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1. Introduction

Large amplitude internal waves which maintain their shape over long
distance of propagation (hence the name 'solitary’) are often observed in
nature and have recently been suggested to occur in the Jovian atmosphere in
the form of the Great Red Spots [18]. These waves can also be generated in
the laboratory rather easily [17], which suggests that they can be excited
under many circumstances in natural systems. Most of the ‘existing theories
( [51, [61, [141, 1[20]1 ), with a few exceptions( [2]), are limited to the
case of small amplitude and long wavelengths, due to analytical difficulties.
The small amplitude assumption allows the solution to be expressed in an
asymptotic expansion in terms of the amplitude and the mnonlinear governing
equations to be solved by perturbation techniques. The long wavelength
assumption reduces the governing two dimensional partial differential equation
into ordinary differential equations. In applications, results from these
weakly mnonlinear theories are often extrapolated into the large amplitude and
short wavelength domains. While it is remarkable that such extrapolations
agree quite favorably with experimental data even for moderately large wave
amplitudes and short wavelengths, notable discrepancies exist both

quantitatively and qualitatively in many situationms.

In this paper, we tackle numerically the original nonlinear partial

differential equation directly without making either the small amplitude
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assumption or the 1long wavelength assumption. Large amplitude waves with
short wavelengths have been computed together with the small amplitude and
long wavelength ones. The nonlinear equation is linearized by Newton's method
and the resulting linear equations are discretized by standard finite
difference methods. In the deep fluid cases, the waves only occupy a small
portion of the computational domain, and use of uniform mesh spacing would be
wasteful., Our solution is to use an analytical transformation of the domain
so that a uniform mesh in the transformed domain gives adequate resolution
without too much waste. The governing equation contains a physical parameter
: the wave speed, and we are interested in computing many different waves
corresponding to different wave speeds. To make the computational process
more efficient, we employ continuation techniques (with respect to the wave
speed) whereby known solution at a given wave speed can provide extremely good
initial guess for Newton’s method at a nearby wave speed. Moreover, in a
shallow fluid case we found nonunique solutions for a given wave speed. In
order to provide a systematic way to trace some of these nonunique solutions,

an arclength continuation technique [12] is employed.

In Section 2, the governing partial differential equations are discussed,
and in Section 3 , a description of Newton's method and the continuation
techniques is given. Details of numerical implementation are described briefly

in Section 4, and numerical results and comparison with experimental data are
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presented in Section 5. The conclusion is in Section 6.

This paper is a companion to the paper by Tung, Chan and Kubota [24].
There we focus on more mathematical issues such as proving existence of 1large
amplitude solutions and relating the dependence of wave amplitude on wave
speed to the density profile of the fluid medium. For a more thorough
discussion of the fluid dynamical aspects of the waves computed in the current
paper and other background information, the reader is referred to the
companion paper. The present paper focuses on the numerical techniques wused
to computed the 1large amplitude waves. It is hoped that the numerical

techniques are of more gemeral interest and can find applications in other

areas.



2. Governing Equations

Consider a stably stratified fluid, the ocean for example, which is
perturbed and set into motion (Figure 2-1). The interaction of the density
variations and the force of gravity can give rise to many interesting wave
phenomena. Internal solitary waves are a well-known example [9, 10]. These
are waves that propagate inside the fluid, rather than on the surface, and can

travel long distances without changing their shape or losing their enefgy.

The equation that governs the steady state propagation and shape of these
internal waves can be derived from the equations of motion of an
incompressible, inviscid, and non—diffusive fluid of variable
density [16, 24], which, in terms of dimensionless variables for the case of

uniform mean flow, is:

Au + AuF’(y+u)/(1-6F(y+u)) =

oF ' (y+u) (w2 + ul + 2 u))/ (1-cF(y+u))/2, (2.1)
with boundary conditions:
u = 0 on the surface and bottom of fluid,
u->0as |zx| - =,

where




v

[ '/\WQ\/W\_/\_/\‘A

mean
flow

Figure 2-1: Internal Solitary Wave Environment

-5 -

N direction of propogation

)

fluid surface

-
——
- p(y) ————» internal wave
density
o
X
/ / /




_6_
— u is the perturbation stream function,

— A is a nondimensional quantity inversely proportional to the square

of the wave speed,

— p the density is given by:
P = pg(1 - oF(y+u)), (2.2)
where F is a given nonlinear function that specifies the density

stratification profile; an often used profile is the ’'tanh’-profile:

F(y) = tanh(y),

— o6 can be interpreted as the relative density change across the

entire stratified layer.

