.71741E401
0.88645E+4-01

0.55502E+-03
0.58207E403
0.84186E+-03
0.87239E4-03

200
200
200
200

146
147
158
159

0.57204E-08
0.19902E-08
0.21537E-13
0.64626E-14

0.32856E-07
0.12477E-07
0.15123E-12
0.51123E-13

0.57436E+401
0.62691E+4-01
0.70219E4-01
0.79107E+-01

0.62129E+4-03
0.64480E+-03
0.91959E4-03
0.94591E+-03

400
400
400
400

274
275
288
289

0.15108E-07
0.61774E-08
0.47053E-13
0.17000E-13

0.80630E-07
0.34713E-07
0.31193E-12
0.12189E-12

0.53369E+-01
0.56193E4-01
0.66293E+-01
0.71703E+401

0.67438E4-03
0.69478E4-03
0.97598E+-03
0.99872E4-03

800
800
800
800

530
931
546
047

0.18269E-07
0.83405E-08
0.46822E-13
0.19631E-13

0.91984E-07
0.43433E-07
0.29701E-12
0.12945E-12

0.50351E4-01
0.52075E+-01
0.63434E+4-01
0.65942E4-01

0.77801E4-03
0.79612E4-03
0.10833E+04
0.11033E+04

Table 9: Illustration of Theorem[58. See Experiment 8.

113



Then, we evaluate x,, and A, by using the algorithms of Section [5.1] [5.2] respectively (in
double precision). Next, we find the roots t1,...,t, of ¥, in the interval (—1, 1), by using
the algorithm of Section 5.3 (in double precision). For each root t;, we compute ¥/, (¢;).

Suppose now that the function I : [-1,1] — R is defined via (@I7) in Theorem We
evaluate I at 3 - (n + 1) points z1,.. ., 23(,41) in the interval [—1,1]. The points are chosen
in such a way that, if ¢, < z; < tx41 for some j, k, then

Zj—tk

< < 3. (634)

W =

lh+1 — 25

In other words, no point z; is “too close” to any root of 1, in (—1,1). For each j =
1,...,3-(n+1), we evaluate I(2;) in extended precision.

Remark 25. For each —1 <t <1, we expect I(t) to be of order |\,|, due to Theorems[50,

[28. On the other hand, suppose that —1 <t < 1, and ty, is the closest root of 1\, to t. Then,
1 1

= +0(1). 635

ORI ETATY (9

Therefore, in the evaluation of 1, (t), we expect to lose roughly

1
o810 (w;(tk) ) m) (636)

decimal digits. In other words, this calculation is rather inaccurate. However, since we need
it only to illustrate the analysis, we were satisfied when we got at least two decimal digits,
and did not make any attempts to enhance the accuracy.

On the other hand, we compute the first 50 roots z1,..., x50 of ¥, in (1,00), and, for
each such root z;, we evaluate v, (z;). These calculations are based on the algorithms of
Sections [£.5.2] .53l Then, for each z;, we evaluate the sum

50

1 1
To(z) = 2 (wmk) ey Sy G g m) | (637)

k=1

We display the results of the experiment in Figures [l [6 for ¢ = 100, n = 90 and ¢ = 100,
n = 91, respectively. On each of these figures, we plot the function I, defined via ({I7) in
Theorem [(56] (blue solid line) and the function I5g, defined via ([637) (red dashed line).

We observe that, in both figures, the maximum of both I and I5q is attained at the end
points of the interval. Also, we observe that the values of I and I5p are of order |\,]|, as
expected; also, the functions appear, at least by eye, to be well approximated by polynomials
of order up to 3. In other words, the reciprocal of v, seems to be approximated up to an
error of order |\,| by a rational function with n poles, as asserted in Theorems [50]

We display additional results of this experiment in Table @ This table has the following
structure. The first and second column contain the band limit ¢ and the prolate index n,
respectively. The third column contains the maximum of the absolute value of the function
I in the interval [—1,1], i.e.

11]loe = max {|I(t)] : —1<t<1}, (638)
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where [ is defined via [@I7) in Theorem 56l The fourth column contains |A,|. The fifth
column contains the ratio |A,|/||I||co. The last column contains Iy,x, defined via (@19) in
Theorem

We make the following observations from Table[@ First, |\,| alone is already an upper
bound on ||/||s. Moreover, for a fixed band limit ¢, the ratio |\,|/||I||c increases as n
grows. For all the values of ¢,n in Table [@, this ratio varies between 5 and 9. On the
other hand, I,,x varies between 500 and 1000. Moreover, Imax increases with n, for each
fixed band limit ¢. In other words, the upper bound |A,| - Imax on ||/]|co, established in
Theorem [56] deteriorates as n increases. Moreover, the factor Iax in (418]) of Theorem G0
appears to be unnecessary. The main source of inaccuracy is Theorem [44] in Section A.3.T],
which provides a relatively poor upper bound on the expressions of the form (637) (see
Figures [l [0 and Experiment 7 above).

Nevertheless, due to the fast decay of |\,| with n, the estimates of Theorem (6] al-
beit somewhat loose, are sufficient for the purposes of this paper (see the analysis of the
quadrature error in Section 4] and also Experiment 14 in Section below).

6.1.4 Illustration of Results from Section 4.4

Experiment 9. In this numerical experiment, we illustrate Theorem (9 in Section EZ4.T1
We proceed as follows. We choose, more or less arbitrarily, the band limit ¢, the prolate
index n and the root index 1 < j < n. Then, we evaluate A\, and the roots t1,...,t, of ¥,
n (—1,1), by using the algorithms of Sections [5.2] [5.3] respectively. We use 10 - n Gaussian
nodes to evaluate

1
Anj — M (639)
’ 1 t—1t
and
Bnaj = Z’C)\n : \IJTL(L tj)v (640)

where W, (1,¢;) is defined via ([@37) in Theorem BIl We observe that A, ; and B,, ; appear
on the right-hand side of ([@36]) in Theorem (Il

Next, for each integer m = 0,1,...,n — 1, we use the same Gaussian quadrature to
evaluate
t — t '
In addition, for each integer m = 0,1,...,n — 1, we compute
[Am[? = [Anf?”

by using the algorithms of Sections 5.1 All the calculations are carried out in double
precision.

