Efficient Implementation of
Sparse Symmetric Gaussian Elimination

S.C. Eisenstat, M.H. Schultz,
and A.H. Shermant

Research Report #48

* This paper has appeared in the Proceedings of the AICA International
Symposium on Computer Methods for Partial Differential Equations, Bethlehem,
Pa., June, 1975. :

+ Department of Computer Science, Yale University, New Haven, Connecticut
06520. This research supported in part by NSF Grant GJ-43157 and ONR
Grant N0014-67-A-0097-0016.

1. Introduction

Consider the system of linear equations
Ax = b (1.1

where A is an NxN symmetric, positive definite matrix and x and
P are vectors of length N. Such systems arise frequently in scien-
tific computation, particularly in the numerical solution of partial
differential equations, and it is very important to be able to solve
them efficiently.

When A is dense (i.e. most aij # 0), then it is standard to
solve (1.1) with dense symmetric Gaussian eliminationf (cf. Dahlquist
and Bjérck [3], pp. 162-5). A is factored into the product UtDU,
where U 1is a unit upper triangular matrix (i.e. Uy =1, uij = 0,
i>3) and D ‘is a positive diagonal matrix. The solution X is

then obtained by solving

Uty = b, Dz = Y, and Ux = 2z.

~ ~

Since A 1is symmetric and positive definite, this procedure is nu-
merically stable (cf. Dahlquist and Bjdrck [3], p. 164).

Unfortunately, in many numerical computations N is quite large
(several hundred or more), and A 1is sparse (i.e. most aij =0).
In that case dense symmetric Gaussian elimination is not very efficient,

since it does not exploit the large number of zeroes in A and U

+ In this paper we consider symmetric Gaussian elimination to be identi-
cal to a UtDU factorization followed by backsolution, and we use the
term in that sense.

in order to decrease both the storage and work requirements. His-
torically, iterative methods such as SOR (cf. Young f9]) have been quite
popular for the solution of large, sparse, symmefric, positive definite
systems of linear equations. However, iterative methods have a number
of difficulties not present in Gaussian elimination: estimating itera-
tion parameters, selecting good starting guesses, and determining when
to stop the iteration. Because of these difficulties, it is desirable
to have a form of Gaussian elimination which is efficient for large,
sparse linear systems.

The basic idea of sparse symmetric Gaussian elimination is to
factor A and compute X without storing or operating on the zeroes
in A and U. To do this requires a certain amount of overhead: i.e.
extra storage for pointers in addition to that needed for nonzeroes in
A and U, and extra non-numeric operations in addition to the required
arithmetic operations. However, when N is large, the overhead should
not increase the solution cost by more than a small constant factor.

In this paper we describe one efficient implementation of sparse symme-
tric Gaussian elimination.

We begin in Section 2 by presenting an algorithm for dgnse symmetric
Gaussian elimination which can be easily adapted to avoid operating
on zeroes in A and U, and we discuss the information required to do
this. In Section 3 we describe an efficient implementation of sparse
symmetric Gaussian elimination, emphasizing an intuitive understanding
rather than algorithmic details. Finally, in Section 4 we describe the

data structures required to store A and U efficiently. We do not

discuss the problem of reordering A to reduce the storage or the work
for sparse symmetric Caussian elimination, nor do we present any numeri-
cal examples. Both of these topics are treated in another paper by the
authors in these proceedings (cf. Eisenstat, Schultz, and Sherman [4]).

2. Symmetric Gaussian Elimination

In this section we present an algorithm for dense symmetric
Gaussian elimination. We then give a straightforward, but inefficient,
modification of the dense algorithm which takes advantage of the sparse-
ness in A and U. Finally, we determine what information about A
and U 1is required to make sparse symmetric Gaussian elimination
efficient, and we present the algorithm which is implemented in Section
3.

