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This paper presents a few algorithms for embedding loops and multidimensional
arrays in hypercubes with emphasis on proximity preserving embeddings. A proxim-
ity preserving embedding minimizes the need for communication bandwidth in com-
putations requiring nearest neighbor communication. Two storage schemes for
““large™ problems on “small”” machines are suggested and analyzed. and algorithms
for matrix transpose. multiplying matrices. factoring matrices, and solving triangular
linear systems are presented. A few complete binary tree embeddings are described
and analyzed. The data movement in the matrix algorithms is analyzed and it
is shown that in the majority of cases the directed routing paths intersect only at
nodes of the hypercube allowing for a maximum degree of pipelining. € 1987 Academic

Press. Inc.

1. INTRODUCTION

Many of the conventional linear algebra problems use rows, columns, or
diagonals as aggregate data structures, and algorithms are often formulated
in terms of operations thereupon [7, 34, 35]. One-, two-, or multidimen-
sional arrays are typical data structures. A large number of algorithms explic-
itly acknowledge this regularity in the form of vector algorithms for pipelined
SIMD (Single Instruction Multiple Data streams) [9] architectures. Many
algorithms have also been devised with the vector concept for SIMD multi-
processors configured as meshes, such as the ILLIAC IV, the ICL DAP, and
the MPP [17, 16]. Vectors are also the predominant data structure in systolic
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algorithms for linear algebra computations. Many “fast™ matrix algorithms
and equation solvers make use of some type of divide-and-conquer strategy
and tree-like data structures may be preferable to arrays.

In recent years multiprocessors of the MIMD (Multiple Instruction stream
Multiple Data stream) type and of moderate to medium concurrency have
been designed and built. Some of these architectures are bus oriented, others
have the Ultracomputer [39, 11], or the Cosmic Cube [40] as prototype archi-
tectures. Both these architectures are extensible to highly concurrent sys-
tems. In the Cosmic Cube prototype the storage is completely distributed
among the processing nodes, which are interconnected as a boolean cube. In
the Ultracomputer, processors and storage are at opposite ends of a switching
network. The processors execute their own instruction streams in both de-
signs and are of the complexity of conventional microprocessors. Another
prototype architecture for ultraconcurrent systems is the Connection Ma-
chine [12, 13]. This architecture has many of the characteristics of architec-
tures capable of exploiting the technology of the future. The storage is distrib-
uted among nodes, as in the Cosmic Cube, but the processors are 1-bit pro-
cessors with 16 such processors per chip. The chips are interconnected as a
12-cube. The programming model is of the SIMD variety. We refer to the
highly parallel architectures as ensemble architectures.

In this paper we focus on boolean cube configured ensemble architectures
and present graph embeddings associated with basic linear algebra algo-
rithms. Some topological properties of boolean cubes are presented in Sec-
tion 2. In Section 3 the embedding of loops and multidimensional arrays are
discussed, and some important properties of proximity preserving embed-
dings by a binary-reflected Gray code [36] are derived. The communication
complexity of converting from binary code to Gray code is analyzed. Section
3 also addresses some of the questions arising when the number of nodes in
_ the arrays to be embedded in the cube exceeds the number of nodes in the
cube. Finally, Section 3 contains algorithms for a few tree embeddings. Sec-
tion 4 analyzes the routing paths and communication complexity in trans-
posing a matrix. Section 5 contains algorithms for multiplication of dense
matrices and Section 6 contains algorithms for the solution of dense systems
of equations by direct methods. The analysis is focused on the routing paths
of matrix elements. Section 6 considers both the factorization phase and the
solution of triangular systems of equations.

2. HYPERCUBES
There are 2" nodes in an n-dimensional boolean cube. There are two coor-

dinate points in each dimension. The nodes can be given addresses such that
the addresses of adjacent nodes differ in precisely one bit. The boolean cube
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is a recursive structure. An n-dimensional cube can be extended to an
(n + 1)-dimensional cube by connecting corresponding vertices of two
n-dimensional cubes. One has the highest-order address bit O and the other
the highest-order bit 1. The recursive nature of the boolean cube is illustrated
in Fig. 1.

Each node has » neighbors. The maximum distance between an arbitrary
pair of nodes is # and the average distance is 7/2. The number of nodes at
distance k from a node is (§). The total number of internode connections is
n2""'. There are n disjoint paths between any pair of processors. Of these
paths k are of length A and n — k of length k + 2 [37]. A measure of the wiring
complexity of a boolean cube is the area required for a planar layout. In the
Thompson grid model [42. 43] for (planar) layout, a boolean n-cube can be
laid out in area O(2*"). The maximum wire length is of order O(2") [31].

3. EMBEDDING OF DATA STRUCTURES

One-, two-, or multidimensional arrays are natural data structures for ma-
trix problems. iterative methods for systems of equations, and a variety of
problems in computational physics. Four-dimensional grids are used for
quantum electrodynamics and quantum chromodynamics computations.
Nearest neighbor communication suffices in such data structures. Periodic
boundary conditions are easily realized by local communication if the arrays
have end-around connections. Other types of algorithms may employ some
form of divide-and-conquer strategy and tree-like data structures and proces-

F1G. 1. Boolean n-cubes for n = 1-4.
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sor connectivity would offer computations with local communication.
Dense matrix multiplication and factorization algorithms (LU-decomposi-
tion, Cholesky factorization, Given’s method, etc.) are examples of algo-
rithms that can be mapped effectively onto one- and two-dimensional grids,
and combinations of such grids and trees (for instance, the mesh-of-trees
configuration [31]). The Fast Fourier Transform, bitonic sort [2], parallel
prefix computations, recursive doubling [28], odd-even cyclic reduction
[21], nested dissection [10], and multigrid methods are examples of com-
putations making use of divide-and-conquer strategies and data structures
in the form of trees, or combinations thereof such as the familiar butterfly
network, or combinations of trees and meshes in the form of a hierarchy
of grids.

3.1. Loop Embeddings

3.1.1. Binary Encoding

Embedding a loop L of length |L| = 2" in an n-cube by a binary encoding
of the indices of the nodes in the loop, assuming that successive nodes are
numbered 0-L-1, does not preserve proximity. For instance, nodes 2!
— 1 and 2" differ in all the bits in their binary encoding, and hence the
corresponding nodes of the loop are at a distance of n. The binary encoding
has the property that if i = (i,—in-2- - - i+, Ois—y - - -iyip) and j = i + 2¥ then
clearly i and j differ only in bit k and hence are adjacent. Note, however, that
if 4= (in-1ln-a-+  Iey Lig—y - - - 6y d), then the distance between i and j = ; + 2*
equals the length of the carry propagation path. The binary encoding is feasi-
ble for many divide-and-conquer computations such as the FFT, bitonic
sort, and recursive doubling.

3.1.2. Gray Code Encoding

A loop embedding that preserves proximity is easily obtained for |L| = 2"
by encoding the indices of the nodes in the loop in a binary-reflected Gray
code [36]. We will make use of the following two alternative definitions of
the binary-reflected Gray code. Let the n-bit code of 2" integers be G(#) and
represented in matrix form as

G(n) =
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Then
0Go
G, o
. G) 1
8(6;2"—: G,0
Gin+1)= X 62 - or alternatively, G(n+1)=1| G0
2"-1
1G-s ¢ 12
: Gy 1
G 2"
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The Gray codes of successive integers differ in precisely 1 bit. Let T(n)
be the sequence of bit indices on which a transition takes place in proceed-
ing from integer O to integer 2" — 1 in the n-bit code with the most sig-
nificant bit labeled n — 1. Then. the binary-reflected Gray code can be de-
fined through the recursion 7(n + 1) = T(n), t,, T(n). Furthermore, let the
binary encoding of i = (iy#,-1ip-2 -1,io) and the Gray code encoding be G,
= (8n8n-18n-2+ - -&)- Then the encoding and decoding is defined by g, = (;
+ i,-;) mod 2 and conversely i, = (2%-j+; &) mod 2.

Let d,(i. j) denote the distance between nodes i and j in the loop and
do(G,, G)) denote the distance between nodes 7 and j when embedded in the
cube by a binary-reflected Gray code encoding. The quantity max,dd(G;,
G,.)) is called dilation.

LEMMa 3.1. Any loop of length |L| = 2" + 2k, k= {1, 2,..., 272}, can
be embedded in an n-cube with dilation 1 by a binary-reflected Gray code.

Proof. Let nodes {0, 1,...,2""" + k — 1} of the loop be embedded accord-
ing to the binary-reflected Gray code of the loop node index, and loop nodes
(2" 4+ k2" +k+1,...,27" + 2k — 1} be embedded in the cube nodes
corresponding to the Gray codes of {2" — k, 2" — k+1,...,2"—1}. The
Gray code of 2"' + k — 1 is (1G(n — 1),r-1_x) and the Gray code of 2" — kis
(1G(n — 1)-)). But G(n — 1) = (0G(n — 2)-)) and G(n — 1)1
= (1G(n — 2)x-,) by construction of the binary-reflected Gray code. B

Remark. The embedding is not unique.

The embedding used in the proof is shown below for a loop of length
2"+ 2.
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LEMMA 3.2. Any loop of length |L| = 2""" + 2k + 1, k = {0, 1. ...,
"= — 1}, must have at least one edge of length 2 when embedded in a boolean

cube. Embedding loop nodes {0, 1, ..., 2""" + k} according to their Gray
codes and loop nodes {2" "' + k+ 1,27 + k +2...., 2" + 2k} in the cube
nodes corresponding to the Gray codes of '2" — k. 2" —k + 1, ..., 2" -1}

yields an embedding in which all but one edge ure of length 1, and one edge
is of length 2.

Proof- The first part of the lemma is shown easily by contradiction. Assume
that all edges are of length 1. Then in traversing the loop from any node back
to itself, an odd number of bit transitions is experienced in the address of the
starting node, which clearly must be an address different from that of the
starting address. The proof of the second part follows thatof Lemma 3.1. m

Another useful property of the binary-reflected Gray code is the following.