We display the results of the experiment in Figure [ and Tables 1] In Figure [1,
we plot the function ,,(t)/(t — t;), corresponding to ¢ = 10, n = 20, and j = 13, over the
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g | A | B
10 20 13 | 0.11487E-09 | -.25341E+01 | -.69171E-11
500 | 340 | 226 | 0.27418E-09 | -.19569E+01 | -.17690E-09

Table 10: Illustration of Theorem [53. See Experiment 9.

TRGRA(ES

-15

20, 05 0 0.5 1

Figure 7: The graph of ¢¥n(t)/(t —t;) with ¢ = 10, n = 20 and j = 13. Corresponds to
Table[I1. See Experiment 9.
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L Yn()m(t)dt

A >4 (t5)

Ty P P A En

0 | -18363E+01 | 0.72463E+00 | -.15543E-14
1| -.28929E+01 | 0.11416E401 | -.53291E-14
2 | -18299E+01 | 0.72208E+00 | -.51070E-14
3 | 0.73457E+00 | -.28987E+00 | 0.12212E-14
4 | 0.19270E+01 | -.76041E+00 | 0.37748E-14
5 | 0.40316E+00 | -.15909E+00 | 0.21094E-14
6 | -14464E+01 | 0.57078E+00 | -.22204E-14
7 | -10263E4+01 | 0.40498E+00 | 0.10658E-13
8 | 0.11062E+01 | -.43654E+00 | 0.95479E-14
9 | 0.17030E+01 | -.67204E+00 | 0.99920E-14
10 | -.23035E+00 | 0.90899E-01 | -.26645E-14
11| -19061E+01 | 0.75217E+00 | -.44409E-15
12 | -.91510E+00 | 0.36111E+00 | 0.16653E-14
13 | 0.13774E+01 | -.54355E+00 | 0.11990E-13
14 | 0.18002E401 | -.71037E+00 | 0.37748E-14
15 | -.23786E+00 | 0.93863E-01 | -.97422E-14
16 | -.19723E+01 | 0.77830E+00 | -.11546E-13
17 | -10566E+01 | 0.41697E+00 | -.15987E-13
18 | 0.12849E+01 | -.50705E+00 | -.19984E-14
19 | 0.19509E+01 | -.76986E+00 | -.42188E-14
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Table 11: Illustration of Theorem [59 with ¢ = 10, n = 20 and j = 13. See Ezperiment 9.



Table 12: Illustration of Theorem with ¢ = 500, n = 340 and j = 226. See Fxperiment
9.

i[9 (25)

m fil wn(tt)%g(t)dt |>\m|2_‘>\n|2 Em

0 0.60926E-12 0.31814E-12 | 0.33872E-15
20 0.43712E-01 0.22813E-01 | 0.52666E-14
40 | -.32804E401 | -.17120E+01 | -.84377E-13
60 | 0.85749E+400 | 0.44751E400 | -.60729E-13
80 | -.14190E+01 | -.74055E400 | -.91926E-13
100 | 0.84651E+00 | 0.44178E+00 | -.28089E-13
120 | 0.35414E+00 | 0.18482E+00 | 0.47351E-13
140 | 0.53788E+00 | 0.28071E+00 | -.21316E-13
160 | -.17111E4-01 | -.89302E+00 | -.35749E-13
180 | -.93523E+00 | -.48808E+00 | 0.31863E-13
200 | -.30219E4-00 | -.15771E400 | 0.48406E-13
220 | -.51322E4-00 | -.26784E4-00 | 0.45852E-13
240 | -.12216E4-01 | -.63753E400 | -.11546E-13
260 | -.10503E+01 | -.54811E4-00 | -.82379E-13
280 | 0.93142E400 | 0.48609E+00 | 0.84377E-14
300 | -.55310E-02 -.28865E-02 | 0.50818E-13
320 | 0.11601E4-00 | 0.60544E-01 | -.13105E-12
339 | 0.14218E+01 | 0.74200E4-00 | -.94369E-13
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interval (—1,1). We observe that this function has n — 1 roots in (—1,1): all the roots of
p, except for ¢j. Obviously, the value of this function at ¢; is v, (¢;).

In Tables [I0, [1l 12, we display the results of the experiment, corresponding to ¢ = 10,
n = 20, 7 = 13 and ¢ = 500, n = 340 and j = 226, respectively. Table [I0 contains the
values of the parameters c,n, j, as well as the quantities A,, j, B, j, defined, respectively, via
(639), ([640) above. Tables [[1] M2 have the following structure. The first column contains
the parameter m (an integer between 0 and n — 1). The second column contains (641])
(the left-hand side of (@36]) in Theorem [9); in other words, this is the inner product of
Pn(t)/(t —t;) with p,. The third column contains ([642) (appears on the right-hand side of
([#36])). The last column contains the absolute error E,, of the calculation of (642), defined
via

/ wn @ij )dt_ ‘)\m|2'wm(tj)
m— i

t |>\m‘2 - |)\n|2 ' (An’j * BTLJ) (643)

(obviously, E,, would be equal to zero in exact arithmetics, due to Theorem [£0)).
We make the following observations from Tables [I0] 1], As expected, A, ; is signif-
icantly larger than By, ; (by a factor of order |\,|™!). In other words,

/ wn wm )dt _ p‘m|2 'wm(tj) . ! wn(t) dt
t—t; I P

~(1+0(A)) (644)

(see Theorem (I and (639), ([©40), (641)), (642)) above). Also, in each of Tables [IT] 2] all

the quantities in the second and third column are roughly of the same order of magnitude
(except for the first row in Table [[2)). We also observe that the numerical evaluations of
the left-hand side and the right-hand side of ([@36) in Theorem B9 agree up to an absolute
error of order ~ 10714,

c ‘ n ‘ | An| ‘ | Prn—2]

1000 | 670 | 0.93659E-11 | 0.49177E-03
1000 | 690 | 0.73056E-18 | 0.43907E-03
1000 | 710 | 0.15947E-25 | 0.40076E-03

Table 13: Illustration of Theorem [61. Corresponds to Figure[8.

Experiment 10. In this experiment, we illustrate Theorem in Section We
proceed as follows. We choose, more or less arbitrarily, the band limit ¢ and the prolate
index n. Then, we evaluate )\, using the algorithm of Section (in double precision).
Next, for each integer 0 < m < n —1, we evaluate P, ,,, defined via ([d48)) in Theorem [60]in
Section [.4.2] by using the algorithms of Sections [5.1] (in double precision). We observe
that, due to Corollary M in Section [4.4.2] it suffices to consider only even values of m (since
Pym = 0if m is odd).