Algorithm 2.1 is a row-oriented algorithm for dense symmetric
Gaussian elimination. The diagonal entries dkk are stored in an
array D in which D(k) = dkk’ and in practice, all of the computa-
tions would be performed on the upper triangular matrix U. However,
to avoid notational confusion we present the algorithm using the upper
triangular array M instead. At any time during the factorization
portion of Algorithm 2.1, part of M contains entries of U, part
contains entries of DU (the matrix product of D and U), and
part is unspecified. Figure 2.1a shows the contents of M just prior
to the start of the k-th step of the factorization. During the k-th

step, the algorithm computes the k-th column of U in the k-th column

line ¢
Comment: U DU Factorization
1 For k< 1 to N do
2 [For j <« kt+l to N do
3 [mkj < akj];
4 mg €L
> dege © P
6 For i< 1 to k-1 2do
7 LR my /9445
8 myy * Mg/ gyl
9 For j < k+l to N do
10 [mkj My T mik'mij]]];
Comment: Now M = U
Comment: Backsolution to obtain X
11 For k<« 1 to N do
12 [y, « Pyls
13 For k< 1 to N-1 do
14 [For j « kt+l to N do
15 “ - . ;
[yj Yy 7 Mg yk]]
16 For k< 1 to N do
17 [zk “« yk/dkk];
18 For k< N tol do
19 [xk'+ zk;
20 For j <« ktl to N do
21 %, < % - mkj'xj]];

ALGORITHM 2.1

of M (line 8), the k-th row of DU in the k-th row of M (lines 9-10)

and d (1ine 7). At the conclusion of the k-th step, the contents of

kk
M have been modified as shown in Figure 2.1b. At the end of the facto-

rization, M contains exactly the entries of U. Lines 11-21 of the
algorithm perform the backsolution to obtain X.

When A 1is dense, Algorithm 2.1 may be implemented efficiently,

0 j < i
1 j=1i<k
mij = uij i< j<k
unspecified (DU)ij i<k; j=z2k
unspecified k<i<j

(aj

prior to the k-th factorization step

0 j< i
1 ‘ j=1<k
K ST R & i<j=sk
(oV) ., i<k; j>k
unspecified 13, .) i
unspecified k<i=s]

(b)

After k-th factorization step

FIGURE 2.1

since it stores and operates on just the upper triangle of A, D, and

U. However, when A 1is sparse, Algorithm 2.1 fails to exploit the
zeroes in A andb U to reduce the storage and work.

Conceptually, at least, it is possible to avoid arifhmetic opera-
tions on zeroes by testing the operands prior to using them (see Algo-
rithm 2.2). Unfortunately, there are two serious problems with this
approach. First, all of the entries of the upper triangles of A and
M must be stored, since any of them could be tested in lines 6, 9, 14,
or 20, or used as mkj in line lQ. And second, there are more test
operations than arithmetic operations, SO that the running time of
Algorithm 2.2 would be proportional to the amount of testing rather

than the amount of arithmetic.

line

Comment: Sparse UtDU Factorization

1 For k<« 1ltoN do

2 [For j € {n: w # 0} do

3 [me 5 < akj];

4 M 1;

3 dere © 2’

6 For i€ {n < k: u # 0} do

7 [y * G = M/ 443

8 My Mg/ gy

9 For j € {n > k: u # 0} do
10 [mye g« mey = myermyy s

Comment: Now M =10
Comment: Backsolution to obtain x
11 For k<1 to N do -

12 [yk < bk];
13 For k<« 1 to N-1 do
14 " [For j € {n > k: w o # 0} do
1 « - e H
5 [yj Y57 M Vi 1]
16 For k<1 to N do
17 [z, « Vil 41
18 For k< N tol do
19 [xk 23
20 For j € {n > k: W # 0} do
21 [xk*-xk-mkj‘xj]];

ALGORITHM 2.2

To see how to solve these problems, let us assume that for each Kk,

1< k<N, we have

(1) the set ra, of columns jiz k for which akj # 03

k
(ii) the ordered set ru, of colums j > k for which ukj # 0;

(i11) the set cu, of rows 1i < k for which Uy #0.

