Describing Graphs: a First-Order Approach to Graph Canonization

Neil Immerman and Eric Lander

YALEU/DCS/TR-605 February 1988

Describing Graphs: a First-Order Approach to Graph Canonization

Neil Immerman*

 $\mathbf{Eric} \ \mathbf{Lander}^{\dagger}$

Computer Science Department Yale University New Haven, CT 06520

Whitehead Institute Cambridge, MA 02142 and Harvard University Cambridge, MA 02138

February 4, 1988

Abstract

In this paper we ask the question, "What must be added to firstorder logic plus least-fixed point to obtain exactly the polynomial-time properties of unordered graphs?" We consider the languages \mathcal{L}_k consisting of first-order logic restricted to k variables and \mathcal{C}_k consisting of \mathcal{L}_k plus "counting quantifiers". We give efficient canonization algorithms for graphs characterized by \mathcal{C}_k or \mathcal{L}_k . It follows from known results that all trees and almost all graphs are characterized by \mathcal{C}_2 .

1 Introduction

In this paper we present a new and different approach to the graph canonization and isomorphism problems. Our approach involves a combination of complexity theory with mathematical logic. We consider first-order languages for describing graphs. We define what it means for a language to characterize a set of graphs (Definition 2.2). We next define the languages

^{*}Research supported by NSF grant DCR-8603346. Part of this work was done in the Fall of 1985 while this author was visiting the Mathematical Sciences Research Institute, Berkeley, CA.

[†]Research supported by grants from the National Science Foundation (DCB-8611317) and from the System Development Foundation (G612).

 \mathcal{L}_k (resp. \mathcal{C}_k) consisting of the formulas of first-order logic in which only k variables occur (resp. \mathcal{L}_k plus 'counting quantifiers'). We then study which sets of graphs are characterized by certain \mathcal{L}_k 's and \mathcal{C}_k 's. It follows by a result of Babai and Kučera [4] that the language \mathcal{C}_2 characterizes almost all graphs. By a result of Kučera [24], \mathcal{C}_3 characterizes most regular graphs. We also show that \mathcal{C}_2 characterizes all trees. In Section 7 we give a simple $O[n^k \log n]$ step algorithm to test if two graphs G and H on n vertices agree on all sentences in \mathcal{L}_k , or \mathcal{C}_k . If G is characterized by \mathcal{L}_k (or \mathcal{C}_k), a variant of this algorithm computes a canonical labeling for G in the same time bound.

This line of research has two main goals. First, finding a language appropriate for graph canonization is a basic problem, central to the first author's work on descriptive computational complexity. We will explain this setting in the remainder of this introduction.

A canonization algorithm for a set of graphs, S, gives a unique ordering (canonical labeling) to each isomorphism class from S. Thus two graphs from S are isomorphic if and only if they are identical in the canonical ordering. The second goal of this work is to describe a simple and general class of canonization algorithms. We hope that variants of these algorithms will be powerful enough to provide simple canonical forms for all graphs; and do so without resorting to the the high powered group theory needed in the present, best graph isomorphism algorithms [25,3].

1.1 First-Order Expressibility

In [17,18,19,20,21,22] one of us has pursued an alternate view of complexity theory in which the complexity of a problem is characterized in terms of the complexity of the simplest first-order sentences expressing the problem. For example, we show in [17] that the polynomial-time properties are exactly the properties expressible by first-order sentences iterated polynomially many times:

Fact 1.1 [17]

$$P = \bigcup_{k=1}^{\infty} FO(\leq)[n^k]$$

The notation $FO(\leq)[n^k]$ denotes the set of properties describable by a very uniform sequence of sentences $\{\varphi_n\}$ such that each sentence φ_n has length $O[n^k]$ and has a bounded number of variables independent of n.¹

¹In [17] we used the notation Var&Sz[O[1], n^k] instead of FO[n^k].

The symbol \leq is included to emphasize the presence of a total ordering on the universe of the input structures. In [18] and in [28] it is also shown that this uniform sequence of formulas can be represented by a least fixed point operator (LFP) applied to a single formula. Thus,

$$P = FO + LFP = \bigcup_{k=1}^{\infty} FO(\leq)[n^k].$$

(The notation (FO+LFP) is certainly less cumbersome than $\bigcup_{k=1}^{\infty} FO(\leq)[n^k]$. We don't make any other use of LFP in this paper. The interested reader should see [18].)

It is interesting to examine the relationship between the number of variables needed to describe a problem, and the computational complexity of the problem. Let FO-VAR[t(n), v] be the restriction of FO[t(n)] to sentences with at most v distinct variables. Then the following bounds can be derived from the proof of Fact 1.1 in [17]:

Fact 1.2 /17/

$$DTIME[n^k] \subseteq FO-VAR(\leq)[n^k, k+3] \subseteq DTIME[n^{2k+4}]$$

Thus the DTIME $[n^k]$ properties of ordered graphs are *roughly*² the properties expressible by first-order sentences with k variables and length n^k .

