An Experiment Using Haskell
to Prototype
"Geometric Region Servers"
for

Navy Command And Control'

William E. Carlson Paul Hudak Mark P. Jones
Intermetrics, Inc. Yale University Yale University
November 19, 1993

Intermetrics Report IR-MA-1390

Research Report YALEU/DCS/RR-1031

1This work was supported by the Advanced Research Project Agency and the Office of Naval Research
under ARPA Order 8888, Contract N00014-92-C-0153.

©Copyright Intermetrics 1993

Conditions of Use, Duplication and Distribution:

Permission to use, copy modify and distribute the software contained in this volume for any
personal, educational, government or commercial use without fee is hereby granted provided
that:

a) This copyright notice is retained in both source code and supporting documentation.

b) Modified versions of this software are redistributed only if accompanied by a complete history
(date, author, description) of modification made. The intention here is to give appropriate
credit to those involved, while simultaneously ensuring that any recipient can determine
the origin of the software.

¢) The same conditions are also applied to any software system and/or documentation derived
either in full or in part from this document.

This software, analysis and documentation are provided "as is" without express or implied
warranty.

Executive Summary

We describe the results of using the functional programming language Haskell for prototyping a
Naval Surface Warfare Center (NSWC) requirement for a Geometric Region Server. Our findings
support the belief that Haskell can be used effectively to prototype large software systems: the
prototypes that were developed took significantly less time and resulted in more concise and
easier to understand code than the corresponding prototypes written in Ada or Common Lisp.
This allowed us to more quickly search the design space before committing to an implementation.
Furthermore, we found that Haskell complements Ada 9X. Haskell is an excellent tool for exploring
algorithms in the problem space, while Ada 9X is a powerful tool for engineering a readable,
maintainable production quality implementation. We conclude that using Haskell in a software
development process that incorporates disciplined prototyping will yield higher quality software
at lower cost.

1 Introduction

The Intermetrics-Yale team is pleased to provide the Naval Surface Warfare Center (NSWCQC) in
Dahlgren, VA, with this report on an initial experiment comparing prototyping processes and
programming languages. This experiment relates to several larger and more comprehensive ex-
periments being conducted jointly by the Advanced Research Project Agency (ARPA) Prototyping
Technology (ProtoTech) program, ARPA’s HiPer-D program, the Office of Naval Research, and
NSWC.

The Intermetrics-Yale team has used Intermetrics’ prototyping methodology to compare use
of the Haskell language to the current state-of-the-practice based on Ada and Lisp. Other teams
participating in this experiment have used related methodologies but different languages. The
purpose of this report is to document our experimental procedures and results, and to provide a
basis for comparing our experience with that of the other teams.

The ARPA and ONR goal for this experiment was to test the hypothesis that Haskell is an
excellent prototyping language and an effective tool in the context of the Intermetrics prototyping
methodology. Our experimental results support the truth of this hypothesis. The report that fol-
lows contains detailed information and metrics on the experiment. Our approach took advantage
of Haskell’s support for literate programming; the IATpX manuscript for each Haskell prototype
also serves as a directly executable version of the prototype program.

The NSWC goal for the experiment was to quickly develop a prototype Geometric Region Server,
or GEO Server to test certain architectural hypotheses related to the AEGIS Weapons System (AWS)
redesign. Thus, our approach to meeting the ARPA and ONR goals was: 1) Todo the best possible
job of meeting the NSWC goal, 2) To keep careful metrics on the prototyping process used to
develop the prototype for NSWC, and 3) To analyze those metrics from the point of view of
research in prototyping processes, languages, and tools.

Mark Jones of Yale developed three Haskell prototypes of increasing capability and gener-
ality for the "Prototyping Demonstration Problem for the Prototech HiPer-D Joint Prototyping
Demonstration Project,” dated 6 August 1993 [Reference 1], as modified by the addendum dated

1

9 November 1993 [Reference 2]. This report provides the design rationale and assumptions, our
approach to exploring the problem space, a mapping between the prototyping language Haskell
and the problem domain, the prototype code and scenario output, the evaluation metrics, and a
list of deliverables. The Haskell prototypes are characterized as follows:

Prototype 1: The purpose of Prototype 1 was to see how quickly a good solution to the stated
prototyping requirements could be written. A first draft of Prototype 1 was written, documented,
and tested in three hours after the author spent one hour studying Reference 1. This draft was
based entirely on Reference 1; the author did not interact with anyone in developing the solution.
In a "walkthrough" of the code produced and its accompanying documentation, no logical errors
were found; but a decision was made to make certain cosmetic improvements to the documentation
in order to simplify future review and maintenance. The updates were completed in less than an
hour, resulting in the source code, documentation, and test results presented in Appendix B.

Prototype 2: We believe that our Prototype 2 will be most comparable to the prototypes prepared
by the other teams. This prototype satisfies all mandatory requirements of the problem as defined
in References 1 and 2, and also incorporates generalizations to support anticipated future require-
ments. To accomplish this task, the original author of Prototype 1 made a number of modifications
and enhancements requiring about five hours (including all coding, documentation, and testing).
The documentation, annotated source code, and test results are presented in Section 7 of this
document.

