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Abstract. In this paper, we present a domain decomposition method of a modified Gauss-
Seidel algorithm for the Connection Machine. This algorithm converges as fast as the
Gauss-Seidel algorithm, and its dependency pattern between processors is the same as
the Jacobi algorithm. It proves that the medium-grained approach can achieve better
performance compared to the virtual processor scheme. We also show that problems of

larger sizes can run on the Connection Machine with this medium-grained approach.




1. INTRODUCTION

Most domain decomposition methods of Laplace equations are designed for the Jacobi
algorithm [Jenn77] [ReFu88]. The Jacobi algorithm is not as efficient as the Gauss-Seidel
algorithm since the former converges more slowly than the latter [WuGa88a]. However,
the Gauss-Seidel algorithm has a much heavier dependency than the Jacobi algorithm
[FJLO88]. This dependency may cause processor suspension on a concurrent implemen-
tation. We suggest a modified Gauss-Seidel algorithm for the Connection Machine. This
algorithm converges as fast as the Gauss-Seidel algorithm, and its dependency pattern

between processors is the same as the Jacobi algorithm.

The Connection Machine is a massively parallel, single instruction multiple data (SIMD)
machine [SaSw88] [TuRo88] [Thin87]. Known as a fine-grained parallel architecture, it is
usually used in the style of allocating a single data item to one processor. If the number of
data items exceeds the number of physical processors, virtual processors may be used. The
Connection Machine uses fine granularity in partitioning to explore maximum parallelism.
However, when a problem is partitioned in this fine-grained style, communication could
dominate the total execution time and result in low efficiency. We will show in this paper
that by using proper granularity, better performance can be obtained. Moreover, with
medium granularity of partitioning we are able to run larger problems on the Connection

Machine compared to that with the virtual processor scheme.




2. ALGORITHMS

There are many algorithms designed for solving Laplace equations [Jenn77]. In the
Jacobi algorithm, the value A;; at the kth iteration is obtained by using the values of the
previous iteration from its neighboring points. The update procedure for step k¥ may be

presented as:
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All values at the same iteration may be updated simultaneously. It is easy to reach a
balanced load distribution. However, this algorithm converges very slowly, especially for

large problem sizes.

In the Gauss-Seidel algorithm, the values A;; are updated in sequence. Its update

procedure for step k£ may be presented as:
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Each value of A;; at iteration k is obtained from two newly generated values for iteration k&
and two old values of iteration k-1. This algorithm assumes a particular updating sequence.
Since A;; depends on the values of the same iteration, not all values of an iteration can
be obtained simultaneously. Although heavy dependency slows down execution speed and

causes processor suspension, it converges much faster than the Jacobi algorithm.

The Jacobi algorithm can be implemented on the Connection Machine in a straightfor-
ward manner. The Gauss-Seidel algorithm converges fast, but it is not good for concurrent
implementation because of its heavy dependency. The number of iterations to converge for
the Jacobi and Gauss-Seidel algorithms is shown in Table 1. The matrices are randomly
generated, and Delta is 0.01. When the matrix sizes get larger, the number of iterations for

the Jacobi algorithm increases fast, whereas that for the Gauss-Seidel algorithm is almost

3




Table 1: Comparison for Convergency (Iterations)

Matrix size
16 | 32 | 64 | 128 | 256
Jacobi 137 | 242 | 529 | 1029 | 2211
Gauss-Seidel || 9 10 | 11 10 12

invariant.

The Connection Machine is usually used in the style of allocating a single data item to
one processor. When the Jacobi or Gauss-Seidel algorithm is implemented in this style, a
processor must obtain four values from its neighbors before it updates its own value. That
is, four communications must be carried out for one updating step. Although the NEWS
(north, east, west, and south) grid is used for this particular problem, communication
takes longer than the computation itself. Also, a particular sequence must be preserved for
the Gauss-Seidel algorithm so that a processor receives two newly generated values before
updating its own value. Although the computation amount is equal for each processor,
different processors may suspend at different times because they must wait for others’

values [WuGa88a].

