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Abstract

Programming in Distributed Systems Logic

Kevin Tyrone Lynch
1997

Over the last ten years numerous logic languages have been proposed for use in
programming distributed systems. However, these languages generally lack adequate
features to describe the spatial properties of distributed programs — that is, the
properties that describe how the componenté (i.e., pieces) of a distributed program
are organized and distributed over the network of processors. As a consequence, these
languages are unsuitable for describing many useful distributed applications.

In this dissertation we describe a new distributed logic programming language
called NETLOG (NETwork LOGic programming) that was designed as a tool for
specifying and rapidly prototyping a broad range of distributed applications. NET-
LOG differs from existing logic languages for distributed programming in that it is
based on a subset of Distributed Systems Logic (DSL). Moreover, the language is
unique in that it supports a unified framework in which both the spatial and temporal
properties of distributed computations can be expressed in a concise and elegant fash-
ion. Thus, the language can be used to specify both where (i.e., on which processors)
to locate the components of a distributed computation and when to execute them.
Accordingly, NETLOG represents a new approach to specifying and reasoning about
distributed logic programs. '

After giving an informal introduction to NETLOG, we present the syntax and
semantics of first-order DSL. We then investigate the formal operational semantics
of NETLOG and provide a Plotkin style semantics for the language using transition
systems. An implementation scheme designed for implementing NETLOG on a dis-
tributed memory multiprocessor is described, and experimental results are provided

based on the simulated performance of several NETLOG programs.
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Chapter 1

Introduction

This dissertation describes the syntax, semantics, and implementation of NETLOG
(NETwork LOGic programming), a new logié programming language for distributed
computing. NETLOG was designed as a tool for specifying and rapidly prototyp-
ing a broad range of distributed applications and is unique in that it supports a
untfied framework in which both the spatial and temporal properties of distributed
computations can be expressed in a concise and elegant fashion. Accordingly, NET-
LOG represents a new approach to specifying and reasoning about distributed logic
programs.

In the following sections we discuss the motivation for our work and give a more

detailed overview of the contents of this dissertation.

1.1 Motivation

Distributed computing systems are now readily available and cost effective for a large
number of programming problems. These systems cover a wide spectrum in terms of
intended application, size, and performance. There are also substantial differences in
how they are programmed. Some are programmed in conventional languages, typi-

cally with the addition of several library routines for sending and receiving messages.

1




2 CHAPTER 1. INTRODUCTION

Others are programmed in completely new languages that have been specially de-
signed for implementing distributed applications.

In the last 10 years there has been a great deal of research directed towards using
logic as a tool for writing computer programs. The idea is attractive for a number of

reasons:

o The dichotomy between specifications and programs is removed. A single no-
tation is used for both; hence, the often error prone and time consuming step
of translating specifications into a conventional programming language can be

eliminated.

¢ Logic languages can be seen as high-level programming languages that support
the rapid prototyping of applications. This allows the application design to
be tested and any inconsistencies in the design to be detected early in the

development cycle.

o Established mathematical techniques may be used to reason about and manip-

ulate programs.

o Logic supports the writing of compositional and hierarchical programs.

One branch of logic programming research has lead to the development of a number of
concurrent logic programming languages[Sha86,CG86,Ued86,R*88,P+86,Y*86]. These
languages were designed specifically for programming parallel and distributed sys-
tems. However, while existing concurrent logic programming languages provide sup-
port for specifying the concurrent components of a distributed computation and for
expressing the synchronization and communication between these components, almost
none of these languages provide comparable support for specifying the spatial prop-
erties of a distributed computation — that is, the properties that describe how these
concurrent components are organized and distributed over the underlying network of

pProcessors.
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Instead, these languages rely on the language implementation to implicitly perform
this task. This may simplify the programmer’s task for some applications but, in
general, the implementation does not have any knowledge about the application being
implemented — thus, the mapping (i.e., decomposition and distribution) strategy it
employs is not specific to the problem. This is a severe restriction for many distributed
applicé.tions since in practice it is often the case that an application needs to be
distributed in a specific way on a particular distributed machine[B*89).

For example, many distributed applications are structured as a collection of spe-
cialized services or are inherently distributed in nature (see chapter 6). Such appli-
cations often require that certain functions (i.e., subcomputations) be performed on
a particular processor in the network because that processor contains needed data or
provides some specialized service. Similarly, high performance applica.tions., such as
those found in scientific computing, need to make optimal use of the available proces-
sors. In such high performance applications, decisions concerning which computations
are executed on which processors are of great importance since they determine how
efficiently the corresponding distributed program executes. Accordingly, in order to
specify these kinds of distributed applications within the framework of logic program-
ming, it is desirable to have a logic programming notation which allows programmers
themselves to specify how their applications should best be mapped onto the network
of processors — in other words, a notation which allows them to describe the spatial
properties of their applications.

In this dissertation we present a new logic programming language called NETLOG
which provides such facilities. NETLOG was designed as a tool for specifying and
rapidly prototyping a broad range of distributed applications — both applications
that require a particular distribution strategy and those that do not. The language
itself is based on an executable subset of Distributed Systems Logic (DSL) and is
unique in that it supports a unified framework in which both the spatial and tem-
poral properties of distributed programs can be expressed in a concise and elegant

fashion. Thus, in addition to specifying the concurrent components of a distributed
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computation and the synchronization and communication between these components,
NETLOG can also be used to specify both where (i.e., on which processors) to locate
these concurrent components and when to execute them.

To illustrate the capabilities of NETLOG, we give several examples showing how
the language can be used to specify a variety of well-known problems implemented
on distributed architectures covering a range of network topologies. These examples
include messa.ge.passing using channels, distributed Al, distributed mutual exclusion,
and distributed (replicated) databases. Collectively, the examples cover both trans-
formational and reactive systems (the latter being well known as notoriously difficult

to characterize formally).

1.2 Distributed Systems Logic (DSL)

Distributed Systems Logic is a modal logic that contains both spatial and temporal
modal operators. NETLOG is based on a particular subset of DSL; thus, every
NETLOG program represents a formula in DSL.

Formulas in DSL are interpreted with respect to a given distributed system, char-
acterized abstractly as a network of distributed processes. One of the processes in the
network is distinguished as the origin process and represents the reference point or
origin of the network (in our programming model, computations begin at the origin
process). Throughout this dissertation, networks will be represented pictorially as
shown in figure 1.1. Each circle in the diagram represents a process. The circle for

process p; has a darkened segment indicating that p, is the origin process. The labeled
right 7 O\ right 7 \ right right right
Pp ], | P2 ] 1 ps ], L |
left. N/ left \__/ left left left

Figure 1.1: Linear array of processors.
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arcs connecting the circles represent the interconnection network. As an illustration
of the use of DSL, consider the following English statement: “On every processor of
the linear array, X is set to the value 1 and then J is set to the value 2.” This can be

represented in DSL by the formula
BX =1;J =2

Here the operator B corresponds to the concept “everywhere” and indicates that the
subformula [X = 1; J = 2] is to be executed by every process in the network. The
binary temporal operator ‘;’, known as chop, indicates that the two equalities are to
be executed sequentially.

Similarly, the statement — “On some processor of the linear array, X is always

set to the value 10” — can be expressed in DSL as:
S$B[X = 10]

The spatial operator € can be understood as “somewhere,” while the temporal oper-

ator @ corresponds to the concept “always.”
Many of the modal operators found in DSL are also used in NETLOG.

1.3 Event-Action Model

NETLOG adopts the event-action[L594,BC83] interpretation of logi¢ programs. The
particular event-action programming model used to describe the (informal) behavior
of NETLOG programs is the Constraint based Event Model (CEM). Only the fun-
damental features of the model and its relationship to NETLOG are described here;
a more detailed account is given in the next chapter. The event model contains two
basic kinds of entities: events and event handlers. Events are abstract entities that
are explicitly caused by the program as the computation proceeds. Event handlers
are program constructs that are activated by the occurrence of one or more events.

Once an instance of an event handler is activated it can either cause one or more
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new events (which, in turn, can activate more event handlers) or impose constraints
on the occurrence of one or more future events (e.g., such constraints can be used
to restrict where and/or when a particular event occurs). Many event handlers may
be activated concurrently. A computation begins by causing an initial set of events.
These events activate one or more event handlers which, in turn, cause more events
(and, possibly, some new constraints) and so on. The computation continues in this
manner until no more events occur.

Based on this programming model, NETLOG programs can be interpreted as
describing the set of events that can occur during the execution of a distributed
program. Events (and the constraints imposed on them) are the basic source of
control in NETLOC programs. Both deterministic and nondeterministic events can
be specified in the language. NETLOG contains two kinds of event handlers, multi-use
event handlers and single-use event handlers. Multi-use event handlers are permanent
event handlers which exist throughout the extent of the computation. Thus, they may
be activated many times during the course of a computation. In contrast, single-use
event handlers are temporary event handlers. They may be activated at most once,
after which they vanish. Only multi-use event handlers may impose constraints on

events.

1.4 Formal Semantics

An important part of the definition of NETLOG is the inclusion of a formal opera-
tional semantics for the language. In particular, a mathematical description of the
language is given using a Plotkin style operational semantics. Given such a seman-
tics, we can formally reason about and prove important properties concerning the
execution of NETLOG programs. In addition, a formal operational description can
be used by programmers to answer decisively questions concerning the interaction be-
tween various constructs in the language, while implementors can use it as a reference

in determining the correctness of their implementations.




CHAPTER 1. INTRODUCTION 7

1.5 Implementation

The implementation of NETLOG described in this dissertation is similar to the dis-
tributed implementation of Flat Concurrent-PROLOG (FCP) developed by Taylor
for the Intel iPSC hypercube[Tay89]. In both cases the implementation strategy is
based on compiling source programs into a sequence of (abstract) machine instructions
for an abstract machine; nevertheless, there are a number of significant differences
between the two implementations.

One difference between the two implementations is the design of the abstract ma-
chine. Our implementation is based on a new abstract machine design, the NETLOG
Abstract Machine (NAM), which can be seen as an adaptation of Taylor’s FCP ab-
stract machine. The NAM includes additional features such as data structures for
storing events and representing constraints, new control registers, new instructions for
the creation and the matching of events, and modified control instructions to handle
the scheduling of both sequential and concurrent threads.

Another difference is the approach taken in implementing the abstract machine
itself. In the FCP implementation, abstract machine instructions are executed by an
emulator written in the programming language C. In our implementation, abstract
machine instructions are implemented using C-macros. The advantage of using the
latter approach is better performance since it avoids the runtime overhead of instruc-

tion and argument decoding incurred by the C emulator[Tay89].

1.6 Comparison to related work

1.6.1 Other concurrent logic programming languages

Most of the concurrent logic programming languages that have been proposed to
date are based on a particular subset of first-order logic known as Horn Clauses. Well

known examples of this family of logic languages are Concurrent PROLOG[Sha86],
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Guarded Horn Clauses (GHC)[Ued86], and PARLOG[CGS86]. In general, these lan-
guages adopt the process interpretation of logic programs, guarded horn clauses, and
committed-choice nondeterminism. In particular, clause goals are viewed as concur-
rent processes that synchronize and communicate through shared logical variables. A
good survey of this branch of logic programming may be found in [Sha89).

Several concurrent horn clause languages have also been proposed based on al-
ternative models wherein communication is not based on shared variables. Shared
PROLOG[BC91] uses a global data structure called a blackboard as a mechanism for
communication. Processes communicate and synchronize by adding atoms to, and/or
deleting atoms from, this global blackboard. Delta PROLOG[P*86] is based on a
process model which uses event goals to effect communication. Two processes may
communicate (and synchronize) by causing corresponding matching events. The CC
family of logic languages defined by Saraswat[Sar89] is based on concurrent constraint
logic programming. Processes (called agents in [Sar89]) communicate by posting con-
straints on a global store and synchronize by checking that constraints are entailed
by the store.

More recently, other approaches to logic programming have been advocated. In
particular, Temporal Logic[RU71,Kro87,MP92] has been used as the basis for several
logic languages[FKTM86,AM87,Nes93] — including, TEMPURA[Mos86,HM87] and
METATEM[BFG*89,FB91,Fis93], two concurrent logic programming languages. The
evaluation of programs in these languages are not based on proof procedures as is the
case with horn-clause concurrent languages (see [BG88] for a more complete discussion
of this topic); in addition, algorithms in these languages can be expressed using time-
dependent operators such as @ (“always”) and & (“sometimes”).

More specifically, TEMPURA is an imperative temporal logic language that is
based on a subset of Interval Temporal Logic[Mos83]. The language supports an al-
gorithmic style of programming and contains a wide variety of constructs including
several kinds of assignment statement, while loop, etc. One restriction imposed by

the designers of the language is that nondeterminism is not permitted in TEMPURA
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programs[Mos86}; thus, TEMPURA can only be used to express deterministic con-
current computations in which processes communicate using shared logical variables.
METATEM is a concurrent temporal logic language based on classical linear-time
temporal logic. METATEM programs describe collections of concurrent communi-
cating objects, where objects consist of two parts: a body and an interface definition.
The body of the object consists of a collection of rules that describe the object’s
behavior. The interface definition contains a list of declarations that identify which
predicates appearing in the body of the object correspond to input and/or output
messages. METATEM objects synchronize and communicate using broadcast mes-

sage passing.

1.6.2 Comparison with NETLOG

The basic differences between NETLOG on the one hand, and horn-clause concurrent
logic languages and temporal logic concurrent logic languages on the other, can be

summarized as follows:

¢ NETLOG is based on a different logical formalism. In particular, NETLOG is
based on a subset of distributed system logic, as opposed to horn clause logic
or temporal logic. Thus, in addition to conventional logical operators such as
A and =, and time-dependent operators such as @ and ¢, NETLOG programs

can contain spatial operators such as B (“everywhere”) and € (“somewhere”).

o The programming model used to interpret programs is different. NETLOG
uses an event-action model, CEM, whereas horn-clause concurrent languages
and temporal logic concurrent languages are based on the process and object
models. Concepts such as single-use event handlers and the like have no analog
in these models. Both event handlers in NETLOG and agents in CC can impose
constraints on the state of the program. In CC, however, such constraints take

the form of simple equalities whereas in NETLOG a richer set of constraints is
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permitted. Constraints can be inequalities and negated atoms and can include

temporal and spatial operators.

¢ Communication and synchronization in NETLOG is achieved by causing and
waiting on events. In contrast, horn-clause concurrent languages (with the
exception of Delta-PROLOG) and TEMPURA use shared variables or globally
shared data structures for communication and synchronization, while METATEM

uses broadcast message passing.

Compared to Delta PROLOG, the use of events in NETLOG is much more gen-
eral, even with respect to communication; for example, events in NETLOG can
be used to model broadcast and one-to-many communication not just point-to-
point communication between two processes (as is the case for Delta PROLOG).
More generally, the notion of event used in Delta PROLOG bears little relation
to the event-action model underlying NETLOG.

¢ NETLOG programs are pure logic programs. The language does not need, nor
does it include, any syntactic control constructs or other “extra-logical” features
that have no foundation in logic. Thus, interesting properties (e.g., liveness,
safety, etc.) of NETLOG programs can be reasoned about and proved easily.
In contrast, concurrent horn-clause languages include various control constructs
and features that have no logical foundation — the commit (‘|’) operator, mode
declarations, read only annotations, etc.; likewise, TEMPURA uses the process

statement and METEM includes interface declarations.

From a broader perspective, these differences reflect the different design goals which
motivated the development of NETLOG. The design of NETLOG was undertaken
from the point of view that the specification of a distributed computation includes
specifying the spatial properties that describe how the computation is mapped onto
the network of processors. Consequently, NETLOG was based on DSL, as opposed to

horn-clause logic or temporal logic, since within the framework of DSL such inclusive
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specifications can be expressed in a concise and elegant fashion. Indeed, the spatial
operators of DSL are well suited to the task of expressing processor mappings.

In contrast, concurrent logic programming languages based on horn-clauses and
temporal logic do not address the issue of how computations are mapped onto proces-
sors. To overcome this limitation, various extensions to these languages have subse-
quently been proposed. For example, Shapiro[Sha84] suggests extending Concurrent-
PROLOG with annotations based on the language LOGO[Pap80] to express the map-
ping of Concurrent-PROLOG programs onto processors. Similarly, in [Fis93] various
extra-logic features are suggested as extensions to METATEM. For example, the con-
cept of “rooms” is proposed as a mechanism for partitioning and grouping objects.

One disadvantage associated with such extra-logical extensions is that the user
must, in effect, deal with two different languages since the extensions constitute a
language that has a (operational) semantics which is quite different (if not totally
divorced) from the logical semantics associated with the rest of the language. Another
disadvantage is that formal reasoning and verification of programs becomes much
more difficult since such extra-logical extensions tend to compromise the declarative
properties of logic programs.

NETLOG, on the hand, has the advantage of being a single language with a
single semantics. Thus, the language preserves all the benefits that accompany the
logic programming enterprise as cited in section 1.1.

It has been argued that languages such as NETLOG, and other language proposals
that give users control over the mapping of their computations[F+92,HS86b], are more
difficult and cumbersome to use because the user is forced to deal with the details of
the topology of the system and, moreover, programs in such languages are no longer
portable.

While this may be true for other languages, this argument does not seem to hold
in the case of NETLOG since user mappings may be expressed using a variety of
operators, each of which embodies a different level of abstraction (with respect to

the topology of the underlying distributed architecture). For example, the spatial
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operator ¢ (“elsewhere”) may be used to initiate (i.e., map) a subcomputation on
‘another processor. In using this operator, however, no reference is made to the
identity of the processor (i.e., no processor ids are used) or where it is located in
the network. Thus, in NETLOG, one can use these more abstract operators, as
appropriate, to avoid dealing with the topology of the system and to write programs
that are abstract (i.e., architecture independent) and therefore portable.

Further discussion of the differences between NETLOG and existing concurrent

logic languages may be found in chapter 4.

1.7 Contributions of dissertation

In summary, the key contributions made by this dissertation are:

o The design of a new distributed logic programming language, called NETLOG,
that has the following desirable properties:

— it is a high-level programming language that can be used to specify and
rapidly prototype a broad range of distributed applications — both appli-
cations that require a particular distribution strategy and those that do

not.

— it supports a unified framework in which both the spatial and temporal
properties of distributed computations can be expressed in a concise and

elegant manner.

— it has a well defined semantics and does not need, nor does it include, any
extra-logical features or constructs. Consequently, the language facilitates

reasoning formally about program behavior.

¢ The definition of a formal operational semantics for NETLOG — no similar

semantics exists for a language of this kind.
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o The introduction of the CEM event-action model as a suitable programming

model for interpreting certain classes of logic languages such as NETLOG.

o The design of the NETLOG Abstract Machine, a new machine which realizes the
CEM model, is described and shown to be suitable for implementing NETLOG

on distributed memory multiprocessors.

o The definition and presentation of the first-order syntax and semantics of Dis-

tributed Systems Logic.

1.8 Organization of thesis

Chapter 2 contains an introduction to NETLOG. A fairly detailed, although informal,
description of the syntax and operational behavior of the language is given. Chap-
ter 3 examines the logical foundations of NETLOG. The syntax and semantics of
first-order DSL is presented. In addition, using the basic operators of DSL, several
additional operators that have proved useful in describing program behavior are de-
fined. In chapter 4 we show how to reason about, and prove interesting properties
of, NETLOG programs. Chapter 5 gives a formal account of the syntax and opera-
tional semantics of NETLOG. The behavior of NETLOG programs is captured using
Plotkin style transition systems. In chapter 6 the utility of the language is demon-
strated. The language is used to solve several well-known problems for a variety of
network topologies. Chapter 7 describes a strategy for implementing NETLOG on
a distributed memory multiprocessor. Experimental results based on the simulated
execution of several of the example programs is presented. The dissertation concludes
with chapter 8 which summarizes the research, presents our conclusions, and makes

suggestions for further research.
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CHAPTER 1. INTRODUCTION




Chapter 2

Introduction to programming in

NETLOG

This chapter introduces the notation used to express NETLOG programs and gives
an operational description of how programs execute. The description given here is
informal but nevertheless provides enough information to understand most of the
programming examples given elsewhere in this dissertation. A more comprehensive
and formal description of the operational behavior of NETLOG programs may be
found in chapter 5.

2.1 Programming Model

2.1.1 Constraint based Event Model (CEM)

The intuitive (i.e., informal) description of the operational behavior of NETLOG
programs that we present in this chapter is given in terms of a particular programming
model. The Constraint based Event Model (CEM) is an event-action[LS94,BC83]
model that includes constraints. This programming model contains two basic kinds

of entities: events and event handlers.

15
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Events are abstract entities that are explicitly caused by the program as the
computation proceeds. Event handlers are program constructs that are activated
by the occurrence of one or more events. Once an instance of an event handler is
activated it can either cause one or more new events (which, in turn, can activate
more event handlers) or impose constraints on the occurrence of new events (i.e., such
constraints place restrictions on when and/or where new events can occur). Many
event handlers may be activated concurrently. A computation begins by causing an
initial set of events. These events may activate one or more event handlers which,
in turn, cause more events (and, possibly, some new constraints) and so on. The

computation continues in this manner until no more events occur.

Based on this programming model, NETLOG programs can be interpreted as de-
scribing the set of events that can occur during the execution of a distributed program.
In particular, each atom in the program, that is formula of the form, p(ey,...,e,),
denotes an event. The symbol p identifies the event type and the event arguments
€1,...,€y represent information (i.e., data) that describes this particular event oc-
currence (i.e., the event arguments serve to distinguish between different occurrences
of events that have the same event type). Similarly, to restrict the occurrence of an
event p(er,...,ey), a constraint of the form —p(ey,...,e,) can be used, where - is
the logical negation operator. Both deterministic and nondeterministic events can be

specified in the language.

NETLOG allows two kinds of event handlers: multi-use event handlers and single-
use event handlers. Multi-use event handlers are permanent event handlers which
exist throughout the extent of the computation; this, they may be activated many
times during the course of a computation. Multi-use event handlers are specified
using the == operator. In contrast to multi-use handlers, single-use event handlers
are temporary event handlers. They may be activated at most once, after which they
vanish. Single-use event handlers are expressed using the atnext and wait operators.

Only multi-use event handlers may impose constraints on events.
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Related Event Models

The concept of an event has been used in many guises in a variety of programming
languages[L.S94,Reu80,BC83]. The event model described above is most similar to the
event model] used by Reuveni{Reu80]. There are, however, some important differences.

In Reuveni’s event model, for example, there are two kinds of events, single-use and
multi-use (the latter corresponds to the notion of event used in our model), and only
one kind of event handler (corresponds to a multi-use event handler in our model).
Single-use events are deleted after being used by an event handler; thus, when used
these events cause the event space (i.e., collection of existing events) to be altered or
“side-effected.” Such “side-effects” are not consistent with the declarative nature of
logic programming, so the notion of single-use events was not included in our model.
Nevertheless, the effect of an event being used at most once can easily be achieved
in our model, without side-effects, by having the event activate only single-use event
handlers.

Another difference between our event model and Reuveni’s is that Reuveni’s event
model is based on a single global event space whereas our model is based on a dis-
tributed event space. In our event model, the occurrence of an event is associated
with a particular processor in the network so the event space is distributed amongst
the processors. Thus, we distinguish between events occurring at one location (i.e.,
processor) and those occurring at other locations. Moreover, the ability to use con-
straints to control the occurrence of events has no analog in Reuveni’s event model.
Due to these differences, certain computations that can be expressed in our model

cannot be expressed in Reuveni’s.

2.2 Syntax of NETLOG

The syntax of NETLOG includes conventional logical operators such as = (“equal-

ity”), = (“implication”), A (“logical-and”), and V (“logical-or”); temporal operators
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such as ® (“next”), @ (“always”), © (“sometime”), until, atnext, and ; (“chop”);
and spatial operators such as B (“everywhere”), © (“somewhere”), & (“elsewhere),
nearby, and symbols £ € L drawn from the set of link symbols.

The principle syntactic categories in NETLOG programs are: variables, ezpres-

sions, event descriptors, actions, constraints, and rules.

2.2.1 Variables

There are two kinds of variables in NETLOG:
¢ Local variables: N’, K’, Max’, ...
o Global variables: A, B, Hen, ...

To distinguish the two kinds of variables syntactically, local variables are primed.
Operationally, local variables differ from global variables in that the value of a local
variable can change from one state of the computation to the next. The value assigned

to a global variable, however, remains the same throughout the entire computation.

2.2.2 [Expressions

Expressions are combinations of constants, variables, and operators as follows:
o Symbolic constants: a, b, done, ...
o Arithmetic constants: 0, 1, 10, ...
o Local variables: N’, K’, Max’, ...

o Global variables: A, B, Hen, ...

Arithmetic expressions: e; + e, €; — €3, €; X €;, €1/ez, €, mod e, etc., where

e; and e; are variables, arithmetic constants, or arithmetic expressions.
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o Relational expressions: e; = e, €1 > €3, €; > €3, €1 < €, €; # €3, etc., where e;
and e, are variables, arithmetic constants, or arithmetic expressions.
o List expressions: [ey,...,e,], where e;,...,e, are expressions.

Note that constant symbols begin with a lowercase letter while variables begin

with uppercase letters.

2.2.3 Event Descriptors

Event descriptors can have one of two forms depending on whether the descriptor
appears in a single-use event handler or a multi-use event handler. In the following,

G; denotes a simple action and T, denotes a relational expression:
e Single-use event descriptor, B: Gy A+ AGEAT1A---AT; (7 20, k2>1)

¢ Multi-use event descriptor, H: GAT; A -+« ATy (k2 0)

2.2.4 Actions

Actions can be simple or compound. A simple action is the causing of a single event.