LEMMA 3.3. The binary-reflected Gray code encoding of i and j = (i + 2
mod 2”, k > 0, differs in precisely 2 bits.

Proof. Let the binary encoding of i be (i.i, ,---i5) and that of j be
(Jnjn=1+ - -Jo). Furthermore, let the Gray code of i be G(n) = (g.8n-1- - -£1)
and that of j be H(n) = (hyhu—y- - -h)). Then i, = j,,, m = {0. 1. .. .. k-1
and j, = im, m = {k, k + 1,.... s}, where s > K is the bit where the carry
stops propagating. It follows from the encoding formula that 4, = g,,,
m={1,2,....k—=Lk+1,... s},and iy =& . hyo1 = Gory. M

COROLLARY 3.1. Nearest neighbor communication on hierarchical, regu-
lar grids, obtained by omitting every other grid point for successively coarser
grids requires communication over two edges tor all but the finest grid.

COROLLARY 3.2. All but one butterfly in u butterfly network embedded by
Gray code encoding requires communication ucross two edges.
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The property of binary-reflected Gray codes stated in Lemma 3.3 and Cor-
ollaries 3.1 and 3.2 is important for algorithms such as nested dissection.
multigrid methods. the FFT, bitonic sort, recursive doubling, and cvclic re-
duction.

3.1.3. Conversion between Binary Encoding and Binary-Reflected

Gray Code Encoding

Application programs typically include the use of several different *‘ele-
mentany” algorithms. Different embeddings may be optimal for different
phases of a computation. The rearrangement of the data from one embed-
ding to another may be preferable compared to using a nonoptimal embed-
ding for part of the computations. By construction. the highest-order bits in
the binary-reflected Gray code encoding of an integer and its binary encoding
coincide. The encodings of the integer 2" — 1 differ in n — 1 bits, and the
maximum routing distance is n — 1 interprocessor links. To carry out the
conversion in 7 — 1 routing steps no two elements must compete for the
same communications link at any given time. For the transformation to be
pipelinable it is necessary that the source-destination paths be edge disjoint.
An element needs to be routed in dimension jif g;® b, = 1.

LEMMa 3.4. 4 Gray code encoding can be rearranged to a binary encoding
in n-1 routing steps.

Proof. The proof is by induction. The lemma is clearly true for a 1-cube.
Assume it is true for a k-cube. Then for a (k + 1)-cube the Gray codes

G(k + 1) of the processors with addresses encoding the integers {0, 1, ....
2%~ 1)7 and the integers {2, 2" + 1,...,2*"" — 1} T are
/0G(k) C1G(k)Ao0
0G(k), [ 1G(k)-2 |
: and :
0G(K)2+-2 1G(k),
0G(k)2t-, 1G (K)o

The highest-order bit in the Gray code encoding and in the binary encod-
ing coincide, and the k lowest-order bits of G(k + 1) for the integers {0. 1.
.... 2% = 1} coincide with G(k), which can be converted to binary code in
k — 1 routing steps according to the induction assumption. By an exchange
operation in dimension k — 1 (dimensions are labeled 0-k), the conversion
problem for the integers {2%, 2% + 1,. .., 2**' — 1} becomes that of convert-
ing

J1G(K) 1Bk,
1G(k), | 1B(k),

: into : ,
1G(k)o+_, 1B(k)z*_2

1G(k) ¢ \ 1By |
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where B(k); is the k-bit binary encoding of i. But this conversion can be made
in kK — 1 steps according to the induction assumption, and the (k + 1)-bit
Gray code can be converted in k steps. B

A similar proof can be carried out for a conversion algorithm proceeding
from the lowest-order bit to the (second-) highest-order bit by considering

G(k)o0 B(k)0
G(k)ol B(k)1
Gk 1 B(k),0
G(k),0 and B(k),1
G(k)zx- 1 B(k)x_,0
G(k)+-,0 B(k)zx1

An exchange operation is required in the lowest-order dimension between
selected pairs of nodes.

COROLLARY 3.3. The directed routing paths are edge disjoint.

Proof. A dimension is routed only once, and the routing is an exchange
operatton. H

Remark. If the order in which dimensions are routed is different for ele-
ments with different source nodes, then it is no longer guaranteed that the
directed routing paths are edge disjoint. For instance, if elements from source
nodes 10 and 11 in the example above are routed on bit O first, but elements
from source nodes 14 and 15 are routed on bit 0 last, then two elements
traverse the directed edges between processors 10 and 11.

It follows from the corollary that if each node contains a set of elements,
the communication of these elements can be pipelined.

COROLLARY 3.4. Conversion of an n-bit binary-reflected Gray code encod-
ing with M elements per node to a binary encoding, or vice versa, can be
performed in n + M — 2 communication steps on an n-cube.

Routing the elements, such that successively lower- (or higher-) order bits
are correct, amounts to reflections around the “pivot™ points in the Gray
code defined by the transition sequence T(n). Table I illustrates the sequence
of reflections that converts a 4-bit Gray code to binary code. Processor ad-
dresses are given in binary code and the integers stored in a processor are
given in decimal representation.

3.1.4. Rotation of Linear Arrays Embedded by Gray Code Encoding

Many linear algebra algorithms can be formulated using rotations as
an operator on aggregate data structures. In a boolean n-cube, /i and
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TABLE
CONVERSION OF GRAY CODE TO BINARY CODE

Reflection Reflection Reflection

Gray code onbit 2 on bit | onbit0
0 0000 0 0000 0 0000 0 0000
1 0001 1 0001 1 0001 1 000!
2 0011 2 0011 2 0011 3 0011
3 0010 3 0010 3 0010 2 0010
4 0110 4 0110 7 0110 6 0110
5 0111 5 0111 6 0111 7 0111
6 0101 6 0101 5 0101 5 0101
7 0100 7 0100 4 0100 4 0100
8 1100 15 1100 12 1100 12 1100
9 1101 14 1101 13 1101 13 1101
10 1111 13 1111 14 1111 15 1111
11 1110 12 1110 15 1110 14 1110
121010 11 1010 11 1010 10 1010
13 1011 10 1011 10 1011 11 1011
14 1001 9 1001 9 1001 9 1001
15 1000 8 1000 8 1000 8 1000

(i + j) mod 2" are at a distance of at most ». In a linear array embedded by
Gray code encoding of the indices, a rotation by i steps implies a routing
G(n);— G(nYisjymoar™>J = 10, 1,. .., 2" = 1}. The minimal number of routing
steps for each j is |G(n), ® G(n) jymoea 2", Where |x| denotes the number of bits
equal to 1 in the binary encoding of x. Even with a minimal number of
routing steps for each element, the order in which the dimensions are routed
has to be determined. This freedom can be used to minimize the intersec-
tions between different directed routing paths.

A rotation of i steps can be decomposed into a sequence of rotations of the
form 2’ by considering the binary encoding of i. By Lemma 3.3, j and
(j + 2" mod 2" differ in precisely 2 bits for r > O andin | bit for r = 0. Hence,
the rotation can be performed by a sequence of communications in two di-
mensions, one for each nonzero bit of i, with the exception of the lowest-
order bit, which requires only one communication. One of the two dimen-
sions (dimension ) is the same for all j, but the other varies. A rotation by
this algorithm may require up to 2z communications. An element may be
communicated between a pair of processors in both directions, as is the case
for j = 0 and a rotation of i = 6 performed as a rotation of length 2 followed
by a rotation of length 4.

If the rotation is implemented as a sequence of reflections, i.e., by correct-
ing successive bits that differ in G; and Gi+jymod2", then clearly an element is
subject to at most » routing steps. However, more than one matrix element
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may traverse the same edge. For instance, consider a rotation of three steps
and the paths traversed by elements 0 and 1 in a lowest- to highest-order-
dimension routing in a cube of dimension at least 3. We conjecture that there
exist routing algorithms that result in edge disjoint paths for all the different
source-destination pairs. We have generated such routing schemes for up to
5-cubes.

3.2. Embeddings of Multidimensional Arrays

Generalization of the embedding of loops to the embeddings of multidi-
mensional arrays is straightforward. An N, X N, X ... X N, mesh can be
embedded in a cube of dimension [log, N1 + log. V21 + - -« + [log, N1 by
simply assigning [log, N1 cube dimensions to dimension i of the mesh.

Figure 2 shows the embedding of a 4 X 4 mesh by a binary-reflected Gray
code in a 4-cube. With the ordering of dimensions used in Fig. 2, dimensions
0 and 2 are assigned to the encoding of column indices, and dimensions 1
and 3 to row indices.

The naive embedding of multidimensional arrays is efficient for N, = 27,
but for 2% < N, < 2"*! the expansion

o= 2("ogy N1+ Moga No1+ -+ +Tloga V)
N/ XNyX ... XN,

may be very large. In the worst case ¢ = 2"

0000 /' 0001 0101 \owo

a00 a0l a02 a03 \

0010 Q011 0111 0110
alo all al2 al3

‘-.O( 1011 1111 1110

1000 1001 1101 1100 /
330\ a3l a2 a33

FIG. 2. Embedding of a 4 X 4 mesh in a 4-cube.
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Embeddings with reduced expansion can be obtained at the expense of
increased dilation. Aleliunas and Rosenberg [1] have studied the embedding
of rectangular grids in square grids. For boolean cubes one can obtain em-
beddings with an expansion smaller than that of the naive embedding by
proceeding in two steps:

« Embed the original mesh. the guest mesh, in a mesh, the host mesh,
having 2" = 2"°&’ nodes in some dimensions and 2™ = 2™°&* nodes in
other dimensions:

« Embed the host mesh in the cube by a binary-reflected Gray code.

