
Yale University

Department of Computer Science

Privacy-Preserving Discovery of Consensus
Signatures

Felipe Saint-Jean Jian Zhang Joan Feigenbaum
Phillip Porras

YALEU/DCS/TR-1429
July 2010

Privacy-Preserving Discovery of

Consensus Signatures

Felipe Saint-Jean∗ Jian Zhang† Joan Feigenbaum‡

Phillip Porras§

Abstract

Network intrusion detection systems (NIDSs) play a key role in
defending modern network computing environments against attacks.
NIDS are most typically deployed as perimeter traffic monitors, eval-
uating packet flows and content against some form of known intrusion
heuristics, often referred to as intrusion signatures. One key weak-
nesses with NIDS is their inability to react to “new threats” (i.e. at-
tacks that incorporate content or strategies that are not represented
in the current signature set). Unfortunately, the process of generat-
ing new signatures is human intensive, thus delaying the reaction time
of NIDS to address these new threats. Schemes to generate signa-
tures in an automated way have been proposed with some success, yet
their limited accuracy has made them unsuitable for general deploy-
ment. In this context, we consider the problem of having a group of
semi-trusted parties’ share their automatically generated signatures in
a manner that preserves each party’s privacy, with the goal of rapidly
deriving high-quality group consensus signatures that allow the par-
ticipants to react automatically to an emerging large-scale threat. We
first introduce consensus privacy as a relevant privacy notion for this
setting. We then propose a protocol, based on threshold decryption,
to efficiently achieve the consensus privacy notion under realistic as-
sumptions. The output of the protocol is a decrypted subset of those
signatures that have been submitted by at least the threshold number

∗Yale University, Computer Science Department, New Haven, CT 06520, felipe.saint-
jean@yale.edu
†Louisiana State University, Computer Science Department, Baton Rouge, Louisiana

70803, jz@lsu.edu. This work was done while the second author was at SRI.
‡Yale University, Computer Science Department, New Haven, CT 06520,

joan.feigenbaum@yale.edu
§SRI, Computer Science Laboratory, Menlo Park, CA 94025, porras@csl.sri.com

1

of contributors. Our system is more efficient, practical, and scalable
than the best-known cryptographic protocol for computing distributed
functions in a secure way—at the cost of employing stronger assump-
tions on an adversary’s prior knowledge.

1 Introduction

Consider the following scenario. A network administrator runs an auto-
mated signature generation system on his network traffic, which after some
period of operation produces a set of signatures. What can he do with the
generated signatures? The idea of using these signatures to actively block
traffic seems rather perilous, as these unvetted signatures have a potential to
disrupt normal networks operations in unexpected ways. The administrator
may iteratively test and edit these signatures until some degree of confidence
in their quality emerges, but such a manual process significantly impacts the
promised value proposition of the automated signature generation system.

Toward the pursuit of new of techniques to derive global threat intel-
ligence, we propose a way to extract value from automatically generated
signatures by sharing them. This will make the signatures that represent
widespread phenomena attain a visibility that simply cannot be achieved
with local analysis, at a speed that cannot be achieved with manually gen-
erated signatures. We present a system where sites generate signatures in
an automated way, and then contribute these signatures to run a protocol
that will detect signatures that are prevalent globally.

Intrusion signatures are often used in computer and network defense
systems to detect and block network attacks such as worms. An intrusion
signature consists of characteristics of the attack that uniquely identifies
it, e.g., content patterns or event-sequence patterns. Recent research in
both live traffic signature extraction and static binary content signature
extraction has introduced the potential to realize adaptive defenses that can
detect, characterize, and incorporate knowledge of newly emerging intrusion
patterns to block malicious traffic or to quarantine malicious binary content.

