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We have implemented Quantum Chromo-Dynamics
(QCD) on the massively parallel Connection Machine
in *Lisp. The code uses dynamical Wilson fermions and
the Hybrid Monte Carlo Algorithm (HMCA) to update
the lattice. We describe our program and give perfor-
mance measurements for it. With no tuning or opti-
mization, the code runs at approximately 500 to 1000
MFLOPS on a 64-K Connection Machine, model CM-2,
depending on the VP ratio.
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1. Introduction

We are part of a collaboration developing software
to perform large-scale Quantum Chromo-Dynamics
(QCD) computations on the massively parallel Connec-
tion Machine. This machine offers the potential of peak
execution rates in excess of CRAY 2 or Y-MP systems
currently available to us, so we have written a *Lisp °
version of a Fortran production code. The code is cur-
rently running in production mode on the CM-2, and we
have obtained performance results for most of the *Lisp
functions in the code. We have begun work on low-

level arithmetic routines for high performance, which

will be reported elsewhere. This paper first gives a brief -

description of the Connection Machine and an outline

of QCD. Then we describe our dynamical fermion pro-




gram in some detail. We end with timings and perfor-
mance measurements obtained on a 64-K machine at

Los Alamos National Laboratory.

2. The Connection Machine

The Connection Machine is a distributed-memory,
single-instruction multple-data (SIMD) massively paral-
lel processor comprising up to 65536 (64-K) processors.?
Each processor consists of an arithmetic-logic unit
(ALU), 8 kbytes of random-access memory (RAM), and
a router interface to perform communications among
the processors. There are 16 processors and a router
per custom VLSI (very large scale integeration) chip,
with the chips being interconnected as a 12-dimensional
hypercube. Communications among processors within a
chip work essentially like a cross-bar interconnect. RAM
consists of standard 256-kbit chips. The processors deal
with one bit at a time; therefore, the ALU can compute
any two boolean functions as output from three inputs,
and all data paths are 1-bit wide. In the current ver-
sion of the Connection Machine (the CM-2), groups of
32 processors (two chips) share a 32-bit Weitek floating-
point chip and a transposer chip that changes 32 bits
stored bit-serially within 32 processors into thirty-two
32-bit words for the Weitek, and vice versa. The Con-
nection Machine processors execute “nanoinstructions”
broadcast to them by a sequencer that interfaces the
Connection Machine to a front-end computer (currently
a Symbolics 3600 LISP machine, a DEC VAX, or a Sun-
4 workstation). The front-end computer reads and exe-
cutes the user program, sending “macroinstructions” to
the CM-2 sequencer through a special interface board.

The Connection Machine programming languages
currently include the low-level “assembly” language
Paris (Parallel instruction set), C* (a parallel version
of C), CM Lisp, and *Lisp, with a parallel version of
Fortran to appear in mid-1989. The highest perfor-
mance has been obtained from *Lisp, so we have written
our QCD programs in this language. The programming
model of *Lisp? is conceptually very attractive: “pvars”
(parallel variables) are new Lisp data types, which have
an instantiation on each of the CM-2 processors. These

“processors” are not necessarily the set of physical pro-
cessors: virtual processor (VP) sets may be defined with
multiple VPs per physical processor, limited only by the
memory available. Parallel functions (indicated by the

suffix “11”

on the function name) operate on the pvars
on each processor in parallel. Conditional execution is
achieved using a 1-bit “context flag,” which selects cer-
tain processors and turns off the others during a given
operation. Optimized global operations such as sums,
maxima, and minima are provided with single function
calls. The geometry of a particular problem is specified
in N-dimensions very simply and at a high level (for
example, a three-dimensional cube of grid points may
be defined). Once this is done, communications among

processors is accomplished via function calls.

