Describing Graphs: a First-Order Approach to
~Graph Canonization

Neil Immerman and Eric Lander

YALEU/DCS/TR-605
February 1988

Describing Graphs: a First-Order Approach to
Graph Canonization

Neil Immerman* Eric Landert
Computer Science Department Whitehead Institute
Yale University Cambridge, MA 02142
New Haven, CT 06520 and

Harvard University
Cambridge, MA 02138

February 4, 1988

Abstract

In this paper we ask the question, “What must be added to first-
order logic plus least-fixed point to obtain exactly the polynomial-time
properties of unordered graphs?” We consider the languages £y con-
sisting of first-order logic restricted to k variables and Cj consisting
of L plus “counting quantifiers”. We give efficient canonization algo-
rithms for graphs characterized by Cx or Li. It follows from known
results that all trees and almost all graphs are characterized by C,.

1 Introduction

In this paper we present a new and different approach to the graph canon-
ization and isomorphism problems. Our approach involves a combination
of complexity theory with mathematical logic. We consider first-order lan-
guages for describing graphs. We define what it means for a language to
characterize a set of graphs (Definition 2.2). We next define the languages

*Research supported by NSF grant DCR-8603346. Part of this work was done in the
Fall of 1985 while this author was visiting the Mathematical Sciences Research Institute
Berkeley, CA.

tResearch supported by grants from the National Science Foundation (DCB-8611317)
and from the System Development Foundation (G612).

3

Ly (resp. Cy) consisting of the formulas of first-order logic in which only &
variables occur (resp. Li plus ‘counting quantifiers’). We then study which
sets of graphs are characterized by certain Li’s and Ci’s. It follows by a
result of Babai and Kutera [4] that the language C2 characterizes almost all
graphs. By a result of Kulera [24], C3 characterizes most regular graphs.
We also show that Cs characterizes all trees. In Section 7 we give a simple
O[n¥ log n] step algorithm to test if two graphs G and H on n vertices agree
on all sentences in L, or Cx. If G is characterized by £y (or C), a variant of
this algorthm computes a canonical labeling for G in the same time bound.

This line of research has two main goals. First, finding a language appro-
priate for graph canonization is a basic problem, central to the first author’s
work on descriptive computational complexity. We will explain this setting
in the remainder of this introduction.

A canonization algorithm for a set of graphs, S, gives a unique ordering
(canonical labeling) to each isomorphism class from S. Thus two graphs
from S are isomorphic if and only if they are identical in the canonical
ordering. The second goal of this work is to describe a simple and general
class of canonization algorithms. We hope that variants of these algorithms
will be powerful enough to provide simple canonical forms for all graphs;
and do so without resorting to the the high powered group theory needed
in the present, best graph isomorphism algorithms [25,3].

1.1 First-Order Expressibility

In [17,18,19,20,21,22] one of us has pursued an alternate view of complexity
theory in which the complexity of a problem is characterized in terms of the
complexity of the simplest first-order sentences expressing the problem. For
example, we show in [17] that the polynomial-time properties are exactly the
properties expressible by first-order sentences iterated polynomially many
times:

Fact 1.1 [17]
P = |J Fo(<)[n*)
k=1

The notation FO(<)[n¥] denotes the set of properties describable by a
very uniform sequence of sentences {¢,} such that each sentence ¢, has
length O[n¥] and has a bounded number of variables independent of n.!

'In [17] we used the notation Var&Sz[O[1], n*] instead of FO[n*].

The symbol < is included to emphasize the presence of a total ordering on
the universe of the input structures. In [18] and in [28] it is also shown that
this uniform sequence of formulas can be represented by a least fixed point
operator (LFP) applied to a single formula. Thus,

[e <]
P = FO+LFP = |J FO(<)[n*] .
k=1

(The notation (FO+LFP) is certainly less cumbersome than U2 ; FO(<)[nf].
We don’t make any other use of LFP in this paper. The interested reader
should see [18].)

It is interesting to examine the relationship between the number of vari-
ables needed to describe a problem, and the computational complexity of
the problem. Let FO-VAR][t(n), v] be the restriction of FO[t(n)] to sentences
with at most v distinct variables. Then the following bounds can be derived
from the proof of Fact 1.1 in [17]:

Fact 1.2 [17]
DTIME[n¥] C FO-VAR(S)[n*,k+3] C DTIME[n?*+4|

Thus the DTIME[n*] properties of ordered graphs are roughly? the prop-
erties expressible by first-order sentences with k variables and length n*.