Fact 1.1 gives a natural language expressing exactly the polynomial-time properties of ordered graphs. Let a *graph property* be an order independent property of ordered graphs. One can ask the question,

Question 1.3 Is there a natural language for the polynomial-time graph properties?

Gurevich has conjectured that the answer to Question 1.3 is, "No," [13]. An affirmitive answer to this question would imply a similar answer to the more basic,

Question 1.4 Is there a recursively enumerable listing of all polynomialtime graph properties?

²Obviously this is very rough. A closer relationship between machine complexity and first-order expressibility is obtained if one takes into account the built in parallelism of quantifiers. In [20] it is shown that $FO(\leq)[t(n)]$ is exactly the set of properties checkable by a concurrent, parallel random access machine (CRAM) in parallel time t(n). Furthermore, FO-VAR[t(n), v] corresponds to CRAM-TIME[t(n)] using roughly n^k processors.

Questions 1.3 and 1.4 are important in various settings. It is well known that any first-order structure may be interpreted as a graph.³ Thus these questions are equivalent to the corresponding questions concerning relational databases: i.e. give a database query language for expressing exactly the polynomial-time queries that are independent of the arbitrary ordering of tuples, cf. [8]. We believe that the answers to Questions 1.3 and 1.4 are both, "Yes," and we ask the more practical,

Question 1.5 What must we add to first-order logic after taking out the ordering so that Fact 1.1 remains true? Put another way, describe a language \mathcal{L} which expresses exactly the polynomial-time graph properties.

The ordering relation is crucial for simulating computation: a Turing machine will be given an input graph in some order. It will visit the vertices of the graph using this ordering; and it is difficult to see how to simulate an arbitrary computation without reference to this ordering. It is well known that first-order logic without ordering is *not* strong enough to express computation. Let EVEN be the set of graphs with an even number of vertices. We will show in Proposition 4.4 that the property EVEN requires n variables for graphs with n vertices. (For a property to be expressible in FO+LFP a necessary condition is that it is expressible in a constant number of variables independent of n.)

In view of Proposition 4.4, it is natural to add the ability to count to first-order logic without ordering. This is formalized in Section 5, where we define the languages C_k of first-order logic restricted to k distinct variables, plus "counting quantifiers". We show in Corollary 6.5 that the very simple language C_2 suffices to give unique descriptions and thus efficient canonical forms for almost all graphs.

For a long time we suspected that first-order logic plus least fixed point and counting was enough to express all polynomial-time graph properties. It would have immediately followed that for each polynomial-time graph property Q there would be a fixed k such that for all n, the property Qrestricted to graphs of size n is expressible in C_k . In particular, if our suspicion were right, then for every set of graphs S admitting a polynomialtime graph isomorphism algorithm, there would exist a fixed k such that C_k characterizes S (to be defined later). This implies that for any two graphs G and H from S, if G and H are C_k equivalent (i.e. G and Hagree on all sentences from C_k) then they are isomorphic. For example, the

⁸We would like to know who this is due to, and where it appears in print.

Figure 1: An Undirected Graph

sets of graphs of bounded color class size (defined below) admit polynomialtime graph isomorphism algorithms. We show in Proposition 3.3 that the language C_3 characterizes graphs of color class size 3. However, the following very recent result⁴ shows in a strong way that no C_k characterizes the graphs of color class size 4. Thus our suspicion was wrong: first-order logic plus least fixed point and counting does not express all the polynomial-time graph properties.

Fact 1.6 [7][12] There exists a sequence of pairs of non-isomorphic graphs $\{G_n, H_n\}$ such that G_n and H_n have O[n] vertices, color class size 4, and admit linear time canonization algorithms. However, G_n and H_n are $C_{\sqrt{n}}$ equivalent.

2 Background, and Definition of Characterization

For our purposes, a graph will be defined as a finite first-order structure, $G = \langle V, E \rangle$. V is the universe, (the vertices); and E is a binary relation on V, (the edges). As an example, the undirected graph, $G_1 = \langle V_1, E_1 \rangle$, pictured in Figure 1 has vertex set $V_1 = \{1, 2, 3, 4, 5\}$, and edge relation $E_1 = \{\langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 1 \rangle, \langle 2, 3 \rangle, \dots, \langle 5, 3 \rangle, \langle 5, 4 \rangle\}$ consisting of 12 pairs corresponding to the six undirected edges.

The first-order language of graph theory is built up in the usual way from the variables, x_1, x_2, \ldots , the relations symbols, E and =, the logical

⁴After being open for years, this result was shown independently by Immerman and Cai, and by Fürer. Fürer does not mention C_k equivalence, he instead refers to the equivalent coloring algorithm on k - 1-tuples (cf. Theorem 7.6). The surprising thing about this coincidence is that Fürer and Immerman and Cai both described the same pairs of counterexample graphs!

connectives, $\land, \lor, \neg, \rightarrow$, and the quantifiers, \forall and \exists . The quantifiers range over the vertices of the graph in question. For example consider the following first-order sentence:

$$\varphi \equiv \forall x \forall y [E(x, y) \to E(y, x) \land x \neq y]$$

 φ says that G is undirected and loop free. We will only consider graphs that satisfy φ , in symbols: $G \models \varphi$.