We display the results of the experiment in Tables [[3], [4 and in Figure 8 In Figure ]|
we plot |P, | as a function of even integer m on the logarithmic scale for ¢ = 1000 and
three choices of n, namely, n = 670 (pluses), n = 690 (circles), and n = 710 (triangles).
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0 n, m
10
+ n=670
i tOP
10—5 | o NnN= 690 : -I;gb i
_ '*Og
> n=710 :i:gg

800

Figure 8: Plot of P, ([48) with ¢ = 1000 and n = 670 (crosses), n = 690 (circles),
n = 710 (triangles). The value m = 2¢/m is marked with a dashed line. See Experiment 10.
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c n [Anl max | Py, | ¢+ max |P
0<m<n 0<m<n

50 47 | 0.26917E-07 | 0.81444E-02 | 0.40722E4-00
50 53 | 0.72096E-11 | 0.72290E-02 | 0.36145E+00
50 57 | 0.19830E-13 | 0.67353E-02 | 0.33676E+00
100 81 | 0.19431E-07 | 0.48065E-02 | 0.48065E4-00
100 87 | 0.18068E-10 | 0.44412E-02 | 0.44412E4-00
100 93 | 0.10185E-13 | 0.41418E-02 | 0.41418E4-00
250 | 179 | 0.18854E-07 | 0.22730E-02 | 0.56825E+00
250 | 186 | 0.22556E-10 | 0.14014E-02 | 0.35035E-+00
250 | 193 | 0.17851E-13 | 0.20475E-02 | 0.51188E-+00
500 | 339 | 0.40938E-07 | 0.12600E-02 | 0.63000E+00
500 | 348 | 0.20575E-10 | 0.85073E-03 | 0.42537E+00
500 | 355 | 0.39965E-13 | 0.11550E-02 | 0.57751E+00
1000 | 659 | 0.38241E-07 | 0.68143E-03 | 0.68143E+00
1000 | 668 | 0.44256E-10 | 0.49838E-03 | 0.49838E-+00
1000 | 677 | 0.35933E-13 | 0.63339E-03 | 0.63339E-+00
2000 | 1297 | 0.41740E-07 | 0.36453E-03 | 0.72906E+00
2000 | 1307 | 0.47570E-10 | 0.35192E-03 | 0.70385E400
2000 | 1317 | 0.39064E-13 | 0.34212E-03 | 0.68424E+00
4000 | 2572 | 0.33682E-07 | 0.16247E-03 | 0.64987E+00
4000 | 2583 | 0.37417E-10 | 0.18703E-03 | 0.74813E+00
4000 | 2594 | 0.30728E-13 | 0.14902E-03 | 0.59608E+-00

Table 14: Illustration of Theorem[61l. See Experiment 10.
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The value 2¢/7 is marked with a red dashed line. In Table I3 we display the quantities
|An| and |P, ,—2|, corresponding to Figure 8

We make the following observations from Figure 8 Table [[3] and some additional nu-
merical experiments. First, [P, | < |A,| for all m < 2¢/m (obviously, in Figure [§ we see
this phenomenon only for n = 670, since the calculations are carried out in double pre-
cision; for n = 690,710 and m < 2¢/m, |Pnym| < 1071%). On the other hand, for even
2¢/m < m < n, we observe that | P, | grows roughly exponentially with m, reaching its
maximum at m = n — 2. This maximum is approximately 5 - 10™4, for all the three values
of n (see Table [3). However, Theorem [61] asserts that, for all m < n,

V32n?

c

| Prm| < (645)
In other words, Theorem [6I] overestimates | P, ,,,| by a factor of order n?.

In Table M4 we display some additional results of this experiment. This table has the
following structure. The first and second column contain, respectively, the band limit ¢ and
the prolate index n. The third column contains |A,|. The fourth column contains

max {|Pym| : 0<m<n-—1}. (646)

The last column contains the value (646]), multiplied by the band limit ¢ (i.e. the product
of the first and fourth columns).

We make the following observations from Table [[4] and some additional experiments.
First, for each of the seven values of ¢, the three indices n were chosen in such a way that
|\n| is between 10714 and 10~7. Even though c varies between 50 (the first three rows) and
4000 (the last three rows), the values in the last column are roughly of the same order, for
all the choices of ¢ and n. Moreover, these values are always between 0.3 and 0.75. This
observation seems to indicate that Theorem [G1] overestimates this quantity by O(n?) (see
also (645) and Figure ).

Additional observations seem to indicate that the maximum in (640) is always attained
at the largest even m between zero and n — 1 (as in Figure 8). Also, for this value of m, all
the summands

m (E5)Wh i (1

1/} ( .7/) 7]( ) (647)
Q;Z)n (tj)

in ([448) have been observed to have the same sign for all j = 1,...,n. Thus, the inaccuracy

of the bound in Theorem [61] is due to overestimation of the summands (647)), rather than
due to cancellation of summands with opposite signs.
6.2 Performance of the Quadrature

In this subsection, we report the results of numerical experiments illustrating the per-
formance of the quadrature, defined in Definition 2] and whose properties are studied in

Section [4.4]
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Table 15: [llustration of the proof of Theorem [60 with ¢ = 50 and n = 40. See Experiment

11.

m )\mwm(o) Sm fwm (1 - Z Soj) &€m €rror

0 | 0.70669E+00 | 0.70669E+00 0.20856E-16 0.79599E-12 | -.55511E-15
2 | 0.49581E+00 | 0.49581E+00 0.77098E-15 0.29426E-10 | -.88818E-15
4 | 0.42581E400 | 0.42581E4-00 0.97200E-15 0.37098E-10 | -.23870E-14
6 | 0.38527E+00 | 0.38527E+00 -.83346E-15 -.31810E-10 | -.13323E-14
8 | 0.35695E+00 | 0.35695E+00 -.10918E-14 -41671E-10 | -.99920E-15
10 | 0.33516E4-00 | 0.33516E4-00 0.25553E-15 0.97526E-11 | -.17208E-14
12 | 0.31730E4-00 | 0.31730E4-00 -.25500E-14 -.97326E-10 | 0.11102E-15
14 | 0.30201E+00 | 0.30201E4-00 -.35426E-14 -.13521E-09 | 0.13878E-14
16 | 0.28844E4-00 | 0.28844E4-00 -.20470E-14 -.78128E-10 | -.16653E-15
18 | 0.27604E4-00 | 0.27604E4-00 -.28733E-13 -.10967E-08 | 0.42188E-14
20 | 0.26435E+00 | 0.26435E+00 -.14073E-12 -.53714E-08 | 0.90483E-14
22 | 0.25299E+00 | 0.25299E+-00 0.26178E-11 0.99913E-07 | 0.94924E-14
24 | 0.24150E+400 | 0.24150E+00 0.15530E-10 0.59274E-06 | -.66613E-15
26 | 0.22919E+00 | 0.22919E+00 -.17315E-09 -.66085E-05 | -.72997E-14
28 | 0.21377E+00 | 0.21377E+00 -.53359E-09 -.20365E-04 | 0.14710E-14
30 | 0.18075E+00 | 0.18075E+00 0.55489E-08 0.21178E-03 | -.51903E-14
32 | 0.10038E+00 | 0.10038E+00 -.62071E-08 -.23690E-03 | -.70915E-14
34 | 0.27988E-01 | 0.27988E-01 -.88231E-07 -.33675E-02 | 0.10113E-13
36 | 0.49822E-02 | 0.49818E-02 0.40165E-06 0.15330E-01 | 0.29751E-14
38 | 0.70503E-03 | 0.70008E-03 0.49503E-05 0.18894E4-00 | -.13444E-13
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6.2.1 Quadrature Error and its Relation to |\,|

