Yale University
Department of Computer Science

Types of queries for concept learning

Dana Angluin, Yale University

YALEU/DCS/TR-479
June 1986

Research funded in part by the National Science Foundation, DCR-8404226.




Abstract

We consider the problem of identifying a concept, that is, an unknown subset L.
of a universal set U, using a variety of sources of information about L.. The infor-
mation sources we study are: random sampling and queries that test equivalence,
membership, subset, superset, and disjointness. We give examples of identification
problems that are efficiently solvable using different collections of these informa-
tion sources, including regular languages, some classes of context-free languages,
pattern languages, monotone DNF formulas, and CNF formulas with a restricted
number of clauses or of literals per clause.
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Types of queries for concept learning

Dana Angluin, Yale University

1 Introduction

We consider the problem of identifying an unknown set L, from some countable
population L;, Lo,... of subsets of a universal set U. The primary examples we
consider are sets of strings generated by grammars or recognized by automata,
and sets of truth-value assignments that satisfy propostional formulas from some
particular class. This problem has been considered in the context of inductive
inference, in which the source of information about the unknown language is a
sequence of arbitrarily chosen elements of U, each one marked as to whether it
is an element of L.. (The sequence may also be an arbitrarily chosen sequence
of elements of L., in which case the problem is one of identification from positive
data.) For a comprehensive survey of inductive inference, see [4].

In this paper, we explore the effects of other kinds of information about the un-
known set on the feasibility of identification. This study is motivated by Shapiro’s
work on automated aids for debugging Prolog programs [15,16,17], by Valiant’s
work on learning concepts from randomly chosen examples and other types of
information [19], and by the discovery of an efficient identification procedure for
regular sets using equivalence and membership queries [2]. The goal is to classify
several types of queries and give examples of identification problems in which they
are useful. Such a classification cannot claim to be exhaustive, but it has already
raised some interesting questions.

1.1 Types of queries
The types of queries we consider are:

1. Equivalence. The input is a set L and the output is yes if L = L, and
no if L # L,. In addition, if the answer is no, an element z€ L & L.
is returned.
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2. Membership. The input is an element z € U and the output is yes if
€ L.and noif z & L.. i

3. Subset. The input is a set L and the output is yesif L C L. and no
otherwise. In addition, if the answer is no, an element z€ L— L, is
returned.

4. Superset. The input is a set L and the output is yesif L 2 L. and no
otherwise. In addition, if the answer is no, an element z € L. — L is
returned.

5. Disjointness. The input is a set L and the output is yes if LN L, is
empty and no otherwise. In addition, if the answer is no, an element
z € LN L., is returned.

In the cases of equivalence, subset, superset, and disjointness queries, the re-
turned element z is called a counter-ezample. The particular selection of a counter-
example is assumed to be arbitrary, that is, a successful identification method must
work no matter what counter-example is returned. We shall also consider restricted
versions of each of these queries, for which the responses are just yes and no, with
no counter-example provided.

In general, we think of the input L as restricted to one of the hypotheses
Ly,Ly,L3... in the original hypothesis space. The effects of this restriction are
considered in more detail below.

Is this a complete set of queries? One notion of “completeness” is the following.
An E-query is defined to have two inputs: a set L and a boolean expression over
L and L., considered as representing a set X of elements. The output is empty if
X is empty and is an element x € X otherwise.

One E-query that cannot be constructed from the above queries is “Exhaus-
tiveness”, that is, whether the complement of L U L, is empty or not. If we add
exhaustiveness to subset, superset, and disjointness, and L is permitted to be the
empty set or U, then any E-query can be answered by a sequence of these four
basic types of queries. (This is a kind of truth-table reducibility.) However, ex-
haustiveness does not seem to come up in natural contexts, so it is omitted from
the basic list.

1.2 Exact identification

We shall consider two criteria of successful identification, exact and probabilistic.
An identification method ezactly identifies a set L. with access to certain types of
queries if it always halts and outputs a set L such that L = L.. Note that this is




not a limiting criterion of identification — the identification method is allowed one
guess, and that guess must be exactly right.

1.3 Probabilistic identification

Probabilistic identification is defined as follows. There is some probability distri-
bution D on the universal set U. There is a sampling oracle EX() which has no
input. Whenever EX() is called, it independently draws a element z € U accord-
ing to the distribution D and returns the pair (z,s), where s = + if z € L. and
s = — otherwise. Successful identification is parameterized with respect to two
small positive quantities, the accuracy parameter € and the confidence parameter
6. We define a notion of the difference between two sets L; and L, with respect
to the probability distribution as

d(Ly,Ly)= Y Pr(z).
z€EL1&L2

The probability of getting an element in one but not the other of the two sets L;
and Lz in one call to EX() is precisely d(L1, L2). ‘

An identification method is said to probably approzimately correctly identify L.
if it always halts and outputs a set L such that

Pr(d(L,L) <€) >1-6.

That is, with high probability (quantified by §) there is not too much difference
(quantified by €) between the conjectured set and the unknown set.

In general if we consider only deterministic information from a subset of the
queries listed above we shall be interested in exact identification, but if the EX()
oracle is used, we shall be interested in probably approximately correct identifi-
cation (abbreviated pac-identification hereafter). We now consider the different
types of information individually.

2 Equivalence and sampling

2.1 Exhaustive search

If the only source of information available to us about the unknown language L, is
equivalence queries, then one strategy is to enumerate the hypotheses Ly, Lo, ...,
querying each one until we get an answer of yes for some L;, at which point we
halt and output L;. This achieves exact identification.




If queries are restricted to the hypothesis space, Ly, L, L3 . . ., then exhaustive
search is in some cases the best that can be done. Suppose the hypothesis space
is the set of singleton subsets of the set of all 2" binary strings of length n. The
following adversary will force any method of exact identification using equivalence,
membership, subset, and disjointness queries to make 2" — 1 queries in the worst
case.