In this paper, we envision future Internet-scale defense infrastructures
that can utilize a large distributed pool of contributors that share their lo-
cally derived signatures as a means of recognizing emerging threat patterns.
Besides providing a global perspective on network attacks, shared signature
publishing can also help to consolidate (or prioritize) signatures, i.e., to con-
struct consensus hotlists of signatures from the independently derived sets
of local networks. An often-used method for reducing the false positives is
to generate signatures only on network flows pre-picked according to strin-

2

gent criteria that can almost surely determine that the flows are malicious.
Clearly, such criteria cannot cover all possible types of malicious flows. In
fact, most current generation schemes produce signatures for a few types
of attacks. Under our sharing scheme, locally generated signatures need
to win a “global consensus” in order to become the final signatures. There-
fore, the local generation schemes can relax the flow selection criteria—cover
more types of malicious attacks without worrying about false positives. It
is at the global level that the signatures are re-examined and the ones with
consensus are selected as the final signatures that have fewer false positives.

There have been quite a few security-log sharing systems, for example,
DShield [12] collects firewall logs across the Internet and publishes source
address blacklists to regularly inform firewalls of the most prolific sources
of attack and scan traffic. Signature sharing is different from these systems.
Signatures are often extracted by deep inspection of packet content. Au-
tomatically generated signatures may capture sensitive information about
the local network. There are more significant privacy concerns in signature
sharing than in the sharing of other security logs. It is impractical to assume
that a signature generation system can protect against the disclosure of pri-
vate data. Sharing without proper privacy protection leads to an adoption
hurdle, if not a direct violation of typical user privacy policies. On the other
hand, privacy protection methods widely used for other security-log sharing
schemes, such as data sanitization and obfuscation, cannot be applied to
signature publication because distorted signatures lose important intrusion
characteristics and have little utility. An Internet-scale signature publishing
framework must satisfy some basic requirements:
Privacy Protection: The framework should protect the privacy of the
contributors from each other and from public users as well as from the
framework itself.
Data Utility: Provided that the privacy is protected, the framework should
share exact, not obfuscated, information. Distorted signatures have little
utility.
Scalable System: The framework should be able to accommodate a large
number of data contributors and should disseminate shared information pub-
licly.

We propose a novel signature-sharing architecture with the goal of sat-
isfying the above requirements. To allow better public information dissemi-
nation, our architecture takes the form of a data repository. Local networks
generate signatures and share them in the repository. Instead of collecting
obfuscated signatures, the sharing framework relies on a publication con-
trol scheme for privacy protection. The publication control scheme allows

3

sharing of exact signatures when the privacy constraints have been satisfied.
Otherwise, the data is protected. The repository, the other contributors,
and the public users of the repository are all unable to obtain the signature.

2 Related Work

There is a wide variety of research on automatic signature generation [11, 5,
7, 10, 3, 9, 2]. Early work explored signature generation using locally repet-
itive contiguous substrings in monomorphic malware traffic. Such systems
include Honeycomb [7] (which extracts signatures by Longest Common Sub-
string using suffix-trees), Earlybird [11] (which uses Rabin fingerprints [4] to
isolate the most prevalent 40-byte sequences), and Autograph [5] (which also
uses Rabin fingerprints to calculate variable-length byte sequences over the
sliding payload window). Although similar, these three approaches distin-
guish themselves in the heuristics used to classify flows or packets as poten-
tially malicious or innocuous. Other techniques include the work of Akritidis
et al. [1], who employ the multiplicity of destinations, the length of content
substrings (based on sampled Rabin fingerprints), and the position of their
appearance within the flow to distinguish worm payload. Polymorphic-based
traffic signature generation schemes have also been explored. The Polygraph
system [10] extracts multiple disjoint substrings and invariant payload prop-
erties, and Hamsa [9] is a high-speed algorithm for similarly extracting mul-
tiset substrings. Alternatively, Kruegel et al. employ Content Flow Graphs
(CFGs) [8] to extract prevalent executable-code fragments that appear in
packets with diverse sources and destinations, matching the executable code
structure as a means of resilience to minor polymorphic byte perturbations.