Experiment 11. In this experiment, we illustrate Theorem in Section We
proceed as follows. We choose, more or less arbitrarily, the band limit ¢ and the prolate
index n. We evaluate A\, as well as the nodes t1,...,t, and the weights Wy,..., W,, of
the quadrature, defined in Definition [ in Section L4l To do so, we use the algorithms of
Sections (.2 53] [5.4] respectively (in double precision).

Then, we choose an even integer 0 < m < n, and evaluate A, ¥,,(0) and 1, (t;), for all
j=1,2,...,n, by using the algorithms of Sections [5.2] [5.1] (in double precision). Next, we
evaluate P,, ,,, defined via (448) in Theorem [60 (see Experiment 10 in Section 6.1.4]). Also,
we compute |||l (see @50) in Theorem [60] and (638)) in Experiment 8 in Section 6.1.3)).
Finally, we evaluate

1 n
/ 1 Um(t) - | 1= wi(t) | dt, (648)
_ =i

where the functions ¢1, ..., ¢, are those of Definition [2] in Section A4l

We display the results of the experiment in Table Il The data in this table correspond
to ¢ = 50 and n = 40. Table [[3] has the following structure. The first column contains the
even integer parameter m, which varies between 0 and n — 2. The second column contains
Am¥m (0) (we observe that

1
At (0) = / e dt, (649)

due to (B7) in Section 2.1). The third column contains the quantity S,,, defined via the
formula

Al

I = -

n

iCAn P + > Um(t;) - W | - (650)
j=1

The fourth column contains the integral (648]). The fifth column contains the number &,

defined via the formula

1 1 -
€, = HIHw/_lwm(t)' 1—;%@) dt. (651)

(We observe that, due to ([@52]) in Theorem [60, &,, equals to the value in the third column,

divided by ||I||sc. The latter does not depend on m, and is equal to 0.26201E-04, for ¢ = 50

and n = 40.) The last column contains the difference between the value in the third column

and the sum of the values in the fourth in fifth columns (due to the combination of (648),

(649)), ([650) and (452) in Theorem [60] this quantity would be zero in exact arithmetics).
We make the following observations from Table First,

1
S = / nn(8) - (91(E) + -+ on(t)) dt. (652)
1
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due to the combination of (650) and Theorem [60. We observe that S,, is close to Ay, 1, (0)
for small m, but coincides with the latter only in two digits for m = 38.

Second, we observe that the value in the fourth column (see (648])) is grows from ~ 10716
atm=0upto~>5-107% at m = 38.

Third, we observe that, due to the combination of (65I]) and Theorem [60],

1
I / 1(8) - n(t) - o (t) di, (653)

[ lloo J-1
where I is that of Theorem [56] in Section £33l Theoretically, |£,,| is bounded from above
by 1 (see the proof of Theorem [60). However, in fact, || is significantly smaller than one
for small values of m, though &, ~ 0.2 for m = 38.

Next, the value in the last column, that would be zero in exact arithmetics, serves as a
test of the accuracy of the calculation. We observe that this value is of order 10~!4, for all
m. Finally, we note that \,,1,,(0) is always positive and monotonically decreases with m.

m A (0) f Ym — Z ijm(tj) Cnm Cn,m/‘)‘n|

0 | 0.70669E400 -.44409E-15 0.26389E-04 | 0.20432E+00
2 | 0.49581E+400 -.16653E-15 0.26333E-04 | 0.20389E+00
4 | 0.42581E+00 -.13323E-14 0.26314E-04 | 0.20375E4-00
6 | 0.38527E~+00 -.21649E-14 0.26303E-04 | 0.20366E+00
8 | 0.35695E4-00 -.22760E-14 0.26296E-04 | 0.20361E+00
10 | 0.33516E+00 -.16653E-14 0.26290E-04 | 0.20356E+00
12 | 0.31730E+00 -.23870E-14 0.26285E-04 | 0.20352E+00
14 | 0.30201E+00 -.24980E-14 0.26281E-04 | 0.20349E+00
16 | 0.28844E+00 0.11102E-14 0.26277E-04 | 0.20346E+00
18 | 0.27604E+00 -.59230E-13 0.26274E-04 | 0.20344E+00
20 | 0.26435E+00 0.83716E-12 0.26271E-04 | 0.20342E+00
22 | 0.25299E+00 -.89038E-11 0.26268E-04 | 0.20339E+00
24 | 0.24150E+00 0.76862E-10 0.26265E-04 | 0.20337E+00
26 | 0.22919E4-00 -.65870E-09 0.26262E-04 | 0.20335E4-00
28 | 0.21377E400 0.45239E-08 0.26253E-04 | 0.20327E+00
30 | 0.18075E4-00 -.19826E-07 0.26282E-04 | 0.20350E4-00
32 | 0.10038E+00 0.68548E-07 0.26276E-04 | 0.20345E+00
34 | 0.27988E-01 -.33810E-06 0.26849E-04 | 0.20789E+00
36 | 0.49822E-02 0.27232E-05 0.28516E-04 | 0.22080E+00
38 | 0.70503E-03 -.22754E-04 0.72700E-04 | 0.56291E+00

Table 16: Illustration of Theorem [60 with ¢ = 50 and n = 40. See Experiment 12.