Simple actions have the form given below, where E is an atom of the form p(ey,. . .,e):

o Local event: E  (cause event E)

o Directed event: ¢;---£, E (cause event E on the processor reached by follow-

ing directions ¢y - - £,)
¢ Global event: 8 E  (cause event E on every processor)
¢ Nearby event: nearby E  (cause event E on every adjacent processor)
¢ Nondeterministic inclusive event: ® E  (cause event E on some processor)

o Nondeterministic exclusive event: ® E  (cause event E on some other proces-

sor)
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A compound action is a sequence of actions. Let S, and S, denote compound actions,
and G denote a simple action. Then compound actions are defined recursively as

follows:
e Simple action: G (execute G)
e Next: ©S, (execute S, in the next step of the computation)
e Sometime: ©F, (execute S, in some future step of the computation)

e Atnext: [S, atnext B,] V --- V [S, atnext B,], n > 1 (execute single-use
atnext event handler(s) until events satisfying some B, occur, then execute the

corresponding S, and terminate)

e Chop: S, ; S, (execute S, and S, sequentially)

2.2.5 Constraints

Constraints are used to impose restrictions on the event space (i.e., the set of allowable
events). Basic constraints are conjunctions of conditional constructs that have one of

the following forms:
o Active,K,: "Eif “E; A--- A -E; (k2> 1)
e Passive, K,: 7(G1 A+ AGrA-Egp1 A---A=E,) (n > k> 1)

where E is a local event and G is a simple action. The global variables of a conditional
clause are implicitly assumed to be universally quantified. While both kinds of basic
contraints can be used to specify restrictions on the occurrence of events, only active
constraints can be used to place restrictions on event arguments. That is, they can
be used to bind (i.e., constrain) event variables to values (see the discussion in section
2.5 below).

General constraints have the form described below. The definition is recursive.

Here, C is itself a general constraint and K is a basic constraint:
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Negation: K (constraint K holds for the current step of the computation)

¢ Until: K until B (constraint K holds until events matching B occur)

Always: BK (constraint K holds now and in all future steps of the computation)

Weak Next: OC (constraint C holds at the next step of the computation, if

there is a next step)

2.2.6 Rules and Programs

Rules represent multi-use event handlers. Let S denote a sequential action, C a

constraint, and H an event descriptor. Then rules are defined as follows:

o Action rule: H == S (execute S whenever events satisfying H occur)

¢ Constraint rule: H = C (establish constraint C whenever events satisfying H

occur)

A program consists of a set of rules Ry, -+, Ry, and an initial action Ag (often referred
to as the initial assertion) which is either a sequential statement, a constraint, or a
conjunction of sequential statements and/or constraints. Programs have the following

general form:

¢ Program: {R;,---,R,} assert A, (execute rules Ry,---,R, on every processor

and initiate action Ao on the origin processor)
Logically, a rule (i.e., multi-use event handler) R corresponds to the DSL formula
BBvXy,...X,3Yy,... Y;(H— A)

where X;,...,X, are the global variables appearing in H, and Y;,...,Y; are the

global variables appearing in A but not in H'. Thus, for example, the following rule

a(X) == b(X,Y)

10r in the scope of a basic constraint; recall, global variables within the scope of a basic constraint
are considered to be universally quantified.
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corresponds to the DSL formula
B8vX3Y(a(X) — b(X,Y))

Rules are read declaratively as “always everywhere for all X;,...,X, there exists
Y1,..., Yy, such that if H is true then A is true.”

Finally, a program corresponds to the DSL formula:
R A---AR, AA,

where R ,--+,R, are the quantifier closed versions of Ry, - -+, R,, respectively.
In the examples that follow, we assume that the various operators in the language
have the operator precedences given in section 3.2 of chapter 3. Parenthesis, ( and )s

or square brackets, [ and ], may be used to explicitly control the scope of operators.

2.3 Additional Constructs

Other constructs are permitted, but these are considered extensions to the language
that expand into statements already described. Here are some additional constructs
along with their equivalent expansions.

Extensions to rules:

H=CA---AC,=H=C,,...,H=C

n

Extensions to constraints:

=E = -E if —false
(Gr A+ AGgA-Epp1 A+ A—E,) = ~trueif Gy A-+-AGg A ~Egy1 A+-+ A-E,
Other extensions:

S afternext B = ©S atnext B

wait B = true atnext B
A atnext (B, also B,) = [(A atnext B,) atnext B,] Vv
[(A atnext B,) atnext B,]




CHAPTER 2. INTRODUCTION TO PROGRAMMING IN NETLOG 23

2.4 Example: Computing Sum of Factorials

Consider the simple program, shown in figure 2.1, for computing the sum of two
factorials. The program consists of a body, a set of (multi-use) event handlers which
are replicated across all the processors in the network, and an initial action (i.e.,

initial program statement) which starts the computé,tion off.

{ infac(X) = fac(X,1,1),

fac(X,N,R) A N<X = Ofac(X,N+1,(N+1)xR),
fac(X,N,R) A N>X = outfac(X,R),

outfac(X,R) = B-(®outfac(X,Y) A Y#R)
}

assert
infac(3) A
Pinfac(7) A
wait (outfac(3,X) also Goutfac(7,Y)); write(X+Y)

Figure 2.1: Computing the sum of factorials.

In this example, executing the initial action causes both a local event, infac(3),
and a nonlocal event, infac(7), to occur. These events initiate the computations to
compute 3! and 7!, respectively. Note the use of the spatial operator ¢ which is used
to specify that the event infac(7) is to occur on some processor other than the current
processor. Executing the initial action also causes the (single-use) event handler wait
(outfac(3,X) also Goutfac(7,Y)) to begin executing. This event handler is used in
waiting for the results of the two factorial computations. After the results have been
computed, the predefined event write(X+Y) is caused to display the result. Except
for the constraint event handler which establishes the constraint B-($outfac(X,Y)
A Y#R) when event outfac(X,R) is caused, the body of our program is reminiscent

of the familiar recursive implementation of the factorial relation. The importance



24 CHAPTER 2. INTRODUCTION TO PROGRAMMING IN NETLOG

left @— 3 right
Figure 2.2: An N-processor ring.

of including such constraints is that they remove any ambiguity in the meaning of
our program and, in this case, make it clear that the same value must be returned
whenever we compute a particular factorial.

The program shown in figure 2.1 is quite general since it makes no assumptions
about the structure of the distributed system that will perform the computation.
Thus, it describes a computation that can be executed successfully on any distributed
system, irrespective of its topology.

For example, the computation described by our program could be executed suc-
cessfully on the N-processor ring shown in figure 2.2. However, the topology of the
ring gives rise to non-uniform communication costs. Thus, for this particular archi-
tecture, we may wish to refine our program in order to be more specific about where
each of the two factorials are computed. In particular, we might stipulate in our
program that the two factorials are to be executed on adjacent processors, thereby
minimizing the cost of interprocessor communication. A program that illustrates one

way to accomplish this is shown in figure 2.3.
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{ infac(X) = fac(X,1,1),

fac(X,N,R) A N<X = Ofac(X,N+1,(N+1)xR),
fac(X,N,R) A N>X = outfac(X,R),

outfac(X,R) =% B-(doutfac(X,Y) A Y#R)
assert
infac(3) A

right infac(7) A
wait (outfac(3,X) also right outfac(7,Y)) ; write(X+Y)

Figure 2.3: Computing the sum of factorials on an N-processor ring.

Notice that the body of the program is identical to that given in the previous
example. The only difference between the two programs is the initial statement
which now causes the nonlocal event infac(7) to occur on an adjacent processor.
As these two examples illustrate, NETLOG may be used to describe distributed
computations that are targeted for execution on a particular distributed architecture,
as well as describe distributed computations that are more general and therefore
suitable for execution on a range of distributed architectures. Moreover, tailoring
(or generalizing) a NETLOG program can often be accomplished just by changing
the spatial operators in the program, while leaving the remainder of the program

undisturbed.

2.5 Nondeterminism and Constraints

Nondeterminism is a fundamental feature of many important distributed program-
ming problems. NETLOG adopts the committed-choice (also referred to as don't-
care) interpretation of nondeterminism[Sha89]. In this respect, NETLOG is similar

to existing concurrent logic programming languages since they are also based on the
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left

right

Figure 2.4: A Dyadic Network.

committed-choice approach to executing nondeterministic formula. NETLOG differs
however in that nondeterminism is expressed at the language level. In particular,
the language contains an extensive set of operators that allows one to explicitly spec-
ify various kinds of nondeterministic behavior. Both nondeterministic events and
nondeterministic event handlers can be specified. Control over the behavior of non-

deterministic events is provided for via constraints.

Nondeterministic events and constraints

As illustrated earlier, nondeterministic spatial events can be specified using the spa-
tial operators ®and €. Precisely where (i.e., on which processor) these events actually
occur is determined by the constraints that have been imposed on the event space of
each processor. In particular, if a nondeterministic event does not violate the con-
straints associated with a given processor, that processor will attempt to exclusively
commit the event. If it succeeds, the event is committed to occur on that processor.
Several processors may simultaneously attempt to commit the same nondeterministic

event, but at most one of them will succeed. Of course, once committed, the event
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may cause the activation of event handlers in the usual way.

For example, consider executing the following program on the dyadic system shown
in figure 2.4. As there are no constraints present, the nondeterministic event q(2) may
occur on either processor. Thus, the program would write either 4 or 6, depending

on which processor actually succeeds in committing the nondeterministic event.

{ p(X) = [ write(X+Y) atnext q(Y) ]
}

assert

p(4) A rightp(2) A ©9q(2)

On the other hand, due to the constraint ©@-q(2) being imposed, the following pro-

gram will only write the number 4.

{ p(X) = [ write(X+Y) atnext q(Y) ],
p(4) = Bq(2)
}

assert

p(4) A rightp(2) A ©9q(2)

In an analogous manner, constraints may also be used to control nondeterministic
temporal events. Nondeterministic temporal events can be directly expressed using
the temporal operator ©. These events remain pending until there are no constraints
which prevent them from occurring; thus the following program will either print 5

followed by 6 or vice versa.
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{ a(X) = write(X+2)
P(X,Y) = &-(q(X) A q(Y))
}

assert

P(3,4) A ©q(3) A ©q(4)

Temporal nondeterminism can also arise as a result of the temporal operator ‘;’ which

is used to express the concept of sequentiality. Intuitively an action of the form

A1;A2 means execute A; and then execute A;. However, the logical (i.e., declarative)
‘.

semantics of the operator ‘;’ (see chapter 3) allows an arbitrary delay between the

execution of A; and the subsequent execution of A,.

In NETLOG, the operator ‘;’ is given a particular operational interpretation
wherein action A; is executed immediately after action A; providing no constraints
exist which force A, to be delayed. Typically, therefore, sequential actions are exe-
cuted one after the other without arbitrary or fixed delays in between. Nevertheless,
users may override this behavior by using constraints to explicitly control the execu-
tion of sequential actions. For example, in the following program d(2) cannot occur

until ¢(2) occurs.

{ p(X) = a(X);b(X); c(X),
q(X) = —~d(X) until ¢(X),

1(X) = p(X);d(X)
}

assert
q(2) Ar(2)
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Nondeterministic event handlers

In NETLOG, one can also express event handlers that are themselves nondeterminis-
tic; that is, event handlers that directly incorporate nondeterminism. Nondetermin-
ism in event handlers is expressed using the V operator; it may also be expressed by
using the spatial operators ® and/or € in event descriptors. Thus, for example, the

following program will print either 2 or 6:

{ p(Y) = [ write(X+Y) atnext q(X)
V
write(X-Y) atnext q(X) ]

}

assert
q(4) A p(2)

Likewise, either 4 or 6 would be printed by the following:

{ p(Y) = [ write(X+Y) atnext ©q(X) ]
}

assert
q(4) A left q(2) A p(2)

Nondeterministic events and nondeterministic event handlers allow many practical
aspects of distributed computations to be expressed in a simple intuitive manner.
Load balancing and mutual exclusion, for example, can be expressed easily using
nondeterministic events. In a later section, we use the familiar problem of the five
dining philosophers to illustrate how nondeterministic events, in conjunction with

constraint event handlers, may be used to implement mutual exclusion.
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Constraints as data stores

NETLOG requires that the arguments of an event evaluate to ground terms at the
time the event occurs — that is, any variables appearing in an event’s argument
list must be defined. One way to accomplish this is to ensure that any variables
are assigned values prior to causing the event. In the program fragment below, for
example, the variable X appearing in q(X) is defined by virtue of the fact that event
P(1) matches the event descriptor p(X) which in turn causes X to be instantiated to
1.

{ p(X) = q(X),
u(Y) = X=2xY;v(X)
}

assert
P(1) A u(2)

In the case of event v(X), variable X is explicitly assigned a value before causing the

event.

Another way to ensure that event arguments are defined at the time the event
occurs is to use constraints. In addition to their use in controlling nondeterminism,
constraints may also be used to ensure that the otherwise undefined variables of an
event are bound (or constrained as it were) to specific values. Consider the following
program fragment which describes the partial behavior of two processes executing on

the dyadic system given earlier.
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{ proc(Id) = get(Input’,Id);---
input(L) = B(-~get(X,N)if X£L{N)
}

assert

Binput([3,9]) ; Bproc(Pid’)

The first event handler in the program describes the behavior of the processes, each
process begins by getting its input data. The second event handler describes the con-
straints on the data to be distributed amongst the processes. The event Bproc(Pid’)
causes one process on each node of the system to begin executing, while Binput([3,9])
represents the input data to be distributed amongst these two processes. Note, Pid’
is a predefined state variable that contains the unique (integer) index of the executing
processor; the binary function | takes a list L and an index N and returns the Nth
element of L.

Operationally, due to the constraint @(-get(X,N)if X#£L|N), a get(Input’,Id)
event can only occur if the state variable Input’ can be unified with an element of the
input list. In effect, if left undefined, the constraint instantiates the state variable
Input’ associated with each process to a different element of the input list [3,9)].

The data used to bind the state input variables is actually stored as part of
the constraint itself. Thus, when used in this way, constraints serve as a general
mechanism for storing data (e.g., information) and binding values to variables. In
general, the principle advantage of this technique (i.e., using constraints to store
and bind values) is programs tend to be shorter and more abstract, and therefore
more pleasing from a specification standpoint. This technique is used in several of
the examples given in chapter 6. Figure 2.5 shows another version of the sum of
factorials program in which the values of X and Y are determined using constraints.

From an operational perspective, it is interesting to note that active constraints
can be viewed as inference rules[Llo84]. As such, they can be seen as nothing more

than prolog[CM81,S586] rules over negative atoms. Hence, we can treat a conjunction
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{ constraints(fac) = @( —fac(X,Y)if ﬂfac(X,l,Y) A
—fac(0,N,R)if N#R A
—fac(X,N,R) if X£0 A ~fac(X-1,NxX,R) )
}

assert
Bconstraints(fac) ;
fac(3,X);
Bfac(7,Y);
write(X+Y)

Figure 2.5: Sum of factorials using constraints.

of active constraints like a prolog program and checking whether or not an event
satisfies the constraints can be done by simply querying the program (as in prolog).
The query either fails causing the event to be rejected, or the query succeeds causing
any unbound variables in the event to be instantiated as a side effect. Indeed, in
checking whether an event violates a set of basic constraints, active constraints are
checked first. If the event is not rejected, any unbound event arguments become

bound. The resulting (ground) event is then checked against the passive constraints.

Example 2: Five Dining Philosophers problem

The problem of the five dining philosophers[Dij71] involves five philosophers who
spend their time in infinite cycles of eating and thinking. The philosophers sit at
a round table, and there is one fork between every two adjacent philosophers (total
of five forks). In order to eat, each philosopher needs the fork to its left and the
fork to its right. Figure 2.6 shows one possible solution to this problem expressed in
NETLOG. Note, the program shown is not a complete program but does show the
essential synchronization details _

The program consists of two event handlers. The first event handler describes the

behavior of the philosophers, while the second event handler describes the synchro-
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{ phil(I,J) = ... think(some) ...;
getfork(1,J) ;
... eat(some) ...;
putfork(I,J) ;
phil(1,J),

getfork(I,J) = (—getfork(X,I) A —getfork(J,Y)) until putfork(I,J)

assert

Figure 2.6: Five dining philosophers.

nization constraints. Events of the form getfork(F1,F2) are used to denote that
left fork F1 and right fork F2 have been obtained; similarly, event putfork(F1,F2)
denotes that the two forks F1 and F2 have been returned to the table.

Mutual exclusion is assured by the language semantics since a getfork(F1,F2)
event implies that another getfork event that refers to either fork F1 or fork F2
cannot occur until a corresponding putfork(F1,F2) event occurs.

The above program solves the dining philosophers problem for the case in which
the philosophers are executing concurrently on the same processor (the absence of
any spatial operators should make this clear). The more general problem can be
solved just as easily. For example, consider solving the dining philosophers problem
on the ring of processor shown in figure 2.2, where one philosopher is assigned to each
processor. The program for this situation is shown in figure 2.7. It is easy to see that
both of the programs presented are deadlock free. Both programs could be further

enhanced to be starvation free as well.
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{ phil(I,J) = ... think(some)...;
getfork(1,J);
... eat(some) ...;
putfork(I,J);
phil(I,J),

getfork(I,J) == (- left getfork(X,I) A —right getfork(J,Y)) until putfork(L,J)
assert

phil(1,2);

right phil(2,3) ;

right right phil(3,4) ;

left phil(5,1) ;

left left phil(4,5)

Figure 2.7: Five dining philosophers on a ring of processors.

2.6 Summary

This chapter contained an overview of NETLOG. Through several simple examples,
NETLOG was shown to be capable of expressing many important concepts in dis-
tributed programming — i.e., concurrency, synchronization, (interprocessor) commu-
nication, mutual exclusion, nondeterminism, and locality — in a concise and elegant

fashion. A deeper insight into the language may be found in chapter 5.




Chapter 3
Distributed Systems Logic

In this chapter we examine the logical foundations of NETLOG. In particular, the

syntax and semantics of first-order Distributed Systems Logic is presented.

3.1 Background

Distributed Systems Logic (DSL) is a modal logic that contains both temporal and
spatial modalities. It is a useful formalism for specifying and reasoning about dis-
tributed computing systems with fixed topologies. The logic includes conventional
operators such as = (“equality”), A (“and”), and V (“or”); temporal operators such
as © (“next”), © (“sometimes”), @ (“always”), ; (“chop”), and atnext; and spatial
operators such as ¢ (“elsewhere”), B (“everywhere”), R (“region”), nearby and
symbols £, called links, drawn from the set L of all link symbols.

Examples illustrating the use of operators such as ;, B, and € were given in
chapter 1. Here we shall give an example illustrating the use of the region operator
R. The region operator is useful for describing the properties of a network in terms

of its partitions. For example the DSL formula

B[X = 2JRO[X > 4]
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describes a network which is partitioned into two regions where X equals 2 everywhere
in one region and X is greater then 4 somewhere in the other.

DSL itself is closely related to the Multiprocessor Network Logic (MNL) intro-
duced by Reif and Sistla[RS85]. However, our desire for a network logic that supports
compositional reasoning[Eme90]! has resulted in a number of important differences.
One difference between the two logics is that, in DSL, the properties of a network
can be described in terms of the properties of its composite regions. The concept
of regions (i.e., network partitions) is not present in Reif and Sistla’s logic. Another
basic difference is that the concept of time is based on intervals in DSL as opposed
to being point based as is the case in MNL.

Not surprisingly, these differences are also reflected in the repertoire of spatial
and temporal operators each logic provides. For example, DSL contains the temporal
operator ‘;’, as well as spatial operators such as nearby and 2, whereas MNL does
not. As neither logic has been used extensively, it is obviously too premature to
compare the various strengths of each approach. Nevertheless, our experience to date
suggests that DSL does indeed facilitate the writing of more modular composeable
specifications.

In the next section, we provide a formal definition of the syntax and semantics
of first-order DSL. A knowledge of classical temporal logic would be helpful, but the
description given below should be accessible even to those without prior knowledge

of classical temporal logic.

3.2 First-Order Distributed Systems Logic (FDSL)

We now define first-order DSL.

Untuitively, specification languages that support compositional reasoning contain operators which
allow the properties of different parts of a program to be combined into a single property (i.e.,
formula). Thus, the properties of a complete program can be obtained by first specifying the
properties of its constituent parts and then combining these constituent properties into a single
property for the entire program.

2Both ‘3’ and ‘R’ are compositional operators.
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3.2.1 Alphabet

The alphabet of symbols used in constructing formulas is as follows:
o A denumerable set of variables: z, v, ...

o For every n > 0, a denumerable set of n-ary function symbols: f, ¢, ... (also

called constant symbols in the case n = 0)

o For every n > 0, a denumerable set of n-ary predicate symbols: r, ¢, ... (also

called propositional symbols in the case n = 0)
e The binary predicate symbol: =
e Logical symbols: -, A, 3, (, and )
e Temporal symbols: @, ©, O, ;, and atnext

e Spatial symbols: ¢, B, R, nearby, and link symbols £ € L

3.2.2 Syntax

The terms of first-order Distributed Systems Logic (FDSL) are defined inductively as

follows:
e Each constant c is a term.
e Each variable z is a term.

o If f is a function symbol of arity n, and ,, 1, ..., ¢, are terms, then f(t1,12,...,t,)

is a term.
The atomic formula of FDSL are defined as follows:
e Each atomic proposition ¢ is an atomic formula.

e If ¢, and t; are terms, then ¢; = ¢, is an atomic formula.
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o Ifrisa predicate symbol of arity n, and ¢, 1, ..., ¢, are terms, then r(ty,1,,...,t,)

is an atomic formula.

We inductively define the class of formulas as follows:

¢ Each atomic formula is a formula;

If ¢ and 1 are formulae then (¢ A ¥) and -1 are formulae;

If ¢ is a formula and z is a free variable in ¢ then 3z ¢ is a formula;

If ¢ and ¢ are formulae then @, S, By, (p; 1), and (patnext ) are for-

mulae;

If ¢ and 3 are formulae then $v, By, £y, (¢RY), and (p nearby ) are for-

mulae;

The set of formulae generated by the above rules forms the language of FDSL.

Additional operators can be introduced as abbreviations. We assume the stan-
dard abbreviations for V, —, =, true, and false.. We also assume the following

abbreviations:

op ¥ ,v by (“somewhere”)
Op = OpV-0Otrue (“weak next”)
puntily % atnext (¢ — ¥) A Y (“until”)
pifp = o —yp (47)
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In the interest of notational simplicity, we adopt the following conventions with regard

to the binding power of the operators:

(highest) =, -, 0, ©, ©, B, &, &, B, £, nearby, until, if

atnext
3

A

\%

—

(lowest) R

Accordingly, we shall omit any unnecessary parentheses. Thus, for example, instead

of
(Op1V p2) — (mh1 A (Y2 atnext 3) A 1hy),

we write

Op1 V o2 — —hy Athy atnext iz A 9y,

3.3 Networks

A network is a triple N=(L,P,73), where LC L, P is a countable set of elements called
processes, and P:PxL— Pisa partial mapping. Networks also satisfy the following
condition, Vpe P 3¢ e L(P(p, £) = p'). Intuitively, for each process p €P and link £ €L,
'ﬁ(p,e), if defined, is the process connected to p via link £; moreover, ever process is

connected via some link to at least one other process.

3.4 Semantics

A model M, with respect to a particular network N, is a 4-tuple (N,D,X,L), where

o N=(L,P,P) is a network.
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o D is a data domain.

o X=(00,01,...) is a sequence of distributed states (an interval of time), where
o; : P — § associates with each process p the process state o;(p)(€ S) which

maps the local variables of p.

o £=(C,T) where C is a global variable valuation which assigns an element of D
to each global variable, and 7 is an interpretation which provides the meaning

of the function and relational symbols.

The set of symbols of FDSL is assumed to be divided into two classes: the class of
global symbols and the class of local symbols. The interpretation of local symbols is
state dependent and can vary from state to state; whereas, the interpretation of global
symbols is the same for all states. In our presentation, we assume that all function
and constant symbols are global. Variable, relational, and propositional symbols may
be either local or global. In the case of global symbols r, Z(s)(r)=Z(s")(r) for all
s,s' € S. It is convenient to refer to the global interpretation associated with T by
Z(r)=Z(s)(r), where r is a global symbol and s is any process state.