It is useful to consider a slightly more general set of structures. The firstorder language of colored graphs consists of the addition of a countable set of unary relations $\{C_1, C_2, \ldots\}$ to the first-order language of graphs. Define a colored graph to be a graph that interprets these new unary relations so that all but finitely many of the predicates are false at each vertex. These unary relations may be thought of as colorings of the vertices. (A vertex of a colored graph may satisfy zero, one, or several of the color relations. However, we will say that two vertices are the same color iff they satisfy the same set of color relations. Thus, by increasing the number of color relations we may assume that each vertex satisfies a unique color relation.)

Throughout this paper we will be considering various languages for describing colored graphs. We are interested in knowing when a language suffices to characterize a particular graph, or class of graphs. Some of the following definitions and notation are adapted from [23].

Definition 2.1 For a given language \mathcal{L} we say that the graphs G and H are \mathcal{L} -equivalent ($G \equiv_{\mathcal{L}} H$) iff for all sentences $\varphi \in \mathcal{L}$,

$$G\models\varphi \Leftrightarrow H\models\varphi.$$

A partial valuation over a structure A is a partial function $u : \{x_1 \ldots\} \to \mathcal{A}$. The domain of u is denoted ∂u . Call a (k-)configuration over G, H a pair (u, v) where u is a partial valuation over G and v is a partial valuation over H such that $\partial u = \partial v (\subseteq \{x_1, \ldots, x_k\})$. If (u, v) is a k-configuration over G and H, we say that G, u and H, v are \mathcal{L} -equivalent $(G, u \equiv_{\mathcal{L}} H, v)$ iff for all formula $\varphi \in \mathcal{L}$, with free variables from x_1, \ldots, x_k ,

$$G, u \models \varphi \iff H, u \models \varphi$$
.

Using the concept of \mathcal{L} -equivalence, we can now define what it means for the language \mathcal{L} to characterize a set of graphs.

Definition 2.2 We say that \mathcal{L} k-characterizes G iff for all graphs H, and for all k-configurations (u, v) over G, H, if (u, v) are \mathcal{L} -equivalent then there is an isomorphism from G to H extending the correspondence given by (u, v). In symbols,

$$(G, u \equiv_{\mathcal{L}} H, v) \Rightarrow (\exists f \supset v \circ u^{-1})(f : G \xrightarrow{\cong} H).$$

We say that \mathcal{L} characterizes G iff \mathcal{L} 1-characterizes \hat{G} , for all colorings \hat{G} of G. For a set of graphs S, we say that \mathcal{L} characterizes S iff for all $G \in S$, \mathcal{L} characterizes G.

Proposition 2.3 Let GRAPHS be the set of all finite, colored graphs, and let FO be the first-order language of colored graphs. Then FO characterizes GRAPHS.

Proof Let $G \in \text{GRAPHS}$ have *n* vertices, and let *u* be a partial valuation over *G*. For simplicity, suppose that $\partial u = \{x_1, \ldots, x_k\}$, and $u(x_1), \ldots, u(x_k)$ are all distinct. Let g_1, \ldots, g_n be a numbering of *G*'s vertices so that $g_i =$ $u(x_i)$, for $1 \leq i \leq k$. Let *r* be a subscript greater than that of any color relation holding in *G*. It is simple to write a first-order formula, χ_r , with n+1-k quantifiers that says (a) there exist $x_{k+1} \ldots x_n$ such that the x_i 's are all distinct; (b) any other vertex is equal to one of the x_i 's; (c) each pair (x_i, x_j) has an edge or not exactly as the edge (g_i, g_j) occurs or not in *G*; and finally (d) for each $x_i, i \leq n$, and each $C_j, j \leq r, C_j(x_i)$ holds exactly if $C_j(g_i)$ holds in *G*. Let *H* be any graph, and let *r* be greater than the index of any color relation holding in *H*. Let *v* be any valuation over *H* such that H, v satisfies χ_r . Let v' be an extension of *v* to a valuation over *H* with $\partial v' = \{x_1 \ldots x_n\}$, making the quantifier-free part of χ_r true. Then clearly $f: g_i \mapsto v'(x_i)$ is the desired isomorphism.

Proposition 2.3 leads to an inefficient graph canonization algorithm. In the next section, we consider languages weaker than full first-order logic, in order to obtain efficient algorithms.

3 The Language \mathcal{L}_k

Define \mathcal{L}_k to be the set of first-order formulas, φ , such that the quantified variables in φ are a subset of x_1, x_2, \ldots, x_k . Note that variables in first-order formulas are similar to variables in programs: they can be reused (i.e.

requantified). For example consider the following sentence in \mathcal{L}_2 .

$$\psi \equiv \forall x_1 \exists x_2 \Big(E(x_1, x_2) \land \exists x_1 [\neg E(x_1, x_2)] \Big)$$

The sentence, ψ , says that every vertex is adjacent to some vertex which is itself not adjacent to every vertex. As an example, the graph from Figure 1 satisfies ψ . Note that the outermost quantifier, $\forall x_1$, refers only to the free occurrence of x_1 within its scope.