Experiment 12. In this experiment, we illustrate Theorems 60, [62] in Section We
proceed as follows. We choose, more or less arbitrarily, band limit ¢ and prolate index
n. We evaluate x,, An, as well as the nodes ti,...,t, and the weights Wy,..., W, of
the quadrature, defined in Definition 2] in Section L4l To do so, we use, respectively, the
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algorithms of Sections B.1], 5.2 B3] B4 (in double precision). Then, we choose an even
integer 0 < m < n, and evaluate A, ¥,,(0), and ¢, (t;) for all 7 = 1,...,n, using the
algorithms of Sections [5.2] [5.1] (in double precision).

We display the results of this experiment in Table The data in this table correspond
to ¢ = 50 and n = 40 (the same as for Table [[5] in Experiment 11). Table [I6] has the
following structure. The first column contains the even integer m, that varies between 0
and n — 2. The second column contains A, 1y, (0). The third column contains the difference

Amtm(0) = tm(t;) - W, (654)
j=1
The fourth column contains the number C), ,,,, defined via the formula
Com=11-— [n]” 1 A A 0 P, 655

where ||I]|» and P, ,, are defined, respectively, via ([450) and (448)) in Theorem B0 (see also
Experiment 8 in Section and Experiment 10 in Section [6.1.4]). Note that (655]) is the
right-hand side of ([@49) in Theorem The fifth column contains Cy, /| An|-

We make the following observations from Table We note that (654]) in the third
column is the error of the quadrature rule of Definition 2], used to integrate 1, over (—1,1)
(see also ([B37) in Section[2.1]). The absolute value of this error is close to the machine precision
for small m, and grows up to ~ 2- 107> for m = 38. For all values of m, the absolute value
of ([©654) is bounded by C,, r, (the fourth column), in agreement with Theorem We also
observe that C,, ,, is of the same order of magnitude for all values of m (as opposed to
(654)). Moreover, C,, ,, is always smaller than |A,| (in this case, [A,| = 0.12915E-03). More
specifically, Cp, ,, is between 0.2 - |\,| and 0.6 - |A,|, for all the values of m (see the last
column).

The behavior of the quadrature error (654]) in the third column is explained with the
help Experiment 10 and Table [[5l in Experiment 11, as follows. Due to ([@53)) in the proof
of Theorem [60]

)\mwm(o) - Zwm(t]‘) . Wj =
j=1

A o |A ‘2) “&m HI”OO +iC)\nPn,m7 (656)

where &, is defined via (G51]) in Experiment 11. The first summand in the right-hand side
of ([656]) grows as m increases. The behavior of the second summand in the right-hand side
of (656]) depends on &,,,, which is close to zero for small values of m and close to one for large
values of m (see the fifth column in Table [I]). Finally, the last summand in the right-hand
side of ([650]) is also expected to grow with m (compare to Figure 8 in Experiment 10).

To conclude, C,, ,, defined via (655), significantly overestimates the quadrature error
([654) for small values of m. On the other hand, when m is close to n, Cy, p, is a fairly tight

bound on (654).
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In Theorem [62, we provide an upper bound on Cy, ;,, (and hence on the quadrature error
(654))), which is independent on m, namely,

Am®m(0) =Y m(ts) - Wj| < Crum
j=1

1
< |l - <24 -log <|>\|> +6- Xn) . (657)

However, the logarithmic term in (657)) is due to the inaccuracy of Theorem in Sec-
tion (see Experiment 7 in Section [6.1.3]). Also, the term 6 - x,, in (657)) is due to the
inaccuracy of Theorem 61l in Section (see Experiment 10 in Section 6.1.4). In other
words, numerical experiments seem to suggest that the quadrature error (654]) is bounded
by |An|, for all even 0 < m < n.

Quadrature error

10°
[ Ay (0
10 |---n = 6393
o n=6401
1070 > n=6414
+ N =6425
107 '
-20
10 * * :
6300 6350 6400
m

Figure 9: The quadrature error |f¢m — > m(tj) - Wj} as a function of even m < n, for
four different values of n and ¢ = 10000. See FExperiment 12.

In Figure @ we display the results of the same experiment with different choice of
parameters ¢ and n. Namely, we choose ¢ = 10000 and plot A1, (0) as a function of
even 0 < m < 6425, on the logarithmic scale (solid blue line). In addition, we plot the
absolute value of the quadrature error (654]), as a function of m, for four different values
of n: n = 6393 (red dashed line), n = 6401 (red circles), n = 6414 (red triangles), and
n = 6425 (red pluses). The corresponding values of |\, | are displayed in Table I

We make the following observations from Figure @ First, A1, (0) is approximately a
constant for m < 2¢/m, and decays roughly exponentially with m for m > 2¢/m. Also, for
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6393 | 6401 6414 | 6425

n
0.43299E-07 | 0.54119E-09 | 0.33602E-12 | 0.52616E-15

Anl |

Table 17: Values of |A\y| for ¢ = 10000 and different choices of n.

each value of n, the quadrature error (654) is essentially zero for m < 2¢/m, and its absolute
value increases roughly exponentially with m for m > 2¢/m. Nevertheless, the absolute
error of the quadrature error is always bounded from above by |\,|, for each n. See also
Tables 16, 18 and Conjecture 2l below.

c n m Amm (0) fq/}m — 2 Withm(t)) [ Anl
250 179 178 | 0.28699E-07 -.52496E-08 0.18854E-07
250 184 182 | 0.68573E-09 -.38341E-10 0.16130E-09
250 188 186 | 0.14108E-10 -.68758E-12 0.30500E-11
500 339 338 | 0.52368E-07 -.13473E-07 0.40938E-07
500 345 344 | 0.37412E-09 -.86136E-10 0.27418E-09
500 350 348 | 0.12148E-10 -.99816E-12 0.35537E-11
1000 659 658 | 0.42709E-07 -.14354E-07 0.38241E-07
1000 665 664 | 0.51665E-09 -.15924E-09 0.43991E-09
1000 671 670 | 0.52494E-11 -.15024E-11 0.42815E-11
2000 | 1297 | 1296 | 0.41418E-07 -.17547E-07 0.41740E-07
2000 | 1304 | 1302 | 0.77185E-09 -.15036E-09 0.37721E-09
2000 | 1311 | 1310 | 0.31078E-11 -.11386E-11 0.28754E-11
4000 | 2572 | 2570 | 0.54840E-07 -.15493E-07 0.33682E-07
4000 | 2579 | 2578 | 0.43032E-09 -.20771E-09 0.46141E-09
4000 | 2587 | 2586 | 0.28193E-11 -.12805E-11 0.29164E-11
8000 | 5119 | 5118 | 0.43268E-07 -.26751E-07 0.52899E-07
8000 | 5128 | 5126 | 0.50230E-09 -.16395E-09 0.33442E-09
8000 | 5136 | 5134 | 0.50508E-11 -.15448E-11 0.32132E-11
16000 | 10213 | 10212 | 0.42725E-07 -.30880E-07 0.56568E-07
16000 | 10222 | 10220 | 0.69663E-09 -.28201E-09 0.52821E-09
16000 | 10231 | 10230 | 0.34472E-11 -.22162E-11 0.42902E-11

Table 18: Relation between the quadrature error and |\,|. See Experiment 12.