The meaning of the terms of FDSL with respect to a model M=(N,D,Z,L) is

given by a function M, defined inductively as follows:
M, (c) = Z(c), where c is a constant and is therefore global;
M., (z) = C(z), where z is a global variable;
M, . (z) = I(oi(p))(z), where z is a local variable;

Mgy = (f(try- s ta) = (N My (1), My (1),

Given the above function, we can now define the meaning of formulas. A for-
mula of FDSL is interpreted with respect to a model M=(N,D,%, L) as defined
above. We adopt the following conventions. The relation C' ~_ C is defined to

be true iff global interpretations C' and C are exactly the same except (possibly)
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for the value they assign to variable z. We extend P to the domain L* such that
'Is(p,a) = p and 'Is(p,fl ) = 75(75(}),31),32), where ¢ is the empty string. For
natural numbers i and j, M) denotes the model obtained from M by taking
the initial distributed state to be o; and the sequence of distributed states to be
(04,0i41y...,05). Finally, we write N=N,//N, to denote the partitions N, and N,
of network N where N, =< L,P,,P, > (i = 1,2) such that (P, N P,) = 0 and

- 1 if P(p,£) =p' and p’' € P,_,
Ppg=], rPeO=FaddeR ),
P(p,£) otherwise

We define a satisfiability relation, }=, which denotes the truth of a formula in an
interpretation. We write M,,p |= ¢ to mean that formula ¢ is true in model M at

time ¢ for process p. The satisfiability relation is defined inductively as follows.
M,pEqiff I (q), for global atomic proposition q;
M, p k= qiff Z(oi(p))(q), for local atomic proposition q;

MpEr(ty,. . ta) iff (M (8),. ..y Mo (8) € Z(r),

for global relation r;

M,p r(tl, ooy tn) iff (M<l'.p> (tl)’ con ’M<-',p>(tn)) € I(a,-(p))(r),

for local relation r;
Mop =t iff M, () = M, (t2);
MopE@AYiff M,p = ¢ and M,,p | ;
M, p - iff M,p i p;
M,,p = 2 iff M, p = 9 for some M’ with C' ~, C.
M, plEOpiffi < |Z|and M,,,,p E ¢;
M, p E Oy iff 35,1 < j < |X], such that M,,p =

M, p | By iff V5,i < § < |, M,,p E ¢;
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M, p ;9 iff 3j,i < j < |B] such that M, p = o and MY p = y;

M., p = patnext ) iff M,,p |= ¢ for the smallest j > i with
M;,p =¥

M,,p =Ly iff P(p,£) = p' and M,,p' | o;

M,,p = nearby 4 iff V¢ € L, P(p,£) = p implies M, p’ = 1b;
M,,p k= By iff V € L*, P(p, ) = p' implies M,, p’ k= ¢;

M, p = O iff 37 € L+ such that P(p,£) = p’ and M,,p' |= ¢;

M, pE oRo iff M,p' =@ and M/ p" | ¢
where M' = (N,,D, 3, £) and M" = (N,;,D, %, L) for some
partition N =N, //N, with p' € P, and p" € P,;

We say that a formula 1 is satisfiable if there exists a model M, index 1, and a process
p such that M,,p |= 4. A formula ¢ is valid if + is true in all interpretations. Finally,
A formula ¢ follows from a set F of formulas, written M., p =, Y if M,,p k= for
every ¢ € F implies M,,p |= 9.

3.5 Example

right right right
Po P1 P2 )
left \/ left left
Figure 3.1: Linear array of processors.

Let N = ({left,right}, {p,,-..,p,},P), where P(p,,right) = p,» P(p,,right) =
2% ’ﬁ(p,,right) = Ds, ﬁ(ps,left) = Ps» 'ﬁ(p,,left) = p,, and ﬁ(l’pleft) = p, be a
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description of a network consisting of a linear array of processors (for convenience,
the corresponding network diagram is shown in figure 3.1). In addition, let I and
J be local variables, r a binary predicate symbol, and £ a binary function symbol.

Consider the following two formulas
I = 1 A nearby—r(I, J)
and
SOI={LJ)R(J =1Aright ®J =1)
in the model M=(N,D,%,L) with £=(0o,01,...), D=N, Z(r)=<. Z(f)=+, and the

values of variables I and J in states oi(p) given by to the following tables (one for

each process):

P, | 90(p,) o1(p,) --- p, | oo(p,) oi(p,)
I 1 o ... I 1 0
J 1 o ... J 0 0
p; | oo(p,) o(p,) --- P, | oo(p,) o1(ps)
I 1 ) R I 0 0
J 1 0o - J 0 1

It can easily be determined that:
M,,p, E1=1Anearby-r(l,J)

Moapx '= OelI= f(I,J)R(J =1 /\l‘ight Ol= 1)

3.6 Summary

In this chapter we have presented the syntax and semantics of DSL, the logical formal-
ism which provides the declarative (i.e., logical) meaning of NETLOG programs. In
the next chapter, we shall present a different kind of semantics based on rewrite rules;

this semantics, in turn, provides the operational meaning of NETLOG programs.
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Chapter 4

Specifying and Reasoning about

Distributed Programs

Distributed systems are being used to implement applications that are becoming
increasingly more sophisticated. Yet specifying and reasoning formally about dis-
tributed programs is known to be notoriously difficult[LL87]. Three central issues
must be dealt with in designing a language for distributed programming. These are
concurrent execution, coordination of the concurrent parts of the program, and the
spatial distribution of these concurrent parts over the network of processors. In the
first half of this chapter, we compare NETLOG to other logic languages for dis-
tributed programming with respect to these three central issues. In the second half
of the chapter, we show how one can formally reason about and prove interesting

properties of NETLOG programs.

4.1 Specifying Distributed Programs

There are three main issues that must be addressed in a language designed for dis-
tributed programming, above and beyond other programming language issues. These

are concurrency, coordination (i.e., synchronization and communication), and par-
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titioning and assignment (i.e., the spatial assignment of concurrent components to
processors).

Almost all logic languages for concurrent and distributed programming provide
language constructs to describe the concurrent components of a distributed compu-
tation and to describe the synchronization and communication between these com-
ponents. Few, however, provide corresponding language constructs that allow the
assignment of concurrent computations to processors to be described.

In the following sections, we will compare the features of NETLOG to other
logic languages for distributed computing with respect to these three central issues.
Our comparison will include horn clause based languages such as Concurrent PRO-
LOG[Sha86,5ha87], Shared PROLOG[BC91], Delta Prolog[P+*86], and CC[Sar89]?,
and temporal logic based languages such as METATEM[BFG*89,FB91,Fis93] and
TEMPURA [Mos86,HM87]. As a group, these languages are representative of current
approaches to concurrent and distributed logic programming. Our intention is to
highlight the fundamental differences between NETLOG and current approaches to
distributed logic programming, not to provide a complete description of each of the

languages mentioned or to provide a general survey of the field.

Concurrency

Distributed systems have by definition more than one processor therefore it is possible
to have different parts of a program executing at the same time. Thus, the first
issue that must be addressed by languages for distributed programming is concurrent
execution.

An important factor in expressing concurrent execution is the unit of concurrency
adopted by a given language[B*89]. In NETLOG, sequential actions and constraints

are the basic unit of concurrency. Hence, several sequential actions and/or constraints

1CC is really a family of concurrent constraint logic programming languages. For our purposes,
the distinction between the various members of the family is immaterial. Thus, when referring to
these languages, we shall continue to refer to them as though they were a single entity.
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may be executed concurrently. Other languages have adopted other approaches. In
METATEM, for example, the unit of concurrency is the so called “ob ject” and thus
many objects may be active at the same time. In TEMPURA concurrency is based
on statements, where several sequential statements can be executed simultaneously.
For logic languages such as Concurrent PROLOG and other members of the family of
horn-clause based concurrent languages, it is the process, where a process is identified
as a single goal. Some logic languages, for example, Concurrent PROLOG, Shared
PROLOG, and CC, permit several forms of concurrency within programs. The term
AND/OR-parallelism has been coined to describe the various forms of concurrency
found in these languages. AND-parallelism arises from the concurrent execution of
the goals appearing in the body of a guarded horn-clause and OR-parallelism from
resolving a single goal with more than one guarded horn-clause. It is not surprising
perhaps, given the close similarity between guarded horn-clauses and event handler
rules, that NETLOG also allows similar forms of concurrency to be exploited —
several events may be executed concurrently and a single event may simultaneously
match more than one event handler rule. However, since the rules in NETLOG
programs are based on forward-chaining rather than backward-chaining, AND/AND-

parallelism would be a more accurate term in the case of NETLOG.

NETLOG also permits a third kind of concurrency that has no analog in horn-
clause logic languages. In particular, a speculative form of concurrency can be ex-
ploited by performing event matching in parallel with event constraint verification.
That is, we may begin using a nondeterministic event in forming new matching event
collections before the event has been committed. An event collection containing such
an event cannot be allowed to activate an event handler, however, until the constraint
check is complete and the event is committed. This form of concurrency is called spec-
ulative because the event matching that is performed may have to be thrown away
if the nondeterministic event fails to be committed. This form of concurrency is not

yet exploited in our current implementation.
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Coordination

The second issue that must be dealt with in a language for distributed programming is
coordination. Coordination involves two types of interaction between the concurrent
components of a distributed program: communication and synchronization. A wide
variety of shared data and message passing models have been used for communication

and synchronization in distributed logic languages.

One shared data model that is used widely in logic languages is the shared logical
variable. Logical variables have the single assignment property. Once a value has
been bound (via unification) to a logical variable it cannot be changed. Concurrent
PROLOG and TEMPURA are examples of concurrent languages that use shared
logical variables. The concurrent entities in these languages communicate by binding
values to the logical variables and synchronize by suspending on unbound variables.
Other shared data models that have been used are the global store and the blackboard.
In the constraint based logic language CC, agents communicate by posting constraints
on a global store and synchronize by checking that constraints are entailed by the
store. Shared PROLOG uses a globally shared data structure called a blackboard;
processes communicate and synchronize by adding atoms to, and deleting atoms from

the shared blackboard.

A number of logic languages for distributed computing have also been based on
message passing models. Programs in METATEM, for example, describe (concur-
rent) objects that communicate and synchronize using broadcast message passing.
Object interface declarations control which broadcasted messages can be received by
an object, as well as which messages an object can broadcast (to other objects). Delta
PROLOG is another logic language based on message passing. In Delta PROLOG
however, message passing is based on synchronous point-to-point communication,
where event goals are introduced as an explicit mechanism for synchronously exchang-
ing information. In particular, two processes may communicate and synchronize by

causing corresponding matching event goals.
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One significant difference between these languages and NETLOG is that com-
munication and synchroniza.tion in NETLOG is achieved by causing and waiting on
events, where constraints are used to provide additional control over the behavior
(i.e., occurrence) of nondeterministic events. Events can be used to model a wide va-
riety of communication patterns including broadcast, many-to-one, one-to-many, and
point-to-point communication. Consequently, NETLOG is not based on a particu-
lar type of communication pattern as is METATEM (broadcast communication) and
Delta-PROLOG (Synchronous point-to-point communication). Moreover, the notion
of event used in Delta PROLOG is very limited in scope and has little to do with the
event model underlying NETLOG.

Another significant difference between NETLOG and other logic languages for
distributed computing is NETLOG does not need, nor does it include, any syntactic
control constructs or other “extra-logical” features that have no foundation in logic,
including the constructs used to express communication and synchronization. In
the absence of such extra-logical features, many interesting properties of NETLOG
programs can be reasoned about and proved easily. In contrast, concurrent horn-
clause languages have introduced the commit operator (‘|’) and guards to control
communication and synchronization. Additional control constructs, such as mode
declarations, read only annotations and the like may also be found in these langua.ge;.
Similarly, METEM includes message interface declarations to control the types of
messages an object may send or receive.

It is also interesting to compare the use of constraints in NETLOG and in CC.
Both languages use constraints for synchronization and for binding values to variables.
In CC, however, constraints are global in scope and can only be imposed on variables,
not on agents themselves. Moreover, once a constraint has been imposed it remains in
effect forever. This is less powerful than the approach taken in NETLOG, which allows
constraints on events as well as variables. In addition, constraints in NETLOG can
include both temporal and spatial operators. Using these operators, one can express

both permanent constraints and temporary constraints (i.e., constraints that last for
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some finite duration); similarly, one can express constraints that are global in scope

and ones that are local to some processor.

Partitioning and Assignment

The third central issue that must be addressed by languages for distributed program-
ming is how to distribute the concurrent computations of a distributed program over
the network of processors, in other words, which concurrent computation is executed
on which processor at any given point in time. The assignment of concurrent com-
putations to processors is often referred to as a mapping{AS86). In general, different
applications will require different mapping strategies. Thus, an important choice in
the design of a distributed programming language is whether or not the mapping will
be under user control.

The design of NETLOG was undertaken from the point of view that the speci-
fication of a distributed computation includes specifying the spatial properties that
describe the organization of the computation and how it is mapped over the network
of processors. Consequently, NETLOG was based on DSL, as opposed to horn-clause
logic or temporal logic, since within the framework of DSL such inclusive specifica-
tions can be expressed in a concise and elegant fashion. Indeed, the spatial operators
of NETLOG are well suited to the task of expressing processor mappings.

In contrast, neither Concurent-PROLOG, CC, METATEM, nor any of the other
distributed logic languages being discussed address, at the language level, the issue of
how computations are mapped onto processors. In particular, there are no language
constructs in these languages to express processor mappings, so users cannot control
the mapping of their programs. Instead, these languages rely on the language imple-
mentation (i.e., compiler and/or runtime system) to implicitly perform this task. In
practice this can be a severe limitation[B*89).

To overcome this limitation, various extensions to some these languages have

subsequently been proposed. For example, Shapiro[Sha84] suggests extending Con-
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current PROLOG with annotations based on the language LOGO[Pap80] to express
the mapping of Concurrent-PROLOG programs onto processors. Similarly, in [Fis93]
various extra-logic features are suggested as extensions to METATEM. For example,
the concept of “rooms” is proposed as a mechanism for partitioning and grouping
objects.

Most of the proposals describing extensions to existing logic languages provide only
an incomplete sketch of the intended facilities. One notable exception is Shapiro’s
annotations for Concurrent Prolog{Sha84]. This being the case, and as annotations
can be seen as a general mechanism that could be used to extend any (existing) logic
language?, let us describe Shapiro’s approach in more detail and compare it with the

integrated approach found in NETLOG.

A specific comparison

Shapiro’s approach is to extend Concurrent PROLOG(CP) with annotations derived
from the programming language LOGO[Pap80]. These annotations describe how the
executing CP program is to be mapped onto a grid of processors (in subsequent
references we shall refer to this extended language as annotated-CP). Specifically,
every Concurrent PROLOG process has a position and a heading just like a Turtle
in the LOGO programming language. By default, the position and heading of a
process are those of its parent (creator), but they can be altered using a sequence
of turtle commands. For example, p(X)@(left (90),forward(1)) describes an Con-
current PROLOG process p(X) with annotations (left(90),forward(1)). Turtle
commands such as forward and backward take a distance as an argument and change
the position of the process accordingly. Commands such as left and right take an-
gles as arguments and change the heading of the process. Thus, if a process located

on processor n and heading northward uses the rule?

A : —B, CQ(left, forward(2)), D@(right, forward)

2Similar annotations have also been used in the concurrent logic language Strand[FT90)
3If angles and distances are omitted, the default is 90 degrees and a distance of 1, respectively.




52CHAPTER 4. SPECIFYING AND REASONING ABOUT DISTRIBUTED PROGRAMS

to reduce process A, then process B is created on processor n, process C is created
on the second processor to the west of processor n, and process D is created on the
processor to the east of processor n, where B is headed northward, C westward, and
D eastward.

As this simple example suggests, both the approach taken by Shapiro and that
used in NETLOG are similar in that the mapping of concurrent computations is
specified in terms of the structure (i.e., topology) of the underlying distributed sys-
tem. One advantage of this approach is that it is quite general; it can be used to
describe the mapping strategy for distributed architectures having any network topol-
ogy. Shapiro’s annotations, however, reflect a “low-level” approach since they offer
little in the way of convenient abstractions which the user can take advantage of. This
is undesirable because it forces the user to deal with the details of the topology of the
system even if this is not necessary to satisfy the mapping strategy for a particular
application.

In comparison, NETLOG provides more flexibility. Indeed, the language contains
a range of spatial operators that provide different levels and kinds of abstraction with
respect to the topology of the underlying distributed architecture. In addition to op-
erators that express lower-level concepts such as left and right, NETLOG includes
operators that can express abstract concepts such as “everywhere,” “somewhere,”
“nearby,” “not elsewhere,” etc. These latter operators can be used to express map-
ping strategies in more abstract terms without reference to a specific architecture or
topology. A simple example of this is illustrated in our sum-of-factorials program.
In that example, the two factorials can be computed independently (no communica-
tion is needed between them); hence, it is desirable to have each factorial mapped
to a separate processor, without regard to the specific identity of the processors or
their location. This requirement was expressed using the “elsewhere” (®) operator.
The resulting program specification is quite general yet captures our intuition rather
nicely.

More generally, annotations, and similar extra-logical extensions, have the dis-
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advantage that the user must, in effect, deal with two different languages. That is,
not having any logical foundations, such extensions have a semantics which is quite
different, if not totally divorced, from the rest of the language. Moreover, formal
reasoning and verification of programs becomes much more difficult since such extra-
logical extensions tend to compromise the declarative properties of logic programs.
In the case of Shapiro’s annotations in particular, we believe that reasoning about
the behavior of a distributed computation in terms of turtles meandering through a

network is distracting and rather unnatural at best.

NETLOG, on the other hand, is a single integrated language with a single well-
defined logical semantics; all of the constructs and operators in the language have a
natural interpretation in DSL. Thus, we can easily reason about and prove interesting
properties of NETLOG programs. In addition, as many of the operators in NETLOG
correspond to concepts that are familiar to us (e.g., “elsewhere,” “everywhere,” etc.),
they allow us to express the mapping of a distributed computation using concepts
that closely reflect our natural intuition (as opposed to unrelated concepts such as

wandering turtles).

Example

To further illustrate some of the ideas that have been discussed in this and preceding
sections, let us consider a specific example. Consider the simple network shown
in figure 4.1. It consists of eight Processing Elements (PEs) connected in a cube
configuration. The network has access to a single Printer (Pr) which is controlled by
a print daemon. Let us assume that each PE executes a simple cyclic process that
does nothing more than prints its input data. In particular, each process has the
following behavior: read the next input, send a print request to the print daemon to
have the input data printed, wait for the print request to complete, then repeat the
cycle by reading the next input value. The print daemon ensures that only one print

request is sent to the printer at any one time; once a print request has been satisfied,
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Figure 4.1: Multiple PE/single printer network.

it sends a reply to the originating process to inform the process that its data has been

printed. The print daemon runs on the PE connected to the printer.

Figures 4.2-4.5 shows how one might specify (or attempt to specify) this network
of distributed processes in NETLOG and a representative subset of the logic languages
discussed earlier. Figure 4.2 shows a GHC program* for this problem. In GHC (and
Concurrent Prolog) one cannot synchronize multiple appends to a single channel

(i.e., stream), so each process must have its own channel (e.g., S0,...,S7) to the

4With little or no change, similar programs could be written in PARLOG, CC, STRAND, and
other members of the concurrent horn clause logic languages.
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proc(Id,S) :- true | read(X), S=[msg([print,X],Id,R) | Ms], wait(Id,R,Ms).
wait(Id,R,S) :- R=done | proc(I1d,S).

pdaemon([msg([print,X],Id,R)1S0],51,52,53,54,55,56,S7) :-

true | printing(Id,X,R), pdaemon(S0,51,52,53,54,55,56,S7).
pdaemon(S0,[msg([print,X],Id,R)151},52,53,54,55,56,S7) :-

true | printing(Id,X,R), pdaemon(S0,51,52,53,54,55,56,S7).
pdaemon(S0,S1,[msg([print,X],Id,R)152],53,54,55,56,S7) :-

true | printing(Id,X,R), pdaemon(S0,51,52,53,54,55,56,57).
pdaemon(S0,51,52,[msg([print,X],Id,R)153],54,55,56,S7) :-

true | printing(Id,X,R), pdaemon(S0,51,52,53,54,55,56,57).
pdaemon(S0,51,52,S3,[msg([print,X],Id,R) |S4],55,56,S7) :-

true | printing(Id,X,R), pdaemon(S0,51,52,53,54,55,56,57).
pdaemon(S0,51,52,53,54,[msg([print,X],Id,R)155],56,S7) :-

true | printing(Id,X,R), pdaemon(S0,51,52,53,54,55,56,57).
pdaemon(S0,51,52,53,54,S5,[msg([print,X],Id,R) | §6],S7) :-

true | printing(Id,X,R), pdaemon(S0,51,52,53,54,55,56,S7).
pdaemon(S0,51,52,53,54,55,56,[msg([print,X],Id,R) | §7]) :-

true | printing(Id,X,R), pdaemon(S0,51,52,53,54,55,56,S7).
pdaemon([],(1,[1,0,(1,0,0,[])-
printing(Id,X,R) :- true | write(Id:X), R=done.

start :- true | proc(0,S0), proc(1,S1), proc(2,52), proc(3,S3),
proc(4,54), proc(5,S5), proc(6,56), proc(7,57),
pdaemon(S0,51,52,53,54,55,56,57).

Figure 4.2: GHC program for multiple PE/single printer network.
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proc0(msg)[msg]:
start —> Oread(X)
6read(X) = msg([print,X],0)
©msg(done,0) => Sread(X)

procl(msg)[msg]:
start => Oread(X)
oread(X) = msg([print,X],1)
©msg(done,1) => Sread(X)

proc2(msg)[msg]:
start = Oread(X)
6read(X) = msg([print,X],2)
©msg(done,2) => Gread(X)

proc3(msg)[msg):
start = Oread(X)
©read(X) = msg([print,X],3)
©msg(done,3) => Gread(X)

proc7(msg)[msg]:
start => Oread(X)
Oread(X) = msg([print,X],7)
©msg(done,7) => Oread(X)
pdaemon (msg)[msg]:
msg([print,X],Id) = Oprinting(Id,X)
©printing(Id,X) = write(Id:X) A ®msg(done,Id)
printing(Id1,X) A printing(1d2,Y) = Id1=I1d2

Figure 4.3: METATEM program for multiple PE/single printer network.
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print daemon along which it sends and receives messages. While the intent of the
GHC program is that each of the goals proc(0,50),: - -,proc(7,57) (and the sub goals
spawned by them during a reduction) should be executed on a different PE, there is no
mechanism in GHC to enforce this. Indeed, the semantics of the language permits a
goal to be reduced on any processor — thus, for example, there is no way to prevent
read(X) goals for different process streams being reduced on the same processor!
Similar limitations are apparent in the METATEM program given in figure 4.3. The
syntax of METATEM, like GHC, lacks constructs to control which objects execute
on which PEs, so one cannot stipulate, for example, that the print daemon object

should execute on the PE connected to the printer.

Figures 4.4 and 4.5 show the annotated Concurrent Prolog and NETLOG pro-
grams, respectively®. Unlike the programs in GHC and METATEM, both these pro-
grams express how the parts of the computation are to be mapped to the PEs. The
fundamental difference between the two programs lies in the higher-level description
provided by the NETLOG solution. One aspect of this can be seen by observing
that the number of rules in the NETLOG program does not depend on the size (i.e.,
number of PEs) or the topology of the network. An advantage of this is that, even
for networks with irregular connections and/or large numbers of PEs, one can quickly
construct a high-level NETLOG description of the network that is both concise and
easy to comprehend. In comparison, the annotated-CP program reflects the low-level
details of the network. For example, the topology of the network is reflected in the
mapping of individual goals to processors (i.e., proc(1,S1) @ north, proc(1,52) @
(north, forward), etc.)®. Moreover, the number of clauses in the pdaemon procedure
(and the number of arguments in a pdaemon goal) grows with the size of the network.

Clearly, for an underlying network with more complex connections and/or large (or

8Several predefined state variables are used in the NETLOG program. In particular, each proces-
sor can access state variable Np' to reference the total number of processors in the network; similarly,
each processor can access state variable Pid’ to reference an integer (between 0 and Np’-1) which
uniquely identifies the executing processor.

6The number so mapped is proportional to the size of the network.



S8CHAPTER 4. SPECIFYING AND REASONING ABOUT DISTRIBUTED PROGRAMS

proc(1d,S) :- read(X), S=[msg([print,X],Id,R) |Ms], wait(Id,R?,Ms).
wait(Id,done,S) :- proc(1d,S). -

pdaemon([msg([print,X],Id,R)50],51,52,53,54,55,56,57) :-
printing(Id,X,R), pdaemon(S0?,51,52,53,54,55,56,S7).
pdaemon(S0,[msg([print,X],Id,R)151],52,53,54,55,56,S7) :-
printing(Id,X,R), pdaemon(S0,51?,52,53,54,55,56,57).
pdaemon(S0,51,[msg([print,X],Id,R) 152],53,54,55,56,57) :-
printing(Id,X,R), pdaemon(S0,51,527,53,54,55,56,57).
pdaemon(S0,51,52,[msg({print,X],Id,R)|53],54,55,56,57) :-
printing(Id,X,R), pdaemon(S0,51,52,53?,54,55,56,57).
pdaemon(S0,51,52,53,[msg([print,X],Id,R) | S4],85,56,57) :-
printing(Id,X,R), pdaemon(S0,51,52,53,547,55,56,57).
pdaemon(S0,51,52,53,54,[msg([print,X],Id,R) | S5),56,S7) :-
printing(Id,X,R), pdaemon(S0,51,52,53,54,557,56,S7).
pdaemon(S0,51,52,53,54,55,[msg([print,X],Id,R) 1 56],57) :-
printing(Id,X,R), pdaemon(S0,51,52,53,54,55,567,57).
pdaemon(S0,51,52,53,54,55,56,[msg([print,X],Id,R)187]) :-
printing(Id,X,R), pdaemon(S0,51,52,53,54,55,56,577).
pdaemon((], (1, {10, {1, [, 0,[0)- '
printing(Id,X,R) :- write(Id:X) @ printer, R=done.

start :- proc(0,50), proc(1,51) @ north,
proc(1,52) @ (north, forward),
proc(1,53) @ forward, proc(1,54) @ (forward, west),
proc(1,55) @ (forward, west, north), proc(6,56) @ (west, north),
proc(7,57) @ west, pdaemon(50?,517,527,537,54?,55?,567,577?).

Figure 4.4: Annotated Concurrent Prolog program for multiple PE/single printer
network.
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{ proc(Id) = ®read(X) ; Bmsg([print,X],Id) ; wait msg(done,Id) ; proc(I1d),

pdaemon == startdaemons(0,Np’),
pdaemon ==> B@-(printing(Id1,X) A printing(Id2,Y) A Id1#1d2),

startdaemons(I,J) A I<J = daemon(I) ; startdaemons(I+1,J),
daemon(Id) = wait msg([print,X],Id) ; printing(Id,X) ; daemon(Id),
printing(Id,X) == printer write(I1d:X) ; Bmsg(done,Id)

}

assert
pdaemon ; Bproc(Pid’)

Figure 4.5: NETLOG program for multiple PE/single printer network.

even moderate) numbers of PEs, the annotated-CP solution would quickly grow in
size, becoming large and unwieldy not to mention more difficult to comprehend and

verify correct.

