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Abstract

It is shown how to color a planar with 5-colors in linear time.
The "batching' method used may have additional applications to other

graph theory problems. '’




I. Introduction

The coloring of graphs has had longstanding mathematical interest.
Indeed, much of this interest stems from the wealth of applications that
rely on finding colorings of graphs. However, finding the chromatic
number of a graph, i.e., coloring a gfaph with the minimal number of
‘colors, is known to be NP-complete in the sense of Karp and Cook [1,3].
This has led to much interest in algorithms that either find approximate
colorings or only work for special classes of graphs [2].

We describe here an algorithm for finding a 5-coloring of a planar
graph and ﬁrove that it runs in linear time. Since finding a 3-coloring
of a planar graph is NP-complete [6], this result can only be improved.
to 4-coloring. While our current method uses some of the well-known
" reducibilities for 5-coloring [5], it differs in several essential features.

As in the known methods, to find a 5-coloring we do a recursive
reduction of the graph. However, at each step of the recursion we show
how one can reduce the graph by removing a "batch" of vertices rather
than just a single vertex. This is why our algorithm runs in linear time,
i.e., 0(n) time, rather than in n? time [4]. It is interesting to note
that ensuring a batch of sufficient size is itself dependent on the fact

that a planar graph can be 7-colored in linear time.

11. Basic Results and Terminology

An undirected graph G = (V,E) consists of a finite set V of
vertices and a subset E of VxV called edges. If (u,v)eE then there
is an edge between vertex u and vertex v, and u and Vv are called

adjacent. Since the graph G is undirected (u,v)eE implies that (v,u)eE,




but for simplicity we just assume that E is a set of unordered pairs. A
vertex is said to have degree d if it has exactly d adjacent vertices.

A set V, = {vl,v .,vk} S V is called independent if for any

goee
Vi’vj Vk,e(vi,vj)¢E. A coloring of G is a map (C: V » N, where N is
the set of nonnegative integers and if (u,v)€eE then C(u) # C(v). The

C(G). A graph G is

number of colors used to color G is |[C(v): veV|

said to be k-colored if C(G) < k. For a graph G (V,E) with IV, =nq

we let Tk(n) denote the number of steps (or time) needed to k-color G.
We are interested in coloring planar graphs. A graph G is planar
if it can be drawn in a plane so that no two edges intersect. It is well
known that any planar graph can be 5-colored [3]. We will describe an
algorithm to 5—color any planar graph for which Ts(n) = 0(n). Previous

algorithms for 5-coloring planar graphs had T5(n) > Q(n?).

Lemma 1: Let G be a planar’graph with n vertices and D6(G) be the

number of vertices in G of degree 5, 4, 5, or 6. Then D6(G) > %«
Proof: Assume D, (G) sbgu Then the total degree > 7 X~§E + 3 x L 6n.
6 4 4 4

By the Euler formula [3] it is known that the total degree of any planar
n vertex graph is < 6n --12. Thus we have a contradiction and the lemma

is proved. 0

Lemma 2: Given a planar graph G with n vertices, one can in 0(n) time

n

find an independent set of at least Eg-vertices, with vertices each of
degree d, 3<d<6.
Proof: By Lemma 1 there must be vertices vl,...,vm, m>%3 that have degree

d with 3<d<6. Clearly such a set of vertices can be found in 0(n) time

simply by inspecting each vertex in turn. Now we use a "greedy" algorithm




to, in linear time, find an independent set {v, ,v, ,...,v. } with
| 1t 'S

k >

~l=

The greedy algorithm proceeds as follows:

Let v, =v,. If v, ,...v, have been selected, let v. - be
1 1 1 1. 1,
1 1 j i+l

the first v, that is adjacent to no vertex already selected. Since the

o

28° it follows

degree of each of these vertices is 6 or less and -% >

that the selection can be done in 0(n) time. O

111. The Main Results

So far we have shown that an independent set of vertices of size > %g
in which each vertex haé small degree (d < 6) can be found in O0(n) time
for any planar graph. Clearly, vertices of degree 2 need not enter the
discussion since they can-be deleted from the graph, and from coloring
considerations in.an obvious way.

We now turn to the question of coloring the graph.

Lemma 3: (1) .T7(n) < T7(An) + 0(n) for some constant 0 < A< %%.
(2) T7(n) = 0(n).
Proof: Clearly (2) follows from (1) by a simple induction, so we only

prove (1). Let G = (V,E) be a planar graph with n vertices. By

Lemma 2 we can find {vi ,vi ,...,vi } an independent set of vertices of
1 2 k

G with k > %g-

vV - {vi Vi seeesVy }. That is, H is G with {vi seeeaVy } removed and
1 h2 k 1 k

Now let H be the graph induced by the set of vertices

all edges touching any vertex: in {vi ,...,vi } removed. Let Vi be the
1 k i

set of vertices of G that are adjacent to vi » j=1,2,...,k. We call
h|




Vi the neighborhood set of v, o Since for all ij, the degree of

v, is < 6, we have IV, l < 6. Also, since {v, ,...,v, } 1is an
lj 1j 1l ik

independent set H contains all vertices in the Vi sets, j=1,2,...,k.
J

Now we wish to prove (1). Clearly (1) is true for all planar graphs
having 7 or fewer vertices, providing a basis for induction on n. Now
assume (1) is true for all planar graphs having fewer than n vertices.
Then, we can 7-color H in time T7(An). Note here that for H
1 27 |