Prototype 3: Because Haskell is such a powerful tool for exploring this problem domain, we were
able to extend Prototype 2 to include about half of the possible 14 enhancements currently being
considered for future implementation. A total of 25 hours were spent extending Prototype 2 to
create what we refer to as Prototype 3, again including all coding, documentation, and testing. A
large part of this time was spent simply determining the mathematics required to capture notions
of "engageability." This prototype is presented in Appendix A, and an analysis of it is included in
Section 6.

Our team developed the three prototypes in an ascending order of generality and functional-
ity in order to show the ease and speed with which original and additional requirements can be
implemented and communicated, thereby demonstrating extensibility, understandability and ap-
propriateness. Productivity metrics for each prototype are contained in Section 6 of this document,
which includes a comprehensive view of all metrics collected during the experiment.

We also addressed two additional issues associated with the use of Haskell as a prototyping
language. First, we conducted a concurrent experiment on the ability of "new hires" to learn
Haskell and to become productive. Second, we conducted an experiment on the usability of a
Haskell program as a design for an Ada program. The methodology for these experiments is
discussed in Sectio 5 of this document, and the results are analyzed in Section 6.

1.1 Report Overview

This report is organized into eight sections and seven appendices. A brief description of each is
given below.

o Section 1 — Introduction: This Introduction briefly describes the background and context
of the experiment, as well as our team’s approach. It also includes this description of the
structure and content of the remainder of the report.

e Section 2- Applicable Documents: This section lists the documents referenced in developing
the report.

o Section 3 - A Brief Introduction to Haskell: This section presents an overview of the Haskell
prototyping language.

¢ Section 4 — Intermetrics Prototyping Methodology: This section summarizes the prototyp-
ing software development process that Intermetrics recommends be used for large system
development. Haskell is a powerful tool which supports this approach. The experiment
described in this report was a prototyping experiment in its own right, so it was performed in
accordance with the Intermetrics Prototyping approach, and was also a (small) experiment
in the overall design process for the next generation Aegis Weapons System.

¢ Section 5 — Experiment Design: This section defines the objectives of the experiment, the
evaluation metrics, and a list of deliverables. It also contains experience profiles on the key
participants of the experiment.

o Section 6 — Metrics and Analysis: This section provides an analysis of the metrics data
gathered during the experiment.

o Section 7 - Baseline Solution (Prototype 2): This section provides the design rationale and
assumptions for solving the specified experimental problem, the approach to exploring
the problem space, a mapping between the prototype language and problem domain, and
complete source code and documentation for one solution to the problem.

e Section 8 — Conclusion: This section summarizes the overall conclusions of the experiment.
Seven appendices are included for completeness, and as a convenience to the reader. They

include three Haskell solutions to the problem, an Ada 9X solution, a Relational LISP solution,
and copies of References 1 and 2.

1.2 Executable Versions of Programs

The Yale Haskell system, documentation and solutions to the experimental problem are avail-
able on the Internet. Anonymous ftp can be used to retrieve the following files from the host
nebula.cs.yale.edu:

1. The Yale Haskell system can be downloaded from pub/haskell/yale/haskell-206*.

3

I R

1.

L

The Haskell report is available from pub/haskell/report/report-1.2.{dvi,ps}.Z.
The Haskell tutorial is available from pub/haskell/tutorial/tutorial.ps.Z.
The Haskell solution presented in Section 7 is available from pub/proto/s2.lhs.

The extended Haskell solution which includes engageability, corresponding to Appendix A
of this report, is available from pub/proto/s3.hs.

The rapid prototype written as the first step in the prototyping process, a copy of which is
provided in Appendix B, is available from pub/proto/sl.ihs.

Applicable Documents

J. Caruso, "Prototyping Demonstration Problem for the Prototech HiPer-D Joint Prototyping
Demonstration Project,” CCB Report, Version 0.2, August 6, 1993 and last modified on
October 27, 1993.

]. Caruso, Addendum to "Prototyping Demonstration Problem for the Prototech HiPer-D
Joint Prototyping Demonstration Project,” November 9, 1993.

P. Hudak and J. Fasel, "A Gentle Introduction to Haskell," ACM SIGPLAN Notices, Vol. 27(5),
May 1992.

P. Hudak, S.L. Peyton Jones and P. Wadler (eds.), "Report on the Programming Language
Haskell, version 1.2," ACM SIGPLAN Notices, Vol. 27(5), May 1992.

M.P. Jones and P. Hudak, "Implicit and Explicit Parallel Programming in Haskell," Yale
University, Department of Computer Science, Research Report YALEU/DCS/RR-982, July
1993.

Programming Language Ada: The Language and Standard Libraries, 1ISO/IEC CD 8652, Septem-
ber 15, 1993. Also available from the Ada9X Mapping/Revision Team, Intermetrics, Inc.,
IR-MA-1363-3.

Rationale for the Programming Language Ada, ISO/IEC CD 8652, September 15, 1993.
G.L. Steele, Jr. et. al., COMMON LISP, Digital Press, 1980.

