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Abstract

In a recent paper [17], the denotational semantics for the language
Prolog was presented. The aim was to define precisely the language
which had only been described informally.

This paper goes further in this direction by describing how the de-
notational semantics of Prolog can be used to interpret and to compile
Prolog programs, as well as to automatically generate a compiler for the
language. Our approach is based on partial evaluation. Compilation
is achieved by specializing the Prolog definition. The compiler is ob-
tained by self-application of the partial evaluator. It is well-structured
and the speed of the compiled code has been found to be about six
times faster than interpretation.

Our approach improves on previous work [14, 9, 22] in that: (i) it
enables compiler generation and consequently speeds up the compila-
tion process, and (ii) it goes beyond the usual mapping from syntax to
denotations by processing the static semantics of the language defini-
tion.

1 Introduction

The denotational semantics for the language Prolog was recently presented
in [17]. The aim was to formalize the core of Prolog. Beyond the theoretical
interest, it has long been argued that denotational definitions can be used
to derive interpreters or compilers [19, 22, 16]. This approach is attractive
because it closely relates the formal specification and its implementation.

This paper describes how the denotational semantics of Prolog can be used
to interpret and to compile Prolog programs. Furthermore, it is shown how
a compiler for the language can be automatically generated.

Our approach can be decomposed as follows. The semantic equations
of Prolog are coded in a functional programming language: a side-effect




free dialect of Scheme [18]. The result can be viewed as an interpreter and
consequently be executed by a Scheme processor.

Then, compilation is achieved, using partial evaluation [1], by specializ-
ing the interpreter with respect to a program. Because partial evaluation
is semantic preserving [13], the target code has the same behaviour as the
interpretation of the original program. Moreover, since a partial evaluator
is a static semantic processor [19], compile-time actions are executed, and
the result solely represents dynamic operations as shown in [14]. A source
program and the corresponding compiled code are displayed in appendix A.

Although the compiled code has been found to run about six times faster
than the interpreted code, the compilation phase might be slow [14]. How-
ever, our experiment is based on Schism [3, 4], a self-applicable partial eval-
uator for a side-effect free dialect of Scheme. As such, Schism can generate
compilers; this is done by specializing the partial evaluator with respect to
an interpreter [13]. As a result, the compilation phase is about twelve times
faster than specialization of the interpreter.

An important component of our system is a preliminary phase called
binding time analysis. This phase automatically splits the definition of a
language into two parts: the static semantics (the usual compile-time ac-
tions) and the dynamic semantics. This considerably facilitates the partial
evaluation phase and is crucial for self-application [13].

Mix [12] was the first partial evaluator able to generate compilers as well
as a compiler generator. It partially evaluates first order recursive equa-
tions. Schism handles both higher order functions and data structures [5].
As a result, it extends the class of applications that can be tackled by self-
applicable partial evaluator. In particular, continuation semantics, which is
essential in defining the language Prolog, can be handled.

The paper is organized as follows. Section 2 introduces partial evaluation,
presents Schism and lists the related work. Section 3 discusses the language
Prolog by first briefly presenting its denotational definition, and then by
describing its representation in Schism. Section 4 discusses the partial eval-
uation aspects of the specification. The paper concludes with an assessment
in section 5.

2 Partial Evaluation

2.1 Background

Partial evaluation aims at specializing a program with respect to some of
its input. The partial evaluation phase can be seen as a staging of the
computations of the program: expressions that only operate on available
data are executed during this phase; for the others, a residual expression
is generated. This staging improves the execution time of the specialized
program compared to the original program.




Using binding time analysis, these early computations can be identified
independently of the actual values of the input. Semantically speaking, bind-
ing time analysis determines the static and the dynamic semantics of a given
program. This division greatly simplifies the partial evaluation process. In-
deed, to process the static semantics, the partial evaluator simply follows the
binding time information to reduce sub-expressions of the program. This
simplification of the partial evaluation process is crucial to self-application
[13]. Self-application is achieved by specializing the partial evaluator with
respect to an interpreter and yields a compiler. A compiler generator can
be obtained by specializing the partial evaluator with respect to itself. Be-
yond the unusual aspects of these applications, they are of practical interest:
compilation and generation of compilers are improved. Indeed, compilation
using a generated compiler is about twelve times faster than compilation
by specialization of an interpreter with respect to a program. A compara-
ble speed-up is obtained for the generation of a compiler by applying the
compiler generator to an interpreter rather than by specializing the partial
evaluator with respect to an interpreter.