In this section we will consider the question, "Which graphs are characterized by \mathcal{L}_k ?" Define a *color class* to be the set of vertices which satisfy a particular color relation. (The set of vertices which satisfy no color relation is also a color class.) The *color class size* of a graph is defined to be the cardinality of the largest color class.

Proposition 3.1 \mathcal{L}_2 characterizes the colored graphs with color class size one.

Proof This is clear. In \mathcal{L}_2 we can assert that each color class is of size at most one, e.g. $\forall x_1 \forall x_2(B(x_1) \land B(x_2) \rightarrow x_1 = x_2)$. We can also say which edges exist, e.g. the blue vertex is connected to the red vertex. Thus if graph G has color class size one, and if $G, g \equiv_{\mathcal{L}_2} H, h$ then there is an isomorphism $f: G \rightarrow H$. Since f preserves colors, f(g) = h.

Next we consider the much more powerful language \mathcal{L}_3 . In this language we can express the existence of paths.

Proposition 3.2 For any natural number r, the formula $P_r(x_1, x_2)$, meaning that there is a path of length at most r from x_1 to x_2 , can be written in \mathcal{L}_3 .

Proof By induction. $P_1(x_1, x_2)$ is $E(x_1, x_2) \vee x_1 = x_2$. Inductively,

$$P_{s+t}(x_1, x_2) \equiv \exists x_3(P_s(x_1, x_3) \land P_t(x_3, x_2))$$

Note that a maximum of 3 distinct variables is used.

We will see in Section 4 that there are graphs with color class size 2 that cannot be distinguished by a sentence in \mathcal{L}_2 . The ability of \mathcal{L}_3 to talk about path lengths makes it slightly less trivial:

Proposition 3.3 \mathcal{L}_3 characterizes graphs of color class size at most three.

Proof Let G and H be colored graphs, let g and h be vertices of G and H, and suppose that $G, g \equiv_{\mathcal{L}_8} H, h$. We will build an isomorphism $f: G \to H$, such that f(g) = h.

We first refine the colorings of the vertices of G and H to correspond to \mathcal{L}_3 types. For $A, B \in \{G, H\}$, vertices $a \in A$ and $b \in B$ will have the same refined color iff they satisfy the same \mathcal{L}_3 formulas, i.e.

$$\{\varphi \in \mathcal{L}_3 \mid A \models \varphi_a^{x_1}\} = \{\varphi \in \mathcal{L}_3 \mid B \models \varphi_b^{x_1}\}^5.$$

The following lemma says that we may assume that the color types of G and H are already refined.

Lemma 3.4 Let the finite, colored graphs G and H be \mathcal{L}_k equivalent and let G' and H' be the \mathcal{L}_k color refinements of G and H. Then G' and H' are \mathcal{L}_k equivalent.

Proof Since G and H are finite, each refined color class C'_i is determined by the conjunction $\psi_i \in \mathcal{L}_k$ of a finite set of formulas. That is for all i, G'and H' both satisfy

$$\forall x_1(C'_i(x_1) \leftrightarrow \psi_i) .$$

Note that ψ_i has x_1 as its free variable. Thus any occurrence of $C'_i(x_1)$ may be replaced by the equivalent ψ_i . Similarly any occurrence of $C'_i(x_j), j = 2, \ldots, k$ may be replaced by $\psi_i^{\pi_j}$ where π_j is a permutation of $\{x_1, \ldots, x_k\}$ sending x_1 to x_j . Now for any formula $\alpha \in \mathcal{L}_3(C'_1, C'_2, \ldots)$ we may replace each occurrence of $C'_i(x_j)$ by $\psi_i^{\pi_j}$ to obtain an equivalent formula $\alpha' \in \mathcal{L}_3(C_1, \ldots, C_r)$.

By the above lemma we may assume that the color classes of G and H correspond exactly to the \mathcal{L}_3 types of the vertices. Let R and B be two colors and consider the edges between red and blue vertices in G or H. Note that this is a regular bipartite graph because we can express in \mathcal{L}_3 that a red vertex has 0, 1, 2, or all blue vertices as neighbors. Note also that for color classes of size at most 3, the only regular bipartite graphs representing nontrivial relationships between vertices are the 1:1 correspondence graphs and their complements. Let us then change such bipartite graphs as follows: replace the complete bipartite graph by its complement, and replace the graphs of degree two whose complements are 1:1 correspondence graphs by these complements. Note that when we perform these changes on G and H

⁵The notation α_t^x denotes the formula α with the term t substituted for the variable x.

the new graphs are still \mathcal{L}_3 equivalent, and they are isomorphic now iff they were before.