We strengthen the observations above by repeating this experiment with several other
values of band limit ¢ and prolate index n. The results are displayed in Table[I8 This table
has the following structure. The first and second column contain, respectively, the band
limit ¢ and the prolate index n. The third column contains the even integer 0 < m < n
(the values of m were chose to be close to n). The fourth column contains Ay, 1., (0). The
fifth column contains the quadrature error ([654]). The last column contains |\,|.

We make the following observations from Table [I8 First, for each of the seven values
of ¢, the three indices n were chosen in such a way that |\,| is between 1072 and 1077.
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The values of the band limit ¢ vary between 250 (the first three rows) and 16000 (the last
three rows). For each n, the value of m is chosen to be the largest even integer below n.
This choice of m yields the largest A, ¢, (0) and the largest quadrature error (654]) among
all m < n (see also Table[I6)). Obviously, |A\y,| and || are of the same order of magnitude,
for this choice of m. We also observe that, for all the values of ¢, n, m, the absolute error of
the quadrature error ([654) is bounded from above by |A,| (and is roughly equal to |\,|/2).
In other words, the upper bound on the quadrature error, provided by Theorem (see
(657)), is somewhat overcautious.
We summarize these observations in the following conjecture.

Conjecture 2. Suppose that ¢ > 0 is a positive real number, and n > 2c/m is an in-
teger. Suppose also that 0 < m < n is an integer. Suppose furthermore that ti,...,t,
and Wy,...,Wy are, respectively, the nodes and weights of the quadrature, introduced in

Definition [2 in Section[{.4 Then,

1 n
/lwm(s) ds =3 Yt W3] < M. (658)
. 2

Remark 26. Conjecture[2 provides a stronger inequality than that of Theorem[6d. On the
other hand, Conjecture[Q has been only supported by numerical evidence, while Theorem[62
has been rigorously proven.

Experiment 13. In this experiment, we demonstrate the performance of the quadrature,
introduced in Definition 2 in Section 4] on exponential functions. We proceed as follows.
We choose, more or less arbitrarily, the band limit ¢ and the prolate index n. We evaluate the
quadrature nodes t1, ..., t, and the quadrature weights Wy, ..., W,,, by using, respectively,
the algorithms of Sections 5.3 [E.4] (in double precision). Also, we evaluate |\,|, by using
the algorithm in Section (in double precision). Then, we choose a real number a > 0,
and evaluate the integral of e gyer —1 < z < 1 via the formula

1 1 9
/ e dr = / cos(acx) dx = M. (659)

~1 —1 ac

Also, we compute an approximation to (659), by evaluating the sum

Z W; - cos(icat;). (660)
j=1

Finally, we evaluate the error of this approximation, that is,

2sin(ac

) _ i W; - cos(icat;). (661)
j=1

ac

In Figures [I0 1, we display the results of this experiment. The band limit and the
prolate index were chosen to be, respectively, ¢ = 1000 and n = 650. This choice yields
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Figure 10: The quadrature error (661Il) with ¢ = 1000, n = 650. See Ezperiment 13.
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Figure 11: The quadrature error (66Il) with ¢ = 1000, n = 650. See Ezperiment 13.
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An = -.21224E-04. In these figure, we plot the quadrature error (661]) as a function of the
real parameter a. Figure [I0 corresponds to 0 < a < 1, while Figure [[I] corresponds to
0<a<?2.

We make the following observations from Figures [0l [l For 0 < a < 1, the absolute
value of the quadrature error (661]) is bounded by 4-1072 a2 10-|\,,|%. The largest quadrature
error is obtained when a is close to 1. On the other hand, for 1 < a < 2, the absolute value of
the quadrature error (661]) is significantly larger, and is of order |A,|. The largest quadrature
error is obtained when « is close to 1.

These observations admit the following (somewhat imprecise) explanation. Suppose
that a > 0 is a real number. Due to (37) and Theorem [Il in Section [2ZT]

zacx _ Z )\m"?bm m ) (662)

for all real —1 < x < 1 (we note that while e’** is not a bandlimited function of —1 < x < 1,
it does belong to L?[~1,1]). Moreover,

1
[ e da = Zeinfac) _ ZAQ Y (@) (0): (663)

-1

We combine (661]), ([662), (663]), to obtain

2si - _

s1;1£ac) — J; W - cos(icat;) =

D Antom(@) | Amthm (0 Z Wit (t5) | - (664)
m=0

We recall (see Experiment 12) that, for small values of m, the quadrature error (654) is
very small compared to |A,|. On the other hand, for those values of m < n that are close
to n, the quadrature error ([654)) is of order |\, |. Therefore, roughly speaking,

n—1
> Antm(a) | Amthm (0 Z Witbm(t;) | = O (1Anl® - n-1(a)) - (665)
m=0
On the other hand, due to the fast decay of |A,,|, we expect
D Amtm (@) | Amtm (0 Zwﬂbm t)) | = O (|]Aal? - ¥n(a)) . (666)
m=n j=1

If 0 <a <1, then |[¢(a)] = O(v/n) (see Theorems [I2] I3 14 in Section ZT]). We combine
this observation with (665]), (666]) to conclude that the quadrature error ([661I]) is expected
to be of the order |\,|? - /n.

If, on the other hand, 1 < a < 2, then [¢,(a)| = O (|An|™!) (see, for example, Theo-
rem B4l in Section 2,11 Theorem (3] in Section [£.2.2] Theorem @] in Section 4.3.2] Experi-
ment 1 in Section .11l Experiment 6 in Section [6.1.2]). We combine this observation with
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([665]), ([666) to conclude that, in this case, the quadrature error (661) is expected to be of
the order |\,|.