The adversary maintains a set S of all the uneliminated binary strings of length
n. Initially S contains all 2" binary strings of length n. As long as S contains
at least two distinct strings, the adversary proceeds as follows. If the next query
is a membership query with the string z, then the adversary answers with no. If
the next query is an equivalence or subset query with the singleton set {z}, then
the adversary answers with no and the counter-example z. If the next query is
a disjointness query with the singleton set {z}, then the adversary answers with
yes. In each case, if = is a member of S, the adversary removes it from S.

It is not difficult to see that the responses of the adversary are compatible with
the unknown hypothesis being {z} for any element z still in S, and at most one
element is removed from S§ with each query. Thus to be correct the algorithm
must make at least 2" — 1 queries. If superset queries are permitted, a single one
will disclose the unknown set. ‘

2.2 Some general lower bound techniques

In this section we generalize the techiques of the preceding section to give some
properties of subclasses of the hypothesis space that force exact identification
algorithms to do exhaustive search over those subclasses if only certain types of
queries are available.

Lemma 1 Suppose the hypothesis space contains a class of distinct sets Ly,...,Ln,
and a set Ln such that for any pair of distinct indices ¢ and j,

L,’ ﬂL] = Ln.

Then any algorithm that ezactly identifies each of the hypotheses L; using restricted
equivalence, membership, and subset queries (for the whole hypothesis space) must -
make at least N — 1 queries in the worst case.

We construct an adversary as follows. The set S is initially the set of all
L;fori=1,2,...,N. As long as S contains at least two elements, the adversary
answers queries according to the following strategy. If the next query is a restricted
equivalence query with the hypothesis L, the reply is no and L is removed from S




if it is present. If the next query is a membership query with the element z, then if
z € L the reply is yes. Otherwise, the reply is no, and the (at most one) element
L; of S containing z is removed from S. If the next query is a subset query with
the hypothesis L, then if L is a subset of Ln, the reply is yes. Otherwise, the reply
is no and any element z € L — L is selected as the counter-example. The (at
most one) element L; of S containing z is removed from S.

It is clear that at any point the replies to the queries are compatible with
any of the remaining L; in S being the unknown hypothesis, so a correct exact
identification algorithm must reduce the cardinality of S to at most one. Moreover,
each query removes at most one element from the set S, so N — 1 queries are
required in the worst case, which proves Lemma 1.

If it happens that the “intersection set” Lp is not itself an element of the
hypothesis space, then the above result can be strengthened to cover unrestricted
equivalence queries.

Lemma 2 Suppose the hypothesis space contains a class of distinct sets Ly,..., Ly,
and there ezists a set Ln which 18 NOT a hypothesis, such that for any pair of dis-
tinct indices ¢ and j,

L;n Lj = Ln.

Then any algorithm that ezactly identifies each of the hypotheses L; using equiva-
lence, membership, and subset queries (for the whole hypothesis space) must make
at least N — 1 queries in the worst case.

Let S initially contain all the sets L; for t = 1,2,...,N. As long as S contains
at least two elements, the adversary answers queries as follows. If the next query
is an equivalence query with the hypothesis L then the reply is no and a counter-
example z is chosen from L & Ln. (This is possible since L is not a hypothesis,
so L cannot be equal to it.) If z is from L — L, the (at most one) element L; of
S containing z is removed from S. If the next query is a membership query with
the element z, then if x € L the reply is yes. Otherwise, the reply is no, and the
(at most one) element L; of S containing « is removed from S. If the next query
is a subset query with the hypothesis L then if L is a subset of L then the reply
is yes. Otherwise, the reply is no and an element z € L — Lp, is selected to be the
counter-example. The (at most one) element L; in S containing x is removed from
S.

It is clear that at any point the replies to the queries are compatible with
any of the remaining L; in S being the unknown hypothesis, so a correct exact
identification algorithm must reduce the cardinality of S to at most one. Moreover,
each query removes at most one element from the set S, so N — 1 queries are
required in the worst case, which proves Lemma 2.




There are also dual results for equivalence, membership, and superset queries,
which we state without proof.

Lemma 8 Suppose the hypothesis space contains a class of distinct sets Ly,..., Ly,
and a set Ly such that for any pair of distinct indices ¢ and j,

L;UL; = Ly.

Then any algorithm that ezactly identifies each of the hypotheses L; using restricted
equivalence, membership, and superset queries (for the whole hypothesis space)
must make at least N — 1 queries in the worst case.

Lemma 4 Suppose the hypothesis space contains a class of distinct sets Ly,..., Ly,
and there ezxists a set Ly which is NOT a hypothes:s, such that for any pair of dis-
tinct sndices ¢ and j,

L;uLj=Ly.

Then any algorithm that ezactly identifies each of the hypotheses L; using equiv-
alence, membership, and superset queries (for the whole hypothesis space) must
make at least N — 1 queries in the worst case.

2.3 A logarithmic strategy

If the input L to an equivalence query is NOT required to be a member of the
hypothesis space, there is a general strategy using only equivalence queries that
requires many fewer queries than exhaustive search. Suppose the hypothesis space
is finite, of cardinality N. Then instead of making N — 1 queries, we may make
|log N | queries, as follows.

A set C is maintained of all the hypotheses compatible with all the counter-
examples seen so far. (C initially contains all N hypotheses.) If C contains just
one element, then halt and output that element. Otherwise, define

Mg = {z €U : at least |C|/2 elements of C contain z}.

Thus, an element z is included in Mg if and only if at least half the remaining
compatible hypotheses include z. Then we make an equivalence query with M¢
as input. If the answer is yes, we halt and output Mc. Otherwise, we receive a
counter-example z.

If x € Mg, we remove from C every hypothesis L; that includes z; otherwise,
we remove from C every hypothesis L; that does not include x. Then the process
above is iterated. Note that we only make queries when C contains at least two




distinct elements and every query answered no must reduce the cardinality of C
by at least one half, so a total of [log N'| queries suffices. This result is a special
case of the results of Barzdin and Freivalds on minimizing the number of changes
of hypothesis [5].