2.2 Schism

Schism is a partial evaluator for a side-effect free dialect of Scheme [3, 4].
The source programs are written in pure Scheme: a weakly typed, applica-
tive order implementation of lambda-calculus. Schism handles higher order
functions as well as the data structures manipulated by the source programs,
even when they are only partially known. Schism is written in pure Scheme
and is self-applicable. As such, it can generate a compiler out of the inter-
pretive specification of a programming language.

The system is structured in three parts: one determining the static se-
mantics of the program [5] (the binding time analysis); one specifying how
to specialize the program [8]; one specializing the program.

It is the second phase which determines for each expression which partial
evaluation action (i.e., program transformation) will be performed during
the specialization. As discussed in [8], actions can be inferred from the bind-
ing time information. These actions are the usual program transformations!
[4] extended to handle higher order functions and operations on partially
static data (i.e., structured data consisting in static and dynamic parts).

2.3 Related Work

Partial evaluation of Prolog was taken up in [15]. Since then, several par-
tial evaluators of Prolog have been developed, but mostly written in Prolog
(e.g., [10, 11, 21]). In [11] and [10] self-application of Prolog is addressed.
The former discusses the problem of self-application and proposes some so-
lutions. The latter describes an implementation which is said to be small

!We will include an overview of the partial evaluation actions of Schism in the final
version of this paper.




and minimal in functionality; the results obtained are limited. None of them
address the binding time analysis of Prolog.

Kahn and Carlsson describe in [14] a partial evaluator that partially evalu-
ates a Prolog interpreter, written in Lisp, with respect to a Prolog program,
yielding an equivalent Lisp program. This program is then compiled into
machine language using an existing Lisp compiler. The resulting programs
are said to be efficient, however, the compilation phase appeared to be slow.
They suggested that self-application could solve the problem but did not
explore this issue.

Felleisen presents in [9] an implementation of Prolog in Scheme based on
macro-expansion. Prologentities are transliterated into corresponding Scheme
constructs on a one-to-one basis. The efficiency of the code produced de-
pends highly on how each Prolog entity is being transliterated. The approach
does not address compile-time processing (no static reductions).

3 Specification of Prolog

This section first gives an overview of the denotational semantics of Prolog
as described in [17]. Then, its representation for Schism is described.

3.1 Denotational Semantics

The denotational definition of the language consists of three parts: the ab-
stract syntax, the semantics domains and the valuation functions.

3.1.1 Abstract Syntax

The abstract syntax of Prolog, described in figure 1, is due to Clocksin and
Mellish [2]. Note that, as in [17], to respect the denotational approach, con-
structs which modify programs are not considered. The primitive syntactic
domains are the domains of identifier symbols, constant symbols, and func-
tion or predicate symbols. These are called atoms, and are used to build
goal sets, clauses, and complete programs. A clause can either be a fact or a
rule. The latter consists of two components, a conclusion and a set of atoms
called premises.

3.1.2 Semantic Domains

This section briefly presents the semantic domains used in the denotational
semantics of the language. The semantic domains are displayed in figure 2.

There are three types of terms that may appear in Prolog: the variables,
the constants, and the functions. A function is made up of a function symbol
and a list of terms that form the arguments to the function.