Some research has explored systems for distributed signature generation.
Because sharing is done by mutually trusted parties, these systems do not
address the privacy of these parties, which is a core problem in our work.
For example, Autograph shares address and port dispersion information to
accelerate flow classification among the monitors as they select packets from
which to extract repetitive content. WormShield [3] shares address disper-
sion statistics in a Zipf-like calculation along with content fingerprints, and
forwards this information to the root node to manage signature consolida-
tion. Since the sharing is among mutually trusted parties, these systems do
not address the privacy concerns in such sharing, which is the core problem
of our work.

In the area of privacy-preserving computation there are two protocols
related to our work. The first is Yao’s Secure Function Evaluation [13].

4

This is a general protocol for privacy-preserving computation and could be
used to share signatures. Yao’s protocol is extremely powerful and secure,
but does not scale well to our needs. It is too expensive. A more efficient
option is the more specific protocol for privacy-preserving set operation [6].
These protocols are among the most efficient for computing set operations in
a privacy-preserving way, but their communication complexity is quadratic
to the number of inputs. For the volume of signature comparisons that will
arise in event modest deployments of our our scheme, O(n2) may prove too
expensive for scalable signature publication.

3 Problem Description

Our primary challenge is to develop a system to share signatures, in a mas-
sive way, that can be implemented in practice where the participants get a
valuable result for their involvement. We want to avoid imposing a heavy
burden on the contributors or to put their private data at risk. But we must
also complete our consensus computation regardless of the sudden absence
or introduction of contributors into an evaluation round.

This leads to a more specific set of objectives:

Transient contributors: we must allow for a wider range of contributors.
We want interactions to be short and have the protocol to be robust
in results generation, even when some contributors fail to finish or to
show up at all.

Privacy: the privacy of contributor data is fundamental in finding people
willing to participate. Network data contains private information, and
thus signatures may incorporate this private private data.

Scalability: any solution must facilitate data collection volumes that allow
a publication to monitor global phenomena. We want the system to
perform with thousands of contributors each submitting hundreds of
signatures per round.

Privacy, being in general an elusive concept, has a very defined meaning
in our system. We define consensus privacy for a value t in the following
way. If t or more contributors present the same signature, it is not private
and thus should be disclosed exactly as a result of the protocol. This def-
inition is based on the idea that private network data is unique to the site
where that piece of data is observed. If a signature incorporates private
data, that data (being unique to that site) should not be revealed, since the

5

chances of t − 1 other sites contributing the same signature are extremely
low (coincidental with low thresholds, and increasingly improbable as our
threshold increases). The consensus privacy concept precisely defines what
should and what should not be published as a result of the protocol.

What the system will compute is the set of signatures that were gener-
ated at the sites of many of the contributors. More precisely, we want to
compute the threshold union set on the contributors’ inputs at each round.
The threshold union set is the set that has all input elements that are present
more than t times in the union of all contributors’ inputs. In this case, the
inputs are the locally generated signatures. In the more general problem,
contributors can input multiple copies of an element; we only consider the
case where each contributor submits at most a single copy of each possible
element. This function can be described as computing the subset of all sig-
natures that are present in at least t of the contributors’ locations. This
function arises naturally from the consensus privacy notion introduced pre-
viously. The challenge is to achieve this notion of privacy in a distributed
system with semi-trusted parties.

Protocols that solve the threshold union problem with very strong pri-
vacy properties are known [13, 6]. These general protocols do not adjust
to our requirements. They are multi-round protocols and have a high com-
munication complexity. To achieve our goal we can either formulate a new
protocol that improves the upper bound on the problem, or we can relax the
assumption. Here we explore the latter option, and do so in the following
way. We classify signatures into two groups, a signature is either a true
signature, meaning that it captures that phenomena that has been observed
from multiple distributed locations, or it is a private signature, a signature
that has not yet proven to be applicable outside a single network location.
A true signature can be generated, identically, in many sites yielding few
or no privacy concerns. A private signature, on the other hand, contains
information of the local network traffic and becomes a signature by error.
It is very specific to the site where it was generated, and thus the privacy
implications are sources of greater concern. From this perspective, privacy
protection will be focused on limiting the degree to which an adversary may
gain insight into the contents of private signatures. We will assume that
positives have high minimum-entropy in relation to the adversary’s knowl-
edge. That is, the information revealed by the execution of the protocol will
not help an adversary with little specific knowledge of the internal traffic.