Fact 1.1 gives a natural language expressing exactly the polynomial-time
properties of ordered graphs. Let a graph property be an order independent
property of ordered graphs. One can ask the question,

Question 1.3 Is there a natural language for the polynomial-time graph
properties?

Gurevich has conjectured that the answer to Question 1.3 is, “No,” [13].
An affirmitive answer to this question would imply a similar answer to the
more basic,

Question 1.4 Is there a recursively enumerable listing of all polynomial-
time graph properties?

2Obviously this is very rough. A closer relationship between machine complexity and
first-order expressibility is obtained if one takes into account the built in parallelism of
quantifiers. In [20] it is shown that FO(<)[t(n)] is exactly the set of properties checkable by
a concurrent, parallel random access machine (CRAM) in parallel time ¢(n). Furthermore,
FO-VAR(t(n), v] corresponds to CRAM-TIME][t(n)] using roughly n* processors.

Questions 1.3 and 1.4 are important in various settings. It is well known
that any first-order structure may be interpreted as a graph.® Thus these
questions are equivalent to the corresponding questions concerning relational
databases: i.e. give a database query language for expressing exactly the
polynomial-time queries that are independent of the arbitrary ordering of
tuples, cf. [8]. We believe that the answers to Questions 1.3 and 1.4 are
both, “Yes,” and we ask the more practical,

Question 1.5 What must we add to first-order logic after taking out the
ordering so that Fact 1.1 remains true? Put another way, describe a language
L which ezpresses ezactly the polynomial-time graph properties.

The ordering relation is crucial for simulating computation: a Turing
machine will be given an input graph in some order. It will visit the vertices
of the graph using this ordering; and it is difficult to see how to simulate an
arbitrary computation without reference to this ordering. It is well known
that first-order logic without ordering is not strong enough to express com-
putation. Let EVEN be the set of graphs with an even number of vertices.
We will show in Proposition 4.4 that the property EVEN requires n variables
for graphs with n vertices. (For a property to be expressible in FO+LFP a
necessary condition is that it is expressible in a constant number of variables
independent of n.)

In view of Proposition 4.4, it is natural to add the ability to count to
first-order logic without ordering. This is formalized in Section 5, where we
define the languages Cy of first-order logic restricted to k distinct variables,
plus “counting quantifiers”. We show in Corollary 6.5 that the very simple
language C, suffices to give unique descriptions and thus efficient canonical
forms for almost all graphs.

For a long time we suspected that first-order logic plus least fixed point
and counting was enough to express all polynomial-time graph properties.
It would have immediately followed that for each polynomial-time graph
property @ there would be a fixed k such that for all n, the property Q
restricted to graphs of size n is expressible in Ck. In particular, if our
suspicion were right, then for every set of graphs S admitting a polynomial-
time graph isomorphism algorithm, there would exist a fixed k such that
Cy characterizes S (to be defined later). This implies that for any two
graphs G and H from S, if G and H are Cj equivalent (i.e. G and H
agree on all sentences from C}) then they are isomorphic. For example, the

8We would like to know who this is due to, and where it appears in print.

Figure 1: An Undirected Graph

sets of graphs of bounded color class size (defined below) admit polynomial-
time graph isomorphism algorithms. We show in Proposition 3.3 that the
language C3 characterizes graphs of color class size 3. However, the following
very recent result? shows in a strong way that no Cy characterizes the graphs
of color class size 4. Thus our suspicion was wrong: first-order logic plus
least fixed point and counting does not express all the polynomial-time graph
properties.

~ Fact 1.6 [7][12] There ezists a sequence of pairs of non-isomorphic graphs
{Gn,Hpn} such that Gn and Hy have O[n] vertices, color class size 4, and
admit linear time canonization algorithms. However, G, and H, are C Jn
equivalent.