Other approaches

From a broader perspective, alternative approaches to mapping a computation onto a
network of processors exist. For example, one common approach used in programming
languages based on other programming paradigms (e.g.., functional programming, im-
perative programming, etc.) is to assign each processor a unique identifier (usually an
integer) and use some type of annotation to express the mapping of the computation
in terms of these processor identifiers. This is the approach taken in Paralfi{HS86b)],
PCN[F*92], and Vienna FORTRAN[CMZ92]. Many of the comments made earlier
apply here also. In particular, concepts like “somewhere” and “nearby” cannot be
directly expressed in these languages. Nor can one express the distribution from the
perspective of where not to map things (e.g., “not somewhere”). Besides NETLOG,
We know of no other language that offers this kind of expressiveness and flexibility.

The ability to reason formally about the distributed properties of programs is also
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not a central concern in most of these languages.

{ infac(X) = fac(X,1,1),

fac(X,N,R) A N<X = Ofac(X,N+1,(N+1)xR),
fac(X,N,R) A N>X = outfac(X,R),

outfac(X,R) = B-(doutfac(X,Z) A R#7Z) ,
assert
infac(2) A

binfac(7) A
wait (outfac(2,X) also Goutfac(7,Y)) ;write(X+Y)

Figure 4.6: Computing the sum of factorials.

4.2 Reasoning about Distributed Programs

NETLOG programs are pure logic programs in the sense that every NETLOG pro-
gram is a formula in DSL; moreover, the operational interpretation of the constructs
in the language preserves the declarative meaning of the constructs as defined by the
model semantics given in chapter 3. Accordingly, we can use the declarative (i.e.,
model) semantics of NETLOG to reason about and prove interesting properties of
NETLOG programs’.

We will illustrate the approach by proving the (partial) correctness of the sum-
of-factorials program given in chapter 2 (for convenience, the program is reproduced
in figure 4.6). The correctness of the sum-or-factorials program can be expressed by
the following property

P, — Owrite(2! + 7!)

TA formal proof of the correspondence between the operational and declarative semantics may
be found in chapter 5.
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Here, P, is the DSL formula denoted by our program. Intuitively, this property states
that any computation satisfying our sum-of-factorials program (i.e., any successful

computation) eventually writes the sum of 2! and 7! as output.

To prove the validity of this property, we must show that any model M satis-
fying P, also satisfies ®write(2! + 7!); in other words, for arbitrary M, i, and p if
M, p =P, then M, p = Owrite(2! + 7!). We proceed by first proving the validity
of several intermediate properties; our main correctness property then follows as a

direct consequence. In the derivations to follow, let

P. = R AR, AR, AR AA

R, = BaVX(infac(X) — fac(X,1,1))

R, = O8VX,N,R(fac(X,N,R)AN < X — Ofac(X,N +1,(N +1) x R))
R, = 0&VX,N, R(fac(X,N,R) AN > X — outfac(X, R))

R, = 0O&VX, R(outfac(X,R) — BVZ(~(Poutfac(X,Z) A R # 2)))

A = A NAANA,

A, = infac(2)

A, = infac(7)

A, = wait (outfac(2, X) also Goutfac(7,Y)); write(X +Y)

In addition, when deriving the proof of some property we will, in order to facilitate
derivations, feel free to condense several trivial proof steps to one. For example, when

instantiating a rule, we will not hesitate to state that, say,

M, ,pER, = M,,plinfac(2) — fac(2,1,1)

is derivable. This fact is intuitively clear and could be formally proved in the following




62CHAPTER 4. SPECIFYING AND REASONING ABOUT DISTRIBUTED PROGRAMS

manner:

M,pER, & M, pkBBYX(infac(X) — fac(X,1,1))

Mj,p' = VX (infac(X) — fac(X,1,1)) for every j,i < j<|Z|, and
every p’ such that P(p,£*) = p for some £* € L*.

M,,p E VX (infac(X) — fac(X,1,1)) for j =i and p' = p.

M:,p k= infac(X) — fac(X,1,1) for every M’ with €' ~, C

M., p k= infac(X) — fac(X,1,1) for M’ with C'(X) = Z(2)

M;,p [= infac(2) — fac(2,1,1)

¢

1 4 ¢4

Indeed, since our proofs only make use of the semantic definitions of the logical
operators® and simple mathematical reasoning over the natural numbers, they are

quite straightforward.

The first intermediate property we wish to prove is the following:

=P, — Ooutfac(2,2!) (4.1)

8The reader may wish to review chapter 3 at this point in order to refresh his/her memory
regarding the definitions of the logical operators in DSL.
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Proof of (4.1):

M,.,pl=P

“—fac

& M,pER and M,,pE=R, and M,,p ER, and
M,pER,and M ,pEA
= M, pER, and M,,pER, and M,,p ER, and
MiupEA,and M,,pE A, and M,,p E A,]
= M,,p [ infac(2) — fac(2,1,1) and
M, pEfac(2,1,1) A1 < 2 — Ofac(2,14+1,(1+1) x 1) and i
f+1>|Z| or M,,,,p |=fac(2,2,2) A2 > 2 — outfac(2,2)] and
M,, p | infac(2)
& [M,,p Einfac(2) and M,,p | infac(2) — fac(2,1,1)] and
M, p Efac(2,1,1) Al < 2 — Ofac(2,2,2) and
[+1>|Z| or M, ,p [ fac(2,2,2) A2 > 2 — outfac(2,2))
= M,,pEfac(2,1,1) and
M, p Efac(2,1,1) A1 <2 — ©fac(2,2,2) and
[(+1>[Z]| or M,,,,p Efac(2,2,2) A2 > 2 — outfac(2, 2)]
& [M,pFfac(2,1,1) and M,,p |=fac(2,1,1) A1 < 2 — Ofac(2,2,2)] and
f+1>5] or M,,,,p =1ac(2,2,2) A2 > 2 — outfac(2,2)]
= M, pE 6fac(2,2,2) and
f+1>Z| or M,,,,p = fac(2,2,2) A2 > 2 — outfac(2,2)]
[[+1<|Z]| and M_,,,p |=fac(2,2,2)] and
[+1>|Z| or M,,,,p =fac(2,2,2) A2 > 2 — outfac(2, 2)]
M. p Efac(2,2,2) and M,,,,p = fac(2,2,2) A 2 > 2 — outfac(2,2)
M,,,,p [ outfac(2,2)
3j,i<j <| |, and M, p |= outfac(2,2!)
M;,p | Ooutfac(2,2!)

¢

A

In an analogous manner, we can prove that the following intermediate property is

also valid

E P, — ®boutfac(7,T!) (4.2)
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We omit the details. The next intermediate property we wish to prove is the following
= P,. — Soutfac(2, X) A Ooutfac(7,Y) A Owrite(X + Y) (4.3)
Proof of (4.3):

M,pEP

“—fac

M, ,pER and -+ and M,;,;pE=R, and M,,pEA

M, pEA

MupEAand M,,plE A, and M,,p EA,

M,pEA,

Jk,: <k <| X |, such that

M, p | wait(outfac(2, X) also Poutfac(7,Y)) and

MED 4 = write(X +Y)

[37,4 <j £| £, such that M_, p |= outfac(2,X) and

Al,i <1 <[ X, such that M,,'p = ®outfac(7,Y)] and

[Fk,i <k <| X |, such that M, ,p |= write(X + Y]

& [M;,p | Soutfac(2, X) and M, p |= SPoutfac(7,Y)] and
M, p E Owrite(X +Y)

& M,,p | Goutfac(2, X) A SPoutfac(7,Y) A Owrite(X +Y)

t 4+ ¢

4

The last intermediate property we shall use is the following
P, — BBYX, R, Z(outfac(X, R) — B-(Poutfac(X,Z) AR # Z)) (4.4)

The proof of 4.4 is trivial; the property follows by definition from R,.
From (4.1)-(4.4), along with some trivial logical reasoning, we get the desired
result:

=P, — Owrite(2! + 7!) (4.5)

To see this intuitively, observe that, due to property (4.4), no two outfac events
with the same first argument can have different second arguments. Given this fact,
and the fact that property (4.1) implies ®outfac(2,2!) while property (4.3) implies
Soutfac(2,X), it follows that the only possible value for variable X is 2!. Using
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similar reasoning, it is easy to see that Y must be 7!. This, of course, implies (by
property 4.3) that we have Owrite(2!47!).

The approach to proving program properties used above is not the only approach
possible. Indeed, although straightforward, directly utilizing the semantic definitions
of the logical operators to prove properties of programs often results in proofs that
are long and cluttered with low level details involving index manipulations and the
like. An alternative approach is to develop a proof theory for an appropriate subset
of DSL and use the rules and axioms of the proof theory to prove program properties.
Such a proof theory would facilitate shorter more abstract proofs. The development
and presentation of such a theory, however, is outside the scope of this thesis and is

the subject of future research.

4.3 Summary

In this chapter we have compared NETLOG to other approaches for distributed logic
programming and highlighted some of the distinguishing features of the language. The
spatial (and temporal) operators of NETLOG permits many distributed computations
to be specified in terms of familiar concepts, such as place and time, that reflect our
natural intuition. That NETLOG has a well defined semantics and does not include
any “extra-logical” constructs or features allows us to formally reason about and
prove interesting properties of NETLOG programs.

In the next chapter we will formalize the execution of NETLOG programs by

giving a Plotkin style operational semantics for the language.
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Chapter 5

Operational Semantics

In this chapter we give a formal operational semantics for NETLOG. The intuitive se-
mantics of NETLOG was given in terms of the constraint based event model (CEM).
The formal operational semantics we present in this chapter is different in spirit and
more suited to practical implementations. In particular, we present a structural oper-
ational semantics for NETLOG (in the style of Plotkin[Plo81,P1083]) which expresses
the relationship between the execution of a NETLOG program and the formal models
presented in chapter 3. Specifically, the successful evaluation of a NETLOG program
P results in a model M which satisfies P (i.e., M,,p |= P for some ¢ and p).

We also prove the soundness of our operational semantics and illustrate how the

semantics can be used to reason about the execution of NETLOG programs.

5.1 Abstract Syntax

The abstract syntax for NETLOG programs is shown in figure 5.1. An informal
account of the meaning of the syntactic constructs of the language was given in
chapter 2; we do not repeat the exposition here to avoid redundancy.

In addition to being syntactically well-formed, a legal NETLOG program also

satisfies the (static) condtion that the first event in a multi-use event descriptor is

67
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K € Bcon Basic constraints

E, € Uat User-defined atomic events
E, € Bat Built-in atomic events

E € Uat U Bat

(Program)
(Rules)

(Actions)

(Sequential Actions)

(Basic Actions)

(Constraints)

(Single-use Event Handler)
(Single-use Event Descriptor)
(Multi-use Event Descriptor)

P € PGM
R € RULE

A € ACT

S € SACT

G € GACT ::

C € CONS

W € WSHAN
B € BDESC
H € HDESC

{R} assert A
H=S

|lH =c

| R1,R2

| ©s

| S1582

E

| NEARBY E
| ®E

| ©E

| BE

4e

K

| K UNTIL B
| @K

| Oc

S ATNEXT B|W;V--- VW,
GIA-- AG, n>1
EAEIA-+-AE, n20

Figure 5.1: Abstract syntax of NETLOG




CHAPTER 5. OPERATIONAL SEMANTICS 69

always a user defined event while the remaing events (if any) are built-in events.

5.2 Semantics

In this section we define the operational semantics of NETLOG — that is, the
effect of executing syntactically correct NETLOG programs. Our operational se-
mantics is specified using transition systems in the Structural Operational Style of
Plotkin[Plo81,P1083] (see also Hennessy[HP79]). In the structural operational ap-
proach the semantics of a program is given in terms of the transitions it can make
from one configuration to another. The execution of a program is then modelled by
a finite or infinite sequence of configurations which represent successive observable

states of the program’s execution.

5.2.1 Configurations

In the structural operational approach, configurations typically consist of a syntac-
tic component that represents the program text to be evaluated and one or more
additional components that represent the contest for evaluating the text. The config-
urations in our setting contain two additional components, a model M and a process
P, as the context for evaluating the program.

Our informal understanding of the operational semantics of a NETLOG program
is as follows. The execution of a NETLOG program P will be understood as a
finite or infinite sequence Voo r Toy 20w+ 2 Tp 00 of configurations such that Toi ™ Toas
and — is the program transition relation. The initial configuration Ve, has the
form (A, M,,p) where A is the initial action of P, M gives the initial values for the
state and global variables! of P, and p is the origin process of the network in M.
An intermediate configuration T, has the form (A’,M;,p) where A’ specifies the

actions remaining to be executed and M’ records the events and values of state and

'In particular, M is an inital model with & = o, Z(5)(g) = @ for all s and ¢, and C(X) = L for
all global variables X. L represents an “undefined” value.
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global variables after k program steps have been executed. If execution terminates
in configuration 7, then v, = M', where M’ records the cumulative history of
events and values bound to state and global variables for the entire computation. In
particular, (A, M,,p) — (A',M:“,p) means in one step of execution of A, M is
transformed into new model M’ with A’ being the remainder of A to be executed.
If (A, M,p) — M’ execution of A transforms M into final model M’ and then
execution ends. (This imperative view of the execution of logic programs, where
a logic program is viewed as “acting” on a model., is discussed in more detail in
[BG88,BFG*89].)

In order to define the program transistion relation —, we first define the state
transition relation —. The state transition relation describes the effect of an indi-
vidual action (i.e., basic action, sequential action, etc.) on M. A (single) program
transition, on the other hand, describes the effects of concurrent actions, that is, the
effects of several individual actions simultaneously transforming M. Thus program
transistions model true concurrency and, as such, reflect the truly (synchronous)
concurrent model of execution embodied by NETLOG programs. Indeed, a single
program transition is realized by a sequence of transitions (or microsteps as they are
called in [BC84]) in the state transition system. Configurations in the state transi-
tion relation have the general form (A,V, M,,p), where V records the constraints
imposed on M during the k-th program step (the other components are as described
earlier).

Thus, in summary, we have the following domains and relations:

Yp: Ip=(Act x (M xR) x P)UM Program configurations
Ys: Ty =(Act xV x (M x R) x P) State configurations
—C (7p X ¥p) Program transition relation

SC (75 X 7s) State transition relation

Where V C (Bcon x Beon), R is the set of natural numbers, M is the set of all models,

and P is the set of all process identifiers.
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5.2.2 Notation and Auxiliary Definitions

In this section we define some notational conventions that will prove useful in pro-
viding a consise presentation of our transition rules. We also define several auxiliary
functions and relations that will be used in our presentation. The following notational

conventions will be used:

e 0, denotes the bindings for the set of global variables X = {X,,...,X_}. That
is, 0, = {T,/X,,...,T,/X,} where T},..., T, are ground terms. # denotes the

set of all such bindings.

o Af, denotes the formula derived from A by substituting T; for each occurrence
of X,in A.

o If A is a formula with global variables X,,...,X,, V(A) and 3(A) denote
VX,y. ., X, (A) and 3X,,...,X (A), respectively. Similarly, 36,(A) denotes
X,..., X, X, =T, A---AX, =T, AA)

® Mc,s, denotes the model M’ which is exactly the same as M except that C’
is defined to be C'(X) = if X € X then X4, else C(X). Similarly, Mz,.E,
where E = Q(T,,...,T,), stands for the model M’ which is the same as M
except that Z' is defined by Z'(u)(R) = if u = s and R = Q then I(u)(R)U
{(T,,...,T,)} else Z(u)(R).

o Function path(N,p,,p,) returns the shortest path from p, to p, in network N (the
function is undefined if p, and p, are not connected). Thus, if N=< L,P,'I5 >,
path(N,p,,p,)=¢* implies P(p,,£*) = p,.

o Relation A ~5 A’ is defined to be true if A’ is the same as A except that every
basic action in A is now prefixed by £ in A’. For example, let A = p(X)ASq(Y)
and A’ = £p(X) A ©q(Y), then A~ A,

Definition 5.2.1 The effects that follow from executing event E on model M is de-
scribed by the function “follows from”, Fllvs, (E,V,M,,p). The function returns
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a pair consisting of a new model M’ that satisfies E and actions A’ (i.e., the con-
tinuation) caused by E. In our semantics, this function provides the link with the
execution of the rules, {R}, of the NETLOG program.

Let Rmatch(E', EAE, A---AE, => A) = if match(E',E) = 0AE,0A---AE,0 then
Af else true and let action(E, {R,,...,R,}) = Rmatch(E, R})A- - -ARmatch(E, R).
(Note, R;. denotes a new copy of R;.) We define Fllus, as follows:

( (Otrue, M) if E, = true

(true, M')  if E, # true and B(E,, M,,p) = M’

| fail otherwise

[ (A, Mz, . oEr) if V=V, and

A = action(E/,{R})
Fllwsy(E,,V,Mi,p) = { Fllus,(E,6,Y,,(Mcw);,p) if V#V, and
C(E,,V,UV M, p)=6

A

Fllvs  (E,,V,M,,p) =

‘ fail otherwise
where E'=M_ _(E,)
V,=(9,0)

The above definition includes several primitive functions: B(E, M .y D) is a primitive
function that describes the effects of built-in (i.e., pre-defined) events E on model
M; it returns a new model M'. &(E,K, M., p) is a primitive function that performs
constraint checking and returns bindings 6, imposed by constraints K on the free (i.e.,

unbound) variables (if any) of E2.

5.2.3 State Transistion System

We now define the rules that describe the state transition system. In general, the
rules are structured so that the transitions for compound actions are specifed in terms

of transitions involving the immediate subcomponents of the compound action. The

29, is the empty binding if there are no unbound variables in E.
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rules themselves are largely self explanitory; therefore, we present each rule with

minimal commentary.

Basic Actions

In the transitions to follow, we will occasionally need to refer to the network and/or
processes associated with model M. In particular, whenever path(N,p,p’) and/or
p' € P appears in some transition rule, N refers to the network associated with M

and P is the set of processes. The transition rules for basic actions are as follows.

Local Event:
Fllws . (E,V, M,,p) = (A, M)
(E,V,M,,p) = (A", V, M, p)

If event E satisfies current constraints V, causes actions A’, and transforms model

(5.1)

M into M’ then execution continues by executing actions A’ on model M’.

Somewhere:

P' € P’ path(N,p,p’) = e.’ (e.E’ V, an) — 7,
(®E,V,M,,p) = 7,

Action ©F has the same effect as executing E on some p’ accessible from p (this,

(5.2)

of course, includes p since p is trivially accessible from itself).

Elsewhere:
P €P, p#p, path(N,p,p) = £, ((’'E,V,M;,p) < 1,
(QE’ V’ Mi’p) — 7‘
Action OE has the same effect as executing E on some p' accessible from p, other

than p itself (i.e., p # p').

(5.3)

Nearby:
A= Al..eLp Z'-E, (A) _V) an) = 7,
(nearby E,V, M,,p) < 7,

(5.4)
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where L, = {£| p’ € P A path(N, p,p') = £}

Action nearby E has the same effect as executing E on each p’ adjacent to p.

Everywhere:
A= At'?GLp E:Ea (A’V7Miap> — 7,
(BE,V,M,,p) = 7,
where L, = {£* | p’ € P A path(N, p,p') = £}

Action BE has the same effect as executing E on every p' accessible from p (which,

(5.5)

of course, includes p itself).

Directed Event:

P’ € P, pa'th(va,p,) ={, A "l’) A,7 (G7V’an’) — (A)V,aM:’p,)
(G, V,M;,p) = (A", V', M}, p)

(5.6)

Action £G has the same effect as executing action G locally on p’ reached by
moving along link £.

Note, action A has origin p’ since in the antecedent transistion the reference point
(i.e., origin) shifts from p to p’. Consequently, action A’ is the same action as A but
with respect to the original orign p. For example, if A = d(1) then, with A 4 A, we
get A’ = £d(1). Since from p moving along link £ we get back to p’, action A’ has the

same effect as action A.

Constraints

The transition rules for constraints are described below. It is worth noting that there
are no transition rules for constraints of the form OC. The reason for this should be
intuitively clear, namely, such constraints refer to the following state rather than the
current state; thus, no rules are needed for such constraints.

To capture the behavior of temporary constraints (i.e., constraints that only hold

until some condition is satisfied), the constraints V = (Vo Vp) imposed on model
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M consists of two parts: V, represents the (permanent) unconditional constraints

on M, and V., represents the tentative (i.e., temporary) constraints on M.

Not:
M, p EV(K)
(K, V,M,,p) — (true, V', M, p)
where V' = (V,V, U {K})
After verifying that M satisfies K, the constraint K can be added to the set of

(5.7)

unconditional constraints on M.

Until:
K ¢V, My,p - Y(K) A=3(B) .
(K UNTIL B,V, M,,p) < (K UNTIL B, V', M,, p) (58)
where V' = (VT U {K},VP)
M;,p E3(B) (5.9)

(K UNTIL B, V, M, p) < (true, V', M, p)

where V' = (V. — {K},V,,)
If M satisfies K and condition B is false, add K to the tentetive constraints on
M (if it has not already been added). When condition B becomes true, K is removed

from the set of constraints on M.

Always:
<K A OEK’ V’ Ml”p) — 7‘
(EK,V,MHP) =1,
Constraint K holds for model M if constraint K holds now and constraint @K

(5.10)

holds next time (if there is a next time).

Sequential Actions

The transistion rules for basic actions have already been given. Thus, we need only

give the rules for the remaining categories of sequential actions. Note, however,
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for similar reasons to those discussed in the previous section there are no rules for

sequential actions of the form ©S.

Atnext:

Intuitively, action S of an atnext construct is executed as soon as there is some col-
lection of events matching (i.e., satisfying) condition B. Note, these matching events

also generate bindings for the free (i.e., undefined) variables, if any, of B.

C(X) = -_L, M;,p E 30:(13)

(Satnext B,V, M,,p) < (S,V, M!,p) (5.11)

where M’ = Mc,q,

The semantics of event matching can be characterized formally as the condition
that M satisfies B for some binding 8 of the free variables (if any) of B; S is then
executed in the model M’ in which the free variables have the values determined by

0. The above rule reflects these ideas.

(WUV’MHP> — 7,
(Wl V WZ’v,M"p — 7‘
(w2 VW]7V’Mi’p — ’7'

(5.12)

The disjunctive atnext construct has the same effect as executing any (single)

one of its disjuncts.

Sometime:

(S, V,M,,p) = 4,
(QS‘)V’MHP) — 7-

(5.13)

Sequential action ©S can be executed now, if action S can be executed.
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Chop:

Without loss of generality, it is sufficient to consider only sequential actions that begin

with either a basic action or an atnext construct 3. We treat each case seperately.

(G’V)an) — (AI) VI)M:-,p)
(G;S,V,M,,p) = (A’ AOS, V', M, p)

(5.14)

(W,V,M,,p) = ($, V', M;, p)
(W;8,V,M,,p) = (§;5,V', M, p)

The action A’, caused by basic action G, executes in parallel with the remaining

(5.15)

sequence S. Notice, S is executed at some future time (which, of course, could include
the present). In contrast, the sequential action S’ resulting from the execution of W
executes in sequence with S.

Actions

The transistion rules for constraints and sequential actions have already been given.

All that remains is to specify the rules for concurrent actions.

And:

(A,,V,M“P) — (AI,’V”M:J’) (5 16)
(A, AA,V, M, p) < (AL AA,, V', M., p) '
(Az AAnVaM;aP) — (Az AA;aV”M:’p)

The individual actions comprising a concurrent action can be executed in any

order (i.e., standard interleaving semantics). .

5.2.4 Program Transistion Relation

Having defined the state transition relation, we can now proceed to define the program

transition relation. We will make use of the following definitions.

®In particular, due to the equivalences (©S,);S, < ©(S, ;S,) and (®S,);S, & O(S, ;S,), we
can always rewrite a sequential action so that first action is never of the form ®S, or &S,
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Definition 5.2.2 The predicate halt is defined as follows:
— halt(QA) holds;
— If both halt(A,) and halt(A,), then halt(A, A A,) holds.

M,,
Definition 5.2.3 We define the nezt step relation, written A —3 A’, to be the least

relation closed under the following rules:

- ocCc M oc
M.p

- OS5 — S

- o8 Y 5e8

SatnextB 1 O(SatnextB) if M,,p | -3(B)
P

KuntilB % @(KuntilB)  if M,,p k= V(K) A ~3(B)
- A AA, TEOAUAA] ifA, S A, j=1,2

The predicate halt and the next step relation are similar to the termination func-
tion and ezpansion step relation used in [BC84]. The predicate halt is used to detect
when a computation has reached termination (i.e., the actions that remain only apply
if there is a next step). The next step relation expresses the conditions under which
an action A is considered complete for the current excution step, that is, any actions
that must be executed in the current step have been executed; It also expresses the
continuation A’ (i.e., strict future-time formula) of action A that must be executed
in the next step of the computation.

In addition to the above definitions, for action A =S, A--- A S;ANC,A---AC,,
we use the abbreviation ®"A to denote O"S, A---AO"S; AO"C, A--- AO"C,*.

Program transistion rules

We are now in a position to define the rewrite rules for the program transition relation.
Let v, and 'y; be program configurations. We define the program transition relation,

¥, — 'y;, to be the least relation closed under the following rules:

4Recall, O™ (resp. O") stands for n occurrences of ® (resp. O). For example, ®°A = A and
O’A=00A.