line

O© 00 ~N O 1 & W DD

= e
N = O

13
14

15
16

17

18
19

20
21

22
23

g t . .
Comment: Sparse U DU factorization

For k<« 1 to N do
[For J € ru do
[mkj < 0]
For j e {ne ra; n> k} do
+ .
[me s * 213
Mg L3

dex ©

For 1€ cuk do

. m2 .
(e < e~ M/ i1
my € My /dygs

For j e {n ¢ ru;: n > k} do

(Mg« My = Mgyl
Comment: Now M =1
Comment: Backsolution to obtain X
For k<« 1 to N do

v < bk];
For k< 1 to N-1 do

[For j € ru, do

[yy<v;- LA (R Y

For k< 1 to N do

[z, < i/)
For k< N tol do

[x, < 25

For j € ru, do

[x, <% - mkj°xj]];

ALGORITHM 2.3

We can then modify Algorithm 2.2 to obtain Algorithm 2.3 in which the

only entries of M which are used are those corresponding to non-

zeroes in A or U.

Ignoring the usually small amount of storage for x,

Y

b,

~

and

D, the storage required for Algorithm 2.3 is just the storage needed
for the entries of M which are actually used plus the stbrage needed
for the sets ‘{rak}, {ruk}, and {cuk}. The total amount can be shown
to be proportional to the number of nonzeroes in U (cf. Sherman [8],
Eisenstat and Sherman [5]). Furthermore, the algorithm includes no test
opérations, since the sets {rak}, {ruk}, and:'{cuk} contain all of
the 1nformation required to avoid operating on zeroes in M. Hence
the running time of the algorithm is proportional to the number of
arithmetic operations performed on nonzero operands.

The most important thing to note about the sets {rak}, {ruk},
and {cuk} is that they describe the structure of A and U in terms
of the positions of the nonzero entries. They do not depend at all on
the values of the nonzero entries, and that fact makes it possible to

obtain them quickly and without any testing.

3. Implementation

In this section we outline an actual implementation of sparse sym-
metric Gaussian elimination (cf. Eisenstat and Sherman [5] for further
details). Following Chang [2] and Gustavson [6], we break the computa-
tion into three parts: symbolic factorization, numeric factorization,
and backsolution. The symbolic factorization computes the structure of
the rows of U from the structure of the rows of A. The numeric fac-
torization uses the structure information to efficiently compute the

UtDU factorization of A. And the backsolution computes the solution

line
1 For k<« 1 to N do
2 2, < %
3 ru, < 'JH
4 For k< 1 to N-1 do
Comment: Form ru, by set unions
5 [For j e {n e ra : n > k} do
6 [ru < Ty U {i} 1;
7 For 1€ & do
8 [For j ¢ {neru: n> k} do
9 [If 3 ¢ ru, then

10 [ru < Tu U {3} 111

Comment: Tu, is now complete, but unordered

11 m< min {j: j € ry u {11}
12 If m < N+1 then
13 (2, < 20U {x} 11;

Comment: Sort the sets Tru, with a lexicographic

gsort to obtain ordered sets

ALGORITHM 3.1

x from the factorization and the right hand side Q.

We split up the computation to gain flexibility. If several
linear systems have identical coefficient matrices but different right
hand sides, then only one symbolic factorization and one numeric fac-
torization are needed; the different right hand sides require separate
backsolutions. Similarly, only one symbolic factorization with separate
numeric factorizations and backsolutions is needed to solve several

gystems in which the coefficient matrices have identical zero struc-

tures but different nonzero entries.

10.

line
1 For k< 1 to N do
2 [p, * "JH
3 For k< 1 to N do
4 [For j € ru, do
5 [mkj < 0];
6 For j e {ne ra : o> k} do
8 dige © B
9 For 1€ p. do
- m2 .
10 (4 * Qe ~ ™347%443
11 LY WL
12 For j e {neru: n> k} do
13 [m g « My = mypomygls
14 p < P~ {1k
15 m <+ min{{n € ru;: o> k} u {N+1}};
16 If m < N+1 then
17 [p, < p, v {1} 115
18 m < min {ruk u {N+1}};
19 If m < N+1 then
20 [pm+ p, Y {k} 11;

Comment: Now M = U.

ALGORITHM 3.2

As in Section 2, ra, denotes the set of column indices j 2 k
for which akj # 0, ruk denotes the ordered set of column indices
j > k for which ukj # 0, and cu, denotes the set of row indices
i < k for which wu,, # 0. The sets {rak} describe the structure of
A and are input parameters. The symbolic factorization algorithm com-
putes the sets {ruk} from the sets {rak}. The sets {cuk}, which

are needed only for the numeric factorization, are computed as

required.