2 Background, and Definition of Characteriza-
tion

For our purposes, a graph will be defined as a finite first-order structure,
G = (V,E). V is the universe, (the vertices); and E is a binary relation
on V, (the edges). As an example, the undirected graph, Gy = (V1, E),
pictured in Figure 1 has vertex set Vi = {1,2,3,4,5}, and edge relation
E; = {(1,2),(1,3),(2,1),(2,3),...,(5,3),(5,4)} consisting of 12 pairs cor-
responding to the six undirected edges.

The first-order language of graph theory is built up in the usual way
from the variables, z1,z9,..., the relations symbols, E and =, the logical

*After being open for years, this result was shown independently by Immerman and
Cai, and by Fiirer. Fiirer does not mention Ci equivalence, he instead refers to the
equivalent coloring algorithm on k — 1-tuples (cf. Theorem 7.6). The surprising thing
about this coincidence is that Fiirer and Immerman and Cai both described the same
pairs of counterexample graphs!

connectives, A,V,—, —, and the quantifiers, V and 3. The quantifiers range
over the vertices of the graph in question. For example consider the following
first-order sentence:

o =VaVy[E(z,y) — E(y,2) Az #]

@ says that G is undirected and loop free. We will only consider graphs that
satisfy @, in symbols: G = .

It is useful to consider a slightly more general set of structures. The first-
order language of colored graphs consists of the addition of a countable set
of unary relations {C},Cs,...} to the first-order language of graphs. Define
a colored graph to be a graph that interprets these new unary relations so
that all but finitely many of the predicates are false at each vertex. These
unary relations may be thought of as colorings of the vertices. (A vertex
of a colored graph may satisfy zero, one, or several of the color relations.
However, we will say that two vertices are the same color iff they satisfy the
same set of color relations. Thus, by increasing the number of color relations
we may assume that each vertex satisfies a unique color relation.)

Throughout this paper we will be considering various languages for de-
scribing colored graphs. We are interested in knowing when a language
suffices to characterize a particular graph, or class of graphs. Some of the
following definitions and notation are adapted from [23].

Definition 2.1 For a given language £ we say that the graphs G and H
are L-equivalent (G =p H) iff for all sentences p € £,

GEp & HEp.

A partial valuation over a structure A is a partial function u : {z;...} — 4.
The domain of u is denoted du. Call a (k-)configuration over G, H a pair
(u,v) where u is a partial valuation over G and v is a partial valuation over
H such that du = 0v(C {z1,...2¢}). If (u,v) is a k-configuration over G
and H, we say that G,u and H,v are L-equivalent (G,u =p H,v) iff for all
formula ¢ € £, with free variables from =, ..., 7,

GoulEe & HuEop.

Using the concept of L-equivalence, we can now define what it means
for the language L to characterize a set of graphs.

Definition 2.2 We say that £ k-characterizes G iff for all graphs H, and for
all k-configurations (u,v) over G, H, if (u,v) are L-equivalent then there is
an isomorphism from G to H extending the correspondence given by (u,v).
In symbols,

(Gyu=p Hyw) = (3fdvou))(f:GSH).

We say that £ characterizes G iff £ 1-characterizes G, for all colorings G
of G. For a set of graphs S, we say that £ characterizes S iff for all G € S,
L characterizes G.

Proposition 2.3 Let GRAPHS be the set of all finite, colored graphs, and
let FO be the first-order language of colored graphs. Then FO characterizes
GRAPHS.

Proof Let G € GRAPHS have n vertices, and let u be a partial valuation
over G. For simplicity, suppose that du = {z1,...,zk}, and u(z1),...,u(zx)
are all distinct. Let g1,...,9n be a numbering of G’s vertices so that g; =
u(z;), for 1 < ¢ < k. Let r be a subscript greater than that of any color
relation holding in G. It is simple to write a first-order formula, x,, with
n + 1 — k quantifiers that says (a) there exist zx4 ...z, such that the z;’s
are all distinct; (b) any other vertex is equal to one of the z;’s; (c) each pair
(zi,z;) has an edge or not exactly as the edge (g;,9;) occurs or not in Gj
and finally (d) for each x;, ¢ < n, and each Cj, j < r, Cj(z;) holds exactly if
Cj(gi) holds in G. Let H be any graph, and let r be greater than the index
of any color relation holding in H. Let v be any valuation over H such that
H,v satisfies x,. Let v' be an extension of v to a valuation over H with
0v' = {z;...2,}, making the quantifier-free part of x, true. Then clearly
[: gi— v'(z;) is the desired isomorphism. |

Proposition 2.3 leads to an inefficient graph canonization algorithm. In
the next section, we consider languages weaker than full first-order logic, in
order to obtain efficient algorithms.