We propose a simple communication model in which contributors can
encrypt/encode and send each signature prior to dissemination to our con-
sensus repository. Thus, the communication complexity for each signatures

6

encoding is distributed across the contributor pool, and each the computa-
tions that each contributor performs are a function of the amount of signa-
tures they choose to disseminate. A centralized party collects all the sig-
natures and can reveal, without perturbation, the value of signatures with
a frequency equal to or above the threshold t. In the following section we
present a scheme that satisfies the requirements under this communication
model.

4 System Description

The objective of the system is to compute, in a distributed fashion, the
threshold union function among the private inputs of a set of participants.
We will do this in a centralized model because it fits better with the con-
ditions necessary to make the system practical, not only in terms of low
complexity, but also in the sense that network administrators will find it
compelling to participate as contributors.

The following roles are involved in the protocol:

The Contributors are the nodes that represent each of the networks where
data is being collected. These contributors are running an automatic
signature generation program on their network traffic. Their inputs to
the protocol are the signatures generated by it. Let us assume that
there are n contributors and they are called S1, ...,Sn.

The Collector is the centralized party responsible for receiving the inputs,
computing the threshold union, and subsequently publishing the re-
sults in a way that the contributors can access them. We will call the
collector C.

The Registration Authority is responsible for generating a distributing
public and private keys to the contributors. We call the registration
authority RA.

We envision the protocol running once per fixed period of time. It could
run, for example, once a day. During that day the contributors collect and
submit to the collector signatures in an encrypted form. At the end of
each collection period, C runs the decryption process to reveal only those
signatures satisfying the consensus privacy condition.

The contributors interact with RA once at the very beginning. From
then on, the contributors interact only with the collector, to submit signa-
tures and to get results. Figure 1 summarizes the interaction between the
parties involved.

7

Figure 1: General architecture description: RA and Si interact only once in
the registration stage. During the submission stage, the contributors S1,S2

and S3 send the encryptions of their collected signatures to C. In the last
stage, C decrypts and publishes the signatures that have consensus. In the
diagram, only signture A is published for consensus threshold t = 3.

8

We now examine two potential protocols to achieve consensus privacy
under the sharing scheme described above, and consider the second protocol
to be the preferred strategy.

4.1 Version One

Given our consensus privacy notion, it seems natural to apply some of the
threshold cryptography theory in order to achieve a system that respects
our consensus-based privacy definition. A threshold cryptosystem allows
for the private key to be shared among n parties, and any set of size t
can decrypt a ciphertext. We assume the existence of the following (t, n)-
threshold decryption scheme:

• KeyGen(1k): The key generation algorithm that generates the private
key shares {Prii}, i = 1...n and a public key Pub.

• Encrypt(a,Pub): Given a message a and a public key Pub it generates
the ciphertext C.

• PartialDecryp(C,Prii): Given a ciphertext C and a share of a private
key Prii it computes Ci, a partial decryption of C.

• Combine({Ci}T) with |T| = t: Given partial decryptions {Ci}T it
reveals the plaintext message a.

To use a (k, n)-threshold scheme, like the one above, to share signatures
we can do the following. First, RA generates the keys and distributes them
to the participants, giving Prii to Si. To submit a signature a, node Si

will encrypt it with the public key and then compute the partial decryption
of it as Ci = PartialDecryp(Encrypt(a,Pub),Prii), using its share of the
private key Prii. When C combines t partial decryptions belonging to the
same signature, C can then reveal a, the original signatures, by computing
Combine on them. This defines a new function

• Share(a,Prii) = PartialDecryp(Encrypt(a,Pub),Prii). It generates a
share of a that will allow reconstruction using Combine(.). This is, in
practice, a reusable secret-sharing scheme.

This system is described by the following functions:

Submission: A node Si on a signature a will submit β = Share(a,Prii).