I € Ide Identifiers

B € Con Constants symbols

F € Fun Function/Predicate symbols
G € Goals Goal lists

P ¢ Pred Predicates and terms

A € Arg Argument lists

C € Clause Clause

D € Database Databases

S € Prog Sentences (or Programs)’

Q € Input Queries

S == Q@,D

Q == .-G

D = C s D1

C u= P|P:-G

G == PG

P == I|B|F(A)

A = PA|P

Figure 1: Syntactic Domains and Syntactic Rules

The domain Env is a finite mapping from identifiers (Ide), to variables
(Var). The function

newvar = Subs — Var

generates unique variables. Those Variables can be seen as locations. The
domain Subs maps variables to terms. The domain of final answers is ¢ €
Res.

The crucial aspect of the semantics of Prolog is the control. Tradition-
ally, it can be modeled by a semantic argument called continuation. As
described in [19], a backtracking facility can be integrated into a language
by using a failure continuation. The continuation representing the usual
evaluation sequence is called the success continuation. These two continua-
tions capture the main aspects of the control of the denotational definition.
The continuation functions are displayed in figure 2.

3.1.3 Valuation Functions

The meaning of a program is given by the functions defined in figure 3.
Functions C and D are responsible for the declaration of facts and rules,
and for setting up the database. Function G processes queries and premises.
Function S specifies the semantics of a program. Functions P and A as-
sign new locations for identifiers in the current clause. Unify defines the
unification process.




Compound Domains

T€Tv = Var+4Con+ [Funx Av] Terms
r€eAv = Tv* Argument lists
pEEnv = Ide— Var Identifier environments
6 € Subs = Var — [Tv+ uninstantiated] Substitutions
Continuation Functions
Y €Qc = Subs — State Substitution continuation
(€EEc = Env— Qc Continuation with Environment
vE€Te = Tv— Env—Qc Terms
w€Ac = Av — Env— Qc Argument lists
kK€ Kc = Res— Qc Continuation with failure
Yy€Gec = Env— Res — Qc Goal list
6€eDb = Tv— Kc— Kc Database

Figure 2: Semantic Domains

S : Prog — Input — Res
S[D][: —-Q.] = G[QI(DP[D]) printall (Ac.unbound) <> (Av.unused)
D:Clause > Tv— K¢ — Kc
D[D] = fizedpoint(C[D])
C:Clause - Db — Tv — Kc — Res — Subs — Res
C[[Cl, Cz]l(sTK,(ﬁo = C,[CI]IQSTK(C][CQII6TK¢0)0
C[P.] = P[P](Ar1p. unify rmi(ke))(At.unbound)
C[P: —G] = P[P](Ar1p1. unify 11 (G[G16(Ap2.)p10)9)(At.unbound)
G : Goals — Db — Gec — Env — Res — Qc
G[P1évp¢ = P[P)(ATp1.67(7p1)$)p
G[G1, G2]b7 = G[G1]6(S[G]67)
P:Pred - Tc— Ec
PlIlvp = pI = unbound — newvar(Ar.vrp[r/I]),v(pI)p
PIF(A)]v = A[A]X¢.v < F,{ >
A:Arg — Ac — Env — Qc
A[Pw = P[PJArw< T >
A[P, A]w = P[P T A[A]N .w(T.)
Unify : Tv — Tv — Kc — Res — Subs — Res

Figure 3: Valuation Functions




Figure 4: The Call Graph of the Valuation Functions

We defer the description of function unify to section 4.2. Figure 4 gives
a general idea of the call graph of the valuation functions. Note that for
convenience, functions P and A appear twice in this figure. Indeed, they
first manipulate goals (upper part of the diagram) and then clauses (lower
part).

3.2 Interpreter

This section presents the Schism representation for the language as described
above. To ease the coding of the denotational definition, our system provides
constructs that define and manipulate types; they are simplified versions
of ML constructs. The construct defineType defines a product or a sum
depending on whether it contains one clause or more. The constructs let
and let* create new bindings, as in Scheme, but in addition may perform
destructuring operations on elements of products. The construct caseType
is a conditional on the injection tag of the element of a sum and allows the
destructuring of this element.

Except for a few technical details, this interpreter is a direct coding
in Scheme of the valuation functions presented above. As a result, the
implementation is precise and easy to reason about.