Equation (2.1) is seldom solved in this complicated and fully mnonlinear
form. Often the relative demnsity stratification is very small (e.g. in the
ocean), so that ¢ <{ 1 and the so—called Boussinesq approximation is made.
Equation (2.1) is then reduced to the simpler form, to which we shall refef to

as Long's Equation [16]:
Au + AF'(y+u) u = 0. (2.3)

Equation (2.3) is the equation we will be dealing with in this paper.

For the purpose of describing the numerical methods in the next section, it is
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convenient to write Equation (2.3) formally as

G(u,Ar) =0 (2.4)
to show the dependence of the perturbation stream function u on the parameter
A. Equation (2.4) is in the form of a mnomnlinear elliptic eigenvalue

problem [4, 12].
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3. Newton'’'s Method and Continuation Techniques

3.1 Newton's Method
Solving a nonlinear eigenvalue problem G(u,A) = O can take on at least
two different meanings:
1. Solve for u(A) given a specific value for A.
2. Determine the dependence of u on A.
In this paper, we adopt the second meaning. Clearly, if we have a good
procedure for solving Problem (2), we can also use it to solve Problem (1)

effectively.

The wusual solution procedures for nonlinear problems involves

linearization and application of some version of Newton’s method.
Newton'’s Method :

Given a value of A and an initial guess w0 for the solution u(A), we

perform the following steps repeatedly until satisfied :

6l s’ = - 6(ai,2) . (3.1)

ot o i g ged, (3.2)

In the above, subscripts denote partial derivatives and so Gu denotes the

Jacobian of the operator G (with respect to u). This procedure will generally



-9 -

converge quadratically when it does converge. However, as is well known, in
many instances it will fail to converge when the initial guess is not 'close’

to the true solution.

3.2 Natural Continuation

A plausible procedure for overcoming this convergence difficulty and also
for determining the dependence of u on A is to start at a known solution
(uo,xo) on the solution curve and use it as initial guess for a Newton—type
iteration to find the solution for a neighboring point on the solution curve
with A close to lo and repeating the procedure. We can improve on this
further by computing the ’'slope’ u, at a known solution and use it to get a

better initial guess for the next value of A in a predictor-corrector fashion.
We shall call this the Natural Continuation Procedure because it corresponds

to parametrizing the solution curve by A, the naturally occurring parameter.
Natural Continuation Procedure:

Given a known solution (no,xo), we want to compute the solution at a
nearby value of A.
1. First compute the ’'slope’ u, at (uo,xo) from

2. Perform an Euler predictor step:
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0 _
BT = mp v (- Ay, (3.4)

3. Use uO as initial guess in Newton’s method for G(u,r)=0:
Gi it - of) = - (i) (3.5)

until convergence.

4. Use (u(A),A) as the new (uo,xo) and go back to Step 1.

Note that very often the computation of the slope u, does not cause much
computational overhead because we usually have the factorization of the
Jacobian Gu computed already in the Newton step. Using the slope in a
predictor—corrector fashion will often allow us to take a much bigger step in

A and thus reduce the overall cost of determining the dependence of u on A.

Unfortunately, this procedure needs some modification in order to handle
general nonlinear systems because of the possibility of existence of nonunique
solutions. The nonuniqueness usually manifests itself in the form of
existence of 'singular’ points where the Jacobian Gu is singular (see Figure
3-1). Points such as point A in Figure 3-1 are called 1limit points (or
turning points) and points such as point B are called bifurcation points.
These singular points are further characterized by the conditions that G ¢

A
Range(Gu) at a limit point and that G, = Range(Gu) at a bifurcation

Point [12] .
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Figure 3-1: A Typical Bifurcation Diagram
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The difficulties that the Natural Continuation Procedure will encounter
are three—fold. First of all, since G, is singular at these points, Newton’s
method will in general be only linearly convergent, making it much more costly
to compute the solution. Moreover, when tracing a solution branch near a
limit point, there may not exist a solution for a given value of A (see Figure
3-2) and hence Equation (3.5) will fail. Lastly, we need some mechanism for

switching branches at a bifurcation point.