9

Revelation: C, in order to publish, needs to decrypt. For that, it one
needs to find t submissions that belong to the same signature and
then Combine(.) them.

C will be able to decrypt valid signatures that show up more than t times,
because in order to get a correct decryption, C needs to group together t
encryptions of the same signature. It is not possible to do that on ciphertext,
since that would imply that the ciphertext reveals information about the
plaintext. In the next section we present a variation that improves efficiency
by revealing some information about the signature in a controlled way.

4.2 Version Two

One strategy to improve the decryption step is to attach to partial decryp-
tions some information that will allow C to group signatures effectively.
Attaching a short k-bit hash Hl(a) to the partial decryption will allow C
to group candidate signatures together that have the potential to equal.
Conceptually, one can think of Hl(a) as the bin to which the signature a
is assigned. The value of k has to be tuned to give enough information to
group together a set of encryptions of the same signature that are very likely
to correspond to the same signature, but not enough information to reveal a
signature that is truly a unique locally private signature. This can be done
effectively given the observation that the empirical distribution of signatures
reveals a Zipf-like distribution on signatures received by C. That is, we find
that there are many elements of a signature that are highly repetitive across
a corpus of signatures, and those will distribute across the bins. A few things
will repeat a lot, and those will dominate the bin they are in, allowing de-
cryption by sampling t elements at random and attempting a decryption.
This observation is based on preliminary experiments and requires further
grounding; a less convenient distribution, like a uniform one, means that we
need more bits in Hl, but the scheme will still work.

Submission : A node Si on a signature a will submit the pair Enci(a) =
(α = Hl(a), β = Share(a,Prii)).

Revelation : C will group all submissions with matching α and will de-
crypt by sampling. When a signature is correctly decrypted, then it is
published. The verification of decryption correctness can be done by
adding some redundancy to a.

10

5 Efficiency

The step that may affect the scalability of our system is the identification
of consensus. In this step, because we use a hash with a small number
of bins Hl, there may be collisions, which may increase the effort we need
for recovering the consensus signatures. We now analyze the relationship
between the number of bins, B (note that k = logB), used in the hash and
the amount of effort we need to decrypt the consensus signatures. In the
collection of signatures, we have both consensus signatures (we denote the
number of distinct consensus signatures by T) and non-consensus signatures
(let N be the number of distinct non-consensus signatures). Because our
sharing process cares about only consensus signatures, all the non-consensus
signatures can be viewed as noise signatures. In our sharing scenario, N >>
T we use B > T 2 number of hash bins such that with probability larger than
1
2 , there is no collision, i.e., each consensus signature is placed into a separate
bin. In practice, the consensus threshold t often takes a small value (say
below 10). Therefore, we treat the threshold as a small constant in the
analysis.

If we use B = N number of hash bins, the number of noise signatures in a
bin follows a Poisson distribution. The expected number of noise signatures
is 1. With probability larger than 1

2 , we can bound the number of noise
signatures in any bin to be smaller than a small constant c > 1. Now
consider a bin that contains a consensus signature. We have at least t
copies of that consensus signature. There are also at most c distinct noise
signatures in this bin, and each noise signature has less than t copies. The
signal-to-noise ratio is above k/(kc) = 1/c, and the fraction of consensus
signatures in the bin is at least 1/(1 + c). If we randomly select t shares
from the bin, the probability that they come from the same private field a is
[1/(1 + c)]k. Therefore, we need to make (1 + c)k such selections to decrypt
and recover the consensus private field a.