3.2.1 Abstract Syntax

The abstract syntax of the language is defined by declaring the appropriate
data types. As shown in figure 5, these declarations are direct coding of the
abstract syntax presented in the denotational semantics.




(defineType Atom
(Constant value)
(Identifier name)
(Predicate function arguments))

(defineType Clause
(Fact atom)
(Rule conclusion premises))

Figure 5: Abstract Syntax

(defineType Term
(Const value)
(Var name ref)
(Pred function arguments))

Figure 6: Denotable Values

3.2.2 Data Structures of the Interpreter

The data type corresponding to the domain of denotable values is defined
in figure 6.

There is a data structure called state, which captures the dynamic as-
pects of the specification. This consists of the accumulation of results ob-
tained from executing a Prolog program and some mechanism that provides
a new variable when a local identifier is defined.

3.2.3 Interpretation Functions

The interpretation functions, corresponding to the valuation functions, are
shown in figures 7 and 8.

The construct filter, contained in some definitions, is a directive to
the partial evaluator. It specifies how to treat a call to the function, i.e.,
unfolding (UNFOLD) or specialization (SPECIALIZE). This construct addresses
the issue of the termination of the partial evaluation process; it is discussed
in section 4.3.

4 The Interpreter from a Partial Evaluation Point
of View

The Prolog interpreter (with main function S) receives two input: the first is
the Prolog program, called the database; the second input is the query. The




(define (S database queries)
(State-result

(G queries database

(lambda (env =1 subs) (update-state-result s1 (Q:inst env subs)))
(lambda (s1) s1)

(init-env) (init-state) (init-subs))))

(define (G goals database gc fc env stt subs)

(filter SPECIALIZE (list goals database gc fc env stt subs))
(cond

((null? goals) (gc env stt subs))
(else

(P (car goals)
(lambda (goal e sti1)
(D goal database database
(lambda (envi st2 subsi)

(G (cdr goals) database gc fc e st2 subsl))
fc env sti subs))
env stt))))

(define (D t clauses database gc fc env stt subs)

(filter SPECIALIZE (list t clauses database gc fc env stt subs))
(if (null? clauses) (fc stt)

(C (car clauses) database t
(lambda (goals e st1 subsi)
(D t (cdr clauses) database gc fc env

(G goals database gc fc e stl subsl) subs))
(lambda (envi st1 subsi)

(D t (cdr clauses) database gc fc env (gc envl stl subsl) subs))
(lambda (st1)

(D t (cdr clauses) database gc fc env stl subs))
env stt subs)))

(define (C clause db t pc gc fc env stt subs)
(caseType clause

([Fact term]

(P term

(lambda (tv e st1)

(D-unify tv t (lambda (r) (gc e st1 r))

(lambda (r) (fc st1)) subs))
(init-env) stt))

([Rule conclusion premises]
(P conclusion
(lambda (tv e st1)

(D-unify tv t (lambda (r) (pc premises e st1 r))

(lambda (r) (fc st1)) subs))
(init-env) stt)) ))

Figure 7: Interpretation Functions




(define (P t tc env stt)
(filter (if (static? t) UNFOLD SPECIALIZE) (list DYN DYN DYN DYN))
(caseType t
([Constant number] (tc (Const number) env stt))
([Identifier name]
(let ([varlist (associate name env)])
(if (null? varlist)
(let* ([(list vO st1) (New-var name stt)]
[v (Var name v0)])
(tc v (cone (cons name v) env) stil))
(tc (cdr varlist) env stt))))
([Predicate fn args]
(A args (lambda (arglis e st1) (tc (Pred fn arglis) e st1)) env stt))))

(define (A args w env stt)
(filter (if (static? args) UNFOLD SPECIALIZE) (1ist DYN DYN DYN DYN))
(if (null? args)
(w ’() env stt)
(P (car args)
(lambda (t el sti)

(A (cdr args)
(lambda (arglis e st2) (v (cons t arglis) e st2)) el sti))
env stt)))

Figure 8: Interpretation Functions (continued)

first input is known at partial evaluation-time, i.e., static, and the second is
not known until run-time, i.e., dynamic.