This indicates that the structure of the hypothesis space has a strong influence
on the number of equivalence queries required to do exact identification, when the
queries are restricted to the hypothesis space. Of course we shall also be interested
in the computational feasibility of the query strategy.

2.4 Comparison of equivalence and sampling

An identification method that uses equivalence queries and achieves exact identi-
fication may be modified to achieve pac-identification using calls to EX() instead
of equivalence queries. The idea is instead of asking an equivalence query about L,
the identification method calls EX() a number of times and checks to see that L is
compatible with each pair (z,s) returned by EX(). If not, then the identification
method proceeds as though the equivalence query had returned the answer no with
z as a counter-example. If L is compatible with all the samples drawn, then the
identification method proceeds as though the equivalence query had returned the
answer yes.

Suppose that when an equivalence query returns yes, the identification method
simply halts and outputs the language L. If the identification method makes

1, 1 .
g = [-g(ln i i1n2)]

calls to the EX() oracle in place of the ¢-th equivalence query then the probability
that the identification method will output a set L such that d(L,L.) > € is at
most (1 — €)%. Thus, the probability that at any stage the identification method
will output a hypothesis that is not an e-approximation of L, is at most

© 00
Z(l -e% < z P
i=1 =1
o)
i=1
< 6.

Thus the modified method achieves pac-identification of L..
An example of the modification of an exact method to identify regular sets
using equivalence and membership queries to a probabilistic method using EX()




and membership queries may be found in [2]. There it is argued that if the source
of information about L. is a domain expert, then it may be unreasonable to expect
correct answers to equivalence queries, but this probabilistic equivalence-testing
may be a practical substitute. Stochastic equivalence-testing was a feature of the
method of Knobe and Knobe for identifying context-free grammars [11].

What about the converse? Can the use of an EX() oracle and pac-identification
criterion be replaced by the use of equivalence queries and exact identification?
Not if it is required to preserve the efficiency of the method. Consider again the
problem of identifying singleton subsets of the set of all binary strings of length =.
Recall that an adversary could force a strategy using only equivalence queries to
make 2" — 1 queries in the worst case.

However, to achieve pac-identification in this domain, it suffices to make

g= [%(ln % +nln2)]
calls to EX(). (Note that ¢ grows linearly in n for fixed € and 6.) Either at least
one of these calls will return a positive example (z,+), in which case the correct
answer is {z}, or none of them do, in which case we output any set {y} such that
the string y has not appeared among the negative examples.

To see that this procedure achieves pac-identification we show that with high
probability every string of probability at least ¢/2 is drawn in ¢ calls to EX().
Thus if the “correct” string z is not drawn and we instead output y (which is also
not drawn), with high probability

d({y}.{z}) S €¢/2+¢/2< e

Suppose z is a string with probability at least ¢/2. The probability that z is
not drawn in ¢ calls to EX() is at most (1 — ¢/2)9, so the probability that there
exists any string of probability at least ¢/2 that is not drawn in ¢ calls to EX() is
at most

=<9
2

2"(1 — €/2)9 2%

<
< 6.

Thus pac-identification with oracle EX() is in general easier to achieve than exact
identification with equivalence queries.

2.5 k-CNF formulas and k-DNF formulas

Upper bounds. Let CNF(n,k,c) denote the set of propositional formulas over
the n variables z;,...,2z, with at most £ literals per clause and at most ¢ clauses,




(If k£ is * then there is no bound on the number of literals per clause, and similarly
for ¢.) The EX() oracle returns pairs (a,s) where a is an assignment of truth-
values to the variables z;,...,2, and s = + if this assignment satisfies an unknown
formula ¢. and s = — otherwise.

Valiant [19] has shown that there is a method that runs in time polyno-
mial in n*, 1/¢, and log1/§ that achieves pac-identification of the formulas in
CNF(n,k,x). The method is to draw a certain number of samples from EX()
and then to output the conjunction of all those clauses C over n variables with at
most k literals per clause such that for every positive sample (a,+), a(C) is true.

There is an analogous method that runs in time polynomial in n¥, uses equiv-
alence queries, and achieves exact identification of the formulas in CNF(n,k,*).
Initially let ¢ be the conjunction of all clauses C over n variables with at most k
literals per clause. (There are no more than (2n + 1)F such clauses.) Iterate the
following process until the equivalence query returns yes, at which point halt and
output ¢. Test ¢ for equivalence with @.. If it is inequivalent, the response will
be a counter-example a, which must satisfy ¢, but not ¢. There will be at least
one clause C in ¢ such that a(C) is false. Remove from ¢ all such clauses C and
iterate. It is clear that we remove at least one clause for each negative answer to
an equivalence query and must arrive at a formula equivalent to ¢. by the time
we remove all the clauses, so the claim follows.

By logical duality, there are similar methods for exact and pac-identification
of disjunctive normal form formulas over n variables with at most k literals per
term. For a number of interesting examples of pac-identification, and a general
characterization of when it is possible, see the paper of Blumer et al.[7].

Lower bounds. We may apply Lemma 1 to show an exponential lower bound
on any algorithm that exactly identifies all 1-CNF formulas with n variables using
restricted equivalence, membership, and subset queries. To do this, we consider
the class of all formulas of the form

PiAP,A...AP,,

where each P; is either z; or —z;. There are 2" such formulas, each one a 1-CNF
formula satisfied by exactly one assignment, and no two formulas are satisfied
by the same assignment. This class satisfies the hypotheses of Lemma 1, which
implies that any algorithm that exactly identifies every formula in this class using
restricted equivalence, membership, and subset queries must make 2" — 1 queries
in the worst case.

Dually, we may consider the class of 1-DNF formulas of the form

PLVPV...VP,,

9




where each P; is either z; or —=z;. Every formula in this class is satisfied by all but
one assignment which is unique to that formula, so the hypotheses of Lemma 3
are satisfied. This implies that any algorithm that exactly identifies every formula
in this class using restricted equivalence, membership, and superset queries must
make 2" — 1 queries in the worst case.