3 A Brief Overview of Haskell

Haskell is a general purpose, purely functional programming language, named after the logician
Haskell B. Curry, and designed by a 15-member international committee. The committee’s goal
was to design a "common" functional language that satisfied the following constraints:

It should be suitable for teaching, research, and applications, including building large sys-
tems.

2. Tt should be completely described via the publication of a formal syntax and semantics.

3. It should be freely available; anyone should be permitted to implement the language and
distribute it to whomever they please.

4. It should be based on ideas that enjoy a wide consensus.
5. It should serve to reduce unnecessary diversity in functional programming languages.

6. It should serve as a basis for future research in language design; it is expected and desirable
that extensions or variants of the language may appear.

The culmination of this effort was the release in April, 1990, of the Haskell Report [Reference 4],
the official document that defines the language (the current revision, Haskell 1.2, is dated March
1992).

For those not familiar with functional languages, it is helpful to keep a few basic concepts
in mind when reading the prototypes presented later. First, Haskell is purely functional, which
means that it has no constructs for inducing side effects to an implicit store (as found in imperative
languages as well as in "almost-functional” languages such as ML and Scheme). This also means
that there is no sequential flow of control in a Haskell program (since there are no side effects
that require sequencing) — there are only data dependencies — and thus Haskell programs typically
contain many implicit opportunities for parallelism.

Programming in Haskell requires thinking declaratively: i.e. describing what is to be computed
rather than how. In general, very little committment is made to operational detail. Yet Haskell
programs can be easily refined later for efficiency (thus supporting the notion of "get-it-right-first").
For these reasons alone, Haskell is an excellent prototyping language.

In addition, the declarative nature of Haskell gives programs a mathematical, specification-
like quality. This enhances application of formal methods in the form of either program synthesis
or program verification. We encourage the reader to note the many examples in the prototype
where, once the mathematics of the solution is determined, the Haskell code to implement the
algorithm is essentially a direct translation of the mathematics. Similarly, we are able to prove
many interesting properties of the prototype using equational reasoning that is no more difficult
than high-school algebra. In short, Haskell programs are very abstract, yet executable.

Haskell also represents the state-of-the-art in high-level language design, containing advanced
language features such as higher-order functions, non-strict semantics (i.e. lazy evaluation), a rich
polymorphic type system, and pattern-matching. In addition, it has several novel features that
give it additional expressiveness, including an elegant, object-oriented form of overloading using
a notion of type classes, a flexible purely functional 1/O system, and a purely functional array
datatype.

Haskell is now being used world-wide ina variety of applications. Several excellent implemen-
tation exist, including two being distributed at Yale: the Yale Haskell System (compiler-based), and
Gofer (interpreter-based). All of the prototypes described in this document have been compiled
and executed.

4 Intermetrics Prototyping Methodology

The ProtoTech program defines prototyping as disciplined experimentation. A prototype is an exe-
cutable model, specification, or implementation for a component, subsystem, or complete system.
Some prototyping is purely experimental in nature, producing information which is incorporated
into requirements and designs. In other cases, however, prototype code and documentation can
be reused to form part of a desired product. A key difference between a prototype and a product
is the extent to which the quality of the product must have been assured.

In a disciplined prototyping process, each experiment which is performed must have clearly
defined objectives, schedule and budget. If there is any possibility that prototype source code
will be reused in a product, then the code must be written with the attitude that it is production
quality code. It has been shown time and time again that testing should be used to confirm the
absense of defects, rather than to find and fix defects.

Intermetrics is focusing on prototyping processes for developing large systems which push
the state of the art in one or more dimensions. The major steps and milestones in software and
systems development using prototyping are the same as the milestones in traditional processes:

o Requirements definition stage, during which requirements are clarified and a requirements
document is produced. This stage is completed when the requirements document and
development plan are approved.

o Top level, or architecture design stage, during which design alternatives are explored, a
design for the system is written, and its feasibility is demonstrated. This stage is completed
when the preliminary system design is approved.

o Detailed design and implementation stage, during which the code is produced, documented,
integrated and tested. This stage is completed when analysis, testing and reviews confirm
that a high quality implementation of the design and requirements has been completed.

o Initial deployment, post deployment support and enhancement, during which the system
is used for a period of time as initially installed, and then upgraded to adapt to changing
circumstances and new requirements.

In the Intermetrics process, experiments using prototypes have a role in each stage of devel-
opment and post deployment support. During requirements definition, numerous experiments
are often performed to clarify requirements and to determine technical feasibility. Often, these
experiments are quite independent of each other, integrated only by the vision defined in an
operational concept document and a list of the risks which must be mitigated.

During top level design, there will be a few experiments aimed at converging on a good top
level architectural design for the desired system and demonstrating that performance goals can
be achieved. After the preliminary design is approved, a relatively conventional approach is
followed during the implementation period. The order in which modules are coded is chosen so
that the system can be integrated incrementally, rather then deferring integration until all modules
have been coded and unit tested. An effort is made to implement the most difficult thread through

the system first, so that any problems can be identified early and corrected in order to minimize
rework.

After deployment, experiments are used to determine the most cost effective and least disrup-
tive way to implement system enhancements. Each system enhancement is a development project
in its own right.