Algorithm 3.1 performs the symbolic factorization of A. At
the k-th step of the algorithm, an unordered form of ru is computed
from ra, and the sets {rui} for i < k. An examination of Algo-

rithm 2.3 shows that for J > k, Uy 5 # 0 if and only if either

(1) akj #0 or

(i1) Uy # 0 for some 1€ cu.
Thus for j > k, J € ru, if and'only if either

(1) j e ra, or

(ii) je ru, for some 1 ¢ cy, .

However, it can be shown that not all rows 1 € cuy need to be ex-
amined (cf. Rose and Tarjan [7], Sherman [8]). It suffices to examine
just those rows 1 € cu, for which k is the smallest column index

in ru,. Let lk be the set of rows 1 € cuy which satisfy this con-
dition. Then for j > k, J € ru, if and only if either

(1) je ra, or

(ii) j € ru, for some 1 ¢ Rk.

i

The sets {zk} are formed during the algorithm by adding each row
to the proper set as soon as the structure of that row is computed.
Since each row appears in at most one set, the total storage required

for the sets ‘{lk} is O(N) 1locationms.

11.

12.

The cost of the symbolic factorization algorithm is determined by
the number of times that lines 7-10 must be executed and by the cost of
the final sorting operation. The remaining portion of the algorithm
can contribute only a small cost proportional to the number of nonzeroes
in A (from lines 5-6). But each row 1 can be a member of at most
one set kk, and lines 8-10 are executed just once for each j ¢ ru,.
Hence during the entire execution of Algorithm 3,1, lines 8-10 can be
executed only once for each entry of the sets ‘{ruk} combined (i.e.
once for each nonzero in U). Furthermore, it is known (cf. Aho, Hop-
croft, and Ullman [1], pp. 77-84) that sorting the sets '{ruk} with a
lexicographic sort also requires time proportional to the number of en-
tries in the combined sets. Thus the total running time of Algorithm
3.1 is proportional to the number of nonzeroes in U (cf. Rose and Tar-
jan [7] or.Sherman [8] for detailed proofs of this result).

The numeric UtDU factorization of the matrix A is implemented
in Algorithm 3.2. Basically, the algofithm is a straightforward imple-
mentation of the factorization portion of Algorithm 2.3. After the sym—
bolic factorization, the sets {rak} and '{ruk} are available. The
only difficulty is the computation of the sets {cuk}, but these can be
generated by examining the éets {ruk}.

The sets {cuk} are generated progressively using sets {pk}.
During the k-th step we require that P, = cuk and that for j > k, pj
contains those row indices 1 ¢ cuj for which j is the minimum column
index in ru, satisfying j 2 k. At any time, each row i is in at

i
most one set P, 80 that the total storage required for the sets '{pk}

(d)

FIGURE 3.1

culz -3 cu2: 1; cu3: 23 cu4: 1,2,3,; cusz 1,4
ru, 2,4,5 Pyt -
Tu,: 3,4 Pyt T
ru,: 4 Pyt -
ru,: 5 Pt
rug: - Psi

(a)
ru,: (:) 4,5 p2: 1
ru,: 3,4 Pyt -
ru,: 4 Pt T
ru, 5 Pst
rug -

(b)
cu, s 2,4,5; cuk+l: 2,33 cuk+2: 1,2,4
rul: 2,...,k"l,@ eo o Pk: 2,4,5
ru2: 3,000 k+1,k+2,... Pk+1: 3
ru, byo ool (4L - - Pryg? 1
ru4: 5,...,(:)‘k+2,...
ru5: 6,...,(:)

(c)
ru, : 2, ... 1, (k42) .. PLyg? 392
ru,: 3,...,k, KH2, . es Pyt Lob
rugr hyeeeokl, @
ru,: 5,0 enk, (42 .
ruS: 6,...5k

13.

14.

is O(N) 1locatioms.