S : Prog — Input — Res

During partial evaluation, the interpreter is specialized with respect to
a Prolog program. The resulting residual program (with specialized main
function Sprog) accepts an input query and yields a result.

SpProg : Input — Res

4.1 Multiple Binding Time Signatures

To explain how the static and the dynamic semantics of the interpreter are
determined, we first need to introduce the notion of binding time signature.
The binding time analysis determines a binding time signature for each func-
tion of a program. The binding time signature specifies the binding time
value of each parameter of a function and the binding time value of a result.
For clarity, we simplify the binding time signatures presented in this paper.
The symbols used to represent a binding time signature are St, Dy, Cl and
Ps; they denote respectively the binding time value static, dynamic, closures
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(G goals database gc fc env state subs)
G:Dyx StxClxClx Dyx Dyx Dy — Dy
St x Stx Clx Cl x Ps x Dy x Dy — Dy
(D t clauses database gc fc env state subs)
D: Dyx Stx Stx Clx Clx Dy x Dy x Dy — Dy
Psx St x St x Cl x Cl x Ps x Dy x Dy — Dy
(C clause db t pc gc fc env state subs)
C:S5txStx Dyx ClxClx Clx Dyx Dy x Dy — Dy
St x St X Ps x Cl x Cl x Cl x Ps x Dy x Dy — Dy
(P t tc env state)
P: DyxClx Dyx Dy — Dy
St x Cl x Ps x Dy — Dy
(A args w env state)
A: DyxClx Dyx Dy — Dy
St x Cl x Ps x Dy — Dy

Figure 9: Binding Time Signatures for the Functions

and partially static data. The binding time value of a result of a function is
assumed to be dynamic.

Initially, the main function S calls function G with the program, which
is static, and the input query, which is dynamic. Then, to satisfy subgoals
function G is called recursively, but with static goals, i.e., the premises (see
the definition of function D in figure 7). Therefore, function G and the inner
functions are first in a context of a dynamic query, and then, in a context
of a static query.

This is illustrated in figure 9 where the binding time signatures of the
interpretation functions are displayed. The functions have two binding time
signatures to reflect the fact that they are called in two different binding
time contexts.

Note, that partially static data arises because of terms consisting of static
and dynamic parts in the environment which, in some context, binds static
identifiers to dynamic variables.

Since each function has two different binding time signatures, if a binding
time analysis maps each function to only one binding time signature, it will
have to “fold” these two binding time signatures into one. As a result, the
binding time information will be less precise and consequently there will be
less static processing during partial evaluation.

To avoid this situation, we duplicate the original set of interpretation
functions: one set of functions deals with the initial query (dynamic), the
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S-A<> 5P Sl-C
D-Unify S-A+> 1"’
U i ) S-Unify—> Unifyl
nifyl—

D-Unify

Figure 10: The Call Graph of the Interpretation Functions

other manipulates the premises (static). To distinguish these functions, we
prefix a function by “D-” if it belongs to the first set, and by “S-” if it
belongs to the second set. Figure 10 shows the call graph of the resulting
program. Because each function of this program is now called with only one
pattern of binding time values, the binding time analysis will not do any
“folding” and consequently more static computations will be detected.
Another way to handle multiple binding time signatures is to enhance
the binding time analysis so that it determines multiple binding time sig-
natures for each function; such binding time analysis is called polyvariant.
A polyvariant binding time analysis for a first-order functional language is
presented in [4] and its extension to higher order functions is discussed in

[6].

4.2 Unify

Unification of two terms involves comparing these two terms and perform-
ing the instantiation of variables to terms when needed. The result of the
instantiation of a variable to a term is stored in the substitution list. The
unification process is defined by two functions (unify and unify1). This
allows the partial evaluator to use the static parts of the unified terms when
the interpreter manipulates the premises. Appendix B displays the code for
unification.