Thus we have reduced the problem to constructing an isomorphism between G and H when these graphs have color valence one. We construct the isomorphism f as follows: Begin by letting f(g) = h. Next, while there is a vertex g_1 in the domain of f with a (unique) neighbor g_2 of color C_i not yet in the domain of f, do the following. Let h_2 be the neighbor of $f(g_1)$ of color C_i , and let $f(g_2) = h_2$.

We claim that the function f constructed above is an isomorphism from G to H. If not, then it must be the case that there is a loop of a certain color sequence in one of the graphs but not the other. For example, suppose that we chose g_1, g_2, \ldots, g_j and h_1, h_2, \ldots, h_j so that g_1 and h_1 are color C_1 , and for $i < j, g_{i+1}$ and h_{i+1} are the unique neighbors of g_i and h_i , respectively, of color C_{i+1} . However, suppose now that the neighbor of h_j of color C_1 is h_1 , but that g_1 is not a neighbor of g_j . In this case there is a certain easily describable loop in H but not in G. That means that G and H disagree on the following \mathcal{L}_3 formula:

$$\begin{pmatrix} C_1(x_1) & \wedge & \exists x_2(C_2(x_2) \land E(x_1, x_2) \land \exists x_3(C_3(x_3) \land E(x_2, x_3) \land \\ & \wedge & \exists x_2(C_4(x_2) \land E(x_3, x_2) \land \ldots \land \exists x_i(C_j(x_i) \land E(x_i, x_1)) \ldots) \end{pmatrix}$$

Since $G \equiv_{\mathcal{L}_3} H$ they must agree on the above formula. Therefore f is an isomorphism as claimed.

In the next section we describe some games that may be used to prove lower bounds on the expressibility of the \mathcal{L}_k 's. We will show as an example using these games that \mathcal{L}_2 does not suffice to characterize graphs of color class size 2. Very recently it has been shown (cf. Fact 1.6) that no fixed \mathcal{L}_k suffices to characterize the graphs of color class size 4.

4 Lower Bounds

In this section we will show that \mathcal{L}_k is not expressive enough to characterize graphs efficiently. We will use the combinatorial games of Ehrenfeucht and Fraisse, ([9,11]), as modified for \mathcal{L}_k , (see [17,6,26]). All of the results in this section could be proved by induction on the complexity of the sentences in question; but, we find that the games offer more intuitive arguments.

Let G and H be two graphs, and let k be a natural number. Define the \mathcal{L}_k game on G and H as follows. There are two players, and there are k

Figure 2: The \mathcal{L}_2 Game

pairs of pebbles, $g_1, h_1, \ldots, g_k, h_k$. On each move, Player I picks up any of the pebbles and he places it on a vertex of one of the graphs. (Say he picks up g_i . He must then place it on a vertex from G.) Player II then picks up the corresponding pebble, (If Player I chose g_i then she must choose h_i), and places it on a vertex of the appropriate graph, (H in this case).

Let $p_i(r)$ be the vertex on which pebble p_i is sitting just after move r. Then we say *Player I wins the game at move* r if the map that takes $g_i(r)$ to $h_i(r)$, i = 1, ..., k, is not an isomorphism of the induced k vertex subgraphs. Note that if the graphs are colored then an isomorphism must preserve color as well as edges. Thus Player II has a winning strategy for the \mathcal{L}_k game just if she can always find matching points to preserve the isomorphism. Player I is trying to point out a difference between the two graphs and Player II is trying to keep them looking the same.

As an example consider the \mathcal{L}_2 game on the graphs G and H shown in Figure 2.

Suppose that Player I's first move is to place g_1 on a red vertex in G. Player II may answer by putting h_1 on either of the red vertices in H. Now suppose Player I puts h_2 on an adjacent yellow vertex in H. Player II has a response because in G, $g_1(1)$ also has an adjacent yellow vertex. The reader should convince himself or herself that in fact Player II has a winning strategy for the \mathcal{L}_2 game on the given G and H. The relevant theorem concerning the relationship between this game and the matter at hand is:

Fact 4.1 [17, Theorem C.1] Let (u, v) be a k-configuration over G, H. Player II has a winning strategy for the \mathcal{L}_k game on (u, v) if and only if $G, u \equiv_{\mathcal{L}_k} H, v$.

Note that we have the following

Corollary 4.2 \mathcal{L}_2 does not characterize graphs of color class size 2.

We will prove in Section 7 that testing whether $G \equiv_{\mathcal{L}_k} H$ can be done in time $O[n^k \log n]$. Furthermore, if \mathcal{L}_k characterizes a set S of graphs, then canonical forms for the graphs in S may be computed in this same time bound.

It is interesting to note that not only does no \mathcal{L}_k characterize all graphs, but almost all graphs are indistinguishable in \mathcal{L}_k . Thus if two graphs of size $n \gg k$ are chosen at random they will almost certainly be \mathcal{L}_k equivalent, but not isomorphic.