We will give some results for simple embeddings of an N, X N, guest mesh.
in an A, X M- host mesh. where M, = 2™ and N, = (1 4+ a)2™, a < 1. The
naive embedding of the N} X N, mesh requires a cube of [log, N1+ lNog> N1
=log.N,1+ m. + 1 dimensions. A break-and-fold embedding [32] employs
the same principle as a carpenter’s ruler. With the assumptions made, only
one break-and-fold operation is necessary. It is verified easily that M, = 2N,
and the number of required cube dimensions is the same as for the naive
embedding.

Aleliunas and Rosenberg describe a simple, so-called szep technique, and
a compression technique in which one dimension is compressed and the
other is expanded in the embedding of a two-dimensional guest mesh in a
two-dimensional host mesh. The step and compression techniques are illus-
trated in Fig. 3.

In the simple step technique the first row of the mesh changes direction
after M, nodes. Numbering rows and columns from 0, row i changes direc-
tion at column M, — 1 —iand row i + N> — M,. The number of dimensions
needed is m; + [logy(N, + N, — M,)1. One cube dimension is saved if
N, — M, < 2™ — N Note that determining which dimension is reduced

—b ¢ o

FI1G. 3. Embedding of an N, X N; mesh in an M, X M, mesh by step embedding and by the
compression technique.
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is important. If N, < N, and a =~ | then the step embedding might require a
number of dimensions in the cube that exceeds 2m, > m, + [logaN,1. The
dilation of the step embedding is 3.

The compression technique [1] embeds a guest mesh in a host mesh by
repetitively embedding a mesh of size 2a X 2b in a mesh of size 2b X 2a.
The compression technique is like a “buckling” process in which for a two-
dimensional guest mesh one dimension is compressed and nodes are allowed
to move into the other dimension of the host mesh. A line of length b is
compressed to length a and b — a nodes are moved into the other dimension.
The integers a and b are related by the equation b = (a — 1)d, + d,, where d,
and d, are positive integers and the dilation is max(d,, 4,). The compression
technique yields an embedding of an N; X N, mesh in a BN, /al X d'N, /b1
mesh. If d, = 1 and d, = 2, then b = a + | points are mapped to a points in
the same dimension and one point is mapped into the other dimension.
If the equation (1 + a)2™/(a + 1) = a2™ has an integer solution, i.e.,
2™1/(N, — 2™) is an integer, then there is clearly a choice of a for the assumed
values of d,, d, for which the compression of the dimension with N, nodes
yields precisely 22 nodes. With the choice of 4, and 4, reversed, i.e., d =2
and d;, = 1, the equation for efficient choice of a is instead a = 2m2 /(2%
— N,). With either of these two choices of d; and 4, the dilation d = 2. The
number of rows M, of the host mesh is approximately N, + [aN,]. The num-
ber of required dimensions for the host mesh is m, + llogx(N, + [aNViD],
which may be 1 less than for the naive embedding of the guest mesh, the best
possible.

Embeddings with a smaller average edge length, as well as a smaller num-
ber of edges of maximum length, can be found for the boolean cube [15].

3.3. Finiteness

For most applications and multiprocessors it is necessary to identify sev-
eral nodes of the guest graph with a given node in the host graph.

3.3.1. Consecutive and Cyclic Storage

We consider square matrices of size N X N stored in a boolean cube of
dimension 2k, N > 2*. Generalization to M X N, M, N > 2% matrices is
straightforward. We consider two schemes for identifying matrix elements
with nodes of a 2¢ X 2* array, which can be embedded in the cube as de-
scribed previously. In consecutive storage all elements (i, j) = {0, 1.....
N-1}X{0,1,...,N— 1} ofthe N X N array 4 that satisfy the relations
p = Li/fN/2XU, ¢ = Lj/TN/2*1l are identified with element (p. q) = {0, L. ...,
2~ 1} % {0, 1,...,2%— 1} of the 2¥ X 2* array 4. Each processor stores a
submatrix of size [N/2%1 X [N/241 or LN/2¥] X LN/2*. In cyclic storage all
elements (i, j) of A that satisfy the relations p = i mod 2%, ¢ = j mod 2* are
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00 {01 | 02 | 00 00
00 01 02 10 |11 |12
20 21 |22
00 o0 00 :
J
I
!
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|
0 00 00

F1G. 4. Consecutive and cyclic storage of a matrix.

identified with element (p, q) of the array A. The consecutive and cyclic stor-
age schemes are illustrated in Fig. 4.

With the consecutive scheme for identifying multiple-array elements, al-
gorithms devised for the case of N = 2* can be employed with the apparent
change of granularity of operations. For linear algebra computations, opera-
tions on single elements are replaced by operations on submatrices of size
N/2F X N/2%. In the cyclic storage scheme the apparent granularity is the
same as in the case N = 2%, The submatrices can be viewed as storage planes
that are brought to the processing plane (Fig. 5). This simple model is repre-
sentative of a SIMD architecture. In a pipelined MIMD architecture the se-
quencing of planes to a processor is preserved, but the planes are broken up
into their elements that are delayed in time with respect to each other because
of synchronization requirements [27, 33].

Processing
A A A
Storage planes
A3l A3 ‘3J A
A2
A13

An
A22

F1G. §. Processing and storage planes.
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In some computations where all elements are subject to the same number
of operations, the communication and arithmetic complexities may be inde-
pendent of whether cyclic or consecutive storage is used, but if some ele-
ments participate in more operations than others, then the processor utiliza-
tion may be affected, and hence also the computational complexity. Matrix
multiplication is an example of the former kind of computation, and matrix
factorization is an example of the latter [24]. This point will become apparent
in Sections S and 6.

For an ensemble architecture with communication overhead that is non-
zero, or that is not proportional to the number of elements communicated,
and that has pipelined arithmetic units, operations of fine grain should, in
general, be merged for optimum use. Conversely, if the consecutive storage
scheme is used it may be desirable to partition the elemental operations to
increase the utilization of the ensemble. The detailed optimization that ac-
counts for specific architectural parameters is left out of our treatment.

3.3.2. Conversion berween Cyclic and Consecutive Storage

We first consider the conversion from consecutive to cyclic storage order
for a one-dimensional array of N elements mapped onto a one-dimensional
array of 2 elements embedded in a k-cube [20], then give some results for
two-dimensional arrays. For a complete treatment see [26].

THEOREM 3.1. The conversion from consecutive storage to cyclic storage
(or vice versa) of a 2"-element array stored in a 2*-element linear array em-
bedded in a k-cube by binary encoding of the array indices can be carried out
in (NJ2KY + k — 1)-element transfer times, ignoring overhead, if a processor
can support concurrent communication on (all) its ports.

Proof. The proof is by induction. Let there be 27" = 2" elements per pro-
cessor stored in a linear array. Consider a one-dimensional cube and let the
elements in processor 0 be numbered from 0 — 2™ — 1 and those in processor
1 be numbered 2™ — 2! — 1. A local unshuffle operation orders all the
even elements before all the odd elements in each processor. An exchange
operation between array element 27U 4 rof processor 0 with array element
r of processor 1 for 7 = {0, 1,....2""" — 1} moves all the even elements to
processor 0 and in order from the first to the last. and similarly all the odd
elements in order to processor 1. The consecutive storage order is converted
to cyclic order and the theorem is true for a one-dimensional cube, assuming
pipelining of the element transfers.

Assume it is true for a (j — l)-dimensional cube. For a j-cube we first
perform the conversion in each of its two constituent (j — 1)-dimensional
subcubes labeled the 0 subcube and the | subcube. The 0 subcube contains
elements {0 — (2"~' — 1)} with element 5 + r2'~' stored in array location
r,0 <r< 2™ of processor 5,0 < 5 < 21 The | subcube contains elements
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{2771 — (2™ = 1)} with element 2™%~! + s + r2~! stored in array loca-
tion r of processor s + 2~'. After a local unshuffle operation location r,
0 < r < 2" in the 0 subcube contains element s + 2r2~' = 5 + r2’ and
location r in the 1 subcube contains 277! + s + 272! = 2"l 4 g 4y,
Storage location r + 277!, 0 < r < 2™, contains s + (2r + 1)2"! = s + ¥
+27"and 277 4 s 4+ (2r + 1)27 = 29T 4 54 12 + 271 respectively.
An exchange operation between location r + 2™~! of processor s and location
r of processor s + 2"~ forr = {0, 1,...,2" ' = 1}and s = {0, I, ...,
2-' — 1} completes the conversion.

The additional exchange operation for the j-cube is in the new dimension
and it follows that pipelining is possible and the proofis complete. ®

Carrying out the recursion in reverse order transforms a consecutive stor-
age order to a cyclic storage order.

COROLLARY 3.5. The transpose of a 2" X 2" matrix stored in column (or
row) major order in a linear array of 2" elements embedded in a boolean
n-cube can be performed in2"' + n — 1 steps.

Note that forming the transpose of an M X N rectangular matrix and con-
version of a linear array with MN elements from consecutive to cyclic storage
are not necessarily equivalent operations.

Figure 6 illustrates the conversion algorithm.

Clearly, the local unshuffle operation need not be carried out explicitly.
Note that exchanges are always performed on half of the local address space,
regardless of the recursion step. This property is not true in forming the trans-
pose of a rectangular matrix.

——— > | e - — | - >|— = |- >
R T [ > e >
—_— > | e > —_—> S| —— >
e > ] s > —_— > S| —-= >
s S [ ——— - — = —— | -->
L S [ > — |- | -->
—_— | - - > —> - | —> |-->
—_— | - === - —> | = | — | -=>

—_ s — | —
------ S|l-=> -3 |-->
—_ | — | | —
SRRSO P >|-->
—_—— | — |- | —
----- Sl-= |-
- — |- | —
----- S|-=> |-

FIG. 6. Transforming cyclic storage to consecutive storage. Left, recursion step 1: right, recur-
sion step 2.
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THEOREM 3.2. The conversion of storage form from consecutive to cyclic
(or vice versa) for a 2" X 2" matrix stored in a 2k x 2% array embedded in a
2k-cube by the binary encoding of the row and column indices can be per-
formed in 22"P7! + 2k — 1 steps.