We note that the above analysis is about the worst-case decryption effort.
The actual effort required in practice can be much smaller. Figure 2 plots
a simulation result about the relationship between the bin number and the
decryption effort. In the simulation, 1000 signatures were generated using a
Zipf distribution of parameter 1000, i.e., the frequency of the i-th signature
(the number of contributors that generate that signature) is 1000/i. We
chose a Zipf distribution because the frequencies of the signatures produced
in our preliminary experiments on our local network’s traffic follow this
distribution. However, we note that this is an example simulation and that
the scalability of our system does not depend on a particular signature

11

Figure 2: Decryption effort for a number of bits in the hash

distribution. Once generated, each signature is hashed into a random bin
among 2k bins where k is the size of the hash in bits. We then locate
each signature whose frequency is above t = 5, and compute the number
of tries we need to decrypt that signature given the condition of the bin.
Figure 2 plots the number of tries versus t. For each t, the simulation is
conducted 20 times, rehashing the signatures each time. The average effort
(blue diamonds) and the standard deviation (vertical bars) are plotted. We
see that when the number of bins used in hashing (say 210 = 1024) is close
to the number of unique signatures (1000), we can successfully decrypt a
consensus signature after only a small number of tries.

Both the analysis and the simulation result show that when using a
number of hash bins that is in the same order of the unique signatures,
the effort required for decryption is well within the capability of a modern
computer. In practice, we expect the decryption effort to be even smaller,
because only the private fields in a signature are converted into the protected
form and thus require the search for consensus. Signatures normally contain
other fields that are not privacy sensitive. Information from these fields can

12

be used to further speed the search for consensus. For example, if one
signature is about TCP traffic and the other is about UDP, the repository
does not need to test consensus for the private fields between these two
signatures.

6 Security

We define our adversary A as a polynomially bounded adversary that has ac-
cess to all the information C has, but limited knowledge about the details of
the internal traffic of any individual contributor. We define a security breach
as the adversary gaining too much knowledge about a non-consensus signa-
ture, i.e., a signature submitted by fewer than t contributors. By assuming
strong enough properties of the threshold cryptosystem used (ind-cca, which
means the ciphertexts are indistinguishable in a chosen ciphertext attack),
and having Hl be a random oracle, we can provide the following security
argument.

We will challenge the adversary to guess the plain signature. We will say
that the adversary fails if he can guess correctly with a small probability,
smaller than 1

2s for a security parameter s. For example, consider the follow-
ing scenario. The adversary gets a set of partial decryptions of a signature
a, and then makes a guess m as to a candidate for a. Because Hl is a short
hash, he has no trouble finding a collision, so Hl(m) = Hl(a). How good is
his guess after seeing the hash? This is defined by the following conditional
probability:

P[a = m|Hl(a) = Hl(m)] =
P[a = m,Hl(a) = Hl(m)]

P[Hl(a) = Hl(m)]

=
P[a = m]

P[Hl(a) = Hl(m)]

We assume that the adversary’s knowledge regarding the possible signatures
has min-entropy h, thus

P[a = m] ≤ 1
2h

and, because the Hl values are assigned uniformly at random (random oracle
property),

P[Hl(a) = Hl(m)] =
1
2k

so,

P[a = m|Hl(a) = Hl(m)] ≤ 1
2h−k

.

13

If we have that h − k ≤ s, then the adversary can only guess correctly
with a negligible probability. This formalizes the intuition that if we have
h bits of min-entropy, and we reveal k bits, we are left with h − k bits of
min-entropy. In that way, h − s is our hash-bit budget for performing an
efficient decryption.

The previous argument holds when the adversary is challenged to guess
the exact signature. But what about a partial guess? For example, what
about predicates. Because the cryptosystem used is ind− cca, all signatures
with the same value of Hl are indistinguishable. Furthermore, because hash
values are assumed to be assigned at random, any sample of signatures
the adversary uses to guess a predicate will be roughly evenly distributed,
making his guess very close to random. So under this assumptions the
adversary cannot guess even single bits.