Fact 4.3 [17], cf [10] Fix k and let $Pr_n(G \equiv_{\mathcal{L}_k} H)$ be the probability that two randomly chosen graphs of size n are \mathcal{L}_k equivalent. Then

$$\lim_{n\to\infty} \left[\Pr_n(G \equiv_{\mathcal{L}_k} H) \right] = 1$$

Not only does \mathcal{L}_k not characterize most graphs, it is not strong enough to express counting:

Proposition 4.4 Let EVEN be the set of graphs with an even number of vertices. This property is not expressible in \mathcal{L}_n for graphs with n or more vertices. Furthermore, \mathcal{L}_n does not characterize the set of totally disconnected graph on n vertices.

Proof Let D_n be the uncolored graph with n vertices and no edges. We claim that $D_n \equiv_{\mathcal{L}_n} D_{n+1}$. The following is a winning strategy for Player II in the *n*-pebble game on D_n and D_{n+1} . Player I's moves are answered preserving distinctness. That is, if Player I places pebble i on a vertex already occupied by pebble j, then Player II does the same. If Player I places pebble i on a vertex not occupied by any other pebbles, then Player II does the same. This is possible, because there are n vertices, and only n-1 other pebbles. Since there are no edges, the resulting maps are always isomorphisms.

In the next section we increase the expressive power of the \mathcal{L}_k 's by adding the ability to count.

5 Counting Quantifiers

In this section we add *counting quantifiers* to the languages \mathcal{L}_k , thus obtaining the new languages \mathcal{C}_k . For each positive integer, *i*, we include the quantifier, $(\exists i x)$. The meaning of " $(\exists 17 x_1)\varphi(x_1)$ ", for example, is that there exist at least 17 vertices such that φ . We will sometimes also use the quantifiers, $(\exists ! i x)$, meaning that there exists exactly *i x*'s:

 $(\exists ! i x)\varphi(x) \equiv (\exists i x)\varphi(x) \land \neg (\exists i + 1 x)\varphi(x)$

Example 5.1 As our first example, note that the following sentence in C_2 characterizes the graph D_n of Proposition 4.4:

$$(\exists ! n x)(x = x) \land (\forall x)(\forall y)(\neg E(x, y))$$
.

Note that every sentence in C_k is equivalent to an ordinary first-order sentence with perhaps many more variables and quantifiers. We will see that testing C_k equivalence is no harder than testing \mathcal{L}_k equivalence – the idea is that to test the truth of $\forall x$ or $\exists x$ we have to consider all possible x's anyway, and it doesn't cost more to count them. In Corollary 7.7 we show that C_k equivalence can be tested in time $O[n^k \log n]$. Similarly, graphs characterized by C_k can be given canonical labelings in the same time.

The following notation is useful.

Definition 5.2 Let Σ be a set of finite graphs. Define $var(\Sigma, n)$ (resp. $vc(\Sigma, n)$) to be the minimum k such that \mathcal{L}_k (resp. \mathcal{C}_k) characterizes the graphs in Σ with at most n vertices. Let var(n) = var(GRAPHS, n) and vc(n) = vc(GRAPHS, n). When $var(\Sigma, n)$ or $vc(\Sigma, n)$ is bounded, we write $var(\Sigma) = max_n var(\Sigma, n)$, and $vc(\Sigma) = max_n vc(\Sigma, n)$.

For example, by combining various results obtained so far we know that var(GRAPHS, n) = n + 1, var(CC1) = 2, and var(CC2) = var(CC3) = 3. Here we are letting CCk be the set of color class k graphs.

We will now examine \mathcal{C}_k , attempting to compute vc(S) for various sets of graphs, S. A modification of the \mathcal{L}_k game provides a combinatorial tool for analyzing the expressive power of \mathcal{C}_k . Given a pair of graphs define the \mathcal{C}_k game on G and H as follows: Just like the \mathcal{L}_k game we have two players and k pairs of pebbles. Now however each move has two steps.

1. Player I picks up a pebble (say g_i). He then chooses a set, A, of vertices from one of the graphs, (in this case G). Now Player II must answer with a set, B, of vertices from the other graph. B must have the same cardinality as A.

2. Player I places h_i on some vertex $b \in B$. Player II answers by placing g_i on some $a \in A$.

The definition for winning is as before. Note that what is going on in the two step move is that Player I is asserting that there exist |A| vertices in G with a certain property. Player II answers that there are the same number of such vertices in H. A straight forward extension of the proof of Fact 3.1 shows that this game does indeed capture expressibility in C_k .

Theorem 5.3 Let (u, v) be a k-configuration over G, H. Player II has a winning strategy for the C_k game on (u, v) if and only if $G, u \equiv_{C_k} H, v$.

Consider the following example of the C_k game.

Proposition 5.4 Player II has a win for the C_2 game on the graphs pictured in Figure 2. Thus vc(CC2) > 2.