CHAPTER 5. OPERATIONAL SEMANTICS 79

halt(A"), (A, Ve, M,,5) " (A, V', M., p)
(eiAaan> — M’

(5.17)

[ [} M" " [} [} [
-halt(A"), A" 25 @A", (A, Ve, M,,p) —* (A", V', M’, p)
(@A, M,,p) — (®H1A", M}, ,p)
where M" = M, iz 20d V, = (8,0).

The first transition rule says that if the actions in A can be executed in some

(5.18)

sequential order resulting in halted action A’ and model M’, then in the i-th step of
the program action @*A transforms M into M’ and execution ends. The second rule
 is similar but deals with the continuation case. The primitive function nstate(Z, P)
returns a new distributed state o to be appended to ¥ for the set of processes P. For
¥ = (o0,...,0%,0), the new state o satisfies the property o(p) # o,(p) for all 7 < k
and p € P.

5.3 Example

Our transition system can be used to reason about the operational behavior of NET-
LOG programs. For example, consider the following (not particularly meaningful)

program:

{ a(X) = 0%c(X),
b(X) = 0-¢(X)
}

assert
Ba(1) A b(1)

Let M be the initial model with ¥ = o,, Z(s)(q) = § for all s and ¢, C(X) = L
for all X, and N a dyadic network with origin p,. A possible execution sequence for
this program is the following (the numbers in braces identify the state transition rules

used to derive each program transition):
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(Ba(1) Ab(1), M,,p,) — (O@@rightc(1) A @%c(1) AO-c(1), M., p,) {5.1,5.5,
5.6,5.16}

— (00 %c(1),M,,p,) {5.1,5.6,

5.7,5.13,5.16}

— M" {5.1,5.13)

where T'(0(p,))(2) = I'(0,(p,))(b) = {(1)},Z(05(ps))(c) = ,T'(0,(p,))(a) =
{1} T (04(p.))(b) = T'(0,(p,))(c) = 0,C" = C[1/X1,1/X2,1/X3] (X1, X2, and X3
are the new names for X resulting from generating fresh copies of each rule),and £’ =
E.0,. Similarly, I'(0,(p,))(2) = I"(0,(p,))(b) = I"(c,(p,))(c) = 8,T"(0,(p,))(2) =
I"(o,(p,))(b) = 0,Z"(a,(p,))(c) = {O},¢"=C,and &" = ¥'.0,. Finally, I"(a,(p,))(a) =
I%(0,(P))(b) = 0,T"(0,(ma))(c) = {()}, T"(0,(p))(2) = T" (0, (p,))(b) = T" (0, (p,))(c) =
0,C" =C" and " = %",

5.4 Properties of the Operational Semantics

We now state some important properties of our transition systems. In particular,
we prove the soundness of NETLOG program derivations (i.e., execution sequences
based on NETLOG program transitions). Intuitively, we show that, for any NETLOG
program P, a successful terminating execution sequence for P results in a model M
which satisfies P. More specifically, M,,p = P, (for some p) and P is the DSL formula
denoted by program P.

We begin by stating two basic properties of the state transistion system.

Theorem 5.4.1 For any NETLOG program P containing rules R = {R,,...,R,},
and configurations v, = (A,V,M,,p) and v, = (A, V’,M:,p), if 4, — 7. then
M, p Fr A’ < A,

Proof: The theorem holds vacuously if M :, pF I_{J. for some B,- € R. Therefore,
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we need only show that the theorem holds when M:,p = R forall R, € R. We
prove the theorem by structural induction on 7,.
Base case. For the base case we must show that our assertion holds when A is

either a basic action, a constraint, or an atnext formula.

e Basic actions (G)

A = E. This case is defined by transition (5.1). From (5.1) it is easily es-
tablished that (E,V, M,,p) — (A, V', M;,p) iff M,,p |= E. Hence, it
follows that M:,p |=& A’ — E. To show that M:,p }=B_ E — A’, we need
to consider individually the cases of E a built-in atom and E a user defined
atom. If E is a built-in atom then A’ = true and it follows trivially that
M:,p Fa E— A’ If E is a user defined atom then A’ = A; A--- A A,
where A, = true or A; is the body of rule R,. For A, = true, clearly
M:,p Fa E — A,. In the other case, A, is the result of E transforming
M to M’ such that M:,p = H, for rule R, = H; == A,. Since we have
both M:,p = H, and M:,p ER, M:,p |= A, follows by universal instan-
tiation and modus ponens; hence, M:, p g E — A,. Since for each A,
Jj=1n, M:,p s E — A, it follows that M:.,p Fa E= A A AA
that is, M:,p Fa E— A

A =nearbyE, A = OE, A = 9E, A = BE, A = {G. The remaining cases

can be proved in an analogous manner. We omit the details.
¢ Constraints (C)

A = K. By transition (5.7) it follows that (K,V, M,,p) < (A’ V’,M:,p) iff
A’ = true and M:, p = K. Since A’ is true in any model M, the assertion
M., p |z, K & A’ follows immediately.

A = Kuntil B. From transitions (5.8) and (5.9), it is straightforward to es-
tablish that (KuntilB,V,M,,p) — (A, V', M., p) iff (A’ = true and
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M:,p = B) or (A’ = Kuntil B and M;,p E K). In each case, M;,p Fr

KuntilB < A’ follows immediately.

A = BK. From transitions (5.10) and (5.16), we get (3K, V, M,, p) < (A, V', M, p)
iff A’ = true A OGK and M:,p E K. Clearly, M:,p Fr K — A’. Now,
since M, p |= K, it follows that M, p [=x A’ — BK and we are done.

o Atnext (W)
A = Satnext B. By transition (5.11) we get (Satnext B, V, M,,p) — (A, V', M:,p)
iff A’=S and M:,p = B. Hence, the assertion M:,p Fn SatnextB & A’

follows immediately.

A =W, VW,. By transition (5.12) we get (W,VW,, V, M,, p) — (A/, V', M:,p)
iff (W, V,M,,p) — (A, V’,M:,p) for some j € {1,2}. By induction on
W, it follows that M:,p Fx W, & A’ and M:,p Fy, W, VW, & A’ !

follows by the monotonicity of disjunction.

Inductive case. For the inductive case we must show that the theorem holds when A

is a compound action.

A=W;S5, A=G;S, A = 9S. From the definition of transition (5.14), (W;$, V, M, p) —
(A',V',M:,p) iff A’=5";S and (W,V,M,,p) — (S',V',M:,p). By the in-
ductive hypothesis, M:, p Ex W & &' from which it immediately follows that
M :, P Ex W;S & A’. Similarly, the proof of A = G;S and A = 9§ also follows
immediately from the inductive hypothesis. We omit the details.

A=A, AA,. By transition (5.16) we get (A, A A,,V,M,,p) — (A, V', M, p) iff
A" = A, ANA; and (A, V,M,,p) < (A}, V', M,p) for some j € {1,2}.
Hence by the inductive hypothesis, we have M, p Fr A; & A:. and M;,p =

A, AA, & A’ follows by the monotonicity of conjunction.
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Corollary 5.4.2 For any NETLOG program P containing rules R = {R,,...,R,},
and configurations v, = (A,V,M,,p) and 7: = (A’,V',M:,p), if v, —* 7: then
M:,p Fp A" & A,

Proof: Follows from the corresponding theorem by induction on the length of the
state transition sequence.
The following theorem, along with its corollary, establishes the soundness and

partial correctness of NETLOG program derivations.

Theorem 5.4.3 For any NETLOG program P containing rules R = {R,,...,R,},
and configurations v, = (A, M;,p) and 7; = (A’,M:,p), ify, — 7; then M:,p =
A’ & A. Furthermore, if v, — 7; and 7; = M’ then M:,p FaR, A---AR, AA

Proof: The proof follows from corollary 5.4.2 using structural induction on +,.

Corollary 5.4.4 Let P be a NETLOG program with rules R = {R,,...,R,} and
initial action A. Let v, = (A, M, p) be the initial configuration for P, and let 7; =
(A',M;,p) be a subsequent configuration, if v, —* 7; then M;,p Fn A" & A,
Moreover, if v, —* 7; and 7; = M; then M;,p ER A--- AR, AA.

Proof: Follows from theorem 5.4.3 by simple induction on the length of the execution
sequence.

Although not surprising, corollary 5.4.4 establishes that interesting (non-trivial)
properties of NETLOG programs can be shown to hold merely by reasoning with the
model theory underlying the program. Indeed, examples of such reasoning were given

in chapter 4.

5.5 Summary

A formal operational semantics for NETLOG has been presented and its soundness

proved. The operational semantics could be used as the basis for implementing an
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interpreter for the language. The rules themselves are somewhat more complex than
those for conventional logic languages, but this is hardly surprising given that NET-
LOG contains many new constructs and features that have no counterpart in conven-
tional languages.

The remainder of this dissertation is devoted to giving programming examples
and describing the implementation of NETLOG. Although we will be informal in our
description, the precise meaning of all of the examples given in this dissertation can

be understood using the formal semantics presented in this chapter.




Chapter 6

Further Examples

In this chapter we illustrate how NETLOG may be used to solve a number of familiar
problems. Our aim is not necessarily to present the most concise solutions to the
problems described or the most efficient — rather, our goal is to convey some idea of
the utility and capability of the language. In so doing, we hope to give an indication

of the kinds of problems for which the language seems suitable.

6.1 Example 1: Snow White and the Seven Dwarfs

A distinctive characteristic of many problems in distributed Al is the presence of one
or more objects that exhibit intelligent behavior. To give an example of how a simple
problem of this kind may be expressed in NETLOG, we consider the problem of Snow
White and the Seven dwarfs[FB91]. The problem description is as follows.

Snow White has a bag of sweets. All of the dwarfs want sweets, though some of
them more than others. If a dwarf asks Snow White for a sweet, she will give him
one, but maybe not straight away. Snow White is only able to give away one sweet

at a time. Each dwarf has a particular strategy that it uses in asking for sweets:

Eager initially asks for a sweet and, from then on, whenever he receives a sweet,

asks for another.

85
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Mimic asks for a sweet whenever he sees eager asking for one.
Jealous asks for a sweet whenever he sees eager receiving one.
Insistent asks for a sweet as often as he can.

Courteous asks for a sweet only when eager, mimic, jealous, and insistent have all

asked for one.

Generous asks for a sweet only when eager, mimic, jealous, insistent, and courteous

have all received one.
Shy only asks for a sweet when he sees no one else asking.

Figure 6.1 shows one way to solve this problem in NETLOG (recall, the nota-
tion £" stands for n occurrences of £. For example, left? stands for left left.). For
concreteness, we assume our solution is intended for a network having the topology
shown in figure 6.2. As can be seen from figure 6.1, Snow White and the Dwarfs
communicate with each other by broadcasting messages across the system. Requests
to Snow White are represented by events of the form ask(d), where d is the name
of the requesting dwarf. Similarly, Snow White gives a sweet to a particular dwarf
through events of the form give(d), where d is the name of the receiving dwarf.

In contrast to the solution given in [FB91}, the NETLOG solution has the property
that the pattern of communication between the entities in the program is explicitly
reflected in the NETLOG specification itself. This explicitness facilitates reasoning
about the correctness of the solution. Indeed, reasoning about the communication
within a distributed program can often be one of the most difficult aspects of under-
standing its behavior. Furthermore, the NETLOG solution makes it clear that the
computation is to be distributed across the entire network, one object (i.e., fairy tale
character) per processor. An important advantage of being explicit about such mat-
ters is that one can specifically rule out any trivial or unanticipated implementations

(e.g., mapping all the objects to just one processor!). This issue is ignored in [FBI1].
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{ dwarf(eager) => ©Bask(eager) ; wait give(eager) ; dwarf(eager),
dwarf(mimic) = wait ask(eager) ; Bask(mimic) ; dwarf(mimic),
dwarf(jealous) = wait give(eager) ; Bask(jealous) ; dwarf(jealous),
dwarf(insistent) => ©Bask(insistent) ; dwarf(insistent),

dwarf(courteous) = ®Bask(courteous) ; dwarf(courteous),

dwarf(courteous) = —ask(courteous) until ask(eager) A
—ask(courteous) until ask(mimic) A
—ask(courteous) until ask(jealous) A
—ask(courteous) until ask(insistent),

dwarf(generous) => ®Bask(generous) ; dwarf(generous),

dwarf(generous) =>-ask(generous) until give(eager) A
—ask(generous) until give(mimic) A
—ask(generous) until give(jealous) A
—ask(generous) until give(insistent) A
—ask(generous) until give(courteous),

dwarf(shy) => ©Bask(shy) ; dwarf(shy),
dwarf(shy) = B-(ask(X) A ask(shy) A X#shy),

snowwhite(X) = wait ask(X) ; Bgive(X) ;snowwhite(X),
constraint(snowwhite) => E-(give(X) A give(Y) A X#Y),
}
assert
left dwarf(eager) A left? dwarf(mimic) A left® dwarf(jealous) A
left! dwarf(insistent) A left® dwa.rf(courteous) A left® dwarf(generous) A
left” dwarf(shy) A snowwhite(eager) A -+ A snowwhite(shy) A
constraint(snowwhite)

Figure 6.1: Snow White and the Dwarfs on a ring.
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Figure 6.2: An 8-processor ring.

6.2 Example 2: Bounded Buffer message Com-

munication

Interprocessor communication based on message passing primitives such as send and
recv have been used widely in imperative languages for distributed computing (see for
example [Hoa78]). Abstractly, we can view the sender and receiver as being connected
by a channel along which messages are sent between the two. Messages sent by the
sender are stored in a finite or bounded buffer at the receiver’s end of the channel.

Thus, in order to avoid message overlays, messages can only be sent if the message
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buffer is not full.

Many concurrent logic languages for distributed programming rely on data struc-
tures called streams'[Cia92] to (indirectly) model a sequence of messages sent via
some channel. NETLOG, however, does not permit the use of streams. It is inter-
esting therefore to see how message passing can be expressed in our language. The
approach we take is to simulate the behavior of the channel by specifying how its
state changes as a result of send and recv (the interested reader is encouraged to
explore other ways of representing message passing in NETLOG).

Specifically, in this example we show how the behavior of two message passing
threads, which communicate via a 1-bounded communications channel (i.e., the mes-
sage buffer can hold at most 1 message), can be specified in NETLOG; specifying
an N-bounded channel is equally straightforward. The two threads, odd and even,

cooperate to compute the squares of the natural numbers according to the formula
K*=(K-1)>+(2K -1) K>0

In our example, we assume the threads are executing on processor p; and processor
pe of the cube architecture shown in figure 6.4. The corresponding program is shown
in figure 6.3.

The thread odd computes successive odd numbers starting with 1 and sends them
to even. Thread even writes the current square and then computes the next square
in the sequence by adding the odd number received (from thread odd) to the square
just written. Events send(X,a) and recv(X,a) represent the sending and receiving,
respectively, of a message X on channel a. The state of the channel is represented by
events of the form chan(Buff,Id), where Id is the name of the channel and Buff is
the buffer.

Constraints are used to stipulate that a recv cannot be performed if the buffer is
empty and that a successful recv always returns the current contents of the buffer.

Similarly, a send cannot be performed if the buffer is full.

1A stream is an incomplete list whose “tail” is an unbound variable
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{ 0dd(X) = send(X,a);0dd(X+2),
even(Y) = write(Y);recv(X,a) ;even(X+Y),

chan(Buff,Id) = [ chan([],Id) afternext recv(X,Id) V
chan([X],Id) afternext east northsend(X,Id) ],
chan(Buff,Id) = (-recv(X,Id) if Buff#[X] A
—(east north send(X,Id) A Buff#£[])) until chan(Bufl,Id) A Bufl #Buff
}

assert
chan([],a) ;even(0) ; east north odd(1)

Figure 6.3: Bounded Buffer Communication on a 3D-Cube.
6.3 Example 3: Airline Reservation System

Many distributed applications are by nature reactive. That is, instead of simply
reading a set of inputs and producing, on termination, a set of outputs, reactive
systems maintain an ongoing interaction with their environment and usually do not
terminate[FB91]. Reactive systems are notoriously difficult to characterize and model
formally[LL87].

A well known example of a reactive system is an airline reservation system[BD82].
An airline reservation system can also be viewed as an instance of the readers/writers
problem since its operation involves synchronizing the reading and updating of flight
information. The reservation system we describe is a simplified system composed of
an airline database and a collection of agencies. The database is accessed concurrently
by the agencies.

The airline database maintains several flights, each of 300 seats, and can recognize
two kinds of requests: info and resv. An info request for flight number £ returns the
current number of available seats for the flight specified. Similarly, a resv request
for flight number f reserves n seats on the flight specified, if sufficient seats are
available. In particular, a positive acknowledgment, ack, is returned if sufficient seats

are available and a negative acknowledgment, nack, is returned if there are not enough
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S
Figure 6.4: 3-D Cube of processors.

seats. Each agency reads a request from the user and queries the airline database.
Upon receiving a reply from the database, the agency prints the reply and repeats

the cycle By reading the next request.

Let us consider the distributed system shown in figure 6.6, a fairly natural topology
for an airline reservation system. Typically, the airline database would reside on the
“hub”, that is, the central node, while the agencies execute on the satellite nodes.
This distribution of the components of the airline reservation system is reflected in
the NETLOG specification shown in figure 6.5. Although oversimplified and therefore

not a realistic reservation system, the program does show the kernel of a possible



92 CHAPTER 6. FURTHER EXAMPLES

more realistic system. Several queries, directed at different flights, can be processed

{ agency(Id) => read(C);
dblink query(1d,C);
wait dblink reply(Id,R);
write(R); ' |
agency(Id),
db(F,S) = [ db(F,S) ; reply(1d,S) afternext query(Id,[info,F]) V
db(F,S) ;reply(Id,nack) afternext query(ld,[resv,F,N]) A S<N V
db(F,S-N) ; reply(Id,ack) afternext query(Id,[resv,F,N]) A S>N |,

airsys = db(101,300); - - - ;db(109,300) ; nearby agency(Pid’),
airsys = [-(query(I1,[X1,FIZ1]) A query(12,[X2,F1Z2]) A 11#£12)

assert
airsys

Figure 6.5: Distributed program for simplified airline reservation system.

concurrently; however, only one query for an individual flight is allowed at any one

time. This ensures that any updates to the flight information are properly serialized
and that the most up to date information is always returned when requested. This
restriction is reflected in the constraints associated with the system. (Note, Pid’
is a predefined state variable that contains a unique constant which identifies the

executing processor.)

6.4 Example 4: Implementing LINDA in NET-
LOG

NETLOG is sufficiently versatile that it can be used to simulate the features of
other distributed programming models. We have already shown how message passing

programs can be expressed in NETLOG. In this example we show how NETLOG can
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Figure 6.6: A star network.

be used to model LINDA[Gel85,Car87b]?, a programming model centered around the
concept of a Tuple Space (TS).

Tuple Space (TS) is conceptually a global shared memory accessible to every pro-
cess. The elements of TS, called tuples, are ordered sequences of values. Three atomic
actions are defined on TS: out(t) which adds a tuple t to TS, in(t) which removes
from TS a tuple matching t (any variables in t are updated with the corresponding
values of the deleted tuple), and read(t) which is like in(t) except that the match-
ing tuple is not removed from TS. For operations in(t) and read(t), if there are no
matching tuples the operation blocks until another process adds a tuple that does
match.

Figure 6.7 shows a NETLOG program that models LINDA and its associated
operations. In our model, TS is replicated on all the nodes in the network. An
out(t) operation causes an add tuple request req(add,t) to be broadcast to all
the processors so that they can add tuple t to their copy of TS; similarly, an in(t)

operation causes a delete tuple request req(del,t) to be broadcast which results in

2We do not include the LINDA operation eval in our model since it is used primarily for process
creation rather than communication.
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tuple t being deleted from each copy of TS. (Note, the function L, + +L; adds the
elements of L, to L, and returns the result; similarly, the function L;//L; deletes the
elements in Ly from L; and returns the result.)

The conditional constraints associated with TS stipulate that an in(t) or rd(t)
operation cannot occur unless there is a matching tuple currently residing in tuple
space. The permanent constraints placed on the LINDA system stipulate that at
most one in(t) or one out(t) can performed at any given instance of time. Note,
however, there are no constraints on the number of rd(t) operations that can occur

provided, of course, there are matching tuples in tuple space. This example illustrates

{ in(T) = Ereq(del,T),
out(T) = Breq(add,T),
ts(Ts) = (-in(T) if T¢Ts A -rd(T)if T¢Ts) until ts(Tx) A Tx#Ts,
ts(Ts) == [ ts(Ts//[T]) afternext req(del,T) V
ts(Ts++[T]) afternext req(add,T) ],
linda(Ts) = ts(Ts),
linda(Ts) => B( ~( in(X) A out(Y) ) A
—(in(U) A ®in(V) ) A
=(in(U) Ain(V) A U#V ) A
—( out(S) A ®out(T) ) A
~( out(S) A out(T) A S#T))
}

assert

Blinda([])
Figure 6.7: Model of LINDA in EVENTLOG.

further how a replicated database can be specified in NETLOG.

6.5 Example 5: Computing primes

As our final example, we show how the model of LINDA given in the previous
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{ master(I,N) A I<N = out({int,I]) ; master(I+1,N) ;rd([int,I,R]) ; print(I,R),
master(I,N) A I=N = out([int,I]) ; rd([int,I,R]) ; print(I,R),

worker = in([int,I]) ; prime(L,[2,...,sqrt(1)]),

prime(I,[]) = out([int,I,prime]),
prime(I,[NINs]) A I%N=0 = out([int,I,notprime]),
prime(I,[NINs]) A I%4N#0 = prime(I,Ns),

print(I,prime) => write(I),
print(I,notprime) = true,

out(T) = - --
in(T) = .--

linda(Ts) = - --

}

assert
Blinda(([]) ; Max=2000 ; master(2,Max) ; Bworker

Figure 6.8: Computing primes using Linda.

example may be used to write a distributed program to compute all the prime numbers

between 1 and Max. The program to accomplish this is shown in figure 6.8.

The program is based on the master/worker(s) paradigm[CG89)] in which the
master creates a number of tasks for the worker(s) to perform. When the work (i.e.,
tasks) has been completed, the master then gathers the results. In our example, the
master initially creates a tuple of the form [int,I] for each number in the range 2
to Max. The worker(s) withdraw these tuples from TS and replace them with tuples
of the form [int,I,R], where R is either prime or notprime. These latter tuples are

then input by the master and only the integers marked prime are printed.

The worker(s) determine if integer I is prime by verifying that no integer between

2 and the square root of I is a divisor of I. The notation [I,...,J] denotes the list
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expression that generates the list of consecutive integers from I to J, that is, the list
(LI+1,I+2,...,J]. The function sqrt(I) is an integer function that returns the smallest
integer greater than the square root of I. The symbol % stands for the mod function.

As this example illustrates, program specifications may be composed easily in
NETLOG. Typically, all that is required is to combine, into a single body, the bodies
of the programs to be composed. The initial assertions are then merged appropriately
to form the initial assertion of the final program. This is essentially what was done

in our example.

6.6 Summary

This chapter illustrated how a variety of well-known problems may be expressed in
NETLOG. The NETLOG solutions to these problems covered distributed architec-
tures with a range of network topologies. The examples included problems based on
distributed Al, (simulated) message passing communication, distributed (replicated)
databases, and others. Collectively, these examples covered both transformational

and reactive systems.



Chapter 7
Implementation

In this chapter we address the issue of implementing NETLOG. We describe an imple-
mentation that can be used to implement the language on any network of processors
but is most suitable for tightly coupled distributed memory machines. The imple-
mentation strategy is based on the NETLOG Abstract Machine (NAM), a particular
virtual machine which realizes the constraint based event model of computation. At
runtime, each processor in the network emulates an instance of the NAM. A NETLOG
compiler is used to translate NETLOG programs into sequences of abstract machine
instructions that execute on this network of (virtual) NAMs.

In the following sections, we describe the compilation process, the design of the
NAM, and the experimental results obtained from the simulation of several NETLOG

programs.

7.1 Compiling NETLOG programs

In this section we describe the compilation process for NETLOG programs. The
NETLOG Abstract Machine (described in detail in the next section) is the target
machine for our compiler. The NETLOG compiler translates source programs into

object programs consisting of sequences of NAM instructions. The instruction set

97
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Source Program »——

Parsing and Intermediate
Code Generation

Transformations

Code Generation

——— Object Program

Figure 7.1: Stages of the NETLOG compiler.

of the NAM includes instructions to create (i.e., cause) events, define event descrip-
tors, and search for matching event collections (for a particular event descriptor).
The instruction set also includes more general instructions which schedule the event

handlers and cause messages to be sent to, and received from, other processors.

The compilation of NETLOG programs can conceptually be divided into three

stages as shown in figure 7.1. The first stage of the compiler performs lexical analysis,
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parsing, and the generation of the intermediate form of the program. The second
stage performs a simple global analysis of the program to obtain information needed
in the code generation phase. During this stage, we also perform several source-to-
source transformations on the intermediate form. These transformations are applied
to transform the intermediate program into a form which is suitable for generating
NAM code. Several optional transformations may also be applied to improve the
final object program. The third and final stage of the compiler is the code generation
stage. During this stage, the intermediate program is translated into a sequence of
(abstract) machine instructions for the NAM. These abstract machine instructions
are actually encoded using C-macros[{Tay89,GH79]; thus, the output of our compiler
is really a C program which is subsequently compiled into an executable load module
using the local C compiler.

Throughout the following description, we shall use the factorial program given
earlier (see figure 2.1) as the source program to illustrate the effects of various stages

of the compilation process.

7.1.1 Stage 1: Source program to intermediate form

The first stage of the compiler performs lexical a.na.lysisia.nd parsing of the source
program. This results in the source program being converted into an intermediate
form. The intermediate program has essentially the same structure as the source
program except that constructs in extended syntax are expanded into their equivalent
base language statements and a unique label is associated with each (multi-use) event
handler; thus, a simple syntax directed translator is used to translate the source
program into the intermediate program. An example of the output produced by this
stage of the compiler is shown below (see figure 7.2).