We summarize this crude analysis, supported by the observations above, in the following
conjecture.

Conjecture 3. Suppose that ¢ > 0 is a real number, and that n > 2c/m is an integer.
Suppose also that tq,...,t, and W1,..., W, are, respectively, the nodes and weights of the
quadrature, introduced in Definition[2 in Section[{.4) Suppose furthermore that —1 < a <1
s a real number. Then,

1 n
/ eicax dr — Z eicatj . Wj -0 (|/\n’2 . \/ﬁ) . (667)

—1 =

Experiment 14. In this experiment, we illustrate Theorems [64] [65] in Section 4.3l We
proceed as follows. We choose, more or less arbitrarily, the band limit ¢ > 0 and the
accuracy parameter € > 0. Then, we use the algorithm of Section to find the minimal
integer m such that |\,;,| < e. In other words, we define the integer n;(e) via the formula

ni(e) =min{m >0 : |\,| <e}. (668)

Also, we find the minimal integer such that the corresponding bound on the quadrature
error, established in Theorem [62]in Sectiond.4.2] is less that ¢ (see also (657)) in Experiment
12). In other words, we defined na(¢) via the formula

na(s) = min {m >0 ¢ - <24 og (’;m'> +6. Xm) < g} . (669)

Then, we define the integer ng(e) via the formula (#93) in Theorem In other words,

n3(e) = floor <2C + 0‘2(7? log (1660, >) (670)

T a(e)

where «(e) is defined via (492)) in Theorem Finally, we define the integer n4(e) via the
right-hand side of (506) in Theorem In other words,

2 3 1 1
ny(e) = floor <7rc + (10 + 3 log(c) + 3 -log 5) -log (;)) . (671)

In both (€70 and (671]), floor(a) denotes the integer part of a real number a.

We display the results of this experiment in Table This table has the following
structure. The first column contains the band limit ¢. The second column contains the
accuracy parameter ¢. The third column contains ni(e), defined via (668). The fourth
column contains ny(e), defined via ([669). The fifth column contains ns(e), defined via
©70). The sixth column contains n4(e), defined via (67I)). The seventh column contains
|An,(e)|- The last column contains |\, |-
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c e | ni(e) | na(e) | nale) | nale) [ Any (o)l [Anae)

250 | 10710 [ 184 198 277 303 | 0.60576E-10 | 0.86791E-16
250 | 10725 | 216 227 326 386 | 0.31798E-25 | 0.14863E-30
250 | 10799 | 260 270 393 525 | 0.28910E-50 | 0.75155E-56
500 | 10710 [ 346 362 460 488 | 0.49076E-10 | 0.60092E-16
500 | 10725 | 382 397 520 583 | 0.54529E-25 | 0.19622E-31
500 | 10790 | 433 446 607 742 | 0.82391E-50 | 0.38217E-56
1000 | 10710 [ 666 687 803 834 | 0.95582E-10 | 0.92947E-17
1000 | 10725 | 707 725 875 942 | 0.97844E-25 | 0.14241E-31
1000 | 1070 | 767 783 981 | 1120 | 0.39772E-50 | 0.56698E-57
2000 | 10710 [ 1305 | 1330 | 1467 | 1500 | 0.95177E-10 | 0.25349E-17
2000 | 1072° | 1351 | 1373 | 1550 | 1619 | 0.86694E-25 | 0.27321E-32
2000 | 10720 | 1418 | 1438 | 1675 | 1818 | 0.88841E-50 | 0.22795E-57
4000 | 10719 ] 2581 | 2610 | 2768 | 2804 | 0.70386E-10 | 0.64396E-18
4000 | 10725 | 2632 | 2658 | 2862 | 2935 | 0.57213E-25 | 0.53827E-33
4000 | 10750 | 2707 | 2730 | 3007 | 3154 | 0.56712E-50 | 0.88819E-58
8000 | 10719 | 5130 | 5163 | 5344 | 5383 | 0.59447E-10 | 0.22821E-18
8000 | 1072° | 5185 | 5216 | 5450 | 5526 | 0.87242E-25 | 0.16237E-33
8000 | 10750 | 5268 | 5296 | 5614 | 5765 | 0.95784E-50 | 0.23927E-58
16000 | 10710 | 10225 | 10264 | 10468 | 10509 | 0.63183E-10 | 0.37516E-19
16000 | 1072° | 10285 | 10321 | 10585 | 10664 | 0.85910E-25 | 0.41416E-34
16000 | 10750 | 10377 | 10409 | 10769 | 10923 | 0.51912E-50 | 0.56250E-59
32000 | 10710 [ 20413 | 20457 | 20686 | 20730 | 0.62113E-10 | 0.12818E-19
32000 | 10725 | 20478 | 20519 | 20815 | 20897 | 0.78699E-25 | 0.12197E-34
32000 | 10750 | 20577 | 20615 | 21018 | 21176 | 0.96802E-50 | 0.15816E-59
64000 | 10710 [ 40786 | 40837 | 41092 | 41139 | 0.89344E-10 | 0.28169E-20
64000 | 10725 | 40857 | 40903 | 41232 | 41318 | 0.66605E-25 | 0.39212E-35
64000 | 10790 | 40964 | 41008 | 41454 | 41616 | 0.85451E-50 | 0.28036E-60

Table 19: Illustration of Theorems[64), [63. See Experiment 14.
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Suppose that ¢ > 0 is a band limit, and n > 0 is an integer. We define the real number
Q(c,n) via the formula

1 n
Q(c,n) = max /11/Jm(t) dt—zwm(tj)'Wj :0<m<n—-1,, (672)
_ =

where t1,...,t, and Wy, ..., W, are, respectively, the nodes and the weights of the quadra-
ture, defined in Definition 2 in Section [£.4l In other words, this quadrature rule integrates
the first n PSWFs up to an error at most Q(c,n).

We make the following observations from Table We observe that Q(c,n1(e)) <
e, due to the combination of Conjecture [2 in Section and (668), (©72). In other
words, numerical evidence suggests that the quadrature of order nj(e) will integrate the
first n1(e) PSWFs up to an error at most € (see Remark 26). On the other hand, we
combine Theorem [62] in Section with (669), ([672]), to conclude that the quadrature of
order na(e) has been rigorously proven to integrate the first no(e) PSWFs up to an error
at most €. In both Theorem [62] and Conjecture [2, we establish upper bounds on Q(¢,n) in
terms of |A,|. The ratio of [\, )] to | Xy, (o) is quite large: from about 10° for ¢ = 250 and
e =1071910"25,107" (see the first three rows in Table [[A), to about 10* for ¢ = 64000
and and & = 1071910725 107" (see the last three rows in Table [d). On the other hand,
the difference between ng(e) and nj(g) is fairly small; for example, for ¢ = 10759 this
difference varies from 10 for ¢ = 250 to 23 for ¢ = 4000, to merely 44 for as large ¢ as
¢ = 64000.