Proof Player II's winning strategy is as follows: She matches the first vertex chosen by Player I with any vertex of the same color. Now suppose that at any point in the game, the first pair of pebbles are placed on vertices g_1 and h_1 , both vertices of the same color, say red. Suppose that Player I's next move involves the other pair of pebbles. There is a 1:1 correspondence between the vertices in G and H as follows:

g_1	\rightarrow	h_1
the blue vertex adjacent to g_1	\rightarrow	the blue vertex adjacent to h_1
the yellow vertex adjacent to g_1	\rightarrow	the yellow vertex adjacent to h_1
the red vertex not adjacent to g_1	\rightarrow	the red vertex not adjacent to h_1
the yellow vertex not adjacent to g_1	\rightarrow	the yellow vertex not adjacent to h_1
the blue vertex not adjacent to g_1	\rightarrow	the blue vertex not adjacent to h_1

If Player I chooses a set A, then Player II chooses the set B to be the corresponding set of vertices under the above map. Whichever vertex Player I then picks from B, Player II will choose the corresponding vertex in A. Thus the chosen pair of vertices will be the same color and either both adjacent, or both not adjacent to the other chosen pair. Thus Player II can always preserve the partial isomorphism.

6 Vertex Refinement Corresponds to C_2

It turns out that the expressive power of C_2 is characterized by the well known method of vertex refinement (see [2,15]). Let $G = \langle V, E, C_1, \ldots, C_r \rangle$ be a colored graph in which every vertex statisfies exactly one color relation. Let $f: V \to \{1 \ldots n\}$ be given by f(v) = i iff $v \in C_i$. We then define f', the refinement of f as follows: The new color of each vertex, v, is defined to be the following tuple:

$$\langle f(v), n_1, \ldots, n_r \rangle$$

where n_i is the number of vertices of color *i* that *v* is adjacent to. We sort these new colors lexicographically and assign f'(v) to be the number of the new color class which *v* inhabits. Thus two vertices are in the same new color class just if they were in the same old color class, and they were adjacent to the same number of vertices of each color. We keep refining the coloring until at some level $f^{(k)} = f^{(k+1)}$. We let $\bar{f} = f^{(k)}$ and call \bar{f} the stable refinement of f.

The equivalence of stable colorings and C_2 equivalence is summed up by the following

Theorem 6.1 Given a colored graph, $G = \langle V, E, C_1, \ldots, C_r \rangle$, with two vertices, g_1 and g_2 , the following are equivalent:

- 1. $\bar{f}(g_1) = \bar{f}(g_2)$
- 2. For all $\varphi(x_1) \in \mathcal{C}_2$, $G \models \varphi(g_1)$ iff $G \models \varphi(g_2)$.
- 3. Player II wins the C_2 game on two copies of G, with pebble pair number 1 initially placed on g_1 and g_2 respectively.

Proof By induction on r we show that the following are equivalent:

- 1. $\bar{f}^{(r)}(g_1) = \bar{f}^{(r)}(g_2)$
- 2. For all $\varphi(x_1) \in \mathcal{C}_2$ of quantifier depth $r, G \models \varphi(g_1)$ iff $G \models \varphi(g_2)$.
- 3. Player II wins the r move C_2 game on two copies of G, with pebble pair number 1 initially placed on g_1 and g_2 respectively.

The base case is by definition. $f^{(0)}(g_1) = f(g_1) = f(g_2)$ iff g_1 and g_2 satisfy the same initial color predicate. This is true if and only if g_1 and g_2 satisfy all the same quantifier free formulas. This in turn is true if and

only if the map sending g_1 to g_2 is a partial isomorphism. This last is the definition of Player II winning the 0 move game.

Assume that the equivalence holds for all g_1 and g_2 and for all r < m. $(\neg 1 \Rightarrow \neg 2)$: Suppose that $f^{(m)}(g_1) \neq f^{(m)}(g_2)$. There are two cases. If $f^{(m-1)}(g_1) \neq f^{(m-1)}(g_2)$ then by the inductive assumption there is a quantifier depth m-1 formula $\varphi \in C_2$ on which g_1 and g_2 differ. Otherwise it must be that g_1 and g_2 have a different number of neighbors of some $f^{(m-1)}$ color class *i*. Let *N* be the maximum of these two numbers. By induction two vertices are in the same $f^{(m-1)}$ color class iff they agree on all quantifier depth m-1 C_2 formulas. Since quantifier depth m-1 formulas are closed under conjunction and the graphs in question are finite there is a depth m-1 $\psi_i \in C_2$ such that for all $g \in G$,

$$f^{(m-1)}(g) = i \quad \Leftrightarrow \quad G \models (\psi_i)_g^{x_1}$$

It follows that g_1 and g_2 differ on the formula:

 $(\exists Nx_2)(E(x_1,x_2)\wedge\psi_{i_{x_2}}^{x_1})$.