3 Membership queries

A membership query returns one bit of information: whether or not the queried
element is a member of the unknown set L.. If the source of information is a do-
main expert, it seems reasonable to ask the expert to classify cases that the system
may generate in the course of trying to learn a particular concept. (However, in
a practical case, say X-rays of potential tumors, it may be difficult for the system
to generate fully instantiated cases (simulated X-rays) that embody the particular
features the system has decided are relevant. In such a case, subset, superset, or
disjointness queries using a higher-level description language may actually prove
more reasonable.) '

Shapiro uses both membership and disjointness queries in his system for auto-
matic debugging of Prolog programs [15,16,17]. See Section 5.1 for a description
of the use of queries in his system.

3.1 Monotone DNF formulas

We consider the class of monotone DNF formulas, that is, disjunctive normal form
formulas over n variables that contain no negative literals. The main result to be
proved in this section is the following.

Theorem 5 There is an algorithm that ezactly identifies every monotone DNF
formula @. over n variables that uses equivalence and membership queries and
runs in time polynomial in n and the number of terms of ¢..

Valiant [19] gives an algorithm to pac-identify an unknown DNF formula ¢.
over n variables using sampling and restricted subset queries, and shows that its
running time can be bounded by a polynomial in n and the number of prime
implicants of ¢.. (A prime implicant of a formula ¢ is a satisfiable product ¢ of
literals such that ¢ implies ¢ but no term obtained from ¢ by deleting one literal
implies ¢.) Since the number of prime implicants of a monotone DNF formula
¢. is bounded by the number of terms of ¢., it remains to replace sampling by
equivalence queries and restricted subset queries by membership queries.
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It is easy to modify Valiant’s method to achieve exact identification using
equivalence queries in place of sampling. For completeness, the resulting algorithm
is briefly described.

Initially the hypothesis ¢ is the empty formula, equivalent to false. We test ¢
using an equivalence query. If the reply is yes, we halt and output ¢. Otherwise,
the counter-example will be an assignment a that satisfies ¢, and not ¢.

From a we search for a new prime implicant of ¢.. Let t be the unique minterm
satisfied by a, that is, a product containing each variable or its complement, where
t contains z; if and only if a(z;) is true. Then we attempt to “reduce” ¢. For each
t' obtained by deleting one literal from £, we use a subset query to test whether ¢/
implies @., i.e., whether the set of assignments satisfying ¢ is a subset of the set
of assignments satisfying ¢.. If so, we replace ¢ by ¢’ and continue the reduction
process. Eventually we arrive at a term ¢ such that ¢ implies ¢., but no term
obtained from t by deleting one literal implies ¢., that is, ¢ is a prime implicant of
¢.. Note that the counter-example a still satisfies t. We now replace the hypothesis
¢ by ¢ + t and iterate from the equivalence test.

Clearly each prime implicant requires one equivalence query and at most n
subset queries, so the running time of the algorithm is clearly bounded by a poly-
nomial in n and the number of prime implicants of ¢.. ,

In the case of a monotone DNF formula ¢., the process of searching for a prime
implicant starts from a different initial term ¢, namely, the product of all those
positive literals z; such that a(z;) is true. From there the search is the same, but
note that every subset query now concerns a monotone term t.

Finally, we note that in the case of monotone DNF formulas, restricted subset
queries are reducible to membership queries. To test whether a monotone DNF
formula ¢ implies @., it suffices to be able to test whether each of the terms ¢
of ¢ imply ¢.. To test whether the monotone term ¢ implies ¢., construct the
assignment a that is true on just those variables z; that appear in ¢ and test a for
membership in the set of assignments that satisfy ¢.. If the reply is yes then ¢
implies @., otherwise t does not imply ¢..

This concludes the proof of Theorem 5.

The importance of counter-examples. The counter-examples provided by
the equivalence queries are essential to the efficiency of the above algorithm. (Re-
call that a restricted equivalence query returns only yes or no and no counter-
example.)

Theorem 6 For each positive integer n there is a class D of monotone DNF for-
mulas with 2n variables and n + 1 terms such that any algorithm that ezactly
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4.1 The pattern languages

The pattern languages were introduced in [1]. Let A be a finite alphabet of constant
symbols, and X a countably infinite alphabet of variable symbols. (We assume
that A contains at least two distinct symbols.) A pattern is a finite string of
symbols from A U X. The language of a pattern p, denoted L(p), is the set of all
strings over the alphabet A obtained by substituting non-empty strings of constant
symbols for the variable symbols of p. For example, if p = 122z5yyz3, then the
language of p includes the strings 12205111103 and 122001512120013, but not the
strings 12253 or 1221560601113.

Efficient exact identification with superset queries. Superset queries alone
suffice for efficient identification of the pattern languages; equivalence queries are
not required for correct termination.

Theorem 7 There is an algorithm that ezactly identifies the class of languages
defined by patterns of length n that uses restricted superset queries and runs in
time polynomzial in n.

We assume that there is an unknown pattern p.. The goal is to find a pattern
equivalent to p. by asking queries of the form L(p) 2 L(p.)? for any pattern p.
The replies will be either yes or no, with no counter-example supplied.

Note that if p is a pattern of length n then L(p) contains at least one string
of length n and contains only strings of length n or greater. Also, L(z1z2- - - z,)
is precisely all those strings of symbols from A of length n or greater. Thus we
can determine the length of the unknown pattern p. by using superset queries
on the patterns z;, x122, 732223, and so on, to find the least k¥ + 1 such that
L(z1x9- - zt4+1) is not a superset of L(p.). Then the length of p, is k.

Having determined the length of p. is k, we can determine the positions and
values of its constant symbols as follows. For eacha € A and 1 = 1,2,...,k, query
whether

L(zy - - zi—1azip1 - 2x) 2 L(pd).