3 The Language L,

Define Li to be the set of first-order formulas, ¢, such that the quantified
variables in ¢ are a subset of xy,z7,...,2r. Note that variables in first-
order formulas are similar to variables in programs: they can be reused (i.e.

requantified). For example consider the following sentence in L,.
Y = Vz 3z, (E(xl,l'Q) A 3z, [-wE(xl,xg)])

The sentence, 9, says that every vertex is adjacent to some vertex which is
itself not adjacent to every vertex. As an example, the graph from Figure 1
satisfies ¢. Note that the outermost quantifier, Vz;, refers only to the free
occurrence of z; within its scope.

In this section we will consider the question, “Which graphs are charac-
terized by L;?” Define a color class to be the set of vertices which satisfy a
particular color relation. (The set of vertices which satisfy no color relation
is also a color class.) The color class size of a graph is defined to be the
cardinality of the largest color class.

Proposition 3.1 L2 characterizes the colored graphs with color class size
one.

Proof This is clear. In £5 we can assert that each color class is of size
at most one, e.g. Vz;Vay(B(z1) A B(z2) — 1 = z2). We can also say
which edges exist, e.g. the blue vertex is connected to the red vertex. Thus
if graph G has color class size one, and if G,g =p, H,h then there is an
isomorphism f : G — H. Since f preserves colors, f(g) = h. | |

Next we consider the much more powerful language L£3. In this language
we can express the existence of paths.

Proposition 3.2 For any natural number r, the formula P,(z,,z3), mean-
ing that there i3 a path of length at most r from x1 to x2, can be written in

Ls.
Proof By induction. Pi(z1,z2) is E(z1,22) V 21 = z9. Inductively,
Pyyri(z1,22) = 3a3(Ps(21,23) A Pi(23,22))

Note that a maximum of 3 distinct variables is used. |

We will see in Section 4 that there are graphs with color class size 2 that
cannot be distinguished by a sentence in £9. The ability of L3 to talk about
path lengths makes it slightly less trivial:

Proposition 3.3 L3 characterizes graphs of color class size at most three.

Proof Let G and H be colored graphs, let g and h be vertices of G and H,
and suppose that G,g =p, H,h. We will build an isomorphism f:G — H,
such that f(g) = h.

We first refine the colorings of the vertices of G and H to correspond to
L3 types. For A, B € {G, H}, vertices a € A and b € B will have the same
refined color iff they satisfy the same L3 formulas, i.e.

{pels | AR} ={pels| BE¥'}®.

The following lemma says that we may assume that the color types of G
and H are already refined.

Lemma 3.4 Let the finite, colored graphs G and H be L equivalent and
let G' and H' be the Ly color refinements of G and H. Then G' and H' are
Lk equivalent.

Proof Since G and H are finite, each refined color class C} is determined
by the conjunction 1; € L of a finite set of formulas. That is for all 7, G’
and H' both satisfy

Vz1(Ci(21) < i) -

Note that 9; has z; as its free variable. Thus any occurrence of C}(x;) may
be replaced by the equivalent 1;. Similarly any occurrence of Ci(z;),7 =
2,...,k may be replaced by 1/::" where 7; is a permutation of {z1,..., 2%}
sending z; to z;. Now for any formula o € L3(C1,C3,...) we may re-
place each occurrence of C}(z;) by ¢:-rj to obtain an equivalent formula
o e £3(Cl,...Cr). [|

By the above lemma we may assume that the color classes of G and
H correspond exactly to the L3 types of the vertices. Let R and B be two
colors and consider the edges between red and blue vertices in G or H. Note
that this is a regular bipartite graph because we can express in L3 that a
red vertex has 0, 1,2, or all blue vertices as neighbors. Note also that for
color classes of size at most 3, the only regular bipartite graphs representing
nontrivial relationships between vertices are the 1:1 correspondence graphs
and their complements. Let us then change such bipartite graphs as follows:
replace the complete bipartite graph by its complement, and replace the
graphs of degree two whose complements are 1:1 correspondence graphs by
these complements. Note that when we perform these changes on G and H

5The notation af denotes the formula a with the term ¢ substituted for the variable z.

the new graphs are still £3 equivalent, and they are isomorphic now iff they
were before.