The theorem can be proved by induction similarly to that of Theorem 3.1.
For each induction step there is communication of 2¥n=k-1 elements be-
tween each pair of nodes and in two dimensions (row and columns). The
dimensions are distinct, allowing for the pipelining of successive transforma-
tion steps.

The conversion can be performed with the same complexity, if the linear
array instead of being embedded by a binary encoding is embedded by a
binary-reflected Gray code encoding. One algorithm with this property is
obtained if in each step of the conversion from consecutive storage to cyclic
storage the sequences in the two subcubes are assumed to be stored cyclically,
but one in normal order and the other in reverse order. If the 0 subcube
contains the normal order sequence and the 1 subcube the reverse order se-
quence, then the unshuffle and exchange operations yield a sequence stored
cyclically in normal order in the combined cube. Reversing the roles of the
two subcubes yields a combined sequence stored cyclically in reverse order.
The theorem below follows:

THEOREM 3.3. The conversion from consecutive storage 1o cyclic storage
(or vice versa) of a 2"-element array stored in a 2*_element linear array em-
bedded in a k-cube by a binary-reflected Gray code encoding of the array
indices can be carried out in (N/2X*' + k —1)-element transfer times ignor-
ing overhead, if a processor can support concurrent communication on (all)
its ports.

3.4. Tree Embeddings
3.4.1. Spanning Trees

Broadcasting a message from a single source to all other nodes (one-to-all
distribution) can be implemented by algorithms generating some form of a
spanning tree. Spanning Binomial Trees (SBT) [14] and complete binary
trees [3, 6] are two often considered spanning trees. The SBT algorithm is
used most frequently on boolean cubes and is very simple to implement.
However, it is nonoptimal for broadcasting of large data sets. Optimum
broadcasting algorithms are derived in [14], which also contains an analysis
of broadcasting and personalized communication based on spanning bino-
mial trees and complete binary trees.

The following algorithm generates a spanning binomial tree rooted at node
0. The processor address is (is—1 in-2- - - fo) and the highest-order bit that is 1
is k with k = —1 for processor (00- - - 0).
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Algorithm SBT

For k = 0ton — 1 concurrently forall {iy_ ix_2---ip} do
Processor (00-.-00i,_;i;_»---Ig) sends a message tO0 processor
(00---0lig_yij—2- - - o)
Processor (00---01li,_ i, »---Iy) receives a message from processor
(00 - -00i)—yix-2- - - 1o)
enddo
In some algorithms data distribution takes place from different sources
during the course of the computations and a certain partial order of arrival
is required for correctness. For instance, in Gaussian elimination a row/col-
umn has to be updated with respect to all preceding pivots before becoming
a pivot row/column.

LEMMaA 3.5. Initiating successive SBT broadcasts at nodes corresponding
10 the Gray code of successive integers, afier each such node has completed
its transmission operations for preceding sources, guarantees that the order
of arrival of messages at all processors is the same as the order of distribution.

Proof. The distribution from processor i reaches all nodes at distance & in
k routing steps. Processor i + 1 is at distance 1 from node i for all i due to
the Gray code encoding. A processor at distance k from i is at least at distance
k — 1 from processor i + 1, and processor i + 1 starts its distribution two
routing steps after processor i since it transmits the message from processor
i during the routing step that succeeds the one during which the distribution
from /isinitiated. W

3.4.2. Embeddings of Complete Binary Trees

Complete binary trees are of interest for the solution of tridiagonal systems
by odd-even cyclic reduction [21]. the solution of banded systems by sub-
structuring techniques [22]. and the solution of systems of equations by
nested dissection with the equations originating from regular meshes [38].

3.4.2.1. Embeddings with expansion 1.

THEOREM 3.4. An embedding of a complete binary tree of 2" — 1 nodes in
an n-cube, by labeling the tree nodes in inorder and embedding the tree by a
binary encoding of the node indices, yields an embedding in which a parent
node and its left descendant are at distance 1, the parent and its right descen-
dant are at distance 2, and the right and lefi descendants are at distance 1
from each other.

Proof. The proofis by induction. The claim is clearly true for a two-level
tree. Assume it is true for a k-level tree. The root of the k-level tree labeled
in inorder has index 2*~! — 1, i.e., bit k is 0 and all lower-order bits are 1. For
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a (k + 1)-level tree the index of the new root node is 2 — 1 and the new root
and its left descendant differ in bit k only. The labeling of the right descen-
dant of the root is 2"! — 1 + 2%, since there are 2% — 1 nodes in the left
subtree and there is also the root. Hence. the left and right descendants of
the new root differ in 1 bit (bit k) and the root and the right descendants
differ in bits k and k — 1 and the theorem follows. ®

THEOREM 3.5. An embedding of a complete binary tree of 2" — 1 nodes in
an n-cube, by labeling the tree nodes in inorder and embedding the tree by a
binary-reflected Gray code encoding of the node indices, yields an embedding
in which a leaf node is at distance | from its parent node and all other nodes
are at distance 2 from their respective parent node. Left and right descendants
of a node are always at distance 2 from each other.

The proof of Theorem 3.5 is immediate from Lemma 3.3 and the inorder
labeling of the tree.

Remark. From the definition of the Gray code it follows that successive
nodes in an inorder-labeled complete binary tree are at distance 1, and that
successive nodes in subtrees rooted at the root of the tree are at distance 2.
This is in essence Corollary 3.1.

THEOREM 3.6. The (n — 1)-level subtree jormed by the interior nodes of
an n-level complete binary tree can be embedded in an (n — 1)-dimensional
subcube (of the n-cube embedding the n-lcv! tree) by an exchange operation
between selected adjacent processors. The control of the operation can be en-
tirely local.

Proof. From the binary-reflected Gray code

G(n - 1)()0
G(n — 1)l
Gn— 1!
G(n—- 10

G(n) = G(n— 1)-0
G(n-— 1):1
G(i’l— 1)3""“711 J
G(n - 1)3'3'1-10/

it is clear that every other odd integer starting with the second is embedded
in processors with even addresses. The (7 — 1)-level subtree rooted at the root
of the n-level tree labeled in inorder (0 — 2" — 1) contains all nodes with an
odd index. The leaf nodes of the (n — 1)-level subtree are in the odd subcube.
By an exchange operation between even processors storing odd-indexed
nodes with odd-indexed processors having the same leading n — 1 bits (which
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stores the preceding even integer by construction of the code), all odd integers
are mapped into the odd subcube as illustrated in Table II.

Let node 7 = 2j + 1.j={0. 1....,2"" —1}. Then j is embedded in
processor (G(n — 1);1) and induction completes the proof. B

3.4.2.2. Embeddings with dilation 1. It is interesting to note that there
exists a dual form of the dilation 2 expansion 1 + 1/(2" — 1) complete
binary tree embedding in which the dilation is 1 and the expansion is
242/2"-1).

THEOREM 3.7. 4 complete binary tree of 2" — 1 nodes can be embedded
inan(n+ )-cube with dilation 1.

We give an algorithm for the embedding, and prove that the embedding
generated by the algorithm satisfies the theorem. For other embeddings of
complete and arbitrary binary trees in boolean cubes see [3, 6].

In the algorithm below an n-level tree embedded in an (n + 1)-cube
is extended to an (n + 1)-level tree in an (n + 2)-cube by adding a leaf
level. The (n + 1)-cube is partitioned into four subcubes (Oxx- - - x]Oxx - - X).
(Oxx- - -xflxx..-x), (1xx---x[0xx---x), and (1xx---x{Ixx-..x). We refer
to these subcubes as the 00. 01. 10, and 11 subcubes. Half of the new leaf
nodes are taken to be the image of the leaf nodes in the n-level tree in the
added (n + 1)-cube. The other leaf nodes are mapped into the old (n + 1)-
cube. Half of the leaf nodes are mapped into subcube 01, a quarter into 10,
and a quarter into 11 recursively, as illustrated in Fig. 7. L, denotes the num-
ber of leaf nodes in the n-level tree. The mapping of the new leaf nodes within
the old subcube is such that for each leaf node of the n-level tree that is in
the old subcube 01, one new leaf node is taken as the image in the old sub-
cube 11. Similarly. one new leaf node for each old leaf node in the old sub-
cube 11 is taken to be the image in the old subcube 10. One new leaf node
for each old leaf node in the old subcube 10 is mapped into the subcube itself.

If the mapping of the leaf nodes of the n-level tree to nodes within the old
(n + 1)-dimensional cube is conflict free at some stage, then it follows that

TABLE 11
NODE EMBEDDINGS AFTER AN EXCHANGE OPERATION
Node index Gray code
1 G(n—= 1)l
3 G(n— 1)1
5 G(n— 1)l
2”_3 G(n— i)z""-z]

2"-1 G(n— 1)1l
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FIG. 7. Recursive embedding of complete binary trees in boolean cubes.

the mapping of leaf nodes from subcube 0! into subcube 11 also is conflict
free in the next embedding step. The two subcubes are further subdivided to
show the origin of the elements that reside in them. The fact that the mapping
in the lower half is conflict free follows from the assumption that the map-
ping in the 01 and 11 subcubes was conflict free in the preceding recursion
step. That the mapping of leaf nodes for the upper half is conflict free follows
from the assumption that the mapping from subcube 11 to 10 and within
subcube 10 is conflict free. The arguments for the mapping to and within
subcube 10 are more complex.

Note that an alternative tree embedding is obtained by complementing
the bits in the binary encoding of the node numbers. The embedding so ob-
tained is not disjoint from the embedding generated by the algorithm above.