12




4.3 Termination of Partial Evaluation

Partial evaluating function calls has two common pitfalls: infinite call un-
folding and infinite function specialization [13, 4]. Although one can in-
troduce an automatic phase to annotate a program as to what to do for
each function call, these annotations may lower the quality of the residual
programs and can sometimes cause non-termination [20].

In this experiment, functions have been annotated manually as follows.
As shown by figure 10, infinite call unfolding may occur for calls to recursive
functions G, D and unify1. Therefore we instruct the partial evaluator to
create specialized versions of these functions. Furthermore, infinite special-
ization can occur when the success continuation for G (gc) is propagated into
the function body. This is avoided by preventing gc from being propagated.

5 Assessment

In this section we discuss what has been achieved by partial evaluation and
we evaluate performances.

5.1 What Has Actually Been Processed by the Partial Eval-
uation Process?

The Failure Continuation has been Eliminated

Compiled programs have an interesting property: the failure continuation
has been completely eliminated. Therefore, the backtracking has been deter-
mined statically. This is because the database is static.

Consider the Prolog program in appendix A and its corresponding resid-
ual program. The compilation of the backtracking continuation can be illus-
trated by comparing the traversal of the database that the interpreter would
performed (figure 11-a) with the traversal of the database represented by the
compiled program (figure 11-b). These diagrams also include the accumu-
lation of a result which is denoted by the symbol res. The labels cl,...,c4
correspond to the clauses of the source program. Each clause in figure 11-b
has attached its corresponding specialized function.

Figure 11 clearly shows that the intermediate backtracking has been
eliminated in the compiled code.

Lookup Operations in the Environment are Compiled

Because the environment is a partially static data (static identifiers and
dynamic variables), the access to a given identifier/variable pair has been
compiled. The resulting expression is a sequence of operations to access the
variable in this pair.

13




" Static Functions | Dynamic Functions ﬂ

S-C D-C
S-P, S-A D-P, D-A
S-Unify D-Unify, Unifyl
S-lookup-env D-lookup-env
S, S-G, D-G
lookup-subs, update-subs
New-var
Q:inst

Table 1: Static vs. Dynamic Functions

Part of the Unification Process is Compiled

When the interpreter manipulates premises, part of the unification process
can be performed. Indeed, in this context, the type of terms to unify is
static and thus processing depending on this information can be performed.

5.2 What are the Dynamic Operations?

Some operations cannot be performed during the partial evaluation process
because some data are not available. The printing of the result is deferred
to run-time (function Q:inst). Part of the unification process is frozen
(function unify1). Since the variables cannot be generated until run-time,
the substitution list is dynamic. Therefore, operations that manipulate the
substitution list are frozen. ;

Table 1 summarizes the above explanations by classifying the interpreta-
tion functions as static if they are eliminated during partial evaluation and
dynamic otherwise.

5.3 Performance of Partial Evaluation

Programs compiled by partial evaluation has been found to be about six
times faster than interpretation. Note that this speed-up is more impor-
tant with other languages. For Algol-like programs, we reported in [7] that
compiled code is about thirteen times faster than interpretation. This dif-
ference is due to the fact that the static semantics of Prolog is not as much
important as other languages. It is especially difficult to see how unification
could be further processed statically without introducing special purpose
program transformations. As we have seen in the example of the compiled
code, the unification is the major component of the dynamic semantics. It
is interesting to notice that partial evaluators for Prolog written in Prolog
do not deal with unification either. Indeed, unification is part of the target
language.

14




cl c1 (D-D2)

A

res = 2 res — ¢2 (D-D3)

A

res’ — - 3
res — ¢3 (D-D4)

cl

PAN ¢ (S-DI)

res—™> ¢2

*3 res—— ¢4 (D-D5)

c

¥ 2 (S-D2

c{d —> ¢4 c2 (S-D2)
ol res— > Inst
|
c2

res™> ¢3

\

¢4 = Inst
(a) The Interpreter (b) The Residual Program

Figure 11: The Traversal of the Database

Prolog Program Speed-up
Number of Facts | Number of Rules
4 4 4
6 2 5
8 8 7

Table 2: Speed-up with Compilation

It is generally difficult to fairly evaluate the performance improvement ob-
tained by partial evaluation and the size of the resulting programs since they
strongly depend on the specificity of the Prolog program. In particular, we
notice that the speed-up with compilation is related to the number of pos-
sible unsuccessful unifications contained in the source program. Indeed, the
intermediate backtracking have been removed by partial evaluation.