 $(\neg 2 \Rightarrow \neg 3)$: Suppose that $G \models \varphi_{g_1}^{x_1}$ but $G \models \neg \varphi_{g_1}^{x_1}$, for some $\varphi \in C_2$ of quantifier depth m. If φ is a conjunction then g_1 and g_2 must differ on at least one of the conjuncts, so we may assume that φ is of the form $(\exists Nx_2)\psi(x_2)$. On the first move of the game Player I chooses the N vertices v such that $\psi(v)_{g_1}^{x_1}$. Whatever Player II chooses as B there will be at least one vertex v_2 such that $G \models \neg \psi(v_2)_{g_1}^{x_1}$. Player I puts his pebble number 2 on this v_2 . Player II must respond with some $v_1 \in A$. The vertices v_1, v_2 now differ on a quantifier depth m - 1 formula. Thus by induction Player II loses the remaining m - 1 move game.

 $(1 \Rightarrow 3)$: Suppose that $f^{(m)}(g_1) = f^{(m)}(g_2)$. It follows that g_1 and g_2 have the same number of neighbors of each $f^{(m-1)}$ color. Thus a 1:1 correspondence exists between the vertices in the first copy of G and those in the second preserving both the property of being adjacent to g_i and the $f^{(m-1)}$ color. (Note that since we are considering two copies of the same graph, if both copies have the same number of red neighbors of g_i then they also both have the same number of red non-neighbors of g_i .) It follows that Player II can assure that after the first move the pair of vertices chosen will be in the same $f^{(m-1)}$ color class. Thus by the induction hypothesis Player II has a win for the remaining m - 1 move game. follows that C_2 equivalent graphs will result in the same canonical labeling. Furthermore, the analysis of the revised algorithm is unchanged.

We will next present the algorithm to test C_{k+1} equivalence for $k \geq 2$. Define stable colorings of k tuples as follows: Initially we give each k tuple of vertices from G a color according to it's isomorphism type. That is $\langle g_1 \ldots g_k \rangle$ has the same initial color as $\langle h_1 \ldots h_k \rangle$, just if the map $\alpha : g_i \mapsto h_i$, $i = 1 \ldots k$ is an isomorphism.

We next form the new color of $\langle g_1 \dots g_k \rangle$ as the tuple:

$$\left\langle f(g_1 \dots g_k), \operatorname{SORT}\left\{ \left\langle f(g, g_2 \dots, g_k), f(g_1, g, g_3, \dots, g_k), \dots, f(g_1, \dots, g_{k-1}, g) \right\rangle \mid g \in G \right\} \right\rangle$$

That is the new color of a k-tuple is formed from the old color, as well as from considering, for each vertex g, the old color of the k k-tuples resulting from the substitution of g into each possible place.

Theorem 7.5 A stable coloring of k tuples in an n vertex graph may be computed in $O[k^2n^{k+1}\log n]$ steps.

Proof This is a generalization of Algorithm 7.1. We must refine the coloring for each color class, B_i , of k-tuples. Each such refinement takes O[kn] steps for each k-tuple in B_i . Each of the n^k k-tuples will have its color class treated at most $\log(n^k)$ times.

Theorem 7.6 Let G be a graph whose k - 1 tuples of vertices are colored. Let $\vec{g}, \vec{h} \in G^{k-1}$. The following are equivalent.

- 1. $\bar{f}(\vec{g}) = \bar{f}(\vec{h})$
- 2. For all $\varphi(x_1 \dots x_{k-1}) \in \mathcal{C}_k$, $G \models \varphi(\vec{g})$ iff $G \models \varphi(\vec{h})$
- 3. Player II wins the C_k game on two copies of G with pebbles $1 \dots k-1$ initially placed on $g_1 \dots g_{k-1}$ and $h_1 \dots h_{k-1}$ respectively.

Proof The proof is similar to that of Theorem 6.1.

Corollary 7.7 C_k equivalence may be tested in $O[n^k \log n]$ steps. (If k is allowed to vary with n this becomes $O[k^2n^k \log n]$.) Similarly, if S is characterized by C_k , then canonical labelings for S may be computed in the same time bound.

- [21] Neil Immerman, "Expressibility as a Complexity Measure: Results and Directions," Second Structure in Complexity Theory Conf. (1987), 194-202.
- [22] N. Immerman, "Descriptive and Computational Complexity," to appear in Proc. AMS Short Course in Computational Complexity Theory (1988).
- [23] Neil Immerman and Dexter Kozen, "Definability with Bounded Number of Bound Variables," Second LICS Symp. (1987).
- [24] Luděk Kučera, "Canonical Labeling of Regular Graphs in Linear Average Time," 28th IEEE FOCS Symp. (1987), 271-279.
- [25] Eugene M. Luks, "Isomorphism of Graphs of Bounded Valence Can be Tested in Polynomial Time," JCSS 25 (1982), pp. 42-65.
- [26] B. Poizat, "Deux ou trois chose que je sais de Ln," JSL 47 (1982), pp. 641-658.
- [27] Simon Thomas, "Theories With Finitely Many Models," J. Symbolic Logic, 51, No. 2 (1986), 374-376.
- [28] M. Vardi, "Complexity of Relational Query Languages," 14th Symposium on Theory of Computation, 1982, (137-146).