We now give an algorithm implementing the above strategy. Let the root
of the complete binary tree be at level 1 and the leaves at level n. Embed the
root of the tree in cube node (00- - -0), the right child of the root in node
(00- - -010), and the left child in node (00- - .0100). A left-edge connects a
node with its left child and a right-edge connects a node with its right child.
Label the edges of the tree with the bit of a node’s address that is comple-
mented in obtaining the address of the child connected by the edge. Hence,
the left-edge of the root is labeled 2 and the right-edge is labeled | with the
address bits labeled 0 through 7 — 1. The right-edges of nodes at level i, 2<i
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< nare labeled / + 1. i.e., with the level index of the children nodes. The left-
edge of node (00- - -0100) is labeled 0. and the left-edge of node (00- - -010)
is labeled 2. Then, for levels 7, 3 < i < n, the left-edges connecting a node p,.
where i is the level index. with a node at level / + 1 are labeled as follows:

« If the node p, is the left child of node p,_,, then copy the label of the
right-edge of p,_, to the left-edge of p,.

« If the node p, is the right child of node p,-,. then copy to the left-edge
of p; the label of the left-edge of the node immediately to the right of p,_,. If
P.-1 is the rightmost node at level 7 — 1, then copy the label of the left-edge
of the first node at level / — 1.

The result of this labeling scheme is shown in Fig. 8 for a six-level complete
binary tree.

To prove that the above algorithm satisfies Theorem 3.7 we need a few
lemmas.

LEMMA 3.6. Consecutive left-edges berween levels i and i + 1,1 < i < n,
scanning the tree in right-to-left (or lefi-to-right) order never carry the
same label.

Proof. It is easily seen to be true for i = 1. Assume it is true for some /.
Then for level i + 1 the rightmost left-edge and every other left-edge are
labeled i + 1. The labels of the other left-edges are obtained by copying the
labels of the left-edges of the nodes at level i starting with the second right-
most left-edge and terminating with the first, and the lemma follows. ®

LEMMA 3.7. For any node at level i the label of its lefi-edge is never used
again in the subtree rooted at i.

Proof. Considered two adjacent subtrees at level i with roots p and g. Let
the left-edge of p be labeled « and the left-edge of gbe 8, a. 8 < iand a # 8

6 2/ \6 5/ \6 4/ \6 5/ \6 3/ \6 5/ \6 4/ \6 5/ \6e o/ \6 s/ \e6 4/ \6 5/ \6 3/ \6 5/ \s 4/ \6
6/ \r2/\r16/\rs/\15/\ra/\16/ \75/\76/ \13/\76/\15 76/7‘ 76/\78/\18/\10/\76/\15/\1 6/\14/\76/ \15/\76/ \73/\76/\75/\16/\76/\8 6/\75/\7

FIG. 8. Labeling of a complete binary tree for dilation 1 embedding in a boolean cube.
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from Lemma 3.7. Right-edges are labeled with the index of the lower of the
two levels it connects. Hence, o« or 8 will never appear on a right-edge. Left-
edges of a node r, being the left child of a node s, are labeled with the label
of a right-edge of s. The smallest value of such a labelis i + | > a, 8. Left-
edges of a node r, being the right child of a node s, copy the label of the left-
edge of the node adjacent to s. Left-edges from nodes on the path from p to
the rightmost leaf node of the subtree rooted at p copy the labels of the left-
edges forming the path from node g to the leftmost leaf node of the subtree
rooted at g, with the exception of the last edge. But, the edges forming the
path from g to the leaf are labeled 8, i + 1, i+2,...,n— 1, which are all
distinct from o, and the lemma follows. ®

LEMMA 3.8. Consider a subtree at level i rooted at node p. Then, the label
i + 1 of its right-edge appears only on left-edges reachable by the traversal of
exactly one more right-edge in the right subtree of p.

Proof. The only way the label i + 1 can appear on a left-edge in the right
subtree is by a copy action from another left-edge. Let g be adjacent to p, to
its right, and at level i + 1. Furthermore, let s be the left child of g. Then, the
left-edge of s is labeled i + 1. Let the right child of p be u. Then, the label
i + 1 is copied from the subtree of g to the left-edge of the right child of u.
This label is then copied to the left-edge of any node that is the right child of
a node on the path from u to the leftmost leaf node of the subtree rooted at
1. which can be shown by induction. Indeed, with r denoting a right-edge
and / a left-edge, the label of r occurs only on the last edge of paths of the
form r/*rl in the subtree defined by the first right-edge, where /* denotes an
arbitrary number of left-edges in sequence. ®

We now prove Theorem 3.7.

Proof. From Lemma 3.7 it follows that the nodes within the right and left
subtrees of any node are distinct. It also follows from this lemma that no
node in the left subtree of any node p can have the same address as p. It
remains to be shown that there exists no node in the right subtree of p with
the same address as p. Every label has to be encountered an even number of
times for two addresses to coincide. Every right-edge introduces a new label.
But, any label on a right-edge appears only on left-edges that require the
traversal of precisely one additional right edge by Lemma 3.8. ®

4. MATRIX TRANSPOSITION
The transposition of a matrix can be formed by an exchange of antidiago-

nal blocks on successively smaller (larger) submatrices. This recursive proce-
dure [41, 8] is illustrated in Fig. 9.
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F1G. 9. Recursive transposition of a matrix.

In the following we assume that the recursive transposition proceeds to-
ward successively smaller submatrices. In the first step of the recursive proce-
dure the interchange of data is performed on the highest-order bit of the
binary encoding of the row indices and the highest-order bit of the column
indices. In the second step the interchange is performed on the second-
highest-order bit of the row and column indices, for all combinations of the
highest-order bits, i.e., four submatrices. The number of index sets that differ
in one bit of the row and column indices increases by powers of 4 as the
procedure progresses toward lower-order bits.

With the consecutive storage scheme of a 2” X 2" matrix in a 2% X 2¥ array,
itis easily seen that the first & steps imply interarray element communication
and that the last n — k steps are local. With the cyclic storage scheme the
first n — k steps are local. whereas the last k steps require interarray element
communication. After the first n — k steps there are 22"~ submatrices of
size 2* X 2% to transpose. Each submatrix has one element per processor.

THEOREM 4.1 [25]. The transpose of a 2" X 2" matrix stored cyclically or
consecutively in a 2¢ X 2* array embedded in a boolean cube by a separate
binary encoding of the row and column indices can be formed in a time pro-
portional t0 229 + 2k — 1, assuming a communications overhead propor-
tional to the number of elements being transferred, and concurrent communi-
cation on multiple (possibly all) ports.

Proof- Let n = k and a processor address be (B(r)| B(c)). where B(r) and B(c)
denote the binary encoding of the row and column index. For k = 1 the
theorem is clearly true. Assume it is true for k = m. For k = m + | we
exchange the submatrices (1xx- - - x|0xx- - .x) and (Oxx- - - x|1xx- - . x). This
exchange operation requires two communications, one in each of the new
dimensions. The transpose is now obtained by transposing four submatrices
of size 2™ X 2™ in four distinct subcubes, and the theorem follows for n = k.

For n > k the matrix is partitioned into submatrices of size 2" X 2",
With cyclic storage the last k steps require interprocessor communication
whereas in consecutive storage the first k steps require communication.

Successive steps of the recursive transposition procedure perform ex-
changes on processor interconnections in different dimensions. It follows
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that the communication of elements of different submatrices can be pipe-
lined for all steps of the transposition operation, since the directed paths from
origin to destination intersect only at nodes. ®

With the array embedded according to a binary-reflected Gray code, suc-
cessive row and column indices are always located in neighboring nodes of
the cube. However, the communication required by the recursive procedure
is between nodes storing elements of rows and columns whose binary encod-
ing differs in successively higher- or lower-order bits. Each such communica-
tion requires communication in two dimensions by Lemma 3.3. Neverthe-
less, the transpose can be formed in the same time as for a binary encoding.

THEOREM 4.2 [23]. The transpose of a 2" X 2" matrix stored cyclically or
consecutively in a 2¥ X 2 array embedded in a boolean cube by a separate
binary-reflected Gray code encoding of the row and column indices can be
formed in a time proportional to 22k 4 2k — | by performing reflections on
successively lower- (higher-) order bits in the encoding of row and column
indices, assuming a communications overhead proportional to the number of
elements being transferred, and concurrent communication on multiple
(possibly all) ports.

Proof. For the proof we assume that the transpose is formed by performing
reflections on successively lower-order bits in the row and column encodings
in alternating order. Elements stored in location (i, j) of the 2* X 2% array are
stored in processor (G(k); G(k);) and shall be moved to processor (G(Kk),G(k)).
The theorem is clearly true for k = 1. Assume it is true for kK = mm. Then for
k = m + 1 the task of forming the transpose is that of routing elements from

2m — 11 x {0,1,2,...,2™" — 1}. But:

(G(m + 1),G(m + 1))
(0G(m),0G(m)), (i.j)={0,1.2,..., 2" =110, 1.2,..., 27— 1},
(1G(m)ym+1_i-,0G(m))),

Goj)= {2727+ 1 2" = 130, 1.2, 27— L,
=3 (0G(m), 1G(m)ym+i_y),

)= 10,12, 2" = 1}{2m 2"+ 1, 27 = 1,
(1G(mYym=1_ i 1G(m)ym+1 1),

()= {27 27+ 1, 2 = 2m 2 2

.

The routing (1G(m),=+1_;_,0G(m),) — (0G(m)ym+t_,_ LG(m),) requires one
communication in each of two dimensions. The routing (0G(m);
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X 1G(m)ym+1_jy) — (1G(m)0G(m),=+1_;_y) also requires one commu-
nication in each of two dimensions. The remaining routing steps are con-
fined to four subcubes. The two submatrices being exchanged have a re-
flected representation, with respect to both row and column indices, in their
new location. This implies only that in the next recursion step an exchange
operation is performed between the diagonal blocks in these subcubes in-
stead of antidiagonal blocks, and the desired routing can be performed in 2m
communication steps by the induction assumption. The theorem follows by
the observation that distinct dimensions are routed in the different steps of
the algorithm allowing for pipelining of the data movement of elements with
the same source and destinations. H

In forming the transpose of a matrix, half of the edges of the cube in a
given dimension are used in a given step. For optimum transpose algorithms
see [26].