Some run-time results are displayed in table 2; they are obtained with
both the interpreter and the residual programs compiled into machine lan-
guage using a Scheme compiler.

The size and the structure of compiled code are not surprising: the resid-
ual program represents the traversal of the database. A specialized function
is generated for each unification clause. This is illustrated in appendix A.
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Further work needs to be done to extend the Prolog interpreter for a larger
subset of the language. To improve the size of target code, we want to
investigate combinator based-semantics [19]. This approach could capture
more compactly the dynamic semantics and be more abstract with respect
to its implementation. Consequently, different strategies for implementing
the dynamic semantics could be explored to improve the run-time of target
code.
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A Prolog Program and Its Residual

A Source Program :

cl Male (Adam),

c2 Female (Eve),

c3 Person (x) :- Male (x),
c4 Person (x) :- Female (x).

The Residual Program (sugared) :

(define (SO queries) (state-result (D-G1 queries ’() (init-state) (init-subs))))
; Comparing query with each clauses in database

(define (D-G1 goals env stt subs)
(cond
((null? goals) (update-state-result stt (Q:INST env subs)))
(else ’
(D-P (car goals)
(lambda (goal2 e3 st1)
(D-D2 goal2 (lambda (e2 subsi st2)
(D-G1 (list-tail goals 1) subsl st2 e3))
env stl subs))
env stt))))

(define (D-D5 t gc env stt subs)
(let* ([(list vO st1) (new-var ’x stt)]
[vi (Var ’x v0)])
(D-Unify (Pred ’person (list vi)) t
(lambda (r1) (S-G1 gc (list (cons ’x v1)) st1 r1))
(lambda (r1) sti1)
subs)))

(define (D-D4 t gc env stt subs)
(let* ([(list vO st1) (new-var ’x stt)]
[vi (Var ’x v0)])
(D-Unify (Pred ’person (list v1)) t
(lambda (r1) (D-D5 t gc env (S-G2 gc (list (cons ’x v1)) stl r1) subs))
(lambda (r1) (D-D5 t gc env stl subs st1))
subs)))

(define (D-D3 t gc env stt subs)
"(D-Unify (Pred ’female ’((Const eve))) t
(lambda (r1) (D-D4 t gc env (gc ’() stt r1) subs))
(lambda (r1) (D-D4 t gc env stt subs))
subs))

(define (D-D2 t gc env stt subs)
(D-Unify (Pred ’male ’((Const adam))) t
(lambda (r1) (D-D3 t gc env (gc ’() stt r1) subs))
(lambda (r1) (D-D3 t gc env stt subs))
subs))
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; Handling premises begins

(define (S-G1 gc env stt subs)

(5-D2 (Pred ’female (list (list-tail (car env) 1)))
(lambda (e st2 sul) (gc env st2 sul)) env stt subs))

(define (S-G2 gc env stt subs)
(s-D1 (Pred ’male (list (list-tail (car env)
(lambda (e st2 sul) (gc env st2 sul))

; Comparing premises with clauses in database

(define (S-D2 t gc env stt subs)
(unifyargs
’((Const eve)) (list-ref t 2)
(lambda (r1)
(list-ref (new-var ’x (list-ref (new-var
(lambda (r1)
(list-ref (new-var ’x (list-ref (new-var
subs))

(define (S-D1 t gc env stt subs)
(unifyargs
’((Const adam)) (list-ref t 2)
(lambda (r1)
(list-ref (new-var ’x (list-ref (new-var
(lambda (ri1)
(list-ref (new-var ’x (list-ref (new-var
subs))
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env stt subs))

’x (gec ’() stt r1)) 1)) 1))

’x stt) 1)) 1))