As opposed to nq(g) and ny(e), the integer n3(e), defined via (G70), is computed via an
explicit formula that depends only on ¢ and ¢ (rather than on |A,| and x5, that need to be
evaluated numerically). This formula is derived in Theorem [64] by combining Theorem
with some explicit bounds on |A,| and x,, in terms of ¢ and n. The convenience of ([G70) vs.
(©68), [669) comes at a price: for example, for ¢ = 1079, the difference between n3(e) and
na(e) is 123 for ¢ = 250, and 446 for ¢ = 64000. However, the difference ns(e) — na(e) is
rather small compared to c: for example, for € = 1079, this difference is roughly 4- (log(c))Q,
for all the values of ¢ in Table

Furthermore, we observe that ny(¢) is also computed via an explicit formula that depends
only on ¢ and ¢ (see (671])). This formula is a simplification of that for ns(e), derived in
Theorem Thus, not surprisingly, n4(e) is greater than ns(e), for all the values of ¢ and
E.

We summarize these observations as follows. Suppose that the band limit ¢ and the
accuracy parameter £ > 0 are given. In Theorem [64] we prove that n > ng(¢) implies that
the quadrature error Q(c, n), defined via ([672]), will be at most € (for the quadrature of order
n, defined in Definition 2] in Section d.4]). On the other hand, numerical evidence suggests
that Q(n,c) < ¢ also for all the values of n between n;(¢) and n3(e) (see Experiment 12).
In this experiment, we observed that the difference between ns(e) and ni(e) is relatively
small compared to ¢ (roughly of order (log(c))?).

6.2.2 Quadrature Weights

Experiment 15. In this experiment, we illustrate the results of Section [£.4.4] (in particu-
lar, Theorem [67], Corollary [fl and Remark [I4]). We proceed as follows. We choose, more or
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less arbitrarily, band limit ¢ and prolate index n. Then, we compute the quadrature nodes
t1,...,tn as well as ¢! (t1),...,9! (t,), by using the algorithm of Section (.3l We evalu-
ate 1],(0), using the algorithm of Section Bl Next, we evaluate the quadrature weights
W1, ..., Wy, by using the algorithm of Section (5.4l Also, for each j = 1,...,n, we evaluate
the sum

[e.e]

2 (n)

) kzzoa’“ Qi(t)), (673)
where Qp(t) is the kth Legendre function of the second kind, defined in Section 2.2, and
a,gn) is the kth coefficient of the Legendre expansion of 1, defined via (84]) in Section
(see Theorem [67] and Section [B.I]). To evaluate (673]) numerically, we use only 2N first
summands, where N is an integer of order n (see (B87) in Section [5.1]). All the calculations
are carried out in double precision.

~ / 2
J W Wi +2-Qu(t)) /vy (t) | W = %
1 | 0.7602931556894E-02 0.00000E+00 ~.55796E-11
2 | 0.1716167229714E-01 0.00000E+00 ~.55504E-10
3 | 0.2563684665002E-01 0.00000E~+00 -.21825E-12
4 | 0.3278512460580E-01 0.00000E+00 -.11959E-09
5 | 0.3863462966166E-01 0.16653E-15 0.82238E-11
6 | 0.4334940472363E-01 0.22204E-15 -.16247E-09
7 | 0.4713107235981E-01 0.22204E-15 0.11270E-10
8 | 0.5016785516291E-01 0.19429E-15 ~.18720E-09
9 | 0.5261660773966E-01 0.26368E-15 0.10495E-10
10 | 0.5460119701692E-01 0.29837E-15 -.20097E-09
11 | 0.5621699326080E-01 0.17347E-15 0.81464E-11
12 | 0.5753664411864E-01 0.12490E-15 -.20866E-09
13 | 0.5861531690539E-01 0.10408E-15 0.55098E-11
14 | 0.5949490764741E-01 0.23592E-15 -.21301E-09
15 | 0.6020725336886E-01 0.13184E-15 0.31869E-11
16 | 0.6077650804037E-01 0.18041E-15 -.21545E-09
17 | 0.6122088420703E-01 0.48572E-16 0.14361E-11
18 | 0.6155390478472E-01 0.83267E-16 -.21675E-09
19 | 0.6178529976346E-01 0.11102E-15 0.36146E-12
20 | 0.6192162112196E-01 0.48572E-16 -.21732E-09
21 | 0.6196665001384E-01 0.00000E+-00 0.00000E-+00

Table 20: Quadrature weights [@34) with ¢ = 40, n = 41. A, = i0.69857E-08. See Experi-
ment 15.

We display the results of this experiment Table The data in this table correspond
to ¢ = 40 and n = 41. Table [20] has the following structure. The first column contains the
weight index j, that varies between 1 and 21 = (n+1)/2. The second column contains Wj.
The third column contains the difference between W; and (G7Z3). The last column contains
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the difference

W, — (674)

W) (1-£)

(see Remark [T4]).

In Figure [I2] we plot the weights W}, displayed in the second column of Table For
J > 21, the weights are computed via symmetry considerations. Each W; is plotted as a
red dot above the corresponding node ¢;.

We make the following observations from Table[20l First, all the weights are positive (see
Theorem [[3 and Remark [I3]). Moreover, W; grow monotonically as j increases to (n+1)/2.
Also, due to the combination of Theorems [67] in Section 4.4.4] the value in the third
column would be zero in exact arithmetics. We observe that, indeed, this value is zero up
to the machine precision, which confirms the correctness of the algorithm of Section (.41
(We note that, for j = 1,2,3,4 and j = 21, this algorithm, in fact, does evaluate W; via
(673]), and hence this value in the corresponding rows is exactly zero). Finally, we observe
that, for all j, the value (674]) in the last column is of the order |\, |, in correspondence with
Remark [T4l

Quadrature weights

0.08
0.06/ *
004’ o. .o ’
° . W °
0.02, ’ ]
t
» J ®
91 -0.5 0 0.5 1

Figure 12: The quadrature weights Wy, ..., W, with ¢ = 40, n = 41. See Experiment 15.
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