If so, then the ¢-th symbol of p. is the constant symbol a. If for no a is this query
answered yes, then the ¢-th symbol of L(p.) is a variable symbol.

Knowing the length of p. and the positions and values of its constant symbols, it
remains only to determine for each pair of positions containing variables whether
the variables are the same or not. For each pair ¢ < j of positions of variable
symbols in p,, we query whether L(p; ;) is a superset of L(p.), where p; ; is obtained
from x1z9---z4 by substituting the new variable z for both z; and z;. If the
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answer is yes, then positions 7 and j of p. contain the same variable; otherwise,
they contain different variables.

Once all these tests have been completed, a pattern p equivalent to p. can be
constructed and output. The number of queries and the computation time for this
method are easily seen to be bounded by a polynomial in the length of p..

This concludes the proof of Theorem 7.

A lower bound for exact identification of pattern languages. We may
apply Lemma 2 to obtain an exponential lower bound on exact algorithms to
identify the pattern languages.

Theorem 8 Any algorithm that ezactly identifies all the patterns of length n using
equivalence, membership, and subset queries must make at least 2" — 1 queries in
the worst case.

If p is a pattern that contains no variables, then L(p) = {p}. Consider the class
of singleton sets of binary strings of length n. This is a class of 2" pattern languages
with the property that the intersection of any distinct pair of them is the empty
set, which is not a pattern language. Hence this class satisfies the hypotheses of
Lemma 2, which implies that any algorithm that exactly identifies all the patterns
in this class using unrestricted equivalence, membership, and subset queries must
make at least 2" — 1 queries, which proves Theorem 8.

Note that these two results on the pattern languages leave open the question
of how useful disjointness queries might be to their identification.

4.2 k-term DNF formulas and k-clause CNF formulas

We consider the class DN F(n,*,k) of DNF formulas over n variables with at most
k terms. As we showed in Section 3.1, there is an algorithm that exactly identi-
fies any DNF formula ¢, over n variables using equivalence and restricted subset
queries that runs in time polynomial in n and the number of prime implicants of
é.. The following bound on the number of prime implicants of any formula from
DNF(n,*,k) is proved in the Appendix.

Lemma 9 Every formula ¢. from DNF(n,*,k) has fewer than 3% prime impli-
cants.

An immediate corollary is the following.
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Theorem 10 The class DN F(n,*,k), consisting of DNF formulas over n vari-
ables with at most k terms, can be ezactly identified using equivalence and restricted
subset queries in time polynomial in n*. Dually, CNF(n,*,k) can be ezactly iden-

tified using equivalence and restricted superset queries in time polynomial in n*.

Lower bounds on these two problems are given in the following two theorems.

Theorem 11 There ezists a class D of DNF formulas with n variables and one
term such that any algorithm that ezactly identifies every formula from D using
restricted equivalence, membership, and subset queries must make at least 2" — 1
queries in the worst case.

The class D consists of the 2" formulas of the form
PIAP2A---AP”’

where each P; is either z; or —z;. Each such formula is satisfied by exactly one
assignment, and no two formulas are satisfied by a common assignment. Applying
Lemma 1, the result follows.

Theorem 12 There exists a class C of CNF formulas with n varicbles and one
clause such that any algorithm that ezactly identifies every formula from C using
restricted equivalence, membership, and superset queries must make at least 2" — 1
queries in the worst case.

The class C consists of the 2" formulas of the form
(PLVPyV...VP,),

where each P; is either z; or =z;. Each such formula is satisfied by all but one
assignment, and for any pair of formulas, the union of their sets of satisfying
assignments is all assignments. Applying Lemma 3, the result follows.

5 Disjointness queries

Valiant [19] describes a possibility-oracle, which takes as input a term t and deter-
mines whether or not ¢ has any satisfying instances in common with the unknown
formula ¢.. The possibility-oracle answers restricted disjointness queries.

Shapiro has also made use of disjointness queries in his work on automatic
debugging of Prolog programs [15,16,17]. A brief description will give the reader
some feeling for the uses of queries in his system; please refer to the original papers
for full details.
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5.1 Queries in Shapiro’s debugging system

In Shapiro’s system the user is assumed to have in mind a model of the correct
behavior of his or her program, consisting of a collection of named procedures
and, for each procedure, the set of tuples of ground terms on which it is true. For
example, the user might be writing a procedure memb(X,Y’) that should be true
whenever X is a member of the list Y, or a procedure rev(X,Y") that should be
true whenever the list Y is the reverse of the list X.

In addition, there is a current program, represented as a set of axioms in Prolog,
which may or may not be correct for the intended model. It is assumed that if the
program is not correct, this will eventually be discovered and a counter-example
provided. (This is in essence an equivalence query.)

The counter-example may be an atom P(¢1,...,%) which is provable from
the program and not true in the correct model. In this case, the system takes
any computation that derives the incorrect atom from the program and, using
membership queries, locates an incorrect axiom in the program. The membership
queries take the form of asking whether ground atoms are true or false in the
intended model. For example, the user might be queried whether memb(3,(1,2])
is true or not.

If the counter-example is an atom P(f;,...,fx) which is true in the intended
model but is such that the program terminates without proving it, then a dif-
ferent diagnosis algorithm is applied to locate an “incomplete procedure”, that
is, a procedure that requires further axioms. This diagnosis algorithm uses what
Shapiro calls ezistential queries, which give the user an atom containing variables
and ask if there is any instantiation of the variables that makes the atom true in
the intended model. If the user answers yes, he or she is then asked to supply
instantiations that make the atom true in the intended model.

An example given in [15] in the course of debugging an incorrect insertion sort
is the query: isort([2,1], Z)?, that is, is there any value of Z for which the insertion
sort procedure isort([2,1],Z) is true? The user answers yes and is queried for a
value of Z. The user supplies Z = [1,2], and the diagnosis algorithm continues.