It is interesting to compare the complexity of forming the transpose on a
boolean cube with that of forming the transpose on a two-dimensional mesh.

4.1. Forming the Matrix Transpose on a Torus

We first note that the maximum distance a matrix element has to travel is
2 X (2* = 1) for a two-dimensional square mesh and 2* for a torus with 2*
processors in each dimension. Second, we note the following lower bound:

THEOREM 4.3. The transpose of a 2" X 2" matrix stored consecutively or
cyclically in a 2% X 2% array embedded naively in a torus with 2* processing
elements in each dimension requires at least a time that is proportional to
227(1 = 279/(8(2F - 1)).

Proof. The lower bound is immediate by noting that 2**(1 — 27%)/2 ele-
ments must be transferred through 4(2¢ — 1) ports. ®

THEOREM 4.4. The transpose of a 2* X 2¥ matrix stored in row major order
in a torus with 2* processors in each dimension can be performed in 2* rout-
ing steps.

Proof. For a torus of 2¥ X 2% processors we shift the element stored in
processor (1,j), i = {0, 1,...,2" "= 1},i<j<i+2*"' r=j—istepsinthe
direction of decreasing column indices and then r steps in the direction of
increasing row indices. Similarly, the element stored in processor (i, j), j < i
<j+2¥1j=1{0,1,...,2" = 1},isshifted r = j — i steps in the direction of
decreasing row indices and then r steps in the direction of increasing column
indices. For (i, ), i = {21, 2"+ 1,...,25 = 1},j<i—2¥", j> i, element
(i,j) is moved r = (j — i) mod 2* steps in the direction of decreasing column
indices; then the same number of steps in the direction of increasing row
indices, i.e., element (7, j) is moved to processor ((i + (j — /)mod 2)mod 2%,
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(j — (j — Hmod 29mod 2%). Element (i, j), i < j — 27", i > j,j = {27,
2% 4 1,...,2K = 1), is moved r = (i — j)mod 2* steps in the direction
of decreasing row indices and r steps in the direction of increasing column
indices. ®

COROLLARY 4.1. [f there are no end-around connections. then the trans-
pose of a 2% X 2% matrix on the same size torus can be formed in 2(2* — 1)
steps by shifting superdiagonal r, r > 0, r processors in the direction of de-
creasing column indices, and then r processors in the direction of increasing
row indices. Subdiagonal r is shifted r processors in the direction of decreasing
row indices and then r steps in the direction of increasing column indices.

The proof is by direct evaluation. It is clear that no competition for com-
munication links occurs.

COROLLARY 4.2. By pipelining the element transfers for different subma-
trices and using two distinct paths between each pair of source/destination
processors, a 2" X 2" matrix stored cyclically or consecutively in an array of
2k x 2k glements enibedded naively in a torus of the same size can be formed
in a time proportional to (22" 0721+ )28,

In comparing the complexity estimates for forming the transpose of a ma-
trix on a two-dimensional mesh with that of the boolean cube it is concluded
that the cube offers a speedup over the mesh by a factor of approximately 2k
for n> k, and by a factor of 2*/k for n < k.

5. MATRIX MULTIPLICATION

The task is to compute C — C + 4 X B. If the matrices are of size 2* X 2*
and the cube has 2k dimensions. then a parallel version of the conventional
algorithms requiring (2 X 2% — 1)2** arithmetic operations requires a time of
at least 2 X 2¥ — | on 2** processors capable of one arithmetic operation at a
time. Additional time may be required due to data alignment, synchroniza-
tion. or data movement. The multiplication of two N X \ matrices, N > 2%,
can be accomplished in a time that is at most (V/2%)? times the time for the
multiplication of 2¥ X 2* matrices.

We first briefly describe an algorithm for the multiplication of 2% x 2*
matrices embedded in a boolean 2k-cube by a binary encoding of row and
column indices. This algorithm is due to Dekel et al. [5]. We show that the
data movement for multiple matrix multiplications is pipelinable. We then
give three algorithms for the multiplication of matrices embedded by a bi-
narv-reflected Gray code.

5.1. Multiplication of Matrices Embedded by Binary Encoding, MMC1

Assume that each processor has three registers, £, F, H. Initially E(i. j) —
AL ). FG.j) — B(i. j). H(, j) — C(i.j). (i.j) = {0, L...., 25— 1V X 10, 1.
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.... 24 = 1}, In the algorithm by Dekel ez al. [5] the set-up phase during
which the multiplier and multiplicand are aligned consists in the data move-
ment

E(i.j)—EG,i®)) and F(.j)— Fi&®j,)).

Clearly. E(i. /) X F(i, j) are valid product terms for all / and j. In the multi-
plication phase all elements of a row of 4 need to visit every processor 1n that
row. and every element of B needs to be communicated to every processor
in that column with C computed in-place. Dekel et al. use a recursive proce-
dure in which the desired data movement is performed in half-rows. then an
exchange operation between the two halves. followed again by data move-
ment in half-rows. The order of the dimensions in which exchange opera-
tions are performed is the same as the order in which the dimensions are
used in a binary-reflected Gray code.

THEOREM 5.1 [5). The computation C — C + A X B on a boolean 2k-cube
can be performed in 2* + k — 1 communication and 2k arithmetic steps with
A, B, C being 2¥ X 2* matrices embedded by a binary encoding of row and
column indices, each in half of the address space.

During the multiplication phase the resources are fully utilized. In the set-
up phase, elements of a row of 4 move within the subcube embedding that
row. and elements of a column of B move within the subcube embedding
that column. The movements of different rows of 4 and columns of B are
independent. The routing required in the subcube defined by row index / is
j— i@ . This routing consists of exchanges in different dimensions, namely
those in which the binary encoding of / has a bit equal to 1. Each dimension
is routed only once. Hence, routing the dimensions in the same order for all
j guarantees that any communications link is traversed by only one element
in a given direction, and the next lemma follows:

LEMMA 5.1. The set-up phases for multiple matrix multiplications can be
pipelined such that the set-up phase for an N, X N, matrix requires
N, /2K1TN2 /2K + k — 1 communications, given that a processor can support
concurrent communication on (all of') its ports.

The following result is now immediate:

THEOREM 5.2. The computation C — C + A X B on a boolean 2k-cube
can be performed by algorithm MMCI in [N, /2KIIN,/2K1TN; /2428 = 1)
+ max(TNV, /251, TN3/20N>/2K + k — 1 communication and TN;/24
X [Ny /2K1T N3 /2572 arithmetic steps with A an N, X N, matrix and B an N,
X N; matrix, and the matrices stored cyclically or consecutively in a 2k X 2*
array embedded in the cube by a binary encoding of row and column indices,
each in half of the address space.



160 S. LENNART JOHNSSON

We note that all k-dimensions used to embed a row are being used in the
multiplication phase, and also in the set-up phase.

5.2. Multiplication by Rotation of Gray Code Encoded Matrices, MMC2

Cannon [4] describes an algorithm for SIMD-type ensembles configured
as tori. In the set-up phase row i of A4 is rotated i steps in the direction of
decreasing column indices, and column j of B is rotated j steps in the di-
rection of decreasing row indices: E(i, j) — E(i, (j + )mod 29, F(, j) —
F((i + j)mod 2%, j). .

Clearly, E(i, j) X F(i, j) are valid product terms for (i, j) = {0, I, ...,
28— 1} x {0, 1,..., 2= 1}. The set-up phase implements the skewing of
data streams required for synchronization, as seen in many systolic algo-
rithms [30, 27]. In the multiplication phase the following computations are
performed in Cannon’s algorithm:

for k = 1 step 1 until 2* do
for all (, j) in parallel do
H(i, j) — H(i, j) + E(, j) X F(i, J)
E(i, j) — E(, (j + 1)mod 2
F(i, j) — F((i + 1mod 2%, j)
end
end

Adapting this algorithm to boolean cubes is straightforward for the multi-
plication phase due to the assumed Gray code embedding. In the set-up
phase the maximum distance a matrix element needs to move is k, and it
occurs for an element (i, j) such that |G; ® Gi+ymea2tl = k. Assuming that the
rotation can be performed such that the data movements can be pipelined,
the following complexity result follows:

THEOREM 5.3. The computation C — C + A X B on a boolean 2k-cube
can be performed by algorithm MMC?2 in [N, /2X1[N,/2K1TN3 /25925 — 1)
+ max(TN, /2K, TN3/25)N>/2K1 + k — | communication and TN,/2R
X [[N2/2K1T N3 /25125 arithmetic steps, with A an N\ X N, matrix and B an
N, X N; matrix, and the matrices stored cyclically or consecutively in a
2% x 2% array embedded in the cube by a binary-reflected Gray code encoding
of row and column indices, each in half of the address space.

5.3. Multiplication by Reflection of Gray Code Encoded Matrices, MMC3

In this algorithm the distribution of any element of a row i of 4 is emanat-
ing from processor (G;Gy) (the first column), and the distribution of any ele-
ment of column j of B is emanating from processor (Go G)) (the first row). In
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addition to the registers E and F, two registers P and Q are needed, if the
distribution is made by the SBT algorithm. The elements of 4 have to be
moved to the first column. and the elements of B to the first row. This move-
ment is accomplished by shifts. one step at a time. In shift r the data move-
ment is E(i. j) — EG. j+ 1).j={0,1,...,2* = r— 1}, and F(i, j) —
Fi+1.j).i=1{0,1,...,2"=r— 1}. The communication is between adja-
cent processors due to the Gray code encoding.

Instead of an explicit set-up phase, as in the previous algorithms, the syn-
chronization may be performed by starting the distributions (and computa-
tions) in the subcube storing column j at time |G(k),| and in the subcube
storing row i at time |G(k),|. By this initiation procedure it is clear that a;
reaches the processor storing element (i, ) of C at time |G(k),| + |G(k),. Sim-
ilarly. by, reaches the same processor at time |G(k);| + |G(k),| for all (i, j)
={0.1....,25= 1} x {0, 1..... 2% — 1}. From the shifting of elements
toward the first row and column. it follows that the elements a;,, and b,
reach processor (i, j) at time |G(k),| + |G(k);] + m, if no communication
conflicts occur. Upon receipt of the elements of 4 and B the multiplication
of the contents of the Pand Q registers can be performed, i.e., H(i, j) — H(i, j)
+ P(i, j)Q(i, j). The following lemma asserts that indeed no communication
conflicts occur:

LEMMA 5.2. The directed path G+_y, Gak_y, . .., Gy, Go and the paths of
the SBT algorithm are edge disjoint.