3. Quantum Chromo-Dynamics

Quantum Chromo-Dynamics (QCD) is the gauge the-
ory of the strong interaction that is responsible for bind-
ing quarks and gluons into hadrons (the constituents of
nuclear matter). QCD can be investigated analytically
using perturbation theory or numerically by computer
simulation. However, perturbation theory for QCD is
only valid at very high energies; hence, computer sim-
ulation is necessary for studying QCD at lower (exper-
imentally attainable) energies. In order to do this, the
four-dimensional space-time continuum is discretized
onto a four-dimensional hypercubic periodic lattice of
size N = N; X N, x N, x Ny, with the quarks living
on the lattice sites and the gluéns living on the links
connecting the lattice sites. N, is the spatial extent
and N; is the temporal extent of the lattice. Because
including virtual quark anti-quark pairs in the simu-
lation is very costly in terms of computer time, many
simulations are done without these fermions, yielding
“quenched” or “pure gauge” QCD. However, with the
availability of very high performance machines such as
the CM-2 and the CRAY-2 and Y-MP, we can include
the virtual quarks and still run a simulation on a rela-
tively large lattice. It is this “dynamical fermion” sys-
tem that our code simulates. The gluons are represented
by 3x3 complex SU(3) matrices associated with each
link in the lattice, while the Wilson representation of




the fermions is used for the quarks. These consist of
3x4 complex matrices associated with each site on the
lattice. During a QCD simulation, updating these link
matrices consumes most of the computer time, with the
fermion part comprising the vast majority. This is be-
cause all updating algorithms currently require inver-
sion of a very large matrix at each step, and so must
call a conjugate gradient (or alternative) routine inside
the inner loop. There are several algorithms for do-
ing this; our program uses the most efficient currently
known - the Hybrid Monte Carlo Algorithm (HMCA),
where a molecular dynamics (MD) algorithm is used to
move the lattice through phase space, and step-size er-
rors are corrected by a global Metropolis step after each
MD trajectory.

Monte Carlo algorithms that simulate QCD generate
an ensemble of configurations typical of statistical equi-
librium for the system being studied. With this ensem-
ble, one measures the physical observables of interest
on each configuration and averages over the configura-
tions. The error decreases as 71-17 for N configurations.
The goal is thus to generate a series of configurations
in the most efficient manner possible, and we use the
HMCA.3 In HMCA, we begin with the QCD action for
the continuous theory:

E=SG+SF)

with the pure-gauge and fermionic parts being given by

Se=8» (1- %ReTrUp).
P
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is a product of link matrices around an elementary
square or plaquette on the lattice (Figure 1), and
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Figure 1: Calculation of elementary plaquette.

is the Dirac operator for Wilson fermions. In the
following we set » = 1. In the discretized version of
the theory, the action is written in terms of the psuedo-
fermion fields ¢:

SFr = ¢t(MtM)_1¢.

The HMCA consists of a series of molecular dynamics
trajectories through some fictitious time, followed by
a global Metropolis accept/reject. For the molecular

dynamics evolution, the Hamiltonian is given by:

B
%TrZP,?’” + Ty (1= Up)
+ ¢l (MIM) 14 .

Here U; , are the gauge link variables, P; . are the
momenta conjugate to them, and Up is the 1 x 1 pla-
quette. The algorithm then consists of the following:

1. Start with a given set of U,.

2. Generate the P, as Gaussian random numbers
(Prob(z) = exp —z?).

3. Generate r with probability Prob (r) = exp — 2.




Then, with
é = M'r, Prob(¢) = exp —¢! (Mt M)~ 1¢ |

and the contribution of the fermions to the action
is represented by Gaussian noise.

4. Leap-frog U, and P, through MD time, keeping ¢
constant.

5. Perform the global Metropolis step, to correct for
the energy not being conserved because of the

molecular dynamics approximation.

6. Go back to Step 2 and repeat.

Since M depends on the fields U, ¢! (MTM)~1¢ needs
to be recalculated at every MD time-step, and thus the
conjugate gradient (or alternative) routine needs to be
called at every MD time-step. For some quark masses,
better algorithms exist than conjugate gradient, and our
code uses one of three built-in algorithms, each with
a pre-conditioning step. These are conjugate gradient,
and two versions of the minimal residual algorithm, with
different pre-conditioners.