Notice that the initial statement is converted into several pseudo event handlers,
thereby making the intermediate program uniform throughout. These event handlers

are treated differently from the others in that they are activated only once at the



100 CHAPTER 7. IMPLEMENTATION

{ H1: infac(X) = fac(X,1,1),

H2: fac(X,N,R) A N<X = Ofac(X,N+1,(N+1)xR),
H3: fac(X,N,R) A N>X = outfac(X,R),

H4: outfac(X,R) == B(=true if Youtfac(X,Y) A Y#R),
S1: start() = infac(2),
52: start() => ®infac(7),

S3: start() = [ (true atnext outfac(2,X)) atnext ®outfac(7,Y) V
(true atnext doutfac(7,Y)) atnext outfac(2,X) ];
write(X+Y)

Figure 7.2: Intermediate program after stage 1.

start of the program.

7.1.2 Stage 2: Global analysis and source-to-source trans-

formations

During the second stage of the compiler a simple global analysis is performed on
the intermediate program. The purpose of the analysis is to determine, for each
event type appearing in the program, the set of labels associated with the (multi-
use) event handlers that could be activated by events of that type. The result is a
partial mapping ¢ : N  H, a function from the set of event names N to the set of
event handler labels H, that is used during the code generation stage of the compiler.
The analysis itself starts with an initial map ¢, (which maps each event name
appearing in the intermediate program to the empty set) and proceeds to examine
each (multi-use) event handler in the program. For each event type appearing in the

event descriptor of the handler, the label of the event handler is added to the set of
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labels mapped by that event type. Thus, for the factorial program, we would get
¢(infac) = {H1}, ¢(fac) = {H2,H3}, and ¢(outfac) = {H4}, for example.

During this stage, we also transform the intermediate program using source-to-
source transformations. The principle source-to-source transformation performed dur-
ing this stage is the renaming of the variables in the intermediate program to reference
registers in the NAM. This “register allocation” is particularly simple in our case since
we are dealing with an abstract machine and therefore can allocate as many registers
as we need. In practice, however, the registers used by an event handler rarely ex-
ceeds 6-12 abstract machine registers, a number that is far less than the number of
real registers on most of today’s machines. Thus, the registers used could easily be
mapped to real registers in the underlying machine, although currently no attempt
is made to do this. After register allocation, our intermediate program would be
transformed as follows (note, Xn is used to denote the nth X-register. See the NAM

description below for more details.):

{ H1: infac(X0) = fac(X0,1,1),

H2: fac(X0,X1,X2) A X1<X0 => Ofac(X0,X1+1,(X1+1)xX2),
H3: fac(X0,X1,X2) A X1>X0 = outfac(X0,X2),

H4: outfac(X0,X1) == B(-true if Doutfac(X0,X2) A X2#£X1),
S1: start() = infac(2),
S2: start() => ®infac(7),

S3: start() = [ (true atnext outfac(2,X0)) atnext doutfac(7,X1) V
(true atnext Poutfac(7,X1)) atnext outfac(2,X0) ];
write(X0+X1)

Figure 7.3: Intermediate program after stage 2.

To improve the efficiency of the code generated, a number of optional source-to-
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source transformations may also be performed during this stage of the compiler. For

completeness, we briefly describe those that have been implemented.

Eliminating redundant events

Aside from predefined events such as write(...), read(...), etc., events that are
not referenced by at least one event handler (i.e., appear in some event descriptor or
constraint) can be removed from the program without changing its behavior. Clearly,
such events (when they occur) have no influence on the subsequent actions performed

by the program.

Eliminating intermediate events and event handlers

This transformation essentially eliminates some classes of intermediate events and
reduces the number of event handlers which must be managed at runtime. We treat
only the simplest case in which a user defined event is the sole action in the body of an
event handler. Furthermore, the only reference to the event is in the event descriptor
of a single multi-use event handler and the event descriptor does not contain any
relational conditions. In this case, the occurrence of the user defined event can be
replaced by the actions caused by the corresponding event handler. The event handler
itself can then be removed from the program.

Note, before each substitution is performed, the global variables appearing in
the event handler must be replaced by new variables (i.e.,“renamed apart”) and the
arguments of the event must be substituted for the corresponding variables appearing

in the event descriptor.

7.1.3 Stage 3: Code generation

The third, and final, phase of the compiler performs code generation. This is accom-
plished by making a single pass over the intermediate program using a simple syntax

directed translation scheme to generate the abstract machine code. An outline
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H1: LOAD(1) @ Load parameter into reg. X0
ALLOCATE(Erecord) @ Allocate an event record
PUT_ARG_ADDR(H2) @ Set address of event handler code
PUT_ARG_ADDR(H3) @ Set address of event handler code
SKIP_SECTION @ Skip to event section of entry
EVENT(fac,local) @ Specify event type: fac
PUT_ARG_VAL(X0) @ Argument of event: fac
PUT_ARGINT(1) @ Argument of event: fac
PUT_ARGINT(1) @ Argument of event: fac

POST(local,L1) @ Post the event
TERMINATE @ Abort the execution of the program
L1: END @ End of execution
H2: LOAD(3) @ Load arguments into reg. X0, X1, X2
LT(X1,X0) @ Test if X1 < X0
BNZ(L2) @ Branch if CC is non-zero
SUSPEND_NEXT @ Suspend execution until next time step

ALLOCATE(Erecord) @ Allocate an event record
PUT_ARG_ADDR(H2) @ Set address of event handler code
PUT_ARG_ADDR(H3) @ Set address of event handler code

SKIP_SECTION @ Skip to event section of entry
EVENT(fac,local) @ Specify event type: fac
PUT_ARG_VAL(X0) @ Argument of event: fac
LOADI(X3,1) @ Load 1 into reg. X3
ADD(X4,X1,X3) Q X4 « X1 + X3
PUT_.ARG_VAL(X4) @ Argument of event: fac
MUL(X5,X4,X2) @ X5 «— X4 x X2
PUT_ARG_VAL(X5) @ Argument of event: fac
POST(local,L2) @ Post the event
TERMINATE @ Abort the execution of the program
L2: END @ End of execution

Figure 7.4: Object code generated by NETLOG compiler...
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H3:

L3:
H4:

L4:

LOAD(3)
GTE(X1,X0)
BNZ(L3)
ALLOCATE(Erecord)
PUT_ARG_ADDR(H4)
SKIP_SECTION
EVENT(outfac,local)
PUT_ARG_VAL(X0)
PUT_ARG_VAL(X2)
POST(local,L3)
TERMINATE

END

LOAD(2)
ALLOCATE(Crecord)
SKIP_SECTION
EVENT(—true,local)
SKIP_ENTRY

EVENT (outfac,somewhere)

PUT_ARG_VAL(X0)
PUT_ARG_VAR(X2)
SKIP_ENTRY
EVENT (—equal,local)
PUT_ARG_VAL(X2)
PUT_ARG_VAL(X1)
POST(local,L4)
TERMINATE

END

CHAPTER 7. IMPLEMENTATION

@ Load arguments into reg. X0, X1, X2
@ Test if X1 > X0

@ Branch if CC is non-zero

@ Allocate an event record

@ Set address of event handler code
@ Skip to argument section of entry
@ Specify event type: outfac

@ Argument of event: outfac

@ Argument of event: outfac

@ Post the event

@ Abort the execution of the program
@ End of execution

@ Load arguments into reg. X0, X1

@ Allocate a constraint record

@ Skip to event section of entry

@ Specify event type: —true

@ Skip to next entry

@ Specify event type: outfac

@ Argument of event: outfac

@ Argument of event: outfac

@ Skip to next entry

@ Specify event type: ~equal

@ Argument of event: —equal

@ Argument of event: —equal

@ Post the constraint

@ Abort the execution of the program
@ End of execution

Figure 7.5: Object code generated by NETLOG compiler continued...




CHAPTER 7. IMPLEMENTATION

S1:

L5:
S2:

L6:
S3:

L7:

LOAD(0)
ALLOCATE(Erecord)
PUT_ARG_ADDR(H1)
SKIP_SECTION
EVENT (infac,local)
PUT.ARG_INT(2)
POST(local,L5)
TERMINATE

END

LOAD(0)
ALLOCATE(Erecord)
PUT.ARG-ADDR(H1)
SKIP_SECTION
EVENT(infac,local)
PUT_ARG_INT(7)
POST(elsewhere,L6)
TERMINATE

END

LOAD(0)
ALLOCATE(Drecord)
PUT_ARG-ADDR(LS)
SKIP_SECTION
EVENT(outfac,local)
PUT.ARG_INT(2)
PUT_ARG_VAR(X0)

ALLOCATE_RELATED

PUT_ARG_ADDR(L9)
SKIP_SECTION

EVENT (outfac,elsewhere)

PUT_ARG.INT(7)
PUT_.ARG.VAR(X1)
MATCH

SUSPEND
GOTO(L7)

Figure 7.6: Object code generated by NETLOG compiler continued...

@ Load zero arguments

@ Allocate an event record

@ Set address of event handler code
@ Skip to event section of entry

@ Specify event type: infac

@ Argument of event: infac

@ Post the event

@ Abort the execution of the program
@ End of execution

@ Load zero arguments

@ Allocate an event record

@ Set address of event handler code
@ Skip to event section of entry

@ Specify event type: infac

@ Argument of event: infac

@ Post the event

@ Abort the execution of the program
@ End of execution

@ Load zero arguments

@ Allocate a descriptor record

@ Set branch address

@ Skip to event section of entry

@ Specify event type: outfac

@ Argument of event: outfac

@ Argument of event: outfac

@ Allocate related descriptor record
@ Set branch address

@ Skip to event section of entry

@ Specify event type: outfac

@ Argument of event: outfac

@ Argument of event: outfac

@ Find events satisfying event descriptor(s)

@ Wait for new events to occur

@ Branch .
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L8: ALLOCATE(Drecord) @ Allocate a descriptor record
PUT_ARG_ADDR(L12) @ Set branch address

SKIP SECTION @ Skip to event section of entry
EVENT(outfac,elsewhere) @ Specify event type: outfac
PUT_ARGINT(7) @ Argument of event: outfac
PUT_ARG_VAR(X1) @ Argument of event: outfac

L1l: MATCH @ Find events satisfying event descriptor(s)
SUSPEND @ Wait for new events to occur
GOTO(L11) @ Branch

L12: GOTO(L10) @ Branch

L9: ALLOCATE(Drecord) @ Allocate a descriptor record
PUT_ARG_ADDR(L14) @ Set branch address

SKIP_SECTION @ Skip to event section of entry
EVENT(outfac,local) @ Specify event type: outfac
PUT_ARG_INT(2) @ Argument of event: outfac
PUT_ARG_VAR(X0) @ Argument of event: outfac

L13: MATCH @ Find events satisfying event descriptor(s)
SUSPEND @ Wait for new events to occur
GOTO(L13) @ Branch

L14: NOP @ No-op

L10: SUSPEND @ Wait for new events to occur
ALLOCATE(Erecord) @ Allocate a event record
SKIP_SECTION @ Skip to event section of entry
EVENT(write,local) @ Create a new event: write
ADD(X3,X0,X1) @ X3 — X0 + X1
PUT_ARG_VAL(X3) @ Argument passed to: write
POST(local,L15) @ Post the event
TERMINATE @ Abort the execution of the program

L15: END @ End of execution

Figure 7.7: Object code generated by compiler continued.
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of the translation scheme is shown in appendix A. During code generation the
compiler keeps track of which registers have previously been loaded with values. This
information is used to determine when to generate code to allocate new variables. In
particular, the first reference to a register that has not been previously loaded with
a value causes the compiler to generate code to load the register with a pointer to a

newly created variable.
1

Figures 7.4-7.7 shows the final object program generated for our factorial program?.

To actually run the program it must be compiled, along with the C macro definitions

that emulate each of the abstract machine instructions, using a C compiler.

7.2 Abstract Machine Design

A wide variety of abstract architectures{HS86a,G*86,KC87,Lev86,Tay89] have been
used in implementing logic languages, most being adaptations of the Warren Abstract
Machine (WAM)[War83]. In this section we describe the structure and operation of
a new abstract machine design, the NETLOG Abstract Machine (NAM), the virtual
machine architecture emulated by each processor in the distributed implementation.
The structure of the NAM is most similar to the abstract machine developed by
Taylor[Tay89] in his implementation of Flat Concurrent-PROLOG. The NAM has
a different execution algorithm, however, and includes additional features such as
data structures for storing events and representing constraints, new control registers,
new instructions for the creation and the matching of events, and modified control
instructions to handle the scheduling and execution of event handler threads. In the
following description, our intention is to describe the distinctive features of the NAM
and to give an exposition of how it executes NETLOG programs. To facilitate the
exposition, a number of low-level aspects of the implementation (e.g., how logical vari-
ables are represented, etc.) that are based on standard implementation techniques

are not described. Such details are readily available in the literature; see, for example,

1The remarks following the @ symbol are hand generated comments
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[CM81,5586,CG85,Fos88,M* 85, TSS87,Car87a,Gre87,I* 87,5ha87,Cra88,Con88,NT88, Tic91).

7.2.1 Abstract Machine Structure and Organization

D D Control Component
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T

A g N
Out Msg Queue |— :—>

S > ‘ |
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R |

U |

c In Msg Queue |<*—|—

T i

u I

R

E
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Figure 7.8: NETLOG Abstract Machine organization.

“The conceptual structure and organization of the NETLOG Abstract Machine (NAM)
is shown in figure 7.8. The NAM consists of a control component, which executes

event handler code, a communication component, which handles messages destined
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for, and received from, other processors, and a storage component, which is used for
allocating and storing various data structures. We also implicitly assume the existence
of a network interface component (shown in dotted lines) that runs continuously and
handles the low-level details of transmitting messages placed on the outgoing message
queue and similarly receiving new messages from other processors and depositing them

on the incoming message queue.

7.2.2 Abstract Machine Operation

The control component maintains the active, pending, and nezt-time queues, and
performs the basic algorithm outlined in figure 7.9. On each iteration of the algorithm,
an event handler thread is removed from the front of the active queue and executed.
The event handler code executes to completion unless it suspends. The code may
suspend (temporarily), causing it to be placed on the pending queue, if the event
handler must wait on one or more events that have yet to occur. The event handler
code may also suspend if there are constraints which prevent it from proceeding (e.g.,
constraints may exisit which prevent the creation of an event at the current time).
If the active queue becomes empty, any threads on the pending queue are activated
and returned to the active queue to resume execution. Threads that must be delayed
until the following time step are placed on the next-time queue. When the global
clock is advanced, these threads are woken up and placed on the active queue.

The communication component is invoked at the end of each iteration of the algo-
rithm and handles messages that arrive on the incoming message queue. Depending
on the messages received, the global time register may be incremented, various local
data structures may be updated, and new messages may be deposited on the outgoing

message queue. There are four kinds of messages that may be received:

ACTION: An action message describes an action, i.e., the creation of a new event,

to be performed on the receiving processor.

UPDCLK: An update clock message indicates that the global time register should
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WHILE computation not terminated DO
IF there are event handlers on the active or pending queue THEN
IF the active queue is empty THEN
move event handlers on the pending queue to the active queue
ENDIF
dequeue next event handler on active queue
execute event handler actions
IF the event handler suspends THEN
enqueue event handler on appropriate queue
ENDIF
ENDIF
invoke communication component
IF the global clock has advanced THEN

move event handlers on the next time queue to the active queue
ENDIF
ENDWHILE

Figure 7.9: Basic execution algorithm.

be updated. It contains the new value to be placed in the register.

STATUS: A status message represents the status token which is circulated around
the network. The status of the processor is placed in the token which is then

sent to the next processor.

INFO: An info message is used to request information from, or send information to, a
remote processor. In particular, these messages are used to convey information

about the events that have occurred on a particular processor.

7.2.3 Abstract Machine Support for Global Time

In contrast to most languages for distributed programming, NETLOG has a semantics

based on time. One implication of this is that logically the same view of time must
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be observed by all the processors in the network. Thus, the language implementation
needs to provide support for a global clock.

One common approach to modeling a global clock on a distributed system is to
use global synchronization[RH90]. In this approach, one of the processors in the
network is designated to act as the global synchronizer. The global synchronizer
ensures that all of the processors in the network engage in a global synchronization
step at the end of each computation step (i.e., logical time step) before proceeding to
the next step of the computation. This method of simulating a global clock has the
advantage of being easy to understand and can be implemented quite efficiently on
tightly coupled distributed memory machines[RH90]. Indeed, this is the method used
in our implementation where the origin processor acts as the global synchronizer. For
loosely coupled distributed memory machines, other approaches to implementing a
global clock may be more suitable[Ray88].

The NAM maintains a global time register. The value of the global time register is
the same for all processors and represents the index of the current time step. Events
created by a processor and messages sent by a processor are timestamped with the
value of the global time register. The timestamps in events are used to ensure that,
when executing event handler code that searches for events satisfying some event
descriptor, only events created during the timestep in which the code is executing
are considered (i.e., the timestamp in the event and the value in the global time
register must be the same). The timestamp in messages are used in implementing the
synchronization algorithm which detects when all of the processors have completed
the current timestep, and thus the global clock can be advanced.

The particular algorithm used to detect when all of the processors have completed
the current timestep is taken from [Tay89] (as is the description to follow) and is
an extension of Dijkstra’s algorithm[D*83] for termination detection in synchronous

systems. The algorithm is based on the following simple observations:

o The difference between the number of messages sent and received during the
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current timestep is zero when all messages sent have been received.

o If this difference is zero and no processor is actively working on the current

timestep, the current timestep is complete.

The algorithm itself consists of circulating a token through all the processors beginning
at the origin processor. Each processor maintains a count of the difference between
the number of messages it has sent and received for the current timestep. It also
maintains a color which is set to black whenever the processor creates an event or
performs any communication during the current timestep; the color is set to white
when the token is present (i.e., when the token enters the processor).

The token carries a sum and color. At the beginning of each cycle the color of
the token is set to white and the sum is set to zero by the origin processor. The
token propagates from one processor to the next when the current processor becomes
white. As it propagates it accumulates the sum of the counts of each white processor
encountered. If the token enters a black processor its color becomes black. The
current timstep is complete if on two successive cycles the token arrives at the origin
processor with color white and sum zero. The origin processor can then broadcast a
message which informs each processor to advance its global time register and proceed

with the next step of the computation.

7.2.4 Machine Instructions

The instruction set of the NAM consists of five categories of instructions: Testinstruc-
tions, Bind instructions, Put instructions, Put_arg instructions, and Control instruc-
tions. In addition to manipulating the data registers (i.e., X-registers), instructions
in several of these categories also manipulate one or more control registers, the reg-
isters that maintain the dynamic state of the NAM. These control registers will be
introduced informally in the sections which describe the instruction that use them. A
summary of the NAM instruction set is given in tables 7.1-7.5 (note, in the instruc-

tion descriptions, ‘Int’ denotes an integer, ‘R’ denotes a data register, ‘M’ denotes
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a state memory address, ‘Const’ denotes a symbolic constant (e.g., an event name),

and ‘L’ denotes a code address label).

Test Instructions

Test Instructions
test_nil(R)
test_int(R,Int)
test.atom(R,Const)
test_list(R1,R2)

Table 7.1: Test instruction set summary.

Test instructions are used to test the data type of values. These instructions
operate on data registers (i.e., X-registers). The testnil(R), test_int(R,Int),
and test_atom(R,Const) instructions test the contents of a register for the empty
list, an integer, and a constant, respectively. The test_1ist(R1,R2) instruction
take two registers. It tests the first register to verify that it refers to a list. If it
does, pointers to the head (first element of list) and tail (remainder of list after first
element is removed) of the list is loaded into consecutive registers starting with the
second register. These instructions also (implicitly) set the condition code register

(CC-register) to a non-zero value if the value tested does not have the correct data

type.

Bind Instructions

Bind instructions are used to bind values to variables. Bind instructions operate
on data registers. The bind nil(R), bind_int(R,Int), and bind_atom(R,const)
instructions bind the empty list, an integer, and a constant, respectively, to the
variable referenced by a register. Note, if the register refers to a variable that is
already defined, the bind instruction verifies that the variable has the same value as

the intended bind value.
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Bind Instructions
bind_nil(R)
bind_int(R,Int)
bind_atom(R,Const)
bindlist(R,L1,L2)
unify(R1,R2)

Table 7.2: Bind instruction set summary.

The unify(R1,R2) instruction performs general unification. The instruction takes
two registers which refer to the two arguments to be unified. Both the bind and unify
instructions (implicitly) set the condition code register (CC-register) to a non-zero

value if they fail to execute successfully.

Put Instructions

Put Instructions
put_nil()
put_int(Int)
put_atom(Const)
putlist(R)
put_val(R)
put_var(R)

Table 7.3: Put instruction set summary.

The memory area of the NAM is partitioned into two parts: the main memory
and the state memory. The main memory of the NAM is organized as a heap and is
used for storing data structures. Put instructions are used to allocate data structures
such as integers, global variables, lists, etc. in the inain memory. Other structures
such as the records used to describe events, event descriptors, and constraints are
also allocated on the heap. Local variables are allocated in the state memory. This
memory is organized as a linear array of addressable locations (i.e., standard memeory

organization).
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In general, put instructions place a data item on the heap at the position indicated
by the structure pointer register (SP-register) and then increment the SP-register in
preparation for placing the next data item. The end of the heap is pointed to by the
heap pointer register, HP-register.

The putnil(), put_int(Int), and put_-atom(Const) instructions place the empty
list, an integer, and a constant, respectively, at the heap location pointed to by the
SP-register. The put_val(R) instruction copies the contents of a register into the lo-
cation pointed to by the SP-register. The put_var(R) instruction allocates a variable
at the end of the heap and places a reference to the variable at the SP-register. It

also returns a reference to the variable in a register.

Put Argument Instructions

Put_arg Instructions
put_arg_nil()
put_arg_int(Int)
put_arg_atom(Const)
put.arg list(R)
put_arg_var(R)
put_arg_val(R)
put_arg_addr(L)

Table 7.4: Put_arg instruction set summary.

For each put instruction there is a corresponding put_arg instruction. Put argu-
ment instructions are used to build the arguments appearing in events, event descrip-
tors, and constraints. With the exception of the put_arg_addr(L) instruction, the
put argument instructions operate in the same manner as the put instructions except
that they place values at the location referenced by the argument register, A-register,
rather than the structure pointer register, SP-register. The put_arg_addr (L) instruc-
tion places the code address associated with a label L at the location referenced by

the A-register.
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Control Instructions

Control Instructions
allocate(Const) allocate_related
event(Const,Const) match
post(Const,L) post_temp(Const,R,L)
delete(Const,R) skip-arg
skip_section skip_entry
suspend suspend_next
terminate end
load(Int) loadI(R,Int)
cop(R1,R2) aop(R1,R2,R3)
bnz(L) bz(L)
goto(L) set_svar(R,M)
get_svar(R,M)

Table 7.5: Control instruction set summary.

The basic execution algorithm given in figure 7.6 is implemented using control
instructions. These instructions perform the posting of events, the scheduling of
event handlers from the active, pending, and next-time queues, etc. They are also
responsible for invoking the communication component whenever an event handler
terminates (or suspends) and are responsible for sending messages to other processors
as necessary.

Events, event descriptors, and constraints are represented by event records, event
descriptor records, and constraint records respectively. Event records describe the
event type, the arguments of the event, and the addresses of the event handlers (if
any) to be activated by the event. Similar, event descriptor records describe the
collection of events that must be matched, and constraint records describe individual
constraint clauses.

Each active event handler is represented by a control record which contains the
arguments of the event that activated the event handler and the address of the code

to execute when the event handler is scheduled. Space is also provided for saving the
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state of various control registers whose values are needed to resume the event handler
should it suspend.

The scheduling of event handlers is as follows. The event handler on the front
of the active queue is always the next event handler to be scheduled. If there are
event handlers on the next-time queue when the global time register is advanced,
indicating the start of the next global time step, they are removed and added to the
active queue before the next event handler is scheduled. Finally, If the active queue
becomes empty, any event handlers on the pending queue are removed from that
queue and placed on the active queue. The next event handler is then scheduled.

Scheduling the next event handler involves dequeuing its control record from the
active queue, restoring the control registers, and making the event handler active
by setting the active thread register (AT-register) to point to its control record. The

code at the program counter is then executed. The control instructions are as follows:

load(N): is always the first instruction of an event handler. It loads the N arguments
begining at the A-register into consecutive data registers (i.e., X-registers) start-

ing at register zero (X0).
loadI(R,Int): loads integer Int into register R.

allocate(Const): allocates a new event, descriptor, or constraint record®. The value
of Const specifies the record type. When a new record. The value of Const
specifies the record type. When a new record is allocated it is implicitly assigned
a timestamop (i.e., the current value of the global time register) and a token which
uniquely identifies the record. The record register (R-register) and the related
record register (RR-register) are set to the address of the new record and the
argument register (A-register) is set to point to the begining of the first entry of

the new record in preparation for instructions which build the record’s entries.

ZNote, the format of all of these records are actually the same. A record consists of several
identical entries, each of which can be used to describe the attributes of a single event. The entries
in a record will be filled in differently, however, depending on whether the record is to be used to
describe an event, event descriptor, or constraint.
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allocate_related: allocates a new event, descriptor, or constraint record and chains
it onto the list of records pointed to by the record register (R-register). The
related record register (RR-register) is set to the address of the new record and
the argument register (A-register) is set to point to the begining of the first
entry of this new record in preparation for instructions which build the record’s

entries.

skip_entry: sets the argument register (A-register) to point to the begining of the

next entry in the current record.

skip_section: sets the argument register (A-register) to point to the begining of the

next section of the current record entry.
skip.argument: increments the argument register (A-register).

event (Const1,Const2): places a description of the event type in the heading of the
current record entry. Constl specifies the event type, and Const2 specifies the

scope of the event.

post(Const,L): is used to add a new event or new constraint to existing events or
constraints, respectively, on the system. Const specifies where (i.e., on which

processors) the new event or constraint should be added.