The updating of the sets {pk} is fairly complex, and it may best
be illustrated inductively (see Figure 3.1). As shown in Figure 3.la,
all the sets '{pk} are initially empty. Since cu, is also empty,

p; = ey during the first step. At the end of the first step, row

1 1s added to pj’ where j 1is the minimum column index in ru, (see
Figure 3.1b). Now 1if cu, = 1, then 2 ¢ ru, and Py = 1. Otherwise
both cu, and p, are empty. In either case, however, P, = cu,, and
the second step of the algorithm can be performed.

The more general situation during the k-th step of Algorithm 3.2 is
illustrated in Figures 3.lc and 3.1d. At the beginning of the step
(Figure 3.1lc), Py = cuy, and for j > k, pj contains those row indi-
ces 1 ¢ cuj for which j 1s the minimum column index in ru, satis-
3, and

fying 3 = k. Hence p, = 2,4,5, 1. 1In par-

Pr+1 ~ Prta ©

ticular, includes all the indices in cuk+1, except for those

Prt1
which are also in cu, . At the end of the k—tb step, the sets '{pj}

for j > k must be updated for the k+l-st step. This is done by moving
each entry of Py from Py into the proper set pj. For each 1 ¢ Pyo>
row 1 1is added to Pj’ where j is the minimum index in ru, which

satisfies j > k. If ru contains no such index, then row i is not

i
added to any set (e.g. row 5 in Figure 3.1d). Finally, row k is added
to the set pj, where j 1s the smallest column index in ru . Figure

3.1d shows the sets '{pk} which remain after the k-th step is completed.

Now Prt1 = cu a0 so that the k+l-st step can be performed.

line
1 For k<« 1 to N do
2 [yk+bk];
3 For k<« 1 to N-1 do
4 [For j e ru, do
5 L.y, - uw .°y. 115
[yJ Y3 ki yJ]]
6 For k<« 1 to N do
7 [z, « i/ i3
8 For k< N tol do
9 [x, < 23
10 For j € ru, do
11 [x, < % - ukj-xj]];

ALGORITHM 3.3

As we pointed out in Section‘2, Algorithm 2.3 runs in time propor-
tional to the number of arithmetic operations which it performs. Algo-
rithm 3.2 will also run in approximately the same amount of time, pro-
vided that the updating of the sets {Pk} is a low order cost. By
carefully examining the way in which this updating is done, we see
that there is at most one updating operation for each entry of the com-
bined sets {ruk}. Therefore, updating the sets '{pk} requires a to-
tal time proportional to the number of nonzeroes in U. Thus the algo-
rithm, as a whole, runs in time proportional to the number of arithmetic
operations performed, since that is usally much larger than the number
of nonzeroes in U.

The last part of the implementation is the backsolution algorithm,
Algorithm 3.3. This algorithm is exactly the same as the backsolution

portion of Algorithm 2.3, and we will not discuss it at any length here.

15.

We simply note that it performs one arithmetic operation for each entry

of D and four arithmetic operations for each entry of U.

4, Storage of Sparse Matrices

In this section we describe the data structures used to effi-
ciently store the matrices A and U (or equivalently, RD? The
storage schemes which we present are designed for use with sparse Gauss-
ian elimination, and they take advantage of the row-by-row nature of our
algorithm.

In general, our algorithms operate on entire rows of A and M
at once. Hence it is important to be able to easily access rows of the
matrix rather than individual entries. For this reason, the storage
schemes described here are row-oriented: i.e. all of the nonzero en-
tries of a matrix row are stored consecutively. In order to identify
the entries of a row, we need to know where the row starts, how long it
is, and in what column each entry of the row lies. The extra storage
required for this information is the overhead mentioned in the Introduc-
tion, and it is important to reduce it as much as possible.

Since A is symmetric, we need only store its upper triangle. We
do this with the row-by-row storage scheme used in previous implementa-
tions of sparse symmetric Gaussian elimination (e.g. see Gustavson [6]
and the references therein). As shown in Figure 4.1, the scheme requires

three one-dimensional arrays: IA, JA, and A. The nonzero entries of

* The diagonal matrix D is stored in a one dimensional array D so
that D(k) = d,,.