The disciplined prototyping process requires peer reviews and code walkthroughs of every
document and every module which is produced. Even very early in the requirements exploration
phase, people writing documents and code should have the attitude that what they write may
survive and become part of the delivered product. By striving for zero defects during every
process activity, the probability of defects being introduced and being passed from one process
step to the next is reduced significantly.

Each fine grain process step is similar to writing a paper for publication:

1. write a high quality draft as quickly as possible,
2. have the draft reviewed by peers in a formal walkthrough,

3. update the draft based on corrective actions identified during the walkthrough.

This same process is followed whether the artifact is a document providing the overall vision for
the system or the production source code for a module. If the artifact is executable, then a fourth
step can be added:

4. test the artifact to confirm that no symptoms of defects can be found.

The amount of effort expended on testing depends on the objectives for that process step. The
Intermetrics philosophy is to test enough to ensure that the specific experimental objectives are
met, and to reserve a greater part of the testing budget for the more complex system integration
period. If everyone involved in the development has been committed to developing high quality
artifacts, then relatively few defects should be found during system integration, and the testing
should confirm the system'’s overall quality.

Project plans for development using prototyping take into account that some experiments will
produce unexpected results and that some code which is written will be thrown away. The reason
for doing experiments is to manage risk and to eliminate uncertainties early in the development
process. Hence, it is important to treat the entire development as a continuous improvement
process in which everyone on the team is working together to produce the best possible solution
to user needs within budget and on schedule. We work hard to avoid associating a negative
value judgement with a decision to throw a module away, and strive for an "egoless" approach
to choosing among alternate approaches. Decisions are always forward looking: "based on the
information which has been learned, should a particular artifact be reused in the next development
stage?."

We are convinced that using prototyping experiments to reduce risk as early in a project as
possible actually reduces cost while improving quality. The paradoxical conclusion that you can
lower costs by planning to throw some code away is consistent with numerous studies of software

7

engineering productivity. Defects cost much more to remove late in a process than early, and
design problems are much more costly to correct than coding errors. Furthermore, productivity
declines exponentially as project size increases, so, for example, five projects with five peaple each
will produce much more useful code than one twenty-five person project. By using prototyping
to finalize subsystem interfaces early and to determine experimentally that the interfaces are well
designed, one can substantially reduce the overhead of human communication on a large project.
In effect, the architecture and interfaces partition the large project into several smaller ones, thereby
increasing productivity substantially.

5 Experiment Design

The experiment described in this report was very small compared to the overall objectives of both
Aegis and the ARPA ProtoTech program. The Aegis objectives are described in Reference 1 (see
Appendix F) as follows:

The AEGIS Weapons System (AWS) is an extensive array of sensors and weapons
designed to defend a battle group against air, surface, and subsurface threats.

"The AWS is undergoing a major redesign. As part of this redesign several functionally
similar algorithms (currently dispersed throughout the system) have been proposed
as targets for consolidation. It is speculated that consolidation of these algorithms can
reduce redundant computation and offer a better opportunity to utilize the parallel
computation capability of modern architectures. It is also felt that large blocks of
consolidated processing can better foster reusability and the benefits associated with
the client/server architecture.”

"... the role of AEGIS is changing from one stressing defense against massive raids
in open ocean to conflicts fought in the complex and contact rich environments of
confined bays and straits. This change requires . . . a refined ability to differentiate and
separate friend and foe. This complexity makes the ability to quickly test and fine tune
algorithms through prototyping very compelling.” [p. 2]

The current AEGIS consists of millions of lines of CMS-2 code. This experiment, on
the other hand, was to take place during a two week period, and the initial guidance
was that about five person days of effort should be devoted to each prototype.

Everyone involved viewed this experiment as just a first step in applying prototyping technol-
ogy to help NSWC develop future generation AEGIS and similar systems. Reference 1 carefully
defines the objectives for the experiment:

o prototype "algorithms which compute presence of tracks within geometric regions in space.”
[p. 3] These are referred to as "doctrine-like capabilities.” {p. 2]

¢ "minimize work to achieve a first delivery" [p. 8]

¢ "allow room for incremental enhancement." [p.8]
Reference 1 also defines the criteria for evaluating the prototypes which are produced:

o Extensibility — ease with which the prototype can be extended to fulfill additional require-
ments.

¢ Understandability - rapidity with which the prototype can be absorbed and altered.
o Appropriateness — the expressiveness of the language relative to the task at hand.
o Accuracy - correct functioning of the prototype.

o Compactness — capability per line of code.
Given these objectives and criteria, the Intermetrics-Yale team adopted the following plan:

1. Have an experienced Haskell programmer write a solution to the problem as quickly as
possible (Prototype 1). Have this person work independently, using only the information
available in the written problem statement. This person was Mark Jones of Yale. He received

* his PhD in Computer Science in 1992, and has been at Yale as an Associate Research Scientist
for about 15 months. He has programmed in Haskell for about 3 years, and also wrote one
of the popular Haskell implementations (Gofer).