In the terminology of this paper, this is a disjointness query, testing whether the
set of ground instances of the atom isort([2,1],Z) has any elements in common
with the ground atoms making up the correct behavior of isort, and if so, to
supply one. (In Shapiro’s system, the user must be prepared to enumerate all of
the common instances if there are more than one.)

As thus described, Shapiro’s system makes use of equivalence, membership,
and disjointness queries. There is an additional type of query that is used in the
case that the current program fails to terminate, which is beyond the scope of this
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discussion.

\

5.2 A very small class of context-free languages

In this section we give a fairly artificial example to illustrate the use of disjointness
queries in an efficient identification algorithm. Let A4 be a fixed finite alphabet.
Let f be any mapping of A into the integers. We extend f additively to any string
ajas - - -a, of symbols from A:

n

flarag---aqn) = f(ai).

i=1

Now we define a set of strings, L(f) C A*, determined by f as follows. The
string
W= ayas---an

is in L(f) if and only if w is not the empty string, f(w) = 0, and for each 7 =
1,2,....,n -1,
flaraz---a;) 2 0.

Let C denote the class of all languages L(f) as f ranges over all functions from A
to the integers.

As an example, if A consists of a left and a right parenthesis and f assigns
1 to the left parenthesis and —1 to the right parenthesis, then L(f) is just the
language of balanced parentheses. It is clear that languages in this class can be
recognized by a very simple kind of deterministic push-down automaton with one
stack symbol, and are therefore context-free, but the present description suffices
for our purposes. Note that C is very small, in particular, it does not include any
finite subset of A* except the empty set.

Theorem 13 There is an algorithm that ezactly identifies every language in the
class C that uses only disjointness queries and runs in time polynomial in the
longest counter-ezample provided.

Assume that there is an unknown function f. mapping A to the integers. For .
any function f mapping A to the integers, we may ask whether L(f) is disjoint
from L(f.), and if not, a counter-example w € L(f) N L(f.) will be provided.

For any subset B C A, the language B of all nonempty strings of symbols
over the alphabet B is in C via the function f that maps every element of B to 0
and every element of A— B to 1.
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We can easily determine the set Z of symbols a € A such that f.(a) = 0. For
every a € A, we test whether a™ is disjoint from L(f.). If so, f.(a) # 0; otherwise,
fu(a) =0.

For every pair a; and a2 of distinct symbols from A — Z, we test whether the
language {aj,a2}t is disjoint from L(f.). If so, then f.(a;) and f.(a2) are both
positive or both negative.

Otherwise, the counter-example will be a nonempty string w in L(f.) that
contains r occurrences of a; and s occurrences of a;. Without loss of generality,
assume that the first symbol in w is a;. Then we know that f.(a;) > O and
f«(a2) < 0, and moreover,

rfu(a1) = —sfi(az2),
and neither r nor s is 0.

If we find any function f such that f(a) = O for all a € Z and f satisfies
all the inequalities and equations above for all pairs a; and a2 from A — Z, then
L(f) = L(f+). One way of finding such an f is sketched.

If no equations

rfu(a1) = —sfu(a2)

are discovered, then for every a in A — Z, f.(a) has the same sign, so it suffices
 to take f(a) = 1 for all a € A — Z. Otherwise at least one pair a;, as will be
found with f.(a;) positive and f.(a2) negative, so we will be able to classify every
element a of A — Z as to whether f,(a) is positive or negative, and there will be
equations relating every pair consisting of a positive and a negative. Since all the
values of r and s are positive, we can express the absolute value of each f.(a) as
a multiple of one of them, say f.(a;).
That is, for each a; € A — Z we have

[fe(ai)| = (pi/a)| fu(a1)],

for positive integers p; and ¢;. If we let |f(a1)| be the least common multiple of
all the ¢;’s that appear in these equations and define

|/ (ai)] = (pi/qi)| f(a1)l,

then combining this with the sign information we have for each f.(a;), f is com-
pletely defined and L(f) = L(f.).

Note that the number of queries to determine f is bounded by the square of |A4],
and the computations involved are bounded by a polynomial in |4| and the lengths
of the counter-examples provided, which concludes the proof of Theorem 13

If we also have equivalence queries, the alphabet A need not be known in
advance, but can be discovered through equivalence queries.
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6 Summary, remarks, and open questions

We have described efficient algorithms and lower bounds for the use of queries
in several specific domains. These results are summarized in Figure 1. In the
first column are listed the specific domains discussed, including the special cases
of context-free language identification described in Section 3.2 (marked with (*))
and in Section 5.2 (marked with (**)). In the second column, labelled sufficient;
is the smallest set of query-types that has been shown to suffice for efficient exact
identification in the specified domain. In the third column, labelled insufficient,
is the largest set of query-types for which an exponential lower bound on exact
identification has been shown for the specified domain. The types of queries are
identified by numbers according to the following scheme:

1. Equivalence.
2. Membership.
3. Subset.

4. Superset.

5. Disjointness.

A number superscripted with a minus sign denotes the restricted version of the
corresponding query, that is, with no counter-examples returned. For example, 1~
denotes restricted equivalence queries. Recall that in general the use of equivalence
queries for exact identification can be replaced with the sampling oracle EX() and
pac-identification.

A large number of open problems are implicit in Figure 1, for example, is
there a domain for which an exponential lower bound on exact identification is
provable for the full set, {1,2,3,4,5}, of query types? Can membership queries
be shown to be essential to efficient identification of the regular sets or monotone
DNF formulas? Are disjointness queries of any help in identifying the pattern
languages?

In addition, there are other domains that seem worth exploring. One, suggested
by Phil Laird, is the domain of propositional Horn sentences[10]. A propositional
Horn sentence is a propositional formula in CNF with at most one positive literal
per clause. Equivalently, it is the conjunction of a set of formulas each of which is
either a single positive literal, or an implication of the form

Al NA A .. A — B,
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domain sufficient | insufficient
singleton languages 4 1,2,3,5
k-CNF formulas 1 17,2.3
k-DNF formulas 1 17,24
monotone DNF formulas 1,2 17,23
regular languages 1,2 17,2,3
context-free languages (*) 1,2 17,23
pattern languages 4~ 1,2,3
k-term DNF formulas 1,37 17,2,3
k-clause CNF formulas 14~ 17,24
context-free languages (**) 5

Figure 1: Summary of results for specific domains

where each A; is a positive literal and B is either false or a positive literal.