3.3 Arclength Continuation

In the pseudo—arclength continuation approach [3, 12], this difficulty is
overcome by not imposing a value for A at which the solution u(A) is sought.
Instead, we parametrize the solution branches using an arclength parameter s,

and specify how far along the current solution branch we want to march.

To be more specific, we let s be the arclength parameter, and treat u(s)
and A(s) as functions of s. We can compute the ’'slopes’ u(so), l(so) (where
the dots denote differentiation with respect to s) of a known solution at s=5
from the following two equations:

Gu u, + ko 6 =0, (3.6)

Hagll? + 16,12 - 1 = 0. (3.7)

Equation (3.6) is obtained from differentiating G(u,\.) = 0 with respect to s
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Figure 3-2: Failure of Natural Continuation Near Limit Points
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and Equation (3.7) imposes the arclength condition. We can theoretically

'follow’ the solution curve by integrating the initial value problem defined
by ;(s) and i(s). However, this process may become unstable —— the
approximate solution to the initial value problem may deviate more and more
from the true solution curve. One way to stabilize this procedure is to use
ﬁ(s) and i(s) in a predictor step to provide an initial guess for a

Newton-type method to bring it back onto the true solution curve (Figure 3-3).

In the pseudo—arclength continuation procedure, we advance from Sp to s
along the solution branch by requiring the new solution u(s) and A(s) to

satisfy the following equations:

N(u(s),a(s)) = vgluls) = ulsg)) + ho(Als) = Alsp)) = (s = sg) = 0
and (3.8)
G(u(s),A(s)) = 0. (3.9)

Equation (3.8) is the linearization of Equation (3.7) and essentially forces
the new solution to lie on a hyperplane perpendicular to the tangent vector of
the solution curve at s, and at a distance (s—so) from it. Equation (3.9)
requires u(s) and A(s) to lie on the true solution curve (Figure 3-3). We now
solve the coupled system (3.8) and (3.9) for u(s) and A(s), given the step

size (S'So) (efficient strategies for choosing the step size are discussed

in [21]). We can use Newton’s method, in which case we have to solve the
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Figure 3-3: Pseudo—-Arclength Continuation
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Figure 5-1: Dependence of u on A
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following linear system at each iteration:

|

I

| (3.10)
I

It can be shown that at 1limit points, where Gu is singular and G, ¢
Range(Gu), the linear system in Equation (3.10) is nonsingular (see [12]) and
therefore Newton's method for the coupled system (3.8) and (3.9) is

well-defined. Hence limit points present no problem and even quadratic

convergence is achievable.

At bifurcation points, where Gu is singular and G, e Range(Gu), things
are more complicated. In the simplest case of only omne branch bifurcating
from the main branch (simple bifurcation), an additional higher order

condition (see for example Crandall and Rabinowitz [8]) involving 6y €

-y and

le has to be satisfied. It can be shown [12] that this condition, together
with Equations (3.6) and (3.7) and the left and right null vectors of Gu'

enable two solutions for (uo,lo) to be computed at a simple bifurcation point,

with one solution corresponding to each branch. Using the appropriate pair of

(vy,2g) in Equation (3.8) allows branch switching.

In order to solve the linear system in Equation (3.10) by direct methods,
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several approaches are possible. One way is to perform Gaussian elimination

on the inflated matrix A, with some form of pivoting to insure stability. But

this approach completely ignores the sparse structure which is usually found
in Gu's arising from nonlinear elliptic eigenvalue problems. In order to take

advantage of the strugture in Gu’ Keller [12] suggested the following

block-elimination procedure:

Algorithm BE: (block-elimination)

Solve Gu y= G , (3.11)
and Gu z = - G. (3.12)
Set 84 = (-NLz-N)/ (N, -NTy)

uz A uy (3.13)
and Su =2z - A y. (3.14)

Note that only systems with the coefficient matrix Gu have to be solved, so
structures in Gu can be exploited. Moreover, only one factorization of G, is
needed. It has been shown [23] that even when Gu is becoming singular,

Algorithm BE produces iterates that converge quadratically at limit points.