2. Conduct a formal walkthrough of Prototype 1. Participants in the walkthrough included:

o Bill Carlson, Intermetrics VP and Chief Technology Officer, with 25 years industry
experience including successful management of over $100M in software development
projects.

o Bernie Domanski, manager of the Intermetrics Naval Warfare Systems Department and
a retired Naval Officer (Qualified Surface Warfare Officer). Mr. Domanski was the team
representative at the kickoff meeting for the experiment.

o Virgil Banowetz, a senior systems engineer with 24 years total experience and 3 years
experience implementing Navy Command and Control Systems in Ada.

o Paul Hudak, Professor of Computer Science at Yale, with 5 years industrial experience
and 11 years of programming language research and teaching experience. Prof. Hudak
was a key leader in the Haskell design effort.

3. Have the participants in the walkthrough identify (a) defects and improvements to Proto-
type 1, and (b) objectives for evolutionary improvements to Prototype 1.

The intent was that the time for Dr. Jones to code Prototype 1 provide a quantitative metric of
success relative to the NSWC objective that the time to produce an initial solution be minimized.
Mr. Carlson, Mr. Domanski and Mr. Banowetz would all evaluate the prototype for under-
standability, appropriateness and accuracy. Extensibility would be evaluated by creating the two
enhanced versions of the prototype.

It happened that some modifications and extensions to Reference 1 were agreed to at the
experiment kickoff meeting at NSWC. Dr. Jones and Dr. Hudak were not informed of those
extensions until after the completion and review of the initial draft of Prototype 1. After the
review, we distributed the written statement of extensions to the problem statement (reference 2,
Appendix G). We then discussed each of the requested extensions. We went beyond the extensions,
however, to use Mr. Domanski’s problem domain expertise to discuss likely future directions of
evolution and generalization of the prototype. The objectives for Prototype 2 and Prototype 3
were defined based on these discussions.

To get a sense of how easy Haskell is to learn, we had a recent college graduate spend eight
days learning Haskell from publicly available documentation. This new hire received no formal
training, but was allowed to ask an experienced Haskell programmer questions as issues came
up during the self study. After the eight days training, we gave him a day and a half to write
a solution to the GEO Server problem. The trainee’s prototype is included in Appendix C, and
statistics on his approach are discussed in Section 6.

To address the issue of whether a Haskell prototype is a useful design document from which
to develop an Ada program, we gave References 1 and 2 and the Haskell Prototype 1 to a member
of the Ada 9X design team who has many years of Ada programming experience. He was asked
to code a solution to the problem defined in the references. His solution is provided in Appendix
D.

Lisp has often been used to write prototypes. We gave References 1 and 2 to Dr. Robert Balzer
of the University of Southern California Information Sciences Institute. He is a very experienced
Lisp programmer, and has developed a special Lisp system enhanced with a capability called
Relational Abstraction for Prototyping. There was no technical interaction between Dr. Balzer
and the people writing in Haskell. Dr. Balzer will be submitting his prototype as an independent
submission, but some preliminary data on his prototype is discussed in Section 6, and an initial
version of the prototype is provided in Appendix E.

10

6 Metrics and Analysis

As discussed above, this small experiment supports two research objectives. First, and most
importantly, it is an initial exploration of NSWC’s hypothesis that consolidation of algorithms to
compute the presence of tracks within geometric regions in space and packaging those algorithms
into a GEO Server can significantly improve the next generation of ship defense systems. Second,
the experiment is an evaluation of Haskell as a language for exploring such questions.

This section first presents the metric data collected on the prototyping process and on the
prototypes which were produced. It then provides a preliminary analysis of this data.

6.1 Product Metrics

The Haskell prototype was constructed by iterative refinement. Briefly, the three versions are as
follows:

e P1: Original problem as specified in Reference 1.

¢ P2: Modified problem based on a later email message (Reference 2). This solution goes
beyond P1 as follows:

‘1. Allows an arbitrary number of slave ships and tracked aircraft (the specification asks
for up to 400).

2. Includes notion of an explicit "track file" to be used for logging, display update, etc.
3. Includes notions of concurency via explicit annotations for parallelism.

¢ P3: Extends P2 as follows:

1. Includes notion of "engageability" (including the computation of velocity vectors given
a sequence of positions).

2. Has notion of "operator interaction” to update system parameters.

The engageability problem is not solved in P2, since it is optional. Solution P2 is included as
Section 7 of this report, and is the recommended starting point for someone who wants to study
the Haskell prototype. After reading P2, we suggest studying P3 (Appendix A) to see how P2 has
been easily extended, and then reading P1 (Appendix B) to see how the two more sophisticated
solutions have evolved as natural extensions of the first prototype which was written.

Each Haskell prototype is structured as three layers. First, there are primitive definitions
and equations which form a domain specific language for geometric region processing. Then
there are a set of definitions for problem specific concepts such as reachability, engageability, the
sensor/track file, and dispositions. Finally, there is the "main” function which solves the problem
as specified by calling the primitives which have been assembled. In addition, parameters and
data are needed for each test of the prototype. This test data is interspersed through the code in
P1, but is moved into a separate section in P2 and P3. It is important to distinguish the metric for

11

source code at each layer, because the primitives and problem specific concepts could be reused
as building blocks to solve a variety of problems.