If a new event is being posted, the instruction checks that there are no con-
straints which prevents the event from occurring and then posts the event at
the location(s) specified by Const. For non-local events, posting an event in-
volves sending messages to other processors informing them of the new event
to be added to their event lists. Similarly, if a new constraint is being posted,
the post instruction verifies that the constraint holds (i.e., is true) at the loca-
tion(s) specified by Const and then posts the constraint. For new events, the
event record contains the addresses of the event handlers (if any) activated by

the event. For each address found, a new control record is allocated to represent
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the activated event handler. The address of the corresponding event handler
is placed in the control record at the location reserved for saving/restoring the
program counter register. In addition, the arguments of the event are copied
into the control record and a pointer to the first argument is stored in the area
of the control record reserved for saving/restoring the argument register®. The

control record is then added to the active queue.

If the post instruction succeeds (i.e., the new event or constraint has been
added to existing events or constraints), it causes a transfer of control to the
address associated with label L by modifying the program counter (PC-register).

Otherwise, execution continues with the next instruction.

post_temp(Const,R,L): behaves exactly the same as post(Const,L) except that
register R is assigned a copy of the (internal) token which uniquely identifies
the constraint that was posted. The instruction is used to post temporary

constraints.

delete(Const,R): deletes a temporary constraint that was posted using the
post_temp(Const,R,L) instruction. Register R contains the token that iden-
tifies the constraint to be deleted and Const specifies the location(s) of the

constraint. Execution continues with the next instruction.

match: tries to find an event collection that matches the current event descriptor
record. If a matching event collection is found, any unbound variables in the
event descriptor are instantiated by the corresponding values from the matching
events. The program counter (PC-register) is set to the branch address stored
in the descriptor record which causes the instruction at the branch address to

receive control.

If a matching event collection is not found and the current descriptor record

3Hence, when the event handler is scheduled, the PC-register and A-register will be restored with
the initial values needed to load the arguments and begin executing the event handler code.
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does not point to additional (i.e., related) descriptor records, the instruction
fails and execution continues with the next instruction. If there are additional
descriptor records, the instruction tries each one in turn until a successful match

is found or the instruction fails.

suspend: causes the executing event handler to be suspended. The execution state
of the event handler (e.g., the control registers, etc.) is saved in the event
handler’s control record and the control record is then added to the pending
queue. Since the execution of the event hadler has ended, the communication
component is invoked to service the message queues and then another event

handler is scheduled.

suspend.next: behaves exactly the same as suspend except that the control record

is added to the next-time queue.

terminate: is used when an error condition has been detected. It abnormally termi-

nates the entire computation.

end: is the last instruction of an event handler. The instruction terminates the exe-
cution of the event handler and de-allocates the event handler’s control record,
returning it to the heap for reuse. The communication component is invoked

to service the message queues and then the next event handler is scheduled.

aop(R1,R2,R3): denotes a generic arithmetic operation on registers. In particular,
Rl is the result obtained by performing the specified arithmetic operation on
R2 and R3 (i.e., R1 « R2 aop R3). Typical arithmetic operations included are
ADD (addition), SUB (subtraction), MUL (multiplication), etc.

cop(R1,R2): denotes a generic comparative operation on registers. Comparative op-
erations include LT (less than), GTE (greater than or equal), etc. If the compar-
ative test is false, the condition code register (CC-register) is set to a non-zero

value. Execution then continues with the next instruction.
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bz(L): is used to specify a conditional branch. If the condition code register (CC-
register) is zero, It causes a transfer of control to the address associated with

label L by modifying the program counter (PC-register).

bnz(L): is used to specify a conditional branch. If the condition code register (CC-
register) is non-zero, It causes a transfer of control to the address associated

with label L by modifying the program counter (PC-register).

goto(L): is used to specify an unconditional branch. It causes a transfer of control
to the address associated with label L by modifying the program counter (PC-

register).

get_svar(R,M): loads register R with the value stored in the state location referenced

by address M.

set_svar(R,M): stores the value in register' R in the state location referenced by

address M.

7.3 Experimental Results

As described in previous sections, a compiler for our language and the runtime code to
support the abstract machine implementation have been written. However, we have
not yet implemented the language on a real distributed machine. Thus the results
we present in this section were obtained by executing our implementation under the

control of a simulator.

7.3.1 Overview of simulator

The simulator itself is quite simple and decidedly unsophisticated. It was not designed
to simulate the characteristics of a specific distributed machine, rather it was designed

to simulate the two central features that characterize all distributed machines —
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namely, a collection of Processing Elements (PE), each of which executes part of
the distributed program’s instruction stream, and the interconnection network which
connects them (and via which the PEs communicate by sending mesaages)[FD90).
Thus, the simulator provides a simple tool via which a few basic measures can be
obtained for subsequent use in gauging the relative merits of different implementation
strategies.

The simulator is written in C and runs on a SPARCstation 1. To perform a
simulation, the abstract machine program produced by the NETLOG compiler and
the simulator itself are compiled separately (using a C compiler) and then linked
together to form a single executable load module. By appropriately setting a number
of control variables, the simulator can be configured to simulate a number of different
network topologies (e.g., linear array, ring, etc.) with varying numbers of processors.
Our simulator is hybrid in the sense that the computation times reported are a sum of
measured and calculated time. Specifically, the abstract machine program (or more
accurately, the C code representing the abstract machine program) is branched to
by the simulator so it runs directly on the SPARCstation 1. Thus, its execution
time can be measured using UNIX’s start and stop timing functions. The times
for message communication (i.e., sending a message from one processor to another)
must however be computed by calculation (see below) since the transfer of messages
between processors is performed by simulation. The hybrid nature of our simulator
allows us to directly measure the uniprocessor performance of the abstract machine
implementation.

At the beginning of each simulation, the simulator creates a list of Simulation
Control Blocks (SCB), one SCB for each processor in the network, that captures the
current state of each processor. For each processor the SCB contains various mea-
surement data, such as the total execution time, the total number of bytes transferred
via each (outgoing) link connected to the processor, etc., and a pointer to the location
in memory where the processor state (e.g., control registers, data registers, etc.) is

stored.
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During each cycle of the simulation, a SCB is selected and dequeued from the
list, the time slice register is reset, the state of the corresponding processor (i.e.,
abstract machine) is restored, and execution is resumed at the point were it was last
suspended. When the time slice has expired or the processor becomes idle (i.e., there
are no event handlers on the active or pénding queues and all incoming messages
have been read), execution of the processor is suspended. The state of the processor
is saved, any messages on its outgoing message queue are sent to their destination
(as described below), and the execution statistics for the processor are updated in
the SCB which is then enqueued back onto the SCB list. The simulation continues
in this fashion until the computation being simulated terminates, at which point the

execution statistics gathered during the simulation are displayed.

The simulator allows direct communication only between adjacent processors, thus
messages destined for non-adjacent processors must be routed through one or more
intermediate processors before arriving at their final destination. The simulator as-
sumes messages may be received on one link at the same time other messages are
being sent on another link. Note, however, only one message may be transmitted
across any single link at a given point in time. To simulate the sending of an outgo-
ing message from one processor to an adjacent processor, the message is removed from
the outgoing message queue of the sending processor and appended to the incoming
queue of the adjacent processor. The following linear formula is used to calculate
the transmission time (T,) for a single message to traverse a link connecting two

processors:

T, =T, 4+ T, % Bytes

where T, is the message startup time, T, is the time to transmit a single byte across

the link, and Bytes is the total number of bytes in the message.
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7.3.2 Results

This section contains the results obtained by simulating the execution of our NAM im-
plementation on an assortment of short programs. The assortment includes programs
to compute the sum of two vectors, reversea list, delete multiples from a list, per-
form matrix multiplication, and find prime numbers*. The NETLOG specifications
for these programs may be found in appendix B.

Table 7.6 focuses on the uniprocessor performance of our NAM. Looking at the
uniprocessor performance of the NAM allows us to calibrate the raw performance
of the implementation. In particular, since we are dealing with a single processor,
interprocessor communication is not a factor; thus the execution times shown are the
actual (measured) times to execute the sum of vectors benchmark on a NAM running
on a SPARCstation 1. Table 7.6 also gives the ratio of the execution times for our
NETLOG program and the same problem coded in C3. For comparison, similar results
for FGHC (taken from [Tic91}) are also included in the table. As can be seen, our
NETLOG program gives comparable performance to the FGHC program (35 times
slower than the corresponding C program Vs 33 times slower). Since many aspects
of the implementation were adopted for reasons of convenience and simplicity, we
believe its performance could be substantially improved using state-of-the-art com-
piler technology. For example, native code logic programming implementations and
advanced compiler techniques such as rule indexing would greatly reduce the emula-
_tion overheads and the number of threads that need to be scheduled and maintained

at runtime. Such techniques have resulted in systems that execute logic programs
20%-40% faster[Tic91].

4Although our simulator was designed to be general (and, as such, not designed to simulate the
particular characteristics of a specific distributed machine), the accuracy of our simulation results
were randomly checked by taking the compiled code for several of the benchmark programs and
manually tracing their execution. The results from the manual execution were then compared with
the results obtained by the simulator. In all cases the simulation results corresponded with the
manual results to within 5%.

5The time for the C code was obtained by performing the addition of two 10,000 element vectors
one hundred times in a loop; similarly, the NETLOG time corresponds to adding two 10,000 element
vectors 100 times,
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A mesh topology was used in simulating the distributed execution of each of
the benchmark programs. A variety of problem sizes and communication speeds were
used in the simulations. The communication speeds (i.e., T [T, = 1 ms,T, = 1 MB/s],
T,[T, = 400 us,T, = 10MB/s), and T, [T, = 1us,T. = 100 MB/s]¢) were chosen to
be representative of the broad range of distributed systems ranging from those based
on Wide Area Networks (WANs) and Metropolitan Area Networks (MANs) at one
end of the spectrum, intermediate systems based on Local Area Networks (LANs), and
tightly coupled systems at the other end of the spectrum[AS88,5ta88,5ta90,For92,H*+90,Cor90].
Tables 7.7-7.14 show the execution times and speedups’ for each of the simulated
benchmarks. In each case, the time reported is the average of two or three repeat
runs. Since the simulations were performed on a sequential machine, the execution
times were consistently repeatable with low variance. To keep operating system ef-
fects (e.g., page fault interupts and paging delays, etc.) to a minimum, relatively
small problem sizes were used. It is worth mentioning that the cost of executing the
synchronization algorithm during the simulation of a program is accounted for as part
of the overall communication cost (i.e., time) incurred by the program. Specifically,
very little in the way of actual computation is performed during the synchronization
phases of a computation — most of the activity consists of sending messages between
processors (i.e., circulating “token” messages). These “token” messages are treated
in the same way as any other message, and thus their transmission times are included
in the cost of message passing.

Tables 7.7, 7.9, 7.11, and 7.13 show how execution time varies with communi-
cation speed, while tables 7.8, 7.10, 7.12, and 7.14 show how execution time varies

with problem size®. We can see that larger problems execute more efficiently. We can

$We use the notation T, [T,=X,T.=Y] to denote the transmission time T, determined by message
start up time (i.e., latency) X and byte transfer rate (i.e., bandwidth) Y. For example, T [T, =
1ms, T, = 1 MB/s] denotes the formula T, = 1.0 x 1073 + (1.0 x 10~%) x Bytes.

"Various definitions of “speedup” have appeared in the literature. The definition of speedup used
here is defined as the ratio between the execution time of a program on one PE and the execution
time of the same program on multiple PEs. Speedup ‘defined in this way has sometimes been called
“parallelizability” [HQ91].

8By setting the appropriate simulator control variable(s), the execution rate of the Processing
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also see that, as the communication speed decreases, the efficiency of the computa-
tion decreases. These results are consistent with empirical studies (see, for example,
[F*88]) which show that the performance of a distributed program is determined by
the ratio of the time the program spends performing calculations (i.e., computation
time) to the time it spends sending messages (i.e., communication time). For our
benchmark programs, increasing the problem size tends to increase the computation
time thereby giving a higher ratio and better performance; in contrast, decreasing the
communication speed tends to increase the communication time resulting in a lower

ratio and worse performance.

The data also suggests that our implementation of the benchmark programs would
give reasonable speedups at all but the slowest of the three communication speeds.
However, it should be pointed out that, given a more sophisticated compiler, the
speedups obtained would be somewhat lower than those reported in tables 7.7-7.14.
In particular, a more sophisticated compiler would generate more efficient code re-
sulting in a decrease in the execution times of the benchmark programs (e.g., the time
to execute a benchmark on a single processor would decrease). The communication
costs incurred during the execution of each benchmark remains the same however, so

the speedups obtained would decrease.

While the data presented provides us with some useful information, it does not
represent an attempt to provide a comprehensive account of the performance of NET-
LOG. Such an undertaking would be rather premature since our focus has been on
the expressiveness of the language as opposed to focusing on the performance of the
implementation. Rather, an implementation based on state-of-the-art logic compila-
tion techniques should be constructed first. With such an implementation in hand,
the performance of the system on a real distributed machine can be then be analyzed

in-depth.

Elements (PEs) can be scaled to model a variety of processor speeds. In the data reported in tables
7.7 - 7.14, the simulator was configured to model PEs running at 200 MHz.
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C |FGHC | FGHC/C| ¢C - [ NETLOG | NETLOG/C
(secs) | (secs) (secs) [ (secs)
515 | 17132 | 336 || 341 | 122.28 38|
Table 7.6: Execution time ratio: FGHC/C Vs NETLOG/C
List Reverse (10,000)
1 2 4 8 16
Time 0.113 | 0.102 | 0.076 | 0.064 | 0.050
T,[T, = 1ms,T, = 1MB/s| | Speedup | 1.0 [1.108 | 1.487 | 1.766 | 2.260
Efficiency | 1.0 | 0.55 | 0.37 | 0.22 | 0.14
Time 0.113 | 0.065 | 0.036 | 0.023 | 0.017
T, [T, = 400 s, T, = 10MB/s] [ Speedup | 1.0 | 1.738 | 3.138 | 4.91 [ 6.647
Efficiency | 1.0 | 0.87 | 0.78 | 0.61 | 0.42
Time 0.113 | 0.060 | 0.032 | 0.017 | 0.009
T,[T, = 1us,T, =100 MB/s] [ Speedup 1.0 | 1.85 | 3.53 | 6.65 | 12.55
Efficiency | 1.0 | 0.93 | 0.88 | 0.83 | 0.78

Table 7.7: Reverse benchmark for a variety of link communication speeds.

List Reverse (T [T, = 400 us,T, = 10MB/s])
1 2 4 8 16
Time 0.057 | 0.035 | 0.020 | 0.013 | 0.010
Size=5000 | Speedup 1.0 [1.628 | 2.85 | 4.38 | 5.7
Efficiency | 1.0 | 0.81 | 0.71 | 0.55 | 0.36
Time 0.113 | 0.065 | 0.036 | 0.023 | 0.017 ||
Size=10000 | Speedup 1.0 [ 1.738 | 3.138 [ 4.91 | 6.647 |
Efficiency | 1.0 | 0.87 [ 0.78 [ 0.61 | 0.42 |
Time 0.227 | 0.127 | 0.069 | 0.041 | 0.028
Size=20000 | Speedup 1.0 | 1.787 | 3.289 | 5.536 | 8.107
Efficiency | 1.0 | 0.89 | 0.82 | 0.69 | 0.51

Table 7.8: Reverse benchmark for a variety of problem sizes.
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Delete (10,000)
1 2 4 8 16
Time 0.298 | 0.195 | 0.120 | 0.087 | 0.063
T,[T, = 1ms,T, = 1 MB/s] Speedup | 1.0 [ 1.528 [ 2.483 | 3.425 | 4.730
Efficiency | 1.0 | 0.76 | 0.62 | 0.43 | 0.29
Time 0.298 | 0.158 | 0.082 | 0.046 | 0.029
T,[T, = 400 us,T, = 10 MB/s] | Speedup 1.0 [1.886 | 3.634 | 6.478 | 10.276
Efficiency [ 1.0 | 0.94 | 0.91 | 0.81 | 0.64
Time 0.298 | 0.153 | 0.077 | 0.040 | 0.022
T,[T, = 1ps,T, = 100MB/s] [Speedup | L0 | 1.048 | 3.870 | 7.450 | 13.545
Efficiency | 1.0 | 0.97 | 0.96 | 0.93 [ 0.85

Table 7.9: Delete benchmark for a variety of link communication speeds.

Delete (T, [T, =400 us,T, = 10 MB/s))
1 2 4 8 16

Time 0.149 | 0.080 | 0.043 | 0.027 | 0.018
Size=5000 | Speedup 1.0 | 1.862 | 3.465 | 5.518 | 8.278

Efficiency | 1.0 | 0.93 | 0.87 | 0.69 | 0.52

Time 0.298 | 0.158 | 0.082 | 0.046 | 0.029 "
Size=10000 | Speedup 1.0 |1.886 | 3.634 | 6.478 | 10.276 ||

Efficiency | 1.0 | 0.94 | 0.91 | 0.81 | 0.64 ||

Time 0.597 | 0.310 | 0.161 | 0.089 { 0.052
Size=20000 | Speedup 1.0 |1.926 | 3.708 | 6.708 | 11.481

Efficiency | 1.0 | 0.96 | 0.93 | 0.84 | 0.72

Table 7.10: Delete benchmark for a variety of problem sizes.
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Primes (between 1 and 5120)

' 1 2 4 8 16
Time 1.218 | 0.716 | 0.380 | 0.210 | 0.119
T,[T, = 1ms,T, = 1MB/s] Speedup 1.0 [ 1.701 | 3.205 | 5.800 | 10.235
Efficiency | 1.0 | 0.85 | 0.80 | 0.72 | 0.64
Time 1.218 | 0.705 | 0.369 | 0.196 | 0.105
T,[T, = 400 ps, T, = 10MB/s] [ Speedup | 1.0 | 1.727 | 3.301 | 6.214 | 11.600
Efficiency | 1.0 | 0.86 | 0.82 | 0.77 | 0.72
Time 1.218 1 0.702 | 0.364 | 0.190 | 0.099

T,[T, = 1us, T, = 100MB/s] | Speedup 1.0 | 1.735 | 3.346 | 6.410 | 12.303
Efficiency | 1.0 | 0.87 | 0.84 | 0.80 | 0.76

Table 7.11: Primes benchmark for a variety of link communication speeds.

Primes (T [T, = 1ms,T, = 1MB/s])

1 2 4 8 16
Time 0.483 | 0.287 | 0.155 | 0.089 | 0.055
Size=2560 | Speedup 1.0 | 1.683 | 3.116 | 5.427 | 8.782
Efficiency | 1.0 | 0.84 | 0.77 ] 0.67 [ 0.55

Time 1.218 ] 0.716 | 0.380 | 0.210 [ 0.119 |
Size=5120 | Speedup 1.0 | 1.701 | 3.205 | 5.800 | 10.235 ||
Efficiency [ 1.0 | 0.85 | 0.80 | 0.72 | 0.64 |

Time 5.123 | 2.992 | 1.575 | 0.845 | 0.452 |

Size=15360 | Speedup | 1.0 | 1.712 | 3.253 | 6.063 | 11.334 |
Efficiency | 1.0 | 0.86 | 0.81 | 0.76 | 0.71 ||

Table 7.12: Primes benchmark for a variety of problem sizes.
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Matrix Mulitiplication (64x64)
1 2 4 8 16

Time 4.581 | 2.357 | 1.232 | 0.709 | 0.466
T,[T, = 1ms,T, = 1 MB/s] Speedup 1.0 [1.943 |3.718 | 6.461 | 9.830

Efficiency | 1.0 | 0.97 | 0.93 | 0.81 | 0.61

Time | 4.581 | 2.326 ] 1.185 | 0.628 | 0.356 |
T, [T, = 400 us,T, = 10MB}/s] [ Speedup | 1.0 | 1.969 | 3.866 | 7.294 | 12.868 |

Efficiency | 1.0 | 0.98 | 0.96 | 0.91 | 0.80 |

Time | 4.581 | 2.322 | 1.178 | 0.616 | 0.339 |
T, [T, =1ps,T, = 100MB/s] | Speedup 1.0 11.973 | 3.888 [ 7.437 [ 13.513 ||

Efficiency | 1.0 | 0.99 | 0.97 | 0.93 | 0.84 |

Table 7.13: Matrix Multiplication benchmark for a variety of link communication

speeds.

Matrix Multiplication (T [T, = 1ms,T, = 1 MB/s])
1 2 4 8 16
Time 4.581 |2.357 [ 1.232 | 0.709 | 0.466
Size=(64x64) | Speedup 1.0 ]1.943 | 3.718 | 6.461 | 9.830
Efficiency | 1.0 097 { 093 | 0.81 | 0.61
Time 16.556 | 8.430 | 4.317 | 2.340 | 1.367 "
Size=(96x96) | Speedup 1.0 [1.964 |3.835 [ 7.075 | 12.111 ||
Efficiency | 1.0 | 0.98 | 0.96 | 0.88 | 0.76 |

Table 7.14: Matrix Multiplication benchmark for a variety of problem sizes.
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7.3.3 Summary

In this chapter a scheme for implementing NETLOG on a tightly coupled distributed
memory machine has been described. The implementation scheme is based on the
NETLOG Abstract Machine (NAM), a particular virtual machine which realizes the
constraint based event model of computation. The instruction set for the NETLOG
abstract machine was described, and experimental results showed that the uniproces-
sor performance of NETLOG programs is comparable to that of conventional concur-

rent logic languages.
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Chapter 8

Conclusions and Future Research

8.1 Summary of research

In this dissertation we have described the syntax, semantics, and implementation
of NETLOG, a new logic language for distributed computing that is based on an
executable subset of distributed systems logic (DSL).

NETLOG differs from other logic languages for concurrent and distributed com-
puting in that both the notion of time and the notion of location are intrinsic to the
semantics of the language. Consequently, the language includes a variety of temporal
and spatial constructs which provide new tools for expressing distributed algorithms.
Several programming examples were given to illustrate the use of these novel con-
structs and to illustrate the general capabilities of the language.

Indeed, the programming examples showed that important concepts in distributed
programming — such as concurrency, synchronization, (interprocessor) communica-
tion, mutual exclusion, nondeterminism, and locality — can be expressed easily within
the language. They also demonstrated that the language could be used to specify dis-
tributed computations for a diverse spectrum of applications and architectures.

Another important aspect of our presentation was the development of a formal op-

erational semantics for the language. The semantics relates the logical interpretation
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of NETLOG programs to their corresponding operational behavior. In particular,
the semantics showed that the execution of a NETLOG program is related to the
construction of a model for the program; thus, if a NETLOG program executes suc-
cessfully, that is, without errors, then the logical formula it denotes is satisfiable. It
was also demonstrated how the operational semantics could be used to reason about

the execution of NETLOG programs.
Finally, a detailed description of a compiler for NETLOG was presented. The

compilation process involved several stages which, collectively, transformed the source
program into a sequence of abstract machine instructions for the NETLOG abstract
machine. The instruction set for the NETLOG abstract machine was described, and
experimental results showed that the uniprocessor performance of NETLOG programs

was comparable to that of conventional concurrent logic languages.

8.2 Directions for future research

The research described in this dissertation can be pursued in a number of directions.

We mention a few of them here.

Language design

NETLOG contains a relatively small set of future time temporal operators. For the
most part, these operators allow one to model quite éasily the temporal behavior of
a wide range of distributed computations. There are, however, distributed computa-
tions which could be modeled more easily given a more comprehensive set of temporal
operators. Further investigation is needed to determine the trade-offs and/or benefits
of expanding NETLOG (and the underlying logic) to include additional future time

temporal operators and, perhaps, some past time temporal operators as well.




CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH 135

Verification tools

Another worthwhile area of investigation is the development of tools for verifying
NETLOG programs. We believe that semantics based tool generators could take the
formal operational description given in chapter 5 as input and generate as output a
program which could, at least partially, automate the process of verifying NETLOG
programs. Similar research into the development of semantically based tool generators
has already been conducted for programming languages based on other paradigms

(e.g., functional programming[Pau82)).

Language implementation

More research is needed to develop suitable algorithms for analyzing and extract-
ing program information that could be used to optimize the code generated by the
NETLOG compiler. Based on our experience, it seems clear that a number of the
standard compiler analysis and optimization techniques|ASU86] could be adapted for
use in compiling NETLOG programs. Furthermore, we anticipate that the more novel
aspects of our language will encourage the discovery of additional new techniques for

implementing the language.

8.3 Conclusions

NETLOG is a simple yet versatile high-level logic programming language that can be
used to specify and rapidly prototype a broad range of distributed applications. It
can be used to specify both applications that require a particular distribution strategy
and those that do not. We do not claim that the language is the ultimate solution
to all the world’s distributed programming problems, but we have been pleasantly
surprised by its utility to date.

Many aspects of the current implementation of NETLOG were adopted for reasons

of convenience and simplicity. Consequently, there is considerable room for improve-
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ment and more research needs to be done before implementations of NETLOG rival
those of traditional imperative programming languages.