Continuation methods of various forms and levels of sophistication have
been widely used in the engineering literature (see the survey [3]). For a
recent survey of numerical methods for bifurcation problems, see for example
the paper by Mittelmann and Weber in [19]. The approach taken here is due to

Keller [12], and has recently been applied to other problems in fluid
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mechanics ( [7], [13]1 , [151, [22]1, [23]1 ). A related approach suggested

by Abbott [1] corresponds (in a loose way) to applying Algorithm BE to the

matrix A with the last column permuted into the first n columns so that the
corresponding coefficient matrix in Equations (3.11) and (3.12) becomes
nonsingular even at limit points. However, as has already been pointed out,

any structure or symmetry in Gu is lost in the process, and hence that

approach seems unsuitable for 1large elliptic systems in two or three

dimensions.
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4. Numerical Implementation for the Internal Wave Problem

4.1 Computational Domain and Boundary Condition
The general domain of interest is the infinite strip:

D, = ( “Hy <y <H , 2<{x{=),
In the numerical implementation, the domain D°° is truncated to a rectangle of
large but finite horizontal extent. If the solution obtained for such a 'box’
is to represent a solitary wave, then it should not be altered if the domain
is enlarged. Unless otherwise noted, this was checked numerically for all
solutions calculated. The truncated domain is given by:

DL = ( —HZ (y« H ,-L<x<L),
and the boundary condition is :

u=20 on aDL.

If the density stratification has certain symmetry, then the domain can be
further reduced. Specifically, for the 'tanh’ demsity profile (i.e. F(y) =
tanh(y) ), F'(y) is symmetric about y = 0, and it can be shown [24] that
antisymetric solutions satisfying u(x,y,A) = - u(x,-y,A) exist. Moreover,
since the governing equation is invariant under a change in sign in the
horizontal coordinate x, solutions symmetric about x = 0 exist. For such a
wave, the domain DL can be reduced to (Figure 4-1)

D=(0<y<H,O0<x<L),

and the boundary conditions become
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=0 fory=0adH, 0<x <L

n

and for x = L , 0y <H,

9u/8x = 0 forx =0, 0y <H.

In this paper, the larger domain D; was used so as to allow for

asymmetric solutions which may exist, although none have been found so far.

4.2 Computational Mesh

Since, in most cases, most of the interesting phenomenon occurs near the
origin, it would be a waste of computational effort to use a uniform grid on
the domain DL. The approach we have taken is to transform the domain DL into

another rectangular domain DT by the following transfoimation (Figure 4-1)

€ =tanh ( a x )

n==¢tanh ( By) .
A uniform mesh in the (&,n) plane would put more mesh points near the origin
of the domain in the (x,y) plane. The relative spacing of the mesh points in
the (x,y) plane can be varied by varying the parameters a and B. Note that
the inverse transformation can be obtained from the following formula :

tanh 1 x = ( log (1+x)/(1-x) ) / 2 if Izl < 1.
Equation (2.3) now becomes :

o2(1-¢%) a/0¢ (1-£2) 8/0t

+ B2(1-n2) a/on (1) 8/dn u (4.1)
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Figure 4-1: Domain, Boundary Conditions and Mesh
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+ x 2 -1 _
u sech® (u + tanh ~ (n) / B) =0 .

4.3 Discretization and Solution

To discretize Equation (4.1), we wuse a centered second order finite
difference approximation. Let n and m denote the number of intervals in the &
and n directions, respectively, and let

h

2 tanh(a L) / n , Ei =& + (i-1)n,

k

2 tanh(B H) / m , nj =n; + (j -1) k.