We now discuss some potential adversarial actions against the sharing
system. A malicious contributor may attempt to recover protected signa-
tures by submitting arbitrary data. However, this is impossible because
consensus is required to reveal the signatures in the system. In other words,
a malicious contributor can submit arbitrary signatures. This may make
the discovery of consensus signatures very difficult for the repository but it
cannot break the privacy of the other contributors. To recover the protected
signatures, the malicious contributor has to launch a dictionary attack. In
this attack, the malicious contributor needs to submit many possible signa-
tures. The contributor has to collude with t− 1 other contributors, each of
them also submitting the same set of possible signatures, to achieve consen-
sus. These conditions, although they cannot completely prevent dictionary
attack, make it extremely difficult and easy to be detected. We also note
that the protected form of the private fields is time dependent. Consensus
can be achieved only if the signatures are supplied within the same time win-
dow. Hence, a dictionary attack has to be launched for each time window.
This also greatly increases the work factor of such an attack.

7 Conclusions and Further Work

We presented the design of a system to share network signatures that protect
contributor privacy in a realistic and practical way. We envision implement-
ing this system (or an enhanced version of it), and with it achieve two major
goals. First, it would provide signatures of global attacks fast and with low
cost. Because of the privacy and efficiency properties we expect a large
number of contributors, so the produced signature set provides a valuable

14

picture of new attacks. Also, having a system like this in place allows for
security research to move in directions that, so far, have been restricted be-
cause of the lack of data. Data has been hard to obtain because of privacy
concerns. If our system is successful in recruiting contributors, the generated
signature dataset will be of extreme value to security research in gaining an
understanding of global phenomena on real active networks.

References

[1] P. Akritidis, E. P. Markatos, M. Polychronakis, and K. G. Anagnos-
takis. STRIDE: Polymorphic sled detection through instruction se-
quence analysis. In 20th International Conference on Information Se-
curity (SEC), pages 375–392, 2005.

[2] David Brumley, James Newsome, Dawn Xiaodong Song, Hao Wang,
and Somesh Jha. Towards automatic generation of vulnerability-based
signatures. In IEEE Symposium on Security and Privacy, pages 2–16,
2006.

[3] Min Cai, Kai Hwang, Jianping Pan, and Christos Papadopoulos.
Wormshield: Collaborative worm signature detection using distributed
aggregation trees. Technical report, Internet and Grid Computing Lab,
Univ. of Southern California, 2005. http://gridsec.usc.edu/TR/
TR-2005-10.pdf.

[4] B. Karp and M.O. Rabin. Efficient randomized pattern-matching algo-
rithms. IBMJRD: IBM Journal of Research and Development, 31:249–
260, 1987.

[5] Hyang-Ah Kim and Brad Karp. Autograph: Toward automated, dis-
tributed worm signature detection. In USENIX Security Symposium,
pages 271–286, 2004.

[6] Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set opera-
tions. In Advances in Cryptology (CRYPTO), volume 3621 of Lecture
Notes in Computer Science, pages 241–257, 2005.

[7] Christian Kreibich and Jon Crowcroft. Honeycomb: Creating intru-
sion detection signatures using honeypots. Computer Communication
Review, 34(1):51–56, 2004.

15

[8] Christopher Krügel, Engin Kirda, Darren Mutz, William Robertson,
and Giovanni Vigna. Polymorphic worm detection using structural in-
formation of executables. In Proceedings of the 8th International Sym-
posium on Recent Advances in Intrusion Detection (RAID), volume
3858 of Lecture Notes in Computer Science, pages 207–226, 2005.

[9] Zhichun Li, Manan Sanghi, Yan Chen, Ming-Yang Kao, and Brian
Chavez. Hamsa: Fast signature generation for zero-day polymorphic-
worms with provable attack resilience. In IEEE Symposium on Security
and Privacy, pages 32–47, 2006.

[10] James Newsome, Brad Karp, and Dawn Xiaodong Song. Polygraph:
Automatically generating signatures for polymorphic worms. In IEEE
Symposium on Security and Privacy, pages 226–241, 2005.

[11] Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage.
Automated worm fingerprinting. In Proceedings of the 6th Symposium
on Operating System Design and Implementation, pages 45–60, 2004.

[12] Johannes Ullrich. Dshield home page. http://www.dshield.org, 2008.

[13] Andrew Yao. Protocols for secure computation. In Proceedings of 23rd
Annual Symposium on the Foundations of Computer Science, pages
160–164, 1982.

16