From a broader perspective, NETLOG seems to provide a natural bridge between
our conception of a problem solution and its subsequent expression in the context
of a programming language[J*85]. In particular, space and time are basic concepts
that seem to prescribe and permeate every facet of human activity, including the
way we think and reason about the world. NETLOG provides intrinsic support for
spatial /temporal reasoning within the framework of distributed programming. Thus,
many familiar patterns of thought such as relating the activities and events that occur
in one place to those that occur in another, reasoning about current and future events,
etc. can be expressed directly within the language — that is, without requiring users
to first reformulate their ideas in terms of less abstract lower-level machine concepts.

Lastly, and perhaps most importantly, distributed programs can be very decep-
tive[LL87]. A program that looks simple may be quite complex permitting unexpected
behaviors. Therefore, rigorous reasoning is required to determine whether or not a
program is doing what it was designed to do. Rigorous reasoning requires a for-
mal foundation. NETLOG, having both a formal logical and operational semantics,

facilitates such rigorous reasoning.




Bibliography

[AM87]
[AS86]
[AS88]
[ASUS6]
[B+89]

[BCS3]

[BC84]

[BC91]

[BDS2]

[BFG+89]

M. Abadi and Zohar Manna. Temporal logic programming. In Interna-
tional Symposium on Logic Programming, pages 4-16, sept 1987.

G. Andrews and F. Schneider. Concepts and notations for concurrent
programming. ACM Computing Surveys, 15(1):3-43, 1986.

W. Athas and C. Seitz. Multicomputers: Message-passing concurrent
computers. JEEE Computer, 21(8):9-24, 1988.

A. Aho, R. Sethi, and J. Ullman. Compliers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

H. Bal et al. Programming languages for distributed computing systems.
ACM Computing Surveys, 21(3):261-322, 1989.

G. Berry and L. Cosserat. ESTEREL: Towards a synchronous and se-
mantically sound high level language for real time applications. In IEEE
Real-Time Systems Symposium, pages 255-269, 1983.

G. Berry and L. Cosserat. The ESTEREL programming language and its
mathematical semantics. Sci. Comput. Programming, 1984.

A. Brogi and P. Ciancarini. The concurrent language shared Prolog. ACM
Trans., 13(1):99-123, 1991.

R. Bryant and J. Dennis. Concurrent programming. In Operating Sys-
tems Engineering, pages 426-452, 1982. (Published in Lecture Notes in
Computer Science, volume 143, Springer Verlag).

H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens.
METATEM: A Framework for Programming in Temporal Logic. In Pro-
ceedings of REX Workshop on Stepwise Refinement of Distributed Sys-
tems: Models, Formalisms, Correctness, Mook, Netherlands, June 1989.

137




138

[BG88]

[Car87a]

[Car87b]

[CG83]

[CG86]

[CG89]

[Cia92]

[CM81]

[CMZ92]

[Con88]

[Cor90)

[Cra88]

BIBLIOGRAPHY

(Published in Lecture Notes in Computer Science, volume 430, Springer
Verlag).

H. Barringer and D. Gabbay. Executing temporal logic: Review and
prospects. In International Conference on Concurrency, pages 104-105,
1988. (Published in Lecture Notes in Computer Science, volume 435,
Springer Verlag).

M. Carlsson. Freeze, indexing, and other implementation issues in the
WAM. In Proceedings of the Fourth International Conference on Logic
Programming, pages 40-58, 1987.

N. Carriero. The Implementation of Tuple Space Machines. PhD thesis,
Yale University, 1987. (Also published as Research Report 567).

K. Clark and S. Ggregory. Notes on the implementation of PARLOG.
Journal of Logic Programming, 2(1):17-42, 1985.

K. Clark and S. Gregory. PARLOG: Parallel programming in logic. ACM
TOPLAS, 8(1):1-49, 1986.

N. Carriero and D. Gelernter. How to write parallel programs. ACM
Computing Surveys, 21(3):323-357, 1989.

P. Ciancarini. Parallel programming with logic languges: A survey. Com-
put. Lang., 17(4):213-239, 1992.

W. Clocksin and C. Mellish. Programming in Prolog. Springer-Verlag,
Berlin, 1981.

B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna For-
tran. Scientific Programming, 1:31-50, 1992.

J. Conery. Binding environments for parallel logic programs in non-shared
memory multiprocessors. International Journal of Parallel Programming,
17(2):125-152, 1988.

Intel Scientific Corporation. IPCS/2 and IPCS/860 User Guide. INTEL
Corporation, Beaverton, OR, 1990.

J. Crammond. Implememtation of Commited Choice Languages on Shared
Memeory Multiprocessors. PhD thesis, Heriot-Watt University, 1988.




BIBLIOGRAPHY 139

[D+83]

[Dij71]
[Eme90]
[F+88]
[F+92]

[FB91]

[FD90]

[Fis93]

[FKTMS6]

[For92)
[Fos88]
[FT90]

[G+86]

E. Dijkstra et al. Derivation of a termination detection algorithm for
distributed computations. Information Processing Letters, 16:217-219,
1983.

E. Dijkstra. Hierarchical ordering of sequential programming. Acta In-
formatica, 1:115-138, 1971.

E. Emerson. Temporal and modal logic. In Handbook of Theoretical
Computer Science. Springer-Verlag, 1990.

G. Fox et al. Solving Problems on Concurrent Processors. Prentice-Hall,

Englewood Cliffs, N.J., 1988.

I. Foster et al. Productive parallel programming: The PCN approach.
Scientific Programming, 1:51-66, 1992,

M. Fisher and H. Barringer. Concurrent METATEM Processes — A Lan-
guage for Distributed AI. In Proceedings of the European Simulation
Multiconference, Copenhagen, Denmark, June 1991.

B. Fagin and A. Despain. The performance of parallel Prolog programs.
IEEE Transactions on Computers, 39(12):1434-1445, 1990.

Michael Fisher. Concurrent METATEM — A Language for Model-

ing Reactive Systems. In Parallel Architectures and Languages, Europe
(PARLE), Munich, Germany, June 1993. Springer-Verlag.

M. Fujita, S. Kono, H. Tanaka, and T. Motooka. Tokio: Logic program-
ming language based on temporal logic and its compilation to PROLOG.

In Third International Conference on Logic Programming, pages 695-709,
July 1986.

P. Fortier. Handbook of LAN Technology. McGraw-Hill, New York, N.Y.,
1992,

I. Foster. Parallel implementation of PARLOG. In Proceedings of the
International Conference of Parallel Processing, pages 9-16, 1988.

I. Foster and S. Taylor. STRAND: New Concepts in Parallel Program-
ming. Prentice Hall, New York, 1990.

S. Gregory et al. An abstract machine for the implementation of PAR-
LOG on uniprocessors. Journal of New Generation Computing, 6(4):389-
420, 1986.




140

[Gel85)
[GHT9)
[Gre87]

[H+90]

[HM87]

[HoaT8]
[HP79]

[HQ91]
[HS86a)

[HS86b]

[1+87]

[0+85)

[KC87)

BIBLIOGRAPHY

D. Gelernter. Generative communication in Linda. ACM Transactions
on Programming Languages and Systems, 7(1):80-112, 1985.

M. Griss and A. Hearn. A portable standard Lisp compiler. Technical
report, University of Utah, 1979.

S. Gregory. Parallel Logic Programming in PARLOG: The Language and
its Implementation. Addison-Wesley, England, 1987.

M. Heath et al. Early experience with the Intel IPSC/860 at oak ridge
national laboratory. Technical report, Oak Ridge National Laboratory,
1990.

R. Hale and B. Moszkowski. Parallel programming in temporal logic.
In International Symposium on Logic Programming, pages 277-295, sept
1987.

C. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666-677, 1978. '

M. Hennessy and G. Plotkin. Full abstraction for a simple parallel pro-
gramming language. LNCS, 74:108-120, 1979.

P. Hatcher and J. Quinn. Data-Parallel Programming. MIT Press, 1991.

A. Houri and E. Shapiro. A sequential abstract machine for Flat Concur-
rent Prolog. Technical Report CS86-20, Weizmann Institute of Science,
Rehovot, Israel, 1986.

P. Hudak and L. Smith. Para-functional programming: A paradigm for
programming multiprocessor systems. In Proceedings of the 18th ACM
Symposium on Principles of Programming Languages, pages 243-254,
New York, January 1986. ACM.

N. Ichiyoshi et al. A distributed implementation of Flat GHC on the
Multi-PSL. In Proceedings of the 4th International Conference on Logic
Programming, pages 257-275, 1987.

R. Jernigan et al., editors. The Role of Language in Problem Solving.
North-Holland, 1985.

Y. Kimura and T. Chikayama. An abstract KL1 machine and its instruc-
tion set. In Proceedings of the IEEE Symposium on Logic Programming,
pages 468477, 1987.




BIBLIOGRAPHY 141

[Kro87]
[Lev86]

[LL87]

[Llo84]

[LS94]

[M*85]

[Mos83]

[Mos86]

[MP92]

[Nes93]

[NT8S]

[P+86]

[Pap80)

F. Kroger. Temporal Logic of Programs. Springer-Verlag, 1987.

J. Levy. A GHC abstract machine and instruction set. In Proceedings of
the 3rd International Conference on Logic Programming, pages 157-171,
1986.

L. Lamport and N. Lynch. Distributed systems. In Handbook of Theo-
retical Computer Science. Springer-Verlag, 1987.

J. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin,
1984.

L. Y. Liu and R. K. Shyamasundar. RT-CDL: A distributed real-time
language and its operational semantics. Computer Languages, 20(1):1-
23, 1994.

C. Mierowsky et al. The design and implementation of Flat Concurrent
Prolog. Technical Report CS85-09, Weizmann Institute of Science, Re-
hovot, Israel, 1985.

B. Moszkowski. Reasoning about Digital Circuits. PhD thesis, Stanford
University, 1983.

B. Moszkowski. Ezecuting Temporal Logic Programs. Cambridge Univer-
sity Press, 1986.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag, 1992.

L. Ness. L.0: A truly concurrent executable temporal logic language for
protocals. IEEE Transactions on Software Engineering, 19(4):410-423,
1993.

M. Nilsson and H. Tanaka. Massively parallel implementation of Flat
GHC on the connection machine. In Proceedings of the International Con-
ference on Fifth Generation Computer Systems, pages 1031-1040, 1988.

L. Pereira et al. Delta Prolog: A distributed backtracking extension with

events. In Third International Conference on Logic Programming, pages
69-83, July 1986.

S. Pappert. Mindstorms: Children, Computers, and Powerful Ideas. Ba-
sic Books, 1980.




142

[Pau82]

[Plo81]

[P1083]

[R+88]

[Ray88]

[Reu80]

[RH90]

[RS85]

[RUT1]

[Sar89)

[Sha84]

[Shas6]

[Sha87]

[Shasg]

BIBLIOGRAPHY

L. Paulson. A semantics-directed compiler generator. In Proceedings of
the Ninth Annual ACM Symposium on Principles of Programming Lan-
guages. ACM, 1982.

G. Plotkin. A structural approach to operational semantics. Technical

Report DAIMI FN-19, University of Aarhus, 1981.

G. Plotkin. An operational semantics for CSP. In Formal Description of
Programming Concepts II, pages 199-223, 1983.

T. Reynolds et al. Brave — a parallel logic language for artificial intelli-
gence. Future Generations Computing, 4(1):69-75, 1988.

M. Raynal. Distributed Algorithms and Protocols. John Wiley Sons,
Chichester, England, 1988.

A. Reuveni. The Event Based Language and its Multiple Processor Im-
plementations. PhD thesis, MIT, 1980.

M. Raynal and J. Helary. Synchronization and Control of Distributed
Systems and Programs. John Wiley Sons, Chichester, England, 1990.

J. Reif and A. P. Sistla. A multiprocess network logic with temporal and
spatial modalities. Journal of Computer and System Sciences, 30:41-53,
1985.

N. Rescher and A. Urquhart. 'Temporal Logic. Springer-Verlag, 1971.

V. Saraswat. Concurrent Constraint Programming Languages. PhD the-
sis, Carnegie-Mellon University, 1989.

E. Shapiro. Systolic programming: A paradigm of parallel processing. In
Proceedings of the Internation Conference on Fifth Generation Computer
Systems, pages 458-471, Tokyo, January 1984. ICOT.

E. Shapiro. Concurrent Prolog: A progress report. IEEE Computer,
pages 149, 1986.

E. Shapiro. Concurrent Prolog: Collected Papers. MIT Press, Cambridge,
Mass., 1987.

E. Shapiro. The family of concurrent logic programming languages. ACM
Computing Surveys, 21(3):413-510, 1989.




BIBLIOGRAPHY 143

[SS86]

[Sta88]

[Sta90]

[Tay89)
[Tic91]

[TSS87]

[Ued86]

[War83)]

[Y+86)

L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, Cambridge,
MA, 1986.

W. Stallings. Local Network Technology. Computer Society Press, Wash-
ington, D.C., 1988.

W. Stallings. Local and Metgroplolitan Area Networks. Macmillan, New
York, N.Y., 1990.

S. Taylor. Parallel Logic Programming Techniques. Prentice-Hall, 1989.

E. Tick. Parallel Logic Programming. MIT Press, Cambridge, Mas-
sachusetts, 1991.

S. Taylor, S. Safra, and E. Shapiro. A parallel implementation of
Flat Concurrent Prolog. International Journal of Parallel Programming,
15(3):245-275, 1987.

K. Ueda. Guarded Horn Clauses. In Logic Programming, pages 168-179,
1986. (Published in Lecture Notes in Computer Science, volume 221,
Springer Verlag).

D. Warren. An abstract Prolog instruction set. Technical Report 309,
SRI International, Menlo Park CA 94025, 1983.

R. Yang et al. P-Prolog: A parallel logic language based on exclusive
relation. In Third International Conference on Logic Programming, pages
255-269, July 1986.




Appendix A

Code generation

A syntax directed translation scheme is used to generate the NAM object code from
the intermediate program. The translation scheme is realized by a collection of func-
tions — each function translates one (or more) of the syntactic categories found in
the intermediate program. In particular, P is the top-level function that translates
the input program and its constituent rules; S translates actions; G translates basic
actions; C translates constraints; K translates basic constraints; H translates multi-
use descriptors; B translates single-use descriptors; Z translates predefined events;

and, finally, T translates terms. We make use of the function ¢ which is an extension
of ¢ (see chapter 7) to events E. It is defined by ¢(P(T*)) = ¢(P).

Note, some of the translation rules use the “no-op” instruction (i.e., NOP) as the
target of a branch. This allows us to generate the NAM object code in a single pass
over the intermediate program. Once the object code has been generated, most (if
not all) of these “no-op” instructions are removed using control-flow optimization,
a standard peephole optimization technique[ASU86). The translation scheme is as

follows.
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Programs and Rules:

PIL,: R,,...,L, : R]

P[L: H= S]

PIL: H= (]

Multi-use Descriptor:

= P[L,:R]

PIL,: R,]
S([start()]
L: H[H]
BNZ(L,)
S[S]
L,: END
where L, is a new label.
L: H[H]
BNZ(L,)
C[C]
L,: END

where L, is a new label.

HIEAE,A---AE,] = LOAD(n)

Single-use Descriptor:

BIG,A---AG,] =

ZIE,]

Z[E,]
where E = P(X,,...,X,)

G6lG.]
SKIP_ENTRY
9IG,]

SKIP_ENTRY
GlG.]

APPENDIX A.
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Basic Constraints:

K[-Eif G, A---AG, A=E,, A---A-E,}.

KIK, A+ AK.]

G[-E]
SKIP_ENTRY
glG,]
SKIP_ENTRY

SKIP_ENTRY
GlG.]
SKIP_ENTRY
g ﬂ_‘Ek-H]I
SKIP_ENTRY

SKIP_ENTRY

G[-E.]
ALLOCATE(Drecord)
SKIP_SECTION
K[K,]
ALLOCATE_RELATED
SKIP_SECTION
K[K,]

ALLOCATE_RELATED
SKIP_SECTION
KIK.]
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Constraints:
CIK] = K[K]
POSTR(local, Xn, L,)
TERMINATE
L, : SUSPEND_NEXT
DELETE(local, Xn)
where L, is a new label and Xn is an unallocated register.
C[KuntilB] = K{K]
POSTR(local, Xn, L,)
TERMINATE
L, : ALLOCATE(Drecord)
PUT_.ARG_ADDR(L,)
SKIP_SECTION
B[B]
L,: MATCH
SUSPEND
GOTO(L,)
L, : DELETE(local, Xn)
where L, L,, and L, are new labels and Xn is an unallocated register.
ClEK] = KIK] | |
POST(local, L,) | 1
TERMINATE
L, : NOP
where L, is a new label.
SUSPEND_NEXT
C[C]

Cl[oC]
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Events:

GIP(T,,...

¢[-P(T,,...

gle, -+ £, P(T,,...

G[nearby P(T,,...

G[®P(T,, ...

G[®P(T,,...

G[EP(T,,...

» Tl

» Ta)l

» Ta)]

» Ta)]

» )]

» Tl

» Tl
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EVENT(P, local)
T[T}

TqT.]
EVENT(-P,local)
T[T,]

T{T,]
EVENT(P, /¢,/--- /£.)
T[T,]

T[T.]
EVENT(P, nearby)
T[T,]

T[T,]
EVENT(P, somewhere)
T[T,]

TiT.]
EVENT(P, elsewhere)
T[T}

T[T}
EVENT(P, everywhere)

TIT\]

T(T,]
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Actions:

S[E] = ALLOCATE(Erecord)
PUT_ARG-ADDR(L,)

PUT_ARG.ADDR(L,)

SKIP_SECTION

G[E]

POST(local, L,)

TERMINATE
: NOP

where L, is a new label and ¢(E) = {L,,...,L_}.
S[¢,---¢ E] = ALLOCATE(Erecord)
PUT_ARG_ADDR(L,)

PUT-ARG.ADDR(L, )

SKIP_SECTION

GlE]

POST(/¢,/--- /¢, ,L,)

TERMINATE
: NOP

where L, is a new label and ¢(E) = {L,,...,L_}.
S[nearbyE] = ALLOCATE(Erecord)
PUT-ARG_ADDR(L,)

PUT_ARG_ADDR(L,)
SKIP_SECTION
GIE]
POST(nearby, L,)
TERMINATE
L, : NOP
where L, is a new label and ¢(E) = {L,,...,L_}.
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S[®E] = ALLOCATE(Erecord)
PUT_ARG-ADDR(L,)

PUT_ARG.ADDR(L,)

SKIP_SECTION

G[E]

POST(somewhere, L,)

TERMINATE

L,: NOP .
where L, is a new label and ¢(E) = {L,,...,L,}.

S[®E] = ALLOCATE(Erecord)

PUT_ARG-ADDR(L,)

PUT.ARG-ADDR(L, )

SKIP_SECTION

G[E]

POST(elsewhere, L,)

TERMINATE

L,: NOP
where L, is a new label and ¢(E) = {L,,...,L,}.

S[BE] = ALLOCATE(Erecord)

PUT_.ARG-ADDR(L,)

PUT_ARG-ADDR(L,)
SKIP_SECTION
GIE]
POST(everywhere, L,)
TERMINATE
L,: NOP
where L, is a new label and ¢(E) = {L,,...,L, }.
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S[S atnext B]

S[S, atnextB, V---V S, atnextB_]

APPENDIX A.

ALLOCATE(Drecord)
PUT_ARG-ADDR(L,)
SKIP_SECTION
B[B,]

: MATCH

SUSPEND
GOTO(L,)

: S[S,]

ALLOCATE(Drecord)
PUT_ARG_ADDR(L,)
SKIP_SECTION

B[B,]
ALLOCATE_RELATED
PUT_ARG_ADDR(L,)
SKIP_SECTION

B[B,]

ALLOCATE_RELATED
PUT.ARG.ADDR(L,)
SKIP_SECTION

B[B,]

: MATCH

SUSPEND
GOTO(L,)

: S[S,]

GOTO(L,,,)

: S[S,]

GOTO(L,,,)

: S[S,]
: NOP

n4l
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S[eS]

S[¢s]

SIS, ;5,]

SUSPEND_NEXT
S{s]

SUSPEND

S[s]

S[8.]

SUSPEND

S[S.]
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Appendix B

This appendix describes the suite of benchmark programs that was used to collect the
results presented in tables 7.7-7.14. All of the benchmark programs are written in
the data-parallel style[HQ91]. In the data-parallel style, the input data is distributed
evenly across all the processors and each processor executes the same algorithm on
its piece of the input. The individual results are then combined to form the final
result. This style of programming is easily expressed in NETLOG and can be used
to rapidly prototype transformational programs.

Several predefined state variables are used in the programs below. In particular,
each processor can access state variable Np' to reference the total number of processors
in the network; similarly, each processor can access state variable Pid’ to reference
an integer (between 0 and Np’-1) which uniquely identifies the executing processor.
We also make use of several predefined events. split(N,L,,L,) partitions the list
L, into seperate N element lists and binds the result to L, (e.g., sp1it(2,[1,2,3,4],L)
would result in L=[[1,2],(3,4]]), and join(L,,L,) performs the reverse operation (e.g.,
join([[1,2],[3,4]]),L) gives L=[1,2,3,4]). The expression L[n] returns the nth element

of list L. A brief description of each program is given below.
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Program 1: Computing the sum of two vectors

The following program computes the sum of two vectors, A and B, of length N. The
input vectors are represented as lists. The input vectors to be added by a particular
processor is represented by sum(A,B). The result is represented by sum(A,B,C), where
C is the vector that results from adding A and B.

{ Sum([]a[]) = Sum([],ﬂ,ﬂ),
sum([A | As],[BIBs]) = sum(As,Bs);

sum([A | As],[B|Bs],[A+B1Cs]) atnext sum(As,Bs,Cs),

main(N,A,B) = nlist(Np’,Cs);

split(N/Np,A,As);
split(N/Np',B,Bs);
Bsum(As[Pid’],Bs[Pid"]) ;
wait Bsum(As[Pid],Bs[Pid’],Cs[Pid"]);
join(Cs,C) ;
write(C)

}

assert

read(N,A,B) ; main(N,A,B)
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Program 2: Reversing a list

The following program reverses the elements of a list L. The computation performed
on each processor is initiated by an event of the form rev(L,?). The result is given
by rev(L,R), where R is the reverse of L. These individual results are then combined

(in reverse order) to form the final reversed list.

{ rev(X,?) = rev(X,X,[]),

rev(X,[],L) = rev(X,L),
rev(X,[Y1Ys],L) = rev(X,Ys,[YIL]),

main(N,L) = nlist(Np’,Rs);
split(N/Np',L,Ls) ;
Brev(Ls[Pid'],?) ;
wait Brev(Ls[Pid'),Rs[Np’ — (Pid’ + 1)));
join(Rs,R);
write(R)
}

assert
read(N,L) ; main(N,L)
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Program 3: Delete all occurrences of X from list L

The following program prints the elements remaining after deleting all multiples of
X from list L. The computation on each processor is initiated by an event of the
form del(X,L). The result is given by del(X,L,M), where M is the list of elements

remaining after deleting all multiples of X from L.

{ del(X,[]) = del(X,[],]), |
del(X,[L1Ls]) A L%X=0 = del(X,Ls) ; del(X,[L | Ls],Ms) atnext del(X,Ls,Ms),
del(X,[L1Ls]) A L%UX#0 = del(X,Ls) ; del(X,[L | Ls],[L | Ms]) atnext del(X,Ls,Ms),

main(N,X,L) = nlist(Np’,Ms);

split(N/Np',L,Ls) ;
Bdel(X,Ls[Pid’]);
wait Bdel(X,Ls[Pid],Ms[Pid]);
join(Ms,M);
write(M)
}
assert

read(N,X,L) ; main(N,X,L)
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Program 4: Generate primes between 1 and N

The following program computes the prime numbers between 1 and N. The compu-
tation on each processor is initiated by an event of the form primes(Is,?), where Is is
a list of integers. The result is primes(Is,Ps), where Ps is the list of primes found in
Is. The predefined event cond(B,A,,A,,K) binds K to A, if B is true and binds K to
A, if B is false.

{ primes({],?) = primes([},[}),
primes([I11s],?) = relprime(L,[2,...,sqrt(1)],?);
primes(Is,?);
wait (relprime(L,[},B) also primes(Is,Ps) A Ps#7);
cond(B,[I|Ps],Ps,K);
primes([I1Is],K),

relprime(P,[],?) = relprime(P,[],true),
relprime(P,{I11s],?) A P4I=0 = relprime(P,[],false),
relprime(P,[I|1s],?) A P%4I#0 = relprime(P,Is,?),

main(N,L) = nlist(Np/,Ps)’;

split(N/Np’,L,Ls) ;
Bprimes(Ls[Pid"],?);
wait Bprimes(Ls[Pid],Ps[Pid’]);
join(Ps,P);
write(P)

}

assert
read(N) ; main(N,[1,.. .,N])
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Program 5: Matrix multiplication

The following program multiplies two N x N matrices, A and B, and displays the
result. The input and output matricies are represented using a list of lists. Input
matrix B is assumed to be in transposed form. The computation on each processor
is initiated by an event of the form mm(A,B), where A and B are matrices. The result

is mm(A,B,C), where matrix C is the product of A and B.

{ mm([],B) = mm([},B,]]),
mm([A |As],B) = vm(A,B);
mm(As,B);
mm([A | As],B,[C|Cs]) atnext vm(A,B,C) alsomm(As,B,Cs),

vm(A,[]) => vm(A,[],]),
vm(A,[B|Bs]) = ip(A,B,C);
vin(A,Bs);
vm(A,[B|Bs],[ClCs]) atnext vm(A,Bs,Cs),
print(Rs) => join(Rs,R); write(R),
main(N,A,B) = nlist(Np’,Cs);
split(N/Np',A,As) ;
Bmm(As[Pid,B);
print(Cs) afternext Bmm(As[Pid’],B,Cs[Pid])
}

assert

read(N,A,B) ; main(N,A,B)