The discretized Equation (4.1) is given by :

(G(u.k))i’j = CE,; Ui, Ccw, Ui,
+ CNj ni,j+1 + CSj v5,5-1
+(cg, o+ Cﬂj ) LI (4.2)
+ A i3 sechz(ni’j + tanh_l(nj) / B) .

for 2 <(=i<d=n, 2<&=j<=m, where

CE; = (1-§3) (1-E3,q/y) o / ¥

CW, = (1-£2) (1-¢5_;,5) o / B2

oN; = (l-nﬁ) (1-n?+1/2) 2 / x? (4.3)
oF, = (1-8D) (1-83_y;5) B2/ ¥’

Cg, =- (1‘§§+1/z + 1'§§—1/2) (1-gp o® / 12

Cnj = = (mmfazp + 1myg) Qo) B0 K
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The derivatives Gu and Gx needed in the continuation procedures can then

be easily computed from Equation (4.2). The discrete operator Gu is a
block-tridiagonal matrix of size (n-1)*(m-1) and has the familiar nonzero
structure generated by five-point operators. Since this matrix is
nonseparable, we cannot use fast Poisson solvers. Moreover, the matrix is
indefinite and hence iterative methods like Successive—Over-Relaxation cannot
be wused directly. We have chosen to use a band solver called LEQT1B from
IMSL [11]. This choice was satisfory for our problem in terms of speed and
storage. Typically, L = 20 was found to be large enough to contain the
solitary waves. Various values of the half-depth H were used, ranging from H
= 4 to H = 40. Results from the H = 40 case was meant to be compared to
experimental results obtained by Davis and Acrivos [9]. Typically, n = 20 and
m = 32 was used. These were found to provide adequate resolution. All
computations were performed on a CDC Cyber 176 computer, and it takes slightly

less than one CPU second to‘pbtain a solution u for a given value of A.
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5; Numerical Results

In this section, we present a sample of the numerical results that we
have obtained for the internal wave problem with the 'tanh’ density profile,
i.e. F'(y) = sechz(y). All waves presented here are 'mode-2' waves
(anti-symmetric about y = 0) and are symmetric about =x = 0. Other waves
corresponding to different density profiles and different modes have been
computed, but won't be presented here because they don’'t correspond to the
experimental results of Davis and Acrivos [9] and probably are not as easily
realizable as the mode—2 waves., More results and discussions on the fluid

dynamical significance of these computed waves can be found in [24].

The dependence of u on A as computed is shown in Figure 5-1 for E = 4, 10
and 40. Each value along these curves is a nonlinear solution corresponding
to Equation (4.2), and many such solutions (15 to 20) are used to construct

each curve.

For the shallow water case of H = 4, we have found nonunique solutions
and a limit point at A = 0.979114 with (—u)max = 2.647. Some contour plots of
the total stream function ut+y for various values of A are presented in Figures
5-2, 5-3 and 5-4. Contour plots for the case H = 40 are presented in Figures

5-5, 5-6 and 5-7.

Horizontal cross—sections cut along a line passing through the y-location.
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of the wave maximum are displayed in Figure 5-8. The vertical cross—sections
through the same maximum are displayed in Figure 5-9. The uppermost 1line in
Figure 5-8 is a portion of the extremely large amplitude, bore—like wave found
at A = 1.1615, past the limit point. This wave probably does not correspond
to a physical solitary wave because the artificial boundary seems to have a
significant influence on it. However, it does show that the mathematical
problem given by Equation (4.2) has nonunique solutions. We should note here
that we have not addressed the question of stability of these steady state

solutions.

In Figure 5-10, the experimental results of Davis and Acrivos [9] are
compared with the computed results. The density profile in their experiment
can be well approximated by F(y) = tanh(y) and the half-depth is equivalent to
our case of H = 40, The relative density change across the stratified 1layer
in all the experiments are relatively small (i.e. o is small in Equation
(2.1)), and hence the Boussinesq approximation made to arrive at Equation
(2.3) is justified. Also displayed in Figure 5-10 is the analytical result
from the weakly nonlinear theory. As can be seen from the figure, excellent
agreement is obtained with the fully nonlinear results of our study, evem in
the large amplitude and nonlinear regime, where the weakly mnonlinear theory

starts to deviate from observed data.
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Figure 5-1: Dependence of uw on A
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6. Conclusion
In this paper, we described efficient continuation techniques for solving

general nonlinear eigenvalue problems. We applied these techniques to the
solution of Long's Equation which governs the propagation of internal solitary
waves in a stratified medium. Nonunique solutions have been found by the
continuation procedures. Computed results show excellent agreement with the
experimental data obtained by Davis and Acrivos [9], even in the nonlinear

regime where weakly nonlinear theories fail to give good predictions.
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