— -
a, a5, O 0 0o 0
8,0 85 83 3y s O
0 a a 0 0 0
A - 32 233
0 &, 0 a0 2
0 a52 0 0 g 4]
L- 0 0 0 a64 0 a66
row, 1 r———..__lfﬁij£»-~“*~\ row 3 /-£92*f,w« row 5 rowAQ
A ey (215 [| 23] %2a| P25 | 33| %4 | %6 | s 266
k1 2 3 4 5 6 7 8 9 10 11
A |1 2 2 3 4 5 3 4 6 5 6
|1 3 7 8 |10 | 11 | 12
FIGURE 4.1

the upper triangle of A are stored row-by-row in the array A. The
array JA contains the column indices which correspond to the entries
of A: i.e. if A(k) = ary then JA(k) = J. Finally, IA contains
N+l entries which delimit the rows in A and JA. If ary is the
first (i.e. leftmost) entry of the I-th row, and if A(k) = args

then IA(I) = k. IA(N+1l) is defined so that the nonzero éntries of the
I-th row are stored consecutively in A(IA(I)) - A(TA(I+1) - 1) and

so that the column indices corresponding to the I-th row are stored
consecutively in JA(IA(I)) - JA(IA(I+1) - 1). The set of column in-

dices stored in JA for the I-th row of A 1is the set ra; discussed

in the last section.

17.

18.

JU:

10:

1 u12 0 0 0 0
0 L upy Uy Uy 0
. 0 0 1 u34 u35 0
0 0 0 1 u45 u46
0 0 0 0 1 ug
0 0 0 0 0 1
e -
1 {uy, [1] upg|ugs || 2 | sa]vss | L [Us %6 | L | U6 |t
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1|2 2] 3[4 5 [3] 45 |als]e [5]61]6
w: [1 [3 1710 [13 15 [16 |
Uip 1 Y23 | Y24 | Y25 | Y34 | U35 | Ya5 | Va6 | V56
1 2 3 4 5 6 1 8 9
2 |3 14 |5 |45 1|56 |6
1 |2 |s |7 |9 |10 |10]
Uig 13 | Yas [Y25 | "34{ 35| Ya5 | Y46 | "6
1 2 3 4 5 6 71 8 9
[2 |3 |4 51516
1 2 15 |79 |10 |10
1 12 13 {5 1|66

ISU:

FIGURE 4.2

The overhead in the row-by-row storage scheme for A 1is the
storage required for IA and JA. But since IA has N+1 entries
and JA has one entry for each nonzero stored in A, the total storage
is approximately twice the number of nonzeroes in the upper triangle
of A.

The matrix U can also be stored with the row-by-row storage scheme
just described (cf. Gustavson [6]}, since only its upper triangle needs
to be stored. This storage scheme requires the arrays U, JU, and
U corresponding to IA, JA, and A (see Figure 4.2a). However,
using the row-by-row storage gscheme ignores certain features of U
which can be exploited to reduce the storage. Most obvious is the fact
that all the diagonal entries of U are known to be i, so that they
need not be stored. Taking advantage of this leads to the storage
scheme shown in Figure 4.2b in which the strict upper triangle of U
i{s stored in row-by-row form.

An examination of Figure 4.2b reveals the fact that the colum
indices for certain rows of U in JU are actually consecutive sub-
sets of the column indices for previous rows. For example, the column
indices for row 3 are 4,5, while those for row 2 are 3,4,5. There
is really no need to store the column indices for row 3 separately
from those of row 2, provided that we know where to find them as a sub-
set of the column indices for row 2.

Using this observation, we can compact the column indices in JU
by deleting the column indices for row I if they appear as a consecu-

tive subset of the column indices for some row J, with J < I. This

20.

Sy :
Ju: 2 3 4 5 5 6
KK e X
(a) k 1 2 3 4 5 6 7 8 9
10: 1 2 5 7 9 10 10
JU: 2 3 4 5 5 6
k 1 2 3 4 5 6 7
(b)
IU: 1 2 5 7 9 10 10
so: 11 12 13 |5 |6 |6}
Locations of Column Indices
Before Com— After Com-
Row paction (a) paction (b)
1 Ju(l) Ju(1)
2 Ju(2) - Ju(4) Ju(2) - Ju(4)
3 Ju(5) - Ju(6) JU(3) - JU(4)
4 Ju(7) - Ju(8) Ju(5) - Ju(6)
5 Ju(9) Ju(6)
6 - -
FIGURE 4.3

technique is illustrated in Figure 4.3.