One feature of the gamma matrices enables us to re-
duce considerably the amount of arithmetic and commu-
nications required in the innermost loop. Noting that
the v, always appear as either (14 7,) or (1 —1,) for
the Wilson r value r = 1, an inspection of the resulting
matrices reveals that two rows of each can be recon-
structed from the other two (or are zero, for v4). For

example, for (1 + 7v,):,

1 1 1 . 1
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and we see that, for example, the lower two rows of v;
can be reconstructed from the upper two by multiplying
by —i.

Some of the observables one wants to measure in QCD
are the string tension, the glueball mass spectrum, and
the hadron mass spectrum. In order to do this the pro-
gram calculates Wilson lines, and Wilson loops. Wilson
loops are products of link matrices around closed rectan-
gular paths on the lattice; Wilson lines are Wilson loops
that wind completely around the lattice in a given direc-
tion. These quantities are measured on the lattice con-
figurations and then averaged. Additional observables
need to be measured However, these involve inversion of
a fermion matrix, and may be done with existing analy-
sis codes. Currently, we store our simulated lattices on

a mass storage system at Los Alamos for later analysis.

4. The Dynamical Fermion Program

We have written a dynamical fermion QCD program
in *Lisp for the CM-2. It employs a five-dimensional ge-
ometry: the four space-time dimensions, plus an addi-
tional dimension in which the coupling constant varies.
Thus, we are able to run multiple copies of small lat-
tices on a large machine, with different coupling con-
stants and quark masses in each. Of course, communi-
cations among lattice sites are only done in the first four
dimensions! There is a potential load balancing prob-
lem running multiple quark masses, since the inversion
algorithms need to iterate different numbers of times
for different quark masses. The geometry is generated
by the Connection Machine operating system at a high
level, so both setting up the geometry and performing
the communications is done with very little effort on the
user’s part. All communications in the code are nearest-
neighbor, and they are done only during the calculation
of the gluon plaquettes, during calculation of M or M
acting on psuedo-fermion fields, or during calculation of
the Wilson loops and Wilson lines.

Basic operations in the above algorithm include a
large variety of matrix arithmetic on 3 x 3, 3 x 4, and
3 x 2 complex matrices. A large library of such rou-

tines was written in *Lisp, including functions “su3ab,”



“add-mat,” “m33,” “sdot,” “cdot,” “saxpy34,” and oth-
ers. Functions that compress and expand full 3 x 4
matrices using the gamma matrix characteristics as de-
scribed above are “proj-xp” and “expand-xp,” plus vari-
ants for the (1 — v,) matrices and for the y, z, and
t directions. One level up, routines were constructed
to calculate quantities such as Mt¢, M¢, and Mt M¢
(e.g., “dslashsq-PP”). One higher level function “md-
minv” calculates x = (MTM)~1¢, which calls the con-
jugate gradient or minimal residual solvers (“cg,” “mr,”
or “mr2”). A level yet above evolves the system through
molecular dynamics time. This calls the pure-gauge
parts of the code (e.g., “gather-x,” which calculates
Up) as well as the fermionic parts, and does the global
Metropolis step. The main iteration loop also calls func-
tions that calculate Wilson lines and Wilson loops; these
are not part of the HMCA update process, but they pro-
vide some data for calculating observables. We also call
a check-point function at this level, which writes out the
lattice and other pertinent data either to a data vault
or the front-end file system.

To summarize, the following functions comprise the
bulk of the code:

o “swexp(swlog())” (software version of log and ex-
ponential functions),

e “sudab” (multiply two SU(3) matrices),
o “add-mat” (add two 3 x 3 matrices),

o “fetch-add” (get a 3 x 3 matrix from another pro-
cessor and add to another matrix),