Proof. The edges of the SBT are all directed toward the node with the
higher address, i.e., (00 - -0i,— i,-2- - -ip) — (00 - - 1i_y i3+ - -dg), r = {0, 1,
....k—1}. The proof is by induction. It is clearly true for k = 1. Assume it
is true for k = m. Then for k = m + 1 the edges of the SBT are directed from
nodes (Oxx- - -x) to nodes (1xx. . -X) in the appropriate subcubes. But, the
directed path from element 27" — 1 to element 0, Gom+1_y, Gom+i_5, Gy, Go,
traverses only one of the edges joining the two subcubes, namely the edge
(1100---0)— (0100- - -0), and in the 1 — O direction. ®

It follows that the data movement for successive matrix multiplications
can be pipelined. The directed routing paths for a 4-cube are shown in
Fig. 10.

THEOREM 5.4. The computation C — C + A X B on a boolean 2k-cube
can be performed by algorithm MMC3 in [N, /2X1TN,/2M1T N5 /2F2% + 2k
— 1 communication and [N, /211N, /2K1TN; /2K12% arithmetic steps with A
an N, X N, matrix and B an N> X N, matrix, and the matrices stored cycli-
cally or consecutively in a 2F X 2* array embedded in the cube by a binary-
reflected Gray code encoding of row and column indices, each in half of the
address space.

The proof of the theorem is immediate from Lemma 5.2.
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Fi1G. 10. Routing paths in a 4-cube for the multiplication by reflection in row/column 0.

Remark. The multiplication-by-reflection algorithm can also be employed
for matrices embedded by a binary encoding of row-and-column indices.
Distribution from the processors embedding row-and-column 0 is made as
in the case of Gray code encoded matrices. but elements are transported to
the processors of reflection-by-exchange operations according to the transi-
tion sequence in a binary-reflected Gray code. as in the algorithm by Dekel
et al. Note, however, that in this algorithm some of the interprocessor com-
munication links used by the SBT algorithm are also used in transporting
matrix elements to the processors storing row-and-column 0.

Remark. Note that in the multiplication algorithm based on reflection, the
synchronization requirement between the two dimensions yields a latency
term of 2k. In the algorithm employing rotation, and in the algorithm by
Dekel et al., there is no coupling between the dimensions in the set-up phase
and the latency is reduced to kK communication steps.

5.4. An Quter-Product Algorithm with Minimal Communication, MMC4

Algorithm MMC3 can be viewed as an outer-product algorithm with all
outer products initiated in processor 0. The outer products a,,,b,.. are per-
formed in order of successively increasing values of m starting with m = 0.
In order to reduce the data movement for the computation of the outer prod-
ucts the distribution of the row and column elements can be performed by a
spanning tree algorithm directly from the processors where the elements are
stored.

5.4.1. Outer-Product Algorithm Version I, MMC4.1

In this algorithm each processor performs all rank-1 updates a,,,b,,. in
order of increasing index m. This order is mandatory for factorization algo-
rithms with pivoting on the diagonal.
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LEMMA 5.3. The computation C — C + A X B on a boolean 2k-cube, where
4 and B are 2* X 2" matrices embedded by Gray code encoding, requires
3(2% = 1) + 2k communication steps if distribution of matrix elements is
performed by the SBT algorithm, outer products are computed in order of
successively increasing indices, and the communication of matrix elements
for successive outer products is completed in order.

Proof. Spanning binomial trees rooted in adjacent processors can be initi-
ated only in every other communication step, if a processor is to complete
the communication for a subtree before initiating the communication of a
new subtree. Still another step is required for the communication from the
subcube holding the row and column of the current outer product to the
one holding the row and column of the next outer product. Hence, three
communication steps are required between the initiations of successive outer
products, and the column and row trees require k steps each. ®

If 4 is an N, X N, matrix and B an N, X N; matrix, then it is possible to
increase the resource utilization through pipelining of the data movement.

THEOREM 5.5. The computation C — C + A X B on a boolean 2k-cube
can be performed by algorithm MMC4 in (N, /2K N,/2KN; /241 + 2)2*
+ 2k — 3 communication and TN, /211N, /21T N5 /2512 arithmetic steps with
A an N, X N> matrix and B an N, X N5 matrix, and the matrices stored
cyclically or consecutively in a 2% X 2% array embedded in the cube by a bi-
nary-reflected Gray code encoding of row and column indices, each in half of
the address space.

5.4.2. Outer-Product Algorithm Version 2, MMC4.2

In this algorithm outer products are initiated in order of successively in-
creasing indices during successive communication steps. The number of
such steps is reduced by approximately a factor of 3 for matrices of size equal
to the ensemble size.

THEOREM 5.6. The computation C — C + A X B on a boolean 2k-cube can
be performed by initiating outer products in order of successively increasing
indices during successive communication steps in [Ny [2K1TN, /2¥1TN;/2*12*
+ 2k — 1 communication and TN, [2X1TN, /21T N5 /2¥12% arithmetic steps with
A an N, X N, matrix and B an N, X N; matrix, and the matrices stored
cvelically or consecutively in a 2¥ X 2* array embedded in the cube by a bi-
nary-reflected Gray code encoding of row and column indices, each in half of
the address space.

Proof. We assume that the distribution from each source node is per-
formed by the SBT algorithm, and initiated during communication step
m + |G(k),, ® G(k),| for element b,,;and step m + |G(k), ® G(k),| for element
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a,,. Then elements a;, and b, arrive at the processors storing element ¢;
during step m + |G(K) ® G(k),| + |G(k), ® G(K) for (5, j) = {0, 1, ...,
2X—1}x{0,1,..., 2= 1}.

The proof of the lack of communication conflicts is by induction. It is
easily verified to be true for k = 1. Assume it is true for k = r. Then for
k = r + 1 there are three new subcubes. We refer to the old subcube as the
00 cube and to the new subcubes as the 01, 10, and 11 subcubes. The com-
munication of the elements of A residing in subcube 00 to the subcube with
highest column index 1 is entirely in the 0 — 1 direction on the links in the
added dimension for column encoding. The spanning trees for the elements
of Bin the 01 subcube are generated in the same order as the spanning trees
for B in the 00 subcube, but are initiated one communication step later than
the corresponding ones in the 00 subcube, since an element of A reaches the
node in the 01 subcube one step after its image node in the 00 cube, by virtue
of the SBT algorithm. The spanning trees for the elements of B in rows
0 — 2" — 1 and columns 2" — 2! — 1 do not have any directed edges in
common by the induction assumption, and the edges of the spanning trees
to the 11 cube are in the 0 — 1 direction for the new dimension for the rows.
The same is true for the spanning tree edges to subcube 10, for the elements
of Bin rows 0 — 2" — 1 and columns 0 — 2" — 1. The distribution of the
elements of A in rows 2" — 2"*' — 1 and columns 0 — 2" — | are initiated one
step after their corresponding element in subcube 00, and there is no conflict
within the 10 subcube according to the induction assumption. The commu-
nication to the 11 subcube is in the 0 — 1 direction of the new dimension
for columns. Hence, the matrix elements in the first 2" outer products tra-
verse cube edges during different cycles (but up to 2" elements traverse the
same edge). The proof is completed by observing that the communication of
the elements of B in rows 2" — 2"*! — 1, and for all columns, is in the | — 0
direction for the new dimension for rows. Similarly, the communication for
the elements of 4 in columns 2" — 2'*! — [ is in the | — O direction in the
added dimension for columns. No conflicts occur within subcube 11, due to
the induction assumption, and the proofis complete. ®

6. SOLVING LINEAR SYSTEMS OF EQUATIONS

6.1. Gauss-Jordan Elimination

If the cube is of a size that matches the matrix dimensions, then the system
AX = B can be solved by Gauss-Jordan elimination in approximately the
same time as is required for LU-decomposition alone. Gauss-Jordan elimi-
nation fully utilizes the processors, whereas LU-decomposition does not. We
assume that the matrix 4 is embedded in the cube by a separate Gray code
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encoding of row and column indices. and store the inverse in product form
with the elements of the factors replacing the corresponding elements of A.

! o
! 1y

A=Y = ! ﬁ‘_‘f
JI)
j+1j l

S Ry

The elements of a factor are the result of the application of all preceding
factors to the matrix 4. The application of a factor can be initiated as soon
as an element of it is known, and the application of successive factors can be
pipelined [30, 18]. In the application of the jth factor a multiple of the jth
row is added to all other rows. The multiple is determined by the elements
of the jth column. Let A° = J°4 and 4 = J4’~". The application of each
factor J is a rank-1 update of 4~'; an outer product is formed and added to
A~!, with the exception of row J.

COROLLARY 6.1. Gauss-Jordan elimination on a 2* X 2¥ matrix embed-
ded in a 2k-cube by Gray code encoding of row and column indices can be
performed in 3(2X — 1) + k communication steps and 202K+ k — 1) arithmetic
steps, assuming one arithmetic operation per processor and step.

The communication complexity is lower than that of multiplication by
algorithm MMC4.1 by k since the row length at the end of Gauss-Jordan
elimination is 1 instead of 2*.

Remark. If partial pivoting is performed, then the communication com-
plexity increases to order O(k2%).