8

0 <A< (1 -<=%) ===

28 since H has at most %% n vertices. Then we

can extend the coloring of H to 7-color G in the obvious way: For

each vi » J=1,2,...,k color vi any color not used by vertices of

J J
Vi . Since IVi l < 6 this is always possible in a 7-coloring, and
J J
since {v:.L 3o Vs } is independent no interaction between colorings
1 k

occur over the set. Therefore (1) immediately follows and the lemma is

proved. a
27
Theorem: (1) T5(n) < TS(An) + 0(n) for some 0 < ) < 28"

(@) Ty = o).

Proof: As in Lemma 3 it is sufficient to prove (1). Let G = (V,E) be

a planar graph of n vertices. Let {vi seeesVy 1, Vi for j=1,...,k,
1 k j

and H be defined as in the proof of Lemma 3. We now proceed to prove
(1) in a manner similar to that of Lemma 3. Clearly (1) is true for all
graphs of 5 or fewer vertices. Now assume (1) is true for all planar

graphs having fewer than n vertices. Then we can 5-color H in time

27

TS(An), where as before 0 < )\ < 58" The extension of the 5-coloring




from H to G 1is, however, more complex‘than the 7-coloring extension

in Lemma 3. For any v, for which fewer than 5 colors are used to
J
color the nodes of Vi the extension is immediate. Checking each
J
A for this condition and extending the coloring in this way, when
J
possible, clearly can be done in time O0(k). This leaves a subset of

{vi seeesVy } for which each neighborhood set Vi required exactly
1 k i

5 colors. Let this set of vertices be designated by {xi,...,xm},

with neighborhood sets Vi,...,Vm. We have 5-colored the graph H', the
graph induced by V - {xi,...,xm} in time TS(An) + 0(k). All that
remains is to extend the coloring to {xl,...,xm}. Since the neighborhood
set of each xi uses 5-colors, the extension must do some changing of
colors. The interchange techniques for 5-coloring [3] are called into

play. Let x and y be vertices of H'. We say that x = y where
aB

o,Be{0,1,2,3,4} (the colors used) provided there is a path of vertices

X = Zy5e0052) =y from x to y each of which is colored either a or B-
Obviously, since this is a coloring a and B alternate along the path.

The following is a key fact:

(*) \/ 1<i<m Ei r,s,a,B8 such that vy, €V,, y, €V., vy, is
id idt i

colored a, yi is colored B, y, # y. , and neither o nor 8
s r oB s '

is used by any other neighbor of X

Fact (*) is proved like the reduction results in Ore [3] for 5-coloring.
We next claim, by renaming if necessary, since there are only 10

choices for a,B that (**) holds:




(%%) \7’1 < i< mol such that Y is colored 0, Yy is colored 1,

0 1
v, and y_  , neighbors of x.,y. %y, and no other neighbor
0 1 R I |
of X, is colored 0 or 1; where my > €gm for some constant
60 > 0.

Now consider just the vertices of H' that are colored 0 or 1. Let

c ..,C be the connected components formed by these vertices. Now (*%)

1’ t

essentially states first that vy and v are never in the same
1 2

component, and second that we can find a "batch" of m, such vertices

from {xi,...,xm}.
Next form a bipartite graph B as follows. The input vertices of

1,...;Ct}. There

is an edge from X to C_ if and only if yio or yil is in C, .

B are {xl,...,xm}; the output vertices of B are {C

Clearly this is a bipartite graph and each Xj has degree exactly 2.
We now claim that B is planar. This can be seen by using the con-
traction operations in Ore [3].

Now let B' be the planar graph obtained from B by, for each xj,

k

The vertices of B' are Cl,...,Ct with ts<n. Clearly B' has m edges.

replacing a path Ci,xj,Ck by an edge from Ci to C,  and deleting Xj'

Now in linear time we can 7-color B'. If deg(v) = the degree of vertex v,
and Vl’VZ""’V7 is the partition induced on the vertices of B' by the

7-coloring we see that:

¢ g

2m = Z deg(C,) = Z Z deg(C,).
i=1 i=1 C.ev,
J 1



So that for some Vi we have:

ZE: deg(Cj) > %E .

C.€V,
j i

1

Assume for convenience that V is this block. Now consider CjeVl

in the bipartite graph B. They satisfy:

L . ——
(1) no yiO or yil is in a Cj and a Ck with j 2 k

(2) at least 2Zm y. 'sor y, 's are in some C,.
7 iO i -]

The first follows since Vl is independent in B', the second by the

way V. was selected.

1 :
Now we can interchange the colors in each Cjevl. By (1) and (2)
this causes at least %E xi's to be surrounded by only 4 colors. Thus
we obtain
T5(n) < TS(An) + 0(k) + T'(m)
'(m) < T(Sm) + O(m)
so T'(m) = 0(m) and Ts(n) < TS(An) + 0(k) + O(m)
or Ts(n) < TS(An) + 0(n)

since m < k < n. 0
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