An important attribute of the Haskell prototypes is the extensive documentation which ac-
companies them. The desired style for a Haskell program is a publication quality technical paper
with equations interspersed to formalize the notions which are discussed. Those equations are
typically written first in standard mathemtical notation, then translated directly into Haskell. Each
line of Haskell code is marked with a ">" sign in the left-most margin, and together they comprise
the executable source code for the prototype. The Yale Haskell compiler reads and executes the
same file that is processed with IATgX to produce the documentation. This is called the literate style
of programming (first proposed by Donald Knuth).

In counting source code lines, we use a simple definition: a line of program text is one with
a ">" in the left-most margin. The following are counts of the number of source lines of Haskell
code in each version of the Haskell prototype, broken down in terms of functionality:

P1|P2| P3
Primitives 32|42 89
Problem Specific Concepts | 16 | 21 | 60
Main function 4| 2 3
Total program size 52| 65| 152
(not counting separable
input data and parameters)
Parameters/Data 18 20| 29

Below is a different breakdown of the program source code, based on whether not the code is
"essential" or "for clarity", along with measures of lines of documentation:

P1| P2j P3

Program text:
essential 28 | 36} 102
for clarity 24| 29| 55
Parameters/Data 18| 20| 24
Documentation 234 | 465 | 700
Total Lines Delivered | 304 | 550 | 881

The source program lines are partitioned into lines which are essential, and lines which could be
deleted without affecting the execution of the program. Haskell supports very rapid prototyping,
in which the programmer writes a terse program and leaves it to the compiler to figure out type
signatures. Haskell also supports a more disciplined style, in which the programmer declares
types signatures and synonyms which the compiler uses to check the prototype for internal
consistency. The Yale Haskell compiler could have synthesized type signatures equivalent to the
lines which were added for clarity. This experiment was performed using the disciplined style,
because that style is required by the Intermetrics prototyping process, and because it makes the
Haskell programs more reliable, easier to read, and more useful as a design document for later
stages in the development process.

12

As discussed in Section 5, a concurrent experiment was conducted to determine whether a
relatively inexperienced programmer could use Haskell to prototype a GEO Server. This pro-
grammer’s prototype is contained in Appendix C. Statistics on his prototype follow:

Program text 111
Parameters/Data 45
Documentation 112
Total Lines Delivered | 268

This program is comparable in functionality to Haskell Prototype P1, and thus the above figures
should be compared to those for P1.

As discussed in Section 5, prototypes were also written in Ada 9X and in Relational Lisp. The
following are counts of the non-blank non-comment lines of source program text and of comments
and documentation that comprise the prototype:

Ada 9X | Relational Lisp
Program text 765 218
Parameters/Data 35 56
Comments 200 12
Total Lines Delivered 1000 286

These programs are comparable in functionality to Haskell Prototype P2, and thus the above
figures should be compared to those for P2.

6.2 Process Metrics

Time spent developing the prototypes was categorized as follows:

o "thinking™ Trying to understand the problem and coming up with an approach to solving it.

o "solving": Given an approach, working out the details of the mathematics / algorithm /
whatever (if required). This is the kind of information that a domain expert would have at
his/ her fingertips, but the prototypers had to create from scratch.

o "coding": Given the solution spec, writing the code, including debug and test.

¢ "doc": Writing up the documentation to go along with the code - primarily to explain the
solution rather than the code.

e "review": Independent review.

e "mods": Incorporating changes agreed to during a review.

Total time spent (in hours) on the various prototypes:

13

Pi| P2 P3 | Trainee | Ada 9X | Relational Lis
thinking 1 1 3 2 4
solving 0| o0}15M 15 6
coding 1 1 3 4| 120 40
doc®) 2| 2 4 0.5 4
review 0.75 1 0.50 - - 1
mods 0.50 | 0.25 - - 1
Total 5.25 | 4.75 25 8 28 4

The superscripts in the table correspond to the following notes:

1. P3 has extended functionality beyond those in any of the other prototypes. In particular, its
notion of "engageability” is quite sophisticated (to get a feel for this, the reader is encouraged
to look at the printout of the running program in Appendix A). The 15 hours "thinking" in
the table reflect the time spent developing the mathematics to solve the physical/geometric
constraints. This was all done with no thought given to its expression in Haskell.

2. The Ada 9X solution has not been compiled and tested. The other five prototypes were
tested, and execute correctly.

3. In addition to this 4 hours of coding, Bob Balzer spent 4 hours in the kickoff meeting at
NSWC. After that meeting, his thinking, solving and coding were done as an inseparable
activity. Mark Jones, on the other hand, did not attend the kickoff meeting; his time thinking
about and solving all parts of the problem are included in the table above.

6.3 Analysis of Prototyping Process

The metrics presented above allow a variety of ratios to be computed. The most obvious is the
relative size of program text and documentation. Since the Haskell programs were the shortest in
lines of program text, we use them as the normalization factor, resulting in the following table:

Haskell | Ada9X | R-Lisp
Program text (normalized) 1.0 9.4 3.2
Documentation (normalized) 1.0 43 026

In other words, the Ada prototype was 9.4 times longer than the Haskell prototype in terms of
lines of program text, and had 43% of the number of lines of documentation. For the Relational
Lisp prototype these figures were 3.2 times and 2.6%, respectively.