’x (gc ’() stt r1)) 1)) 1))

’x stt) 1)) 1))




B Unification

(define (unify t1 t2 gc res subs)
(filter (if (dynamic? t2) SPECIALIZE UNFOLD) (list DYN DYN DYN DYN DYN))
(caseType t1
([Vvar - ni1]
(caseType t2
([Var - n2] (if (equal? ni n2) (gc subs) (unifyl t1 t2 gc res subs)))
(else (unifyl t1 t2 gc res subs))))
([Const ni]
(caseType t2
([Const n2] (if (equal? ni n2) (gc subs) (res ’())))
([Var - -] (unifyl t1 t2 gc res subs))
(else (res ’()))))
([Pred f1 argsi]
(caseType t2
([Var - -] (unifyl t1 t2 gc res subs))
([Const -] (res ’()))
([Pred £f2 args2]
(if (equal? f1 £2) (unifyargs argsl args2 gc res subs) (res ’())))))))

(define (unifyl t1 t2 gc res subs)
(filter SPECIALIZE (1list DYN DYN DYN DYN DYN))
(caseType t1
([Var - ni]
(caseType t2
([var - n2]
(cond ((equal? (lookup-subs subs t1) ’uninstantiated)
(if (equal? (lookup-subs subs t2) ’uninstantiated)
(gc (update-subs subs t1 t2))
(unify t1 (lookup-subs subs t2) gc res subs)))
(else
(unify (lookup-subs subs t1) t2 gc res subs))))
(else (if (equal? (lookup-subs subs ti1) ’uninstantiated)
(gc (update-subs subs t1 t2))
(unify (lookup-subs subs t1) t2 gc res subs)))))
(else
(if (equal? (lookup-subs subs t2) ’uninstantiated)
(gc (update-subs subs t2 t1))
(unify ti (lookup-subs subs t2) gc res subs)))))

(define (unifyargs 11 12 gc res subs)

(filter SPECIALIZE (1list DYN DYN DYN DYN DYN))

(cond

((and (null? 11) (null? 12)) (gc subs))

((or (null? 11) (null? 12)) (xres *()))

(else (unify (car 11) (car 12)
(lambda (x) (unifyargs (cdr 11) (cdr 12) gc res x))
(lambda (x) (res x))
subs))))
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C The Rest of the Prolog Interpreter

;3 Auxiliary Functions

(define (associate id env)
(filter (if (static? id) UNFOLD SPECIALIZE) (list DYN DYN))
(if (null? env)
')

(if (equal? id (car (car env))) (car env) (associate id (cdr env)))))
;3 Manipulating the substitution

(define (lookup-subs subs v)
(let* ([(Var - num) v])
(lookup-subs/1 subs num)))

(define (lookup-subs/1 subs num)
(filter SPECIALIZE (1list sube num))
(let ((t (assq num subs)))
(if (null? t) ’uninstantiated (cdr t))))

(define (update-subs subs v t)
(filter SPECIALIZE (1ist DYN DYN))
(let* ([(var - num) v])

(cons (cons num t) subs)))

;3 This section treats the data after unification. It
;; instantiates and generates the final result.

(define (Q:inst env subs)
(filter SPECIALIZE (1list DYN DYN))
(if (null? env)
0
(let ([name (car (car env))] [v (cdr (car env))])
(cons (cons name (Q:inst/1 v subs (lambda (v £) £)))
(Q:inst (cdr env) subs)))))

(define (Q:inst/1 query subs unbound-var-handler)
(caseType query
([Const num] (Constant num))
([Var id -]
(let ([term (lookup-subs subs query)])

(if (equal? term ’uninstantiated)
(unbound-var-handler (Identifier id) subs)
(Q:inst/1 term subs unbound-var-handler))))

([Pred fn args]
(let ([targs (Q:inst args subs)])

(Predicate fn targs)))))

(define (update-state-result stt res)
(let ( [(State idx result) stt] ) (State idx (cons res result))))

(define (state-result stt)
(let ( [(State idx result) stt] ) result))
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