There is a polynomial time algorithm to decide satisfiability of propositional
Horn sentences. Moreover, a satisfiable propositional Horn sentence has a unique
satisfying instance with a minimum number of true variables, and the satisfiability
algorithm can be arranged to return this unique instance in the case that the
formula is satisfiable. The approach of using equivalence and superset queries to
locate all the prime implicands (the dual of prime implicants) of the unknown
formula does not appear to be efficient, since Theorem 20 can be modified to
show that there are propositional Horn sentences with an exponential number of
prime implicands. Thus, despite the computational tractability of this domain,
no efficient identification algorithm is known, even if we permit all five types of
queries.

Another domain to consider is that of deterministic bottom-up tree acceptors,
since many of the theorems characterizing states and distinguishing strings in the
domain of deterministic finite acceptors have useful analogs in the case of tree-
acceptors [8,12,13].

In any practical setting, the answers to queries of all types are likely to be
contaminated with errors. The errors may reflect some consistent ignorance or
bias of the informant, or may be generated by some random process. Valiant
[18] has found an efficient algorithm for pac-identification of k-CNF and k-DNF
formulas that is robust in the presence of small but possibly malicious errors in
the EX() oracle. Angluin and Laird [3] have found an efficient algorithm for
pac-identification of k-CNF and k-DNF formulas that is robust in the presence of
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larger but randomly generated errors in the EX() oracle. These represent just the
beginning of an understanding of the effect of errors on identification and learning.

Another area of open questions is how the logarithmic “majority vote” strategy
described in Section 2.3 can actually be used or approximated in practice. This
seems to lead to difficult questions of how to sample “fairly” from the set of
hypotheses that are compatible with the replies to previous queries.

The existence of domains for which there are lower bounds for identification
WITHOUT restricting the queries to elements of the hypothesis space (but as-
suming the computational intractability of relevant number-theoretic problems)
appears to follow fairly directly from the work of Blum, Goldreich, Goldwasser,
Micali, and others on the construction of cryptographically secure pseudo-random
bit generators and functions [6,9].

The classification of queries given in this report is appropriate to the problem
of identifying a single unknown subset of a given universe, and can be readily
extended to the case of identifying a collection of named subsets, as in Shapiro’s
work. In practical cases one is sometimes interested in identifying functions rather
than sets, and the classification of queries for this situation deserves to be re-
thought rather than just interpreted as a special case.

Valiant [19] makes use of two additional types of queries specific to DNF for-
mulas: relevant possibility and relevant accompaniment. Shapiro [15,16,17] makes
use of one additional type of query to help diagnose nonterminating Prolog pro-
grams. Still other sources of information will prove to be relevant for other specific
domains. The classification of types of queries in this report should in no sense
be thought of as exhaustive or canonical, but it does permit comparison of ex-
isting methods and poses some new and interesting questions about learning and
identification problems.

7 Appendix: Bounds on the number of prime impli-
cants of a k-term DNF formula

In this section we prove Lemma 9, that is, we show that a formula in DNF with

k terms and n variables has fewer than 3* prime implicants. We also prove an

exponential lower bound on the number of prime implicants. For the proofs it is
more convenient to consider the dual problem.

7.1 An upper bound

Theorem 14 If ¢ is a CNF formula with n variables and k clauses, then the
number of prime implicands of ¢ is less than 3*.
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A prime implicand of a formula ¢ is a clause ¢ such that c is not a tautology, ¢
implies c, and for every clause ¢’ obtained by deleting one literal from ¢, ¢ does not
imply ¢’. The number of prime implicands of ¢ is equal to the number of prime
implicants of =¢, so Lemma 9 is an immediate corollary of Theorem 14.

The proof of Theorem 14 is based on the fact that a prime implicand of a
CNFT formula ¢ can be obtained by a resolution proof from the clauses of ¢, and
consists essentially of a close look at any such resolution proof. An introduction
to proof by resolution may be found in [14]. The proof of Theorem 14 proceeds
by a sequence of lemmas.

The following lemma says that every prime implicand of ¢ can be obtained by
a resolution proof from the clauses of ¢.

Lemma 15 If ¢ = c1AcaA...Ack 18 a formula tn CNF and ¢ is a prime tmplicand
of ¢, then there ts a resolution proof of ¢ from the clauses ¢y,ca,...,ck.

Suppose ¢ = (L; V Ly V...V Ly,), where the L; are the literals appearing in c.
Since ¢ implies ¢, the formula

ciAcaA...cg AmLiA=LoA ... =Ly

is unsatisfiable, so there is a resolution proof of the empty clause from the clauses
€1,...,Ck and ~Ly,...,mLy,. If we modify the resolution proof by omitting the
steps involving the input clauses =L;,...,—=Ly,, then the output clause, instead of
being empty, will be a clause ¢’ consisting of a subset of the literals L;,..., L.
Thus ¢ implies ¢’ and ¢' is a subset of ¢. Since ¢ is a prime implicand of ¢, this
means ¢ = ¢/, so there is a resolution proof of ¢ from ¢y, ...,ck, as claimed.

The next lemma permits us to ignore clauses c; such that (cVe;) is a tautology.

Lemma 16 If ¢ = c;jAcaA...Ack s a formula in CNF aend c ts a prime tmplicand

of ¢, and
I={i:(c;iVec) is not a tautology},

then ¢ 1s a prime implicand of the reduced formula @', where
¢ = /\ ci.
i€l

Since ¢ implies ¢/, it suffices to show that ¢' implies c. Assume to the contrary
that ¢’ does not imply c, i.e., there exists a truth-value assignment a that satisfies
¢' but not ¢. Since ¢ implies ¢, a must not satisfy ¢, so there exists an index j not
in I such that a does not satisfy ¢;. But (¢; V ¢) is by hypothesis a tautology, so
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every assignment, including a, must satisfy ¢; or ¢ or both, a contradiction. This
proves Lemma 16.