In order to find the column in-

dices for any row in the compacted JU array, we must know where to

look and how many column indices there are.

We use the array ISU to

locate the first column index for each row, and we determine the number

of indices by using IU to compute the number of nonzeroes in the row.

Thus the column indices for the I-th row are stored in

21.

JUCISu(I)) - Ju(Isu(l) + IU(I+1) - IU(I) - 1), since there are
IU(I+1l) - IU(I) nonzeroes in the I-th row.

We can obtain the compacted row-by-row storage scheme for U by
compacting the JU array used in the row-by-row storage scheme of the
strict upper triangle of U. The scheme requires the four arrays
U, Ju, 1ISU, and U, as shown in Figure 4.2c. U contains the
nonzero entries of the strict upper triangle of U, stored row-by-
row, and the N+l entries of TIU delimit the rows in U. JU is the
compacted array of column indices, and the entries of ISU locate
the first column index in JU for each row. The nonzeroes of the
I-th row of U are stored in U(IU(I)) - U(IU(I+1l) - 1), and the cor-
responding column indices are stored in JU(ISU(I)) - JU(ISU(I) +
IU(I+1) - IU(I) - 1). The set of indices stored in JU for the I-th
row of U is the ordered set ru; defined in Section 2.

For the compacted row-by-row storage scheme, the overhead is the
storage required for IU, JU, and ISU. It is not usually possible
to determine a priori the amount of overhead, but it is often the case
that it is less than the overhead would be with the ordinary row-by-
row storage scheme. In fact, there are examples arising in the nu-
merical solution of partial differential equations where it can be
proved that U contains O(N log N) nonzero entries, while JU con-

tains only O(N) column indices (cf. Sherman [81).

22.

5. Conclusion

" In this paper we have presented an efficient implementation for
sparse symmetric Gaussian elimination. The algorithms described here,
along with the corresponding algorithms for nonsymmetric sparse
GCaussian elimination, have been incorporated into a package of FORTRAN
subroutines.* The subroutines in this package were used to perform
some numerical experiments reported on in another paper by the authors
in these proceedings (cf. Eisenstat, Schultz, and Sherman [4]). The
results of the experiments support the view that sparse Gaussian eli-
mination may be an effective technique for solving the linear systems

which arise in numerical computation.

* Coples of the package may be obtained from the authors.

(1]

[2]

(3]

[4]

[5]

[6]

[7]

[8]

[91

References

A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Anal-
yeis of Computer Algorithms. Addison-Wesley Publishing Co.,
Reading, Mass., 1974.

A. Chang. Application of Sparse Matrix Methods in Electric
Power System Analysis. In Willoughby, ed., Sparse Matrix Pro-
ceedings. 1IBM Research Report RAL, Yorktown Heights, New York,
1968, pp. 113-122.

G. Dahlquist and A. Bjdrck. Numerical Methods. Prentice-Hall,
Englewood Cliffs, N.J., 1974,

S.C. Eisenstat, M.H. Schultz, and A.H. Sherman. Application of
Sparse Matrix Methods to Partial Differential Equations. In the
Proceedings of the AICA International Symposium on Computer Methods
for Partial Differential Equations, Bethlehem, Penn., 1975.

S.C. Eisenstat and A.H. Sherman. Subroutines for the Efficient
Implementation of Sparse Gaussian Elimination. To appear.

F.G. Gustavson. Basic Techniques for Solving Sparse Systems of
Linear Equations. In Rose and Willoughby, eds., Sparse Matrices
and Their Applications. Plenum Press, New York, 1972, pp. 41-52.

D.J. Rose and R.E. Tarjan. Algorithmic Aspects of Vertex Elimi-
nation on Graphs. Submitted to SIAM Journal on Computing, 1975.

A. Sherman. Ph.D. dissertation. Department of Computer Science,
Yale University, New Haven, Conn., 1975.

D.M. Young. Iterative Solution of Large Linear Systems. Aca-
demic Press, New York, 1971.

23.