¢ “m33” (multiply two 3 x 3 matrices),

e “m33h” (multiply 3 x 3 matrix by adjoint of an-
other),

o “adjoint-minus” (find negative of the adjoint of a
3 x 3 matrix),

e “phigen” (generate Gaussian random vector),
e “zero-mat34” (zero out a 3 X 4 matrix),

e “sdot” (dot product for real vectors),

e “cdot” (dot product for complex vectors),

e “add-mat34” (add two 3 x 4 matrices),

e “saxpy34” (real scalar times 3 x 4 matrix plus 3 x 4
matrix),

e “csaxpy34” (complex scalar times 3 x 4 matrix plus
3 X 4 matrix),

¢ “m34” (multiply 3 x 3 by 3 x 4 matrix),
e “m34h” (multiply 3 x 3 by adjoint of 3 x 4 matrix),
e “proj-xp” (project 3 x 4 matrix onto 3 x 2 matrix),

e “expand-xp” (expand 3 x 2 matrix into 3 x 4 ma-
trix),

e “expand-set-xp” (expand 3 x 2 matrix into 3 x 4
matrix),

o “expand-add-xp” (expand 3 X 2 matrix into 3 x 4
matrix and add to matrix),

o “‘m32-v34” (3 x 3 matrix times 3 x 2 matrix into
3 x 4 matrix),

e “‘m32-v32” (3 x 3 matrix times 3 X 2 matrix into
3 x 2 matrix),

e “gather-x” (calculate plaquettes for x direction),
e “pgen” (generate Gaussian random vectors),

e “uup” (MD update of link matrices),

o “wilson-lines” (calculates Wilson lines),

e “wilson-loops” (calulates various Wilson loops),

e “wilson-loop11” (calculates the 1 x 1 Wilson loop),

e “tahpp” (traceless anti-hermitian part of MD mo-
mentum),

o “fpdot” (fermion contribution to MD time deriva-
tive of momentum)

o “calc-gpdot” (gluon contribution to MD time
derivative of momentum),

e “cbarc” (calculate observables for diagnostics),
e “dslashsq-pp 0” (calculate positive part of MTM¢),

o “dslashsq-pm 0” (calculate negative part of

M'Mg),
e “dslashsq-pp 1” (calculate positive part of M¢),
o “dslashsq-pm 1” (calculate negative part of M¢),
e “dslashsq-pm 2” (calculate positive part of M;4),
e “dslashsq-pm 2” (calculate negative part of M;¢),
e “mr” (minimal residual solver),
e “mr2” (second minimal residual solver),

e “cg” (conjugate gradient solver).

With this outline of the dynamical fermion program

one can understand the timings given in the next sec-
tion.




5. Timings and Performance Measurements

We have timed essentially every function in the
dynamical fermion QCD program, and worked out
GFLOPS for some whose floating-point operation count
we know. The timings are in Table 1, and the GFLOPS
rates are given in Table 2. All the timed code was writ-
ten in *Lisp, with no calls to Paris, except for “ranf!!”
which calls a Paris fast random number generator. All
the functions compiled (*compiled, in CM terminology).
The compiler safety option was set to zero, so that no
run-time checks were made on results. This produces
the fastest executing code. Note that all arithmetic was
done in 32-bit precision. The GFLOPS rates are calcu-
lated on the basis of the CM time. We can also calcu-
late the performance using the front-end times but since
almost all of the functions run at over 95% CM utiliza-
tion this does not make much difference. Only two func-
tions exhibited very low CM utilizations - “wilson-lines”
and “wilson-loops” - these functions do a great deal of
I/O to the front-end and therefore spend most of their
time waiting for this to complete. One other function,
“expand-add-xp,” gave a slightly low CM utilization of
85%; we suspect that the compiler has not produced
very efficient code for this and so shall re-structure the
*Lisp to remedy it. We used the Los Alamos 64K CM-2
for these timings (that is, a 6.7 MHz 64K CM-2, with
a dedicated Sun 4/260 front-end running a single user
process). We ran a 16* lattice at one value of the cou-
pling constant on a quarter of the machine (16K proces-
sors) in order to get a VP ratio of 4, and then extrap-
olated the performance to a full machine running with
the same VP ratio (and hence a 162 x 64 lattice, for ex-
ample). We choose VP ratio 4 since that is the largest
with which we can run, given the memory requirements
of our code. As the code spends most of its time in the
“dslashsq” routines, we can safely say that it runs sus-
tained at around 1GFLOPS. As expected, the highest
performance - 1.9 GFLOPS - is achieved by the basic
matrix multiply “su3ab”, “m34” and “m32-v34.”