If ¢ is a formula in CNF, we partition the literals appearing in ¢ into two sets,
depending on whether the complement of the literal also appears in ¢. Let U(9)
contain all those literals L such that L appears in ¢ and the complement of L does
not appear in ¢. Let V(@) contain all those literals L such that both L and its
complement appear in ¢.

The following lemma says that the U-portions of clauses move as “unsplittable
blocks” in a resolution proof.

Lemma 17 If ¢ = ci Aca A...Ack 18 a formula in CNF and c s eny clause
obtained by a resolution proof from cy,...,ck, then there ezists a set I contained
in {1,2,...,k} such that

enU(¢) =JeinU(4).

i€l

The proof is by induction on the resolution proof. If the proof has no resolution
steps, then ¢ = ¢; for some ¢ and the result follows. Assume that ¢ is obtained by
resolving the clauses ¢’ and ¢”, and that for some sets I' and I",

dNU(¢)=J eanU(4),

iel’

and

"'NU(P) = U einU(g).

el
Since elements of U(¢) do not appear complemented anywhere in ¢, they cannot
be resolved upon, so ¢ simply inherits them from ¢’ and ¢”, that is,

cnU(g)= |J anU(9).

36]’ uIII

This concludes the proof of Lemma 17.
The next lemma characterizes prime implicands in terms of the U-portions of
the original clauses.

Lemma 18 If ¢ = cjAcaA...Ack 1s a formula in CNF and c is a prime implicand
of ¢ such that no (c V ¢;) is a tautology, then for some subset I of {1,2,...,k},

c=JeanU(9).

i€l
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By Lemma 15, ¢ can be obtained by a resolution proof from the clauses of ¢.
Thus, ¢ contains only literals from U(¢) UV (¢). Note that if ¢ contains any literal
from V (@), say L, then there is some clause ¢; in which L appears complemented,
so (¢ V ¢;) is a tautology, contrary to our hypothesis on c. Thus ¢ is a subset of
U(¢). Applying Lemma 17, there exists some subset I of {1,2,...,k} such that

cnU(g)=JenU(9).
il

Since ¢ is a subset of U(¢), c = cNU(¢), and Lemma 18 is proved.

Thus, every prime implicand of ¢ of this kind consists of a selection of U-
portions from the clauses of ¢. It follows immediately that there are no more than
2% such prime implicands. We state this formally.

Lemma 19 If ¢ =c1 Aca A...Ack ts a formula in CNF then there are at most
2% prime implicands ¢ of ¢ with the property that for no i is (c V ¢;) a tautology.

The proof of Theorem 14 may now be concluded. Suppose ¢ = c;AcaA...Ack
is a formula in CNF. If ¢ is any prime implicand of ¢, then there is a unique set
I(c) consisting of all those indices ¢ such that (¢ V ¢;) is not a tautology. Then by
Lemma 16, c is also a prime implicand of the reduced formula

o= A a.

i€l(c)

By Lemma 19, there are at most 2!/(}l prime implicands ¢ of ¢' with the property
that (c v ¢') is not a tautology for any ¢’ in ¢'.

To bound the number of prime implicands of ¢, it suffices to consider every
formula ¢’ obtained by taking a nonempty subset of the clauses of ¢ and summing
up the bounds on the number of prime implicands ¢ of ¢' such that (¢ Vv ¢') is not
a tautology for any ¢’ in ¢'. (The empty subset gives us a formula equivalent to
true, which has no prime implicands, since a prime implicand is required not to
be a tautology.) This gives us a bound of

k
> (’:) 2™ < 3k,

m=1

which concludes the proof of Theorem 14.
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7.2 A lower bound

We also prove the following exponential lower bound on the number of prime
implicands of a CNF formula with k clauses.

Theorem 20 For every positive integer k there 1s a formula ¢ in CNF with 2k+1
variables and 4k + 1 clauses that has at least 2% prime implicands.

The formula ¢; contains variables z;,...,z; and pg,p1,...,0k. It may be
thought of as computing the parity of the true z;’s. That is, p; should be true if
and only if an odd number of the variables z;,z9,...,z; are true.

The clauses of ¢y are (—pp) and for each i = 1,2,...,k the four clauses:
(Pi-1 Azi = —pi),

(mpi-1 A zi = pi),
(Pi-1 Az = pi),
(=pi-1 Az = —p;).

Let ¢ be any clause of the form
Y1 AY2A...AY;) — P,

where each Y; is either z; or —z;, and P is p; if an odd number of unnegated z;’s
appear and —p; otherwise. Then we show that ¢ is a prime implicand of ¢;. Since
there are 2% such clauses, the result follows.

It is not difficult to see that ¢ implies c. To see that ¢ is a prime implicand,
first note that it is not a tautology. If ¢’ is derived from ¢ by deleting Y;, consider
the assignment that makes Y; false, all the other Y;’s in ¢ true, and P false. This
assignment makes ¢;. true but ¢’ false, so ¢; does not imply ¢'. If ¢ is derived from
¢ by deleting P, consider the assignment that makes all the Y;’s true and P true.
This assignment makes ¢; true, but makes ¢’ false (since ¢’ is the disjunction of
the complements of all the Y;’s), so ¢ does not imply ¢’. Hence no clause obtained
from ¢ by deleting one literal is implied by ¢, so ¢ is a prime implicand. This
concludes the proof of Theorem 20.

Note that we can modify the formula ¢; to be in Horn form by introducing
variables y1,v2,...,yx and ¢o,q1,...,g¢ and substituting them for the negations
of the z;’s and p;’s respectively. Thus, an exponential lower bound holds also for
the number of prime implicands of a propositional Horn sentence.
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