6.2. Triangulation of an N X N System and Forward Elimination

In order to maximize the processor utilization we assume that the concate-
nated matrix AB is stored cyclically in an array of size 2* X 2* that in turn is
embedded in the 2k-cube by a separate Gray code encoding of row and col-
umn indices. With consecutive storage the processors embedding the first
row and column become idle after the elimination of the first N/2* variables
by Gaussian elimination. Additional processors become idle for every set of
N/2* variable eliminations. In Gauss-Jordan elimination and consecutive
storage, 2% processors (that store columns) become idle for every N/2¥ vari-
able eliminations.
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In the algorithm analyzed below, pivoting on the diagonal is assumed.
Gauss-Jordan elimination is performed on the pivot block row, and Gaus-
sian elimination on the rows below the block row. The factor J’ is of the form

1 Sk
J] — 1 ﬁj//ZkJ2k+ 1y

i

f:\'— ] I

and (4BY = J/(4B)’~" is of block form, with blocks of size 2* X 2* as illus-
trated in Fig. 1 1.

Denote the block rows of (4B) ™" containing column j for rows i, | j/2*2*
<i<N-1,byp= {Lj/2"'J, ... (N = 1)/2*]} and similarly the block
columns by ¢ = {Lj/2*l, ..., UN + R — 1)/2*J}. Then J}, = (4B);',
i={lj/2k2* ..., N — 1}, and the computations in the application of J' for
p > Lj/2*), ¢ > Lj/2*] is a complete outer product. For p = ¢ = L j/2*] the
computations are the same as in the Gauss-Jordan elimination described
above. For p = 1 j/2], ¢ > Lj/2*] the computations are identical to an outer-
product computation with the exception of row j. For p > | J/28L g =12k
the computations are outer-product computations for columnsj + 1 through
Lj/2K 1+ 125 = 1.

For the diagonal blocks the Gauss-Jordan algorithm described previously
can be used. For the blocks below the diagonal block, division is performed
on the elements of the pivot column, and the resulting factors are distributed
to all 2* processors embedding the corresponding row. A processor has to
distribute (N — j — 1)/2*] factors plus one factor for the diagonal block.

FiG. 11. The partially factored matrix 4B.
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Similarly. there are (N + R — j — 1)/2*] elements of row j for off-diagonal
blocks to be distributed throughout each subcube storing a column. plus one
element for the diagonal block.

The computations on different blocks can be pipelined in a manner similar
to the case of matrix multiplication. For the triangulation and forward elimi-
nation on the right-hand side we derive the following:

THEOREM 6.1. The factorization of an N X N matrix on a 2k-cube can be
performed in (N + R)/2*F — (R/2M1 + 1)? + 5(N + R)/2M — 3(R/2"
+ 1) + 4)2 + k — 3 communications and (3[(N + R)/2¥1 — [R/24
+ 1Y R/2M X (TR/2M1 + 1)/6 arithmetic operations.

6.3. QR-Factorization

The data movement of QR-factorization using Given’s rotations on a
mesh can be made identical to that of LU-decomposition by using row j to
eliminate all elements in column j [19]. In adapting this algorithm to a bool-
ean cube, the row used to eliminate the elements in column j is distributed
in a linear fashion, since it is changed in each elimination operation. The
rotation factors can still be distributed by a spanning tree algorithm. In com-
puting the upper triangular factor R for a 2% X 2* matrix on a 2k-cube the
communication complexity is the same as for LU-decomposition.

6.4. Solving Triangular Systems of Equations

We analyze three algorithms for the solution of triangular systems of
equations Lz = y (3 and z are vectors, L a lower triangular matrix) on a
boolean cube. One algorithm is for strictly triangular matrices, another for
block triangular matrices with identity diagonal blocks. The second algo-
rithm makes use of a spanning tree algorithm for broadcasting of z; to rows
0.1,...,i— 1and for the additions in the inner-product computation. The
third algorithm also applies to block tridiagonal matrices and makes use of
a matrix multiplication algorithm.

6.4.1. Accumulation of Inner Products Partially in-Space, Partially in-Place

The following algorithm is a variation of the column-sweep algorithm of
Kuck [29]. Assume that L is a 2% X 2* lower triangular matrix stored in a 2k-
cube by Gray code encoding of row and column indices, and that y isinitially
stored in the set of processors encoding column 0. Then z, is computed in
the processor embedding /o and broadcast in the subcube storing column 0
of L. After one communication, the product /,o can be subtracted from y,
and the result communicated to the processor storing /;,. The results of the
computation y° = y — /,4zo is communicated to the set of processors storing
column 1. The communications for a new variable can be initiated every
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two communication steps. Column j computes y/ = y/~! — [,;z;. Employing
the same broadcasting algorithm for all broadcasts, for instance, the SBT
algorithm, guarantees that a newly computed variable never arrives at a pro-
cessor in fewer than, but possibly the same as, the number of communica-
tions as the partial product sum from an adjacent column. The total number
of communications is 2(2¢ — 1).

For L equal to N X N the number of communications in sequence can be
kept the same for every set of 2% variables, if the fraction of the right-hand
side corresponding to the diagonal 2* X 2* block for which a solution is being
computed is communicated first, followed only by the set of partial products
required for updating the right-hand side for the next set of variables to be
computed. Partial products are accumulated in-place, requiring storage of a
maximum of LN/2¥] partial product terms per processor, until they need to
be accumulated in-space in preparation for the computation of the next set
of variables. Figure 12 attempts to illustrate the communication in this trian-
gular system solver.

THEOREM 6.2. The solution of a triangular linear system LZ = Z, where
L is N X N and stored cyclically in a 2% X 2* array embedded in a 2k-cube by
a binary-reflected Gray code, can be performed in 2((N/2X2X — 1) communi-
cations in sequence, andTN/2*F + 3(2X = 1) arithmetic operations.

Remark. If instead of the matrix L its transpose L' is stored by a Gray
code encoding of row and column indices, then the components of - are
broadcast within subcubes storing columns of L (which now corresponds to
rows of the array in which LT is stored cyclically) and partial products are
accumulated within subcubes storing rows of L. y is communicated along
rows of the embedded array and the processors storing the diagonal elements
have to subtract the partial product sum arriving along a column from the
component of y.

For multiple right-hand sides the communication complexity does not in-
crease as long as 2R < 2 X 2. The first term is the number of communica-

S

r—p

FIG. 12. Communication in a linear recurrence solver.
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tions needed for a given variable for all right-hand sides and the second term
is the number of communications occurring between the instances when a
given processor is in the same state with respect to the computations in two
successive sets of 2% variables. The arithmetic complexity increases propor-
tionally.

THEOREM 6.3. The solution of a triangular linear system LZ =Y,
where L is N X N and Y is N X R and stored cyclically in a 2% x 2k array em-
bedded by a binary-reflected Gray code in a 2k cube, can be obrained in
max(2 X 2%, 2R)(N/2X1— 1) + 22X + R — 3 communications and (TN/25P
+ 3(2% — 1)R arithmetic operations by an algorithm that partially accumu-
lates partial products in-place partially in-space by means of pipelined span-
ning tree algorithms.

6.4.2. Solving a Block Triangular Linear System

If L has identity matrices on the diagonal, as is the case if Gauss-Jordan
elimination is used for the diagonal blocks, then the first 2% z-values are
known without computation. The distribution of these 2% z-values to the
corresponding subcubes can be made in k routing steps, and the distribution
within the subcubes in an additional k routing steps. The accumulation of
the inner products requires an additional k routing steps. The accumulation
for different z-values can be made in the appropriate processor column so
that only 2k routing steps are needed per 2% z.values. The right-hand side
can be shifted into position concurrently with other communications. Com-
ponent} is shifted jmod 2* steps. Asin the column sweep algorithm described
above, only the partial products needed for the next set of z-values need to
be accumulated in-space; the remaining are accumulated in-place. Hence,
the total number of communications is (TN/2K1 = 1)2k + k and the number
of arithmetic operations is [ N/2K(N/2%1 = 1). For R right-hand sides and
pipelining of the communications for different right-hand sides we arrive at
the following complexity result.

THEOREM 6.4. The solution of a block triangular linear system LZ=Y
with identity blocks on the diagonal and where L is N X N and Yis NXR
and stored cyclically in a 2% X 2% array embedded by a binary-reflected Gray
code in a 2k cube can be obtained in (N/2X1— 1)(2k + R — 1) + k communica-
tions and TN/2XIN/251 = 1)R arithmetic operations by an algorithm that
partially accumulates partial products in-place partially in-space by means
of pipelined spanning tree algorithms.

6.4.3. Accumulation of Inner Products Entirely in-Place

We restrict the analysis to the case where the triangular matrix L has iden-
tity blocks on the diagonal. Then, solving the triangular system of equations
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is essentially a matrix-vector multiplication problem for a single right-hand
side and a matrix-matrix multiplication problem for multiple right-hand
sides. Any one of the multiplication algorithms described previously can be
used. Each set of 2* variables is computed through matrix multiplications of
the form Y — Y — L(i) X X(i), where L(i) is the ith block column of L, X(i)
is the ith block row of X, and Y is an [N/2*1 — i X [R/2*] block matrix.
The total number of 2¢ X 2% matrix multiplications required to compute the
solution X is [R/2*TN/2*YTN/2K1 — 1)/2, each requiring 2 X 2* arithmetic
operations and 2¥ communications.

THEOREM 6.5. The solution of a block triangular linear system LZ = Y
with identity blocks on the diagonal and where L is N X Nand Y is N X R
and stored cyclically in a 2¥ X 2 array embedded by a binary-reflected Gray
code in a 2k cube can be obtained in[N/2*\TN/2X1— 1 Y R/2*12"! + max((TN/
2= 1)/2,TR/2°WN/2°1 + k — | communications and [N/2XX[N/2K1— ¥R/
212X arithmetic operations by employing a matrix multiplication algorithm.

Comparing the communication complexity with that of the algorithm in
which inner products are accumulated partially in-space we note that a
straightforward application of a matrix multiplication algorithm vields a
higher communication complexity. If a matrix multiplication algorithm is
used, then the same values of the solution are communicated multiple times,
which is not the case for the preceding algorithms.
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