Thus we have reduced the problem to constructing an isomorphism be-
tween G and H when these graphs have color valence one. We construct the
isomorphism f as follows: Begin by letting f(g) = h. Next, while there is
a vertex g; in the domain of f with a (unique) neighbor go of color C; not
yet in the domain of f, do the following. Let hy be the neighbor of f(g;) of
color C;, and let f(g2) = hs.

We claim that the function f constructed above is an isomorphism from
G to H. If not, then it must be the case that there is a loop of a certain color
sequence in one of the graphs but not the other. For example, suppose that
we chose ¢1,92,...,9; and hy,hy,...,h; so that g; and h are color Cy, and
for ¢ < 7, gi+1 and h;4 are the unique neighbors of g; and h;, respectively,
of color Cy4;. However, suppose now that the neighbor of h; of color C is
hi, but that g; is not a neighbor of g;. In this case there is a certain easily
describable loop in H but not in G. That means that G and H disagree on
the following L3 formula:

(C'l(a:l) A 3:1:2(02(1‘2) A E(:L‘l,:tg) AN 33:3(03(:1:3) A E(xz, :1:3) A

A Fep(Cale2) A B(zs,22) A .. A3mi(Cj(ai) A E(ziy31))...))

Since G =, H they must agree on the above formula. Therefore f is an
isomorphism as claimed. |

In the next section we describe some games that may be used to prove
lower bounds on the expressibility of the £;’s. We will show as an example
using these games that L5 does not suffice to characterize graphs of color
class size 2. Very recently it has been shown (cf. Fact 1.6) that no fixed £;
suffices to characterize the graphs of color class size 4.

4 Lower Bounds

In this section we will show that L is not expressive enough to characterize
graphs efficiently. We will use the combinatorial games of Ehrenfeucht and
Fraisse, ([9,11]), as modified for L, (see [17,6,26]). All of the results in this
section could be proved by induction on the complexity of the sentences in
question; but, we find that the games offer more intuitive arguments.

Let G and H be two graphs, and let k be a natural number. Define the
Ly game on G and H as follows. There are two players, and there are k

10

Figure 2: The £, Game

pairs of pebbles, g1,h1,...,gk, hx. On each move, Player I picks up any of
the pebbles and he places it on a vertex of one of the graphs. (Say he picks
up g;. He must then place it on a vertex from G.) Player II then picks up
the corresponding pebble, (If Player I chose g; then she must choose h;),
and places it on a vertex of the appropriate graph, (H in this case).

Let pi(r) be the vertex on which pebble p; is sitting just after move r.
Then we say Player I wins the game at move r if the map that takes g;(r) to
hi(r),i=1,...,k, is not an isomorphism of the induced k vertex subgraphs.
Note that if the graphs are colored then an isomorphism must preserve color
as well as edges. Thus Player II has a winning strategy for the £; game just
if she can always find matching points to preserve the isomorphism. Player
I is trying to point out a difference between the two graphs and Player II is
trying to keep them looking the same.

As an example consider the £2 game on the graphs G and H shown in
Figure 2.

Suppose that Player I's first move is to place g; on a red vertex in G.
Player II may answer by putting h; on either of the red vertices in H.
Now suppose Player I puts hy on an adjacent yellow vertex in H. Player
IT has a response because in G, g;(1) also has an adjacent yellow vertex.
The reader should convince himself or herself that in fact Player II has a
winning strategy for the £, game on the given G and H. The relevant
theorem concerning the relationship between this game and the matter at
hand is:

Fact 4.1 [17, Theorem C.1] Let (u,v) be a k-configuration over G, H. Player
IT has a winning strategy for the Ly game on (u,v) if and only if G,u =p,
H,v.

11

Note that we have the following
Corollary 4.2 L; does not characterize graphs of color class size 2.

We will prove in Section 7 that testing whether G =p, H can be done
in time O[n" log n]. Furthermore, if £; characterizes a set S of graphs, then
canonical forms for the graphs in S may be computed in this same time
bound.