Below is a table of three more derived ratios: delivered lines per hour (number of delivered lines
divided by coding plus documentation time), lines of program text per hour (number of lines of
program code divided by coding plus documentation time), and program text per total lines (ratio
of program text to total delivered text):

14

P1 P2 P3 | Trainee | Ada9X | R-Lisp
Delivered Lines per Hour 101.3 | 184.2 | 125.9 59.6 62.5 715
Lines of Program Text per Hour | 233 | 283 | 259 34.7 50.0 68.5
Program Text per Total Lines 23.0| 155} 205 58.2 80.0 95.8

Another interesting analysis is to compare the time needed to produce the Haskell prototypes
with the time that would normally be needed to produce a production implementation of a GEO
Server. While the following is crude, it provides a good indication that the prototyping process is

meeting expectations:

o Use the Ada 9X program to estimate that the final product will have approximately 1000

source lines of code.

o Usestandard productivity models to estimate that 1000 source lines of code would normally
take between 300 person hours and 1600 person hours for top level design, implementation
and integration. (For example, typical parameters to the Cocomo model will produce

estimates in this range.)

¢ Then, take the ratio of time to create each of the prototypes to these ranges:

P1

P1+P2 P1+P2+P3

Percentage of total time to build prototype

0.3%-1.8%

0.6%-3.3% | 2.2%-11.7%

The same ratios for the Ada 9X prototype are 1.8%-9.3% (achieving the functionality of P2). Thus,
both the Haskell prototyping productivity and the Ada 9X prototyping productivity are consistent
with an overall productivity to a high quality product of greater than 500 source lines of code per
person month. The main risk with the Haskell prototype is thata problem may arise in converting
the problem specific algorithm into an efficient implementation. The main risk for the Ada 9X

prototype is that it may make a design assumption that proves to be invalid.

In summary, the metrics indicate that the goals of prototyping are being achieved, but since
the experiment is very small and there are no controls for individual productivity factors, we can

only say that the results are encouraging rather than definitive.

15

6.4 Subjective Analysis of GEO Server Prototypes

A variety of design issues are identified in the problem statement which are addressed to varying
degrees by the various prototypes. Each solution is a prototype of a GEO Server. Further
experimentation will be required to determine the extent to which these prototypes represent
models of the GEO Server required by NSWC. This section makes some subjective comments
about the relative strengths and weakness of the various prototypes.

Despite the fact that the Ada 9X program has not been compiled and tested, it is at a similar
quality level to Haskell Prototype P2. Both prototypes were written by experts who are probably
in the highest productivity category.

It is worth noting the high percentage of comments relative to program code in the Haskell
prototypes, even in the trainee’s solution. The largest amount of time in the creation of Haskell
prototypes was spent on documentation, not coding. We view this as an advantage of the literate
style of programming, which becomes more like writing a paper than writing a program. The
analogy to writing a paper carries over to the issue of reuse — the process of loading existing text
into an editor and modifying it to make it as perfectly suited to the new prototype as if it had been
written from scratch is used extensively in prototyping.

The Haskell prototypesare very good at providing an understandable and testable specification
for mathematical algorithms in the problem domain. The Ada 9X prototype, on the other hand,
is strong in providing a candidate set of data representations and partitioning of the problem into
concurrent tasks (although these might represent overcommittments to concrete representations).

The Haskell prototypes are very good at providing specifications for correct behavior. The
Ada prototype is very good for exploring where to detect and recover from abnormal situations
(we did not test Haskell’s capabilities in this regard; it may be that if such abnormalities were part
of the requirements specification that the Haskell prototype would have handled them perfectly
well).

The Haskell prototype is very good at high level exploration of alternative algorithmic parti-
tions. For example, the problem assumes that track data includes the identification of the object
whose position is being reported, but the problem statement says that a key issue is identification
of friends and foes. We suspect that algorithms for identifying tracks will be much easier to
prototype as modifications to the Haskell prototype than as modifications to the Ada prototype;
that is an experiment which would be worthwhile to perform.

The Haskell prototype is very good at exposing opportunities for parallelism. The Ada proto-
type implements a particular partitioning for concurrency.

We assume that either prototype can be interfaced to existing software to test the GEO Server
hypothesis, but such interface experiments should be performed since they are important to both
AEGIS and ProtoTech. An issue which should be explored is whether to have multiple copies of
the GEO Server, and what criteria to use in distributing the copies.

In summary, the prototype GEO Servers which have been created can be used for a broad range
of experiments. We need guidance from NSWC as to the relative importance of the experiments
that can be performed.

16

6.5

Extra Credit Options

In Reference 2 a list of 14 “possible enhancements” was given (which we like to think of as “extra
credit”). Aside from the specific options implemented in Prototype P3, Mark Jones did not consider
these options while developing his prototypes. It is nevertheless interesting to evaluate how well
the prototypes might already meet these optional requirements. The list below summarizes this
analysis.

a.