6. Conclusions

We have translated a Fortran version of a dynam-
ical fermion QCD code into pure *Lisp, except for a
Paris call to a fast random number generator. This code
runs at approximately 500 to 1000 MFLOPS on a 64-K
CM-2 depending on the VP ratio. With the exception
of inserting declarations to allow the code to *compile,
no tuning or optimization was attempted. Because of
the large ratio of computation to communications and
the need for only nearest-neighbor communications on
a four-dimensional lattice, this application runs well on
the CM-2. We are currently working on low-level math
routines for the code, written in a assembler-like lan-
guage. We are currently running in production mode,
and expect to publish physics results in late 1989.
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Table 1. Timings for most of the functions in the code (with 4 VPs).

Front-End CM-2 CM

Times Times Time Utilization
Function Called (sec) (sec) (%)
swexp(swlog()) 100 109.41 109.41 100
su3ab 1000 24.51 23.94 98
add-mat 10000 27.24 27.09 99
fetch-add 10000 57.85 57.47 99
m33 1000 27.82 27.36 98
m33h 1000 33.72 33.09 98
adjoint-minus 10000 22.41 22.31 100
phigen 10 548.51 547.40 100
zero-mat34 10000 16.34 16.19 99
sdot 1000 6.66 6.49 97
cdot 1000 18.29 17.87 98
add-mat34 10000 36.23 36.09 100
saxpy34 1000 7.03 6.90 98
csaxpy34 1000 13.63 13.36 98
m34 1000 37.02 36.29 98
m34h 1000 44.89 44.14 98
proj-xp 10000 18.47 18.31 99
expand-xp 10000 12.95 12.93 100
expand-set-xp 10000 25.39 25.26 100
expand-add-xp 10000 57.88 49.36 85
m32-v34 10000 185.57 181.53 98
m32-v32 10000 189.41 184.66 97
gather-x 100 46.88 46.04 98
pgen 10 24.27 24.26 100
uup 100 20.00 19.67 98
cale-gpdot 1000 40.71 39.55 97
wilson-lines 1 4.08 1.40 34
wilson-loops 1 12.31 3.24 26
wilson-loop11 100 48.93 47.77 98
tahpp 1000 43.49 41.42 95
fpdot 100 59.08 57.18 97
cbarc 1 53.16 51.58 97
dslashsq-pp 0 100 40.96 40.61 99
dslashsg-pm 0 100 41.05 40.60 99
dslashsq-pp 1 100 20.76 20.54 99
dslashsq-pm 1 100 21.06 20.52 97
dslashsqg-pp 2 100 21.05 20.53 98
dslashsq-pm 2 100 20.68 20.53 99
mr 1 0.52 0.49 94
mr2 1 1.36 1.31 96
cg 1 1.31 1.30 99




Table 2. GFLOPS rates for most of the functions in the code on 64-K CM-2 (with 4VPs)

Operation

Function Count FLOPS/processorf GFLOPS/64-K
su3ab 174 7268 1.905
add-mat 18 6645 1.742
m33 198 7237 1.897
m33h 198 5984 1.569
sdot 36 5547 1.454
cdot 96 5372 1.408
add-mat34 24 6650 1.743
saxpy 48 6957 1.824
csaxpy 96 7186 1.884
m34 264 7275 1.907
m34h 264 5981 1.568
proj-xp 12 6554 1.718
expand-xp 6 4640 1.216
expand-set-xp 6 2375 0.623
expand-add-xp 30 6078 1.593
fetch-add 18 3132 0.821
adjoint-minus 9 4034 1.058
m32-v34 132 7272 1.906
m32-v32 132 7148 1.874
gather-x 2178 4731 1.240
dslash-pp 0 1752 4314 1.131
dslash-pm 0 1752 4315 1.131
dslash-pp 1 876 4265 1.118
dslash-pm 1 876 4269 1.119
dslash-pp 2 876 4267 1.119
dslash-pm 2 876 4267 1.119