It is interesting to note that not only does no L characterize all graphs,
but almost all graphs are indistinguishable in £;. Thus if two graphs of size
n > k are chosen at random they will almost certainly be L£; equivalent,
but not isomorphic.

Fact 4.3 [17),c¢f [10] Fiz k and let Pr,(G =p, H) be the probability that
two randomly chosen graphs of size n are Ly equivalent. Then

”13130 [Pra(G =, B)] =1

Not only does Li not characterize most graphs, it is not strong enough
to express counting:

Proposition 4.4 Let EVEN be the set of graphs with an even number of
vertices. This property is not expressible in L,, for graphs with n or more ver-
tices. Furthermore, L, does not characterize the set of totally disconnected
graph on n vertices.

Proof Let D, be the uncolored graph with n vertices and no edges. We
claim that D, =p, Dp41. The following is a winning strategy for Player
IT in the n-pebble game on D, and D,4;. Player I's moves are answered
preserving distinctness. That is, if Player I places pebble ¢ on a vertex
already occupied by pebble j, then Player II does the same. If Player I
places pebble ¢ on a vertex not occupied by any other pebbles, then Player
IT does the same. This is possible, because there are n vertices, and only
n — 1 other pebbles. Since there are no edges, the resulting maps are always
isomorphisms. |

In the next section we increase the expressive power of the L;’s by adding
the ability to count.

12

5 Counting Quantifiers

In this section we add counting quantifiers to the languages Li, thus ob-
taining the new languages Ci;. For each positive integer, ¢, we include the
quantifier, (3¢ z). The meaning of “(317 z1)p(z1)”, for example, is that
there exist at least 17 vertices such that . We will sometimes also use the
quantifiers, (3'% z), meaning that there exists exactly 7 z’s:

(Fiz)p(z) = (Fz)e(z) A =(F+ 12)p(z)

Example 5.1 As our first example, note that the following sentence in Co
characterizes the graph D,, of Proposition 4.4:

(A z)(z = 2) A (V2)(Vy)(~E(z,9)) -

Note that every sentence in Cj is equivalent to an ordinary first-order
sentence with perhaps many more variables and quantifiers. We will see
that testing Cy equivalence is no harder than testing £ equivalence — the
idea is that to test the truth of Vz or 3z we have to consider all possible
z’s anyway, and it doesn’t cost more to count them. In Corollary 7.7 we
show that Cy equivalence can be tested in time O[n* logn]. Similarly, graphs
characterized by Cg can be given canonical labelings in the same time.

The following notation is useful.

Definition 5.2 Let £ be a set of finite graphs. Define var(Z,n) (resp.
ve(Z,n)) to be the minimum k such that L (resp. Ci) characterizes the
graphs in ¥ with at most n vertices. Let var(n) = var(GRAPHS,n) and
ve(n) = ve(GRAPHS,n). When var(Z,n) or ve(X, n) is bounded, we write
var(X) = maz,var(Z,n), and ve(Z) = maz,vc(T,n).

For example, by combining various results obtained so far we know that
var(GRAPHS, n) = n + 1, var(CC1) = 2, and var(CC2) = var(CC3) = 3.
Here we are letting CCk be the set of color class k graphs.

We will now examine Cj, attempting to compute vc(S) for various sets
of graphs, S. A modification of the £; game provides a combinatorial tool
for analyzing the expressive power of C;. Given a pair of graphs define the
Ci game on G and H as follows: Just like the £; game we have two players
and k pairs of pebbles. Now however each move has two steps.

1. Player I picks up a pebble (say g;). He then chooses a set, A4, of vertices
from one of the graphs, (in this case G). Now Player II must answer
with a set, B, of vertices from the other graph. B must have the same
cardinality as A.

13

2. Player I places h; on some vertex b € B. Player II answers by placing
g; on some a € A.

The definition for winning is as before. Note that what is going on in the
two step move is that Player I is asserting that there exist |A| vertices in G
with a certain property. Player II answers that there are the same number
of such vertices in H. A straight forward extension of the proof of Fact 3.1
shows that this game does indeed capture expressibility in Cy.

Theorem 5.3 Let (u,v) be a k-configuration over G,H. Player II has a
winning strategy for the Cr game on (u,v) if and only if G,u =¢, H,v.

Consider the following example of the C; game.