A modified Gauss-Seidel algorithm, in the medium-grained approach, is proposed for the
Connection Machine. In this algorithm, a matrix is partitioned into many blocks and each
processor takes responsibility for one data block. If we apply the Gauss-Seidel algorithm
restrictly in the block, some data items at the boundary will require new values of the same
iteration from other processors. Now, we modify the Gauss-Seidel algorithm so that the
dependency between data blocks during each iteration can be eliminated. If any data item

at the boundary needs a new value from other blocks, we substitute the new value with
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Table 2: Coﬁvergency for the Modified Gauss-Seidel Algorithm (Iterations)

Matrix size

Grain size || 16 l 32 | 64 [ 128 I 256 ] 512
2*2 12 |14 |13 | 14 | 15 | 14
4 *4 1111212 12 | 13 | 12
8*8 9 {1011 | 12 | 13 | 12

the old value of the previous iteration. In this manner, the data exchange between blocks
can be performed simultaneously at the end of each iteration. Thus, the communication
behavior of this modified Gauss-Seidel algorithm is similar to the Jacobi algorithm, and
the updating sequence inside of the data block follows the Gauss-Seidel algorithm. The

major steps of the modified Gauss-Seidel algorithm can be described below:

1. store one data block to each processor;
2. for each iteration k,
2.1. exchange boundaries of data blocks simultaneously;

2.2. update values inside of the block in sequence.

This algorithm is shown in Fig. 1. The load for each processor is well balanced, and this
algorithm converges fast. Its convergency speed is shown in Table 2. The program with

larger granules converges slightly faster than that with the smaller granule.

3. IMPLEMENTATION AND RESULTS

These three algorithms are implemented in C* and run on a CM-2 with 4K processors.

Performance data is shown in Table 3. The Jacobi and the Gauss-Seidel algorithms can



Modified_Gauss_Seidel_Algorithm
/*
in each processor, e is a two-dimensional array
to hold an n*n data block;
a two-dimensional NEWS grid is defined;

*/

poly int rowld
poly int colld

row index of NEWS grid;

column index of NEWS grid;

for each iteration {

/* set up boundaries */
for (i=1; i<=n; i++)

e[i] [0] = fetch the value of e[i]l[n] from the west;
for (i=1; i<=n; i++)

e[i] [n+1] = fetch the value of e[i][1] from the east;
for (j=1; j<=n; j++)

e[0][j] = fetch the value of e[n][j] from the north;
for (j=1; j<=n; j++)

e[n+1][j] = fetch the value of e[1][j] from the south;

/* update */
for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
elil[j] = (eli-1][jl+eli+1]1[jI+e[il[j-1]+e[i1[j+1]1)*0.25;

Figure 1: The modified Gauss-Seidel algorithm for Laplace equations.




Table 3: Performance Comparison of Three Algorithms

Jacobi | Gauss-Seidel | Modified Gauss-Seidel
Matrix size 2%2 | 4%4 8*8
16 3.08 1.28 0.59 | 1.13 2.44
32 5.32 2.21 0.69 | 1.25 2.73
64 12.17 3.76 0.63 | 1.25 3.00
128 61.74* - 14.07* 0.70 1.27 3.37
256 430.04> 92.58* 2.01* | 1.38 3.60
512 . — 6.32* | 4.31* 3.72

* Use virtual processors

run up to the matrix size of 256. For the matrix size of 128 or more, the virtual processor
scheme is used since the number of physical processors is not large enough. The modified
Gauss-Seidel algorithm can run up to the matrix size of 2048 in 32.36 seconds, with the

grain size of 32*32.

To obtain the best performance, the grain size of partitions is 2*2 for matrix sizes no
greater than 128. The grain size should be increased for larger matrix sizes. That is,
the grain size is 4*4 for a matrix size of 256 and 8*8 for a matrix size of 512, and so
on. When the matrix size increases, the grain size must be large enough to avoid using
virtual processors. Thus, more data items are grouped into one process to reduce the
communication demand. Figure 2 shows the comparison of the three algorithms. Here, the

best grain sizes are chosen for different matrix sizes in the modified Gauss-Seidel algorithm.

4. CONCLUSION

The main problem in multiprocessing is not only how to build a system, but also how
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Figure 2: Performance Comparison of Three Algorithms.



to use it. That requires development of parallel algorithms and programs that can be exe-
cuted efficiently. The Connection Machine is a massively parallel system, which potentially
delivers high performance. However, it should be used in a prudent way to obtain good
performance. To solve Laplace equations, a modified Gauss-Seidel algorithm has been in-
troduced. This algorithm converges fast and all blocks can be updated simultaneously to
minimize processor suspension. The grain size is selected to fully utilize the computation

resource.

The style of allocating a single data item to one processor requires heavy communica-
tion. Furthermore, as the number of data items increases, the virtual processor scheme
must be used by this style. It often leads to more communication traffic and low efficiency.
As an alternative, an application problem can be partitioned into several processes, each of
which has many data items. Each process is allocated to one processor. When the number
of data items increases, this medium-grained approach is especially favorable compared to
the virtual processor scheme. By using proper granularity, many interprocessor commu-
nications are eliminated. Communication overhead and communication delay caused by

network contention is reduced too.
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