Proposition 5.4 Player II has a win for the Co game on the graphs pictured
in Figure 2. Thus v¢(CC2) > 2.

Proof Player II’s winning strategy is as follows: She matches the first
vertex chosen by Player I with any vertex of the same color. Now suppose
that at any point in the game, the first pair of pebbles are placed on vertices
g1 and hj, both vertices of the same color, say red. Suppose that Player I’s
next move involves the other pair of pebbles. There is a 1:1 correspondence
between the vertices in G and H as follows:

hy

the blue vertex adjacent to h;

the yellow vertex adjacent to h;

the red vertex not adjacent to h;
the yellow vertex not adjacent to hg
the blue vertex not adjacent to hy

g1

the blue vertex adjacent to g;

the yellow vertex adjacent to g;

the red vertex not adjacent to g;
the yellow vertex not adjacent to g;
the blue vertex not adjacent to g;

L A A A

If Player I chooses a set A, then Player II chooses the set B to be the
corresponding set of vertices under the above map. Whichever vertex Player
I then picks from B, Player II will choose the corresponding vertex in A.
Thus the chosen pair of vertices will be the same color and either both
adjacent, or both not adjacent to the other chosen pair. Thus Player II can
always preserve the partial isomorphism. |

14

6 Vertex Refinement Corresponds to C,

It turns out that the expressive power of Cy is characterized by the well
known method of vertex refinement (see [2,15]). Let G = (V,E,Cy,...,C;)
be a colored graph in which every vertex statisfies exactly one color relation.
Let f:V — {1...n} be given by f(v) =1 iff v € C;. We then define f', the
refinement of f as follows: The new color of each vertex, v, is defined to be
the following tuple:

(f(v)’nlv-',nr}

where n; is the number of vertices of color ¢ that v is adjacent to. We
sort these new colors lexicographically and assign f/(v) to be the number
of the new color class which v inhabits. Thus two vertices are in the same
new color class just if they were in the same old color class, and they were
adjacent to the same number of vertices of each color. We keep refining the
coloring until at some level f¥) = f(k+1) We let f = f(¥) and call f the
stable refinement of f.

The equivalence of stable colorings and C2 equivalence is summed up by
the following

Theorem 6.1 Given a colored graph, G = (V,E,Cy,...,C,), with two ver-
tices, g1 and g, the following are equivalent:

1. f(g1) = flg2)
2. For all p(z1) € C2, G | p(91) iff G = ©(92)-

8. Player II wins the Co game on two copies of G, with pebble pair number
1 initially placed on gy and gy respectively.

Proof By induction on r we show that the following are equivalent:
1. f0)(g1) = F)(g2)
2. For all p(z1) € Cq of quantifier depth r, G |= p(g1) iff G = ©(g2).

3. Player II wins the r move C; game on two copies of G, with pebble
pair number 1 initially placed on g; and g, respectively.

The base case is by definition. f(0)(g;) = f(g1) = f(g2) iff g1 and g2
satsify the same initial color predicate. This is true if and only if g; and
g2 satisfy all the same quantifier free formulas. This in turn is true if and

15

only if the map sending g; to g; is a partial isomorphism. This last is the
definition of Player II winning the 0 move game.
Assume that the equivalence holds for all g; and g2 and for all r < m.

(-1 = -2) : Suppose that f(™)(g;) # f(™)(gy). There are two cases.
If f(m=1(g;) # f(m=1)(g,y) then by the inductive assumption there is a
quantifier depth m — 1 formula ¢ € €5 on which ¢g; and g, differ. Otherwise
it must be that g; and go have a different number of neighbors of some
f£0m=1) color class i. Let N be the maximum of these two numbers. By
induction two vertices are in the same f(™=1) color class iff they agree on all
quantifier depth m — 1 C2 formulas. Since quantifier depth m — 1 formulas
are closed under conjunction and the graphs in question are finite there is a
depth m — 1 9; € Co such that for all g € G,

gy =i & Gk ()5

It follows that g; and g, differ on the formula:
(SN.’EQ)(E(:El, :1:2) A @b,z;) .

(=2 = -3) : Suppose that G | ©}! but G = ~pf!, for some ¢ € Cy
of quantifier depth m. If ¢ is a conjunction then g; and g must differ
on at least one of the conjuncts, so we may assume that ¢ is of the form
(INz2)4(x2). On the first move of the game Player I chooses the N vertices
v such that ¢(v)5!. Whatever Player II chooses as B there will be at least
one vertex vy such that G |= —¢)(vz)7!. Player I puts his pebble number 2
on this vy. Player II must respond with some v; € A. The vertices vy, v9
now differ on a quantifier depth m — 1 formula. Thus by induction Player
II loses the remaining m — 1 move game.

(1= 3) : Suppose that f(™)(g;) = f(m) $g2). It follows that g; and g, have
the same number of neighbors of each f(™=1) color. Thus a 1:1 correspon-
dence exists between the vertices in the first copy of G and those in the
second preserving both the property of being adjacent to g; and the f(m-1)
color. (Note that since we are considering two copies of the same graph, if
both copies have the same number of red neighbors of g; then they also both
have the same number of red non-neighbors of g;.) It follows that Player II
can assure that after the first move the pair of vertices chosen will be in the
same f(m=1) color class. Thus by the induction hypothesis Player II has a
win for the remaining m — 1 move game. | |

16

follows that Co equivalent graphs will result in the same canonical labeling.
Furthermore, the analysis of the revised algorithm is unchanged. |

We will next present the algorithm to test Cr41 equivalence for k > 2.
Define stable colorings of k tuples as follows: Initially we give each k tuple of
vertices from G a color according to it’s isomorphism type. That is (g1 . .. gk)
has the same initial color as (h;...hy), just if the map a : g; — hy, @ =
1...k is an isomorphism.

We next form the new color of {(g; ...gx) as the tuple:

(01--08), SORT{ 10,2+, 98), S 1,0,805-+,98)s -, S ans- 901,90 |9 € 6})

That is the new color of a k-tuple is formed from the old color, as well as
from considering, for each vertex g, the old color of the k k-tuples resulting
from the substitution of g into each possible place.

Theorem 7.5 A stable coloring of k tuples in an n vertez graph may be
computed in O[k?n**+! logn] steps.

Proof This is a generalization of Algorithm 7.1. We must refine the
coloring for each color class, B;, of k-tuples. Each such refinement takes -
Olkn] steps for each k-tuple in B;. Each of the n* k-tuples will have its
color class treated at most log(n*) times. |

Theorfm 7.6 Let G be a graph whose k — 1 tuples of vertices are colored.
Let §,h € G¥1. The following are equivalent.

1. J@ = F(R)
2. For all p(z1...74-1) € Ck, GE () if G o(R)

8. Player II wins the Cy game on two copies of G with pebbles 1...k —1
initially placed on gy ...gg—1 and hy...hg—; respectively.

Proof The proof is similar to that of Theorem 6.1. |

Corollary 7.7 Cy equivalence may be tested in O[n¥logn| steps. (If k 1is
allowed to vary with n this becomes O[k?n* logn].) Similarly, if S is char-
acterized by Cy, then canonical labelings for S may be computed in the same
time bound.

19

[21] Neil Immerman, “Expressibility as a Complexity Measure: Results and
Directions,” Second Structure in Complezity Theory Conf. (1987), 194-
202.

[22] N. Immerman, “Descriptive and Computational Complexity,” to ap-
pear in Proc. AMS Short Course in Computational Complezity Theory
(1988).

[23] Neil Immerman and Dexter Kozen, “Definablitity with Bounded Num-
ber of Bound Variables,” Second LICS Symp. (1987).

[24] Ludék Ku&era, “Canonical Labeling of Regular Graphs in Linear Av-
erage Time,” 28th IEEE FOCS Symp. (1987), 271-279.

[25] Eugene M. Luks, “Isomorphism of Graphs of Bounded Valence Can be
Tested in Polynomial Time,” JCSS 25 (1982), pp. 42-65.

[26] B. Poizat, “Deux ou trois chose que je sais de Ln,” JSL 47 (1982), pp.
641-658.

[27] Simon Thomas, “Theories With Finitely Many Models,” J. Symbolic
Logic, 51, No. 2 (1986), 374-376.

[28] M. Vardi, “Complexity of Relational Query Languages,” 14th Sympo-
sium on Theory of Computation, 1982, (137-146).

22