Scale the problem to 1000s of tracks and 100s of regions of any mix.

Done at the specification level.. The Haskell prototypes can handle arbitrary numbers of tracks
and regions, but we have not specifically addressed processor and memory utilization.
Allow for the asynchronous receipt of tracks in bundles of 1 to 50 track packets.

Not done.

Scale the problem to 3000 track reports per second update rate.
N/A. (We did no performance measurements on any of the prototypes.)

Add the ability to add, modify, and delete regions during tactical operations.
Done. Prototype P3 implements this capability.

Adopt a curved earth model.

Partially done. The geometry module was purposely made “abstract” and can be easily
replaced with a different one. In fact Mark Jones wrote such a “curved earth geometry
module,” but it is not included in this report.

Take into account altitude readings.

Given (e) above, done.

Allow for regions to be oddly shaped vertically (i.e., at the edges) and have ceilings.

Given (e) above, done.

. Allow for regions to be oddly shaped horizontally.

Done. Arbitrary polygonal (including concave) regions, curved (circular) regions, non-
contiguous regions, and regions with internal "holes" are easily created. Possible extensions
(using the "region authoring system" mentioned below) might include, for example, splines
for more complex curves.

Allow the orientation of weapons doctrine to be fixed relative to the orientation of the ship
or relative to a threat access emanating from a single point on the surface of the earth.

Not done. However, this would be an easy enhancement, since the weapons doctrine is
sufficiently abstract.

Extend slaved doctrine to aircraft.

Done. We believe the abstractions used for slaved ships can also be applied to slaved aircraft.

17

k. Maintain a doctrine history (i.e., parameters such as when and where a track first entered a
doctrine region, length of time in the region, etc.).

Done. Prototype P3 implements this capability.

1. The doctrine problem was purposefully divided into the "region comparison engine" and a
heretofore unmentioned "tactical action aid" which determines what should be done with the
information based on the type of doctrine, the ID and other information about the contact.
One possible enhancement might be to build features of the second part. The two problems
are actually very different in character. The region comparison engine’s goal is the rapid
determination of the presence of tracks in regions. The tactical action aid determines what,
if any, significance that event holds. Therefore, the tactical action aid’s job is more rule based
or Al'ish in nature.

Not done.

m. Thereis actually a third part to the process and that is the "doctrine region authoring system”.
This component would work in conjunction with tactical action aid to produce the desired
tactical goals.

Partially Done. The domain-specific language developed for constructing regions in Haskell
isan excellent "doctrine region authoring system,” even for the non-Haskell user. We estimate
that a few hours of explanation would be all that is required for proper use. On the other
hand, users may demand a graphical user interface.

n. A possible additional goal for the prototype experiment might be to determine how these
three pieces fit together optimally.

Not done.

6.6 Analysis of Haskell as Tool for Prototyping

The experience in the formal code walkthroughs was that Haskell prototypes are highly under-
standable. A major benefit was that the discussions focused on whether the Haskell program
correctly modeled the problem. No time was spent on irrelevant implementation details. The
Haskell style of programming is ideally suited to understanding the algorithms in problem specific
rather than computer specific terms.

The extensibility of the Haskell programs was demonstrated by the three-step refinement
process. The fact that the reuse from one prototype to the next was at a source code level, and
involved an examination of every line in the program, is analogous to the process of writing a
paper for publication. Some of the most valuable changes are global changes or reorganizations
that allow the same ideas to be communicated much more effectively and succinctly. The Haskell
compiler is an invaluable assistant in checking that such reorganizations and global changes result
in a consistent set of equations and constraints.

Haskell was appropriate to the problem in at least three ways. First, mathematical formulas
are a good notation for the GEO Server problem, and Haskell has excellent support for equations.
Second, Haskell is extensible, so a problem specific notation, which many people would call a

18

domain specific language, could be defined and the remainder of the problem expressed in terms
of that notation. Finally, Haskell did not force premature resolution of design decisions.

The Haskell prototypes were accurate — they produced the correct answers on the defined test
scenarios. Haskell’s type checking was a big help in avoiding coding errors.

The Haskell prototypes were also compact. As the analysis above has shown, the Haskell
prototypes had between 10% and 30% as many lines of code as the prototypes written in Ada and
Lisp, and readability was not sacrificed to gain the conciseness.

Finally, the Haskell prototypes enhanced the use of formal methods. Several interesting
properties were proved about the Haskell prototypes using simple equational reasoning. A
similar proof using the other prototypes would be much more difficult.

Another concern in evaluating a language is the maturity of the language definition and of
the documentation which describes the language. Haskell is in production use worldwide. It was
designed by an international committee, and it has been thoroughly reviewed and polished. There
are multiple implementations. The language specification and a tutorial have been published by
the Association of Computing Machinery (see references 3, 4 and 5). In summary, Haskell is a
production quality language will a substantial and growing following worldwide.

Haskell and Ada address very different kinds of concerns. With Haskell, one focuses on
declaring a formal model of the objects and operations in the problem domain. The GEO Server
algorithms are algebraic, and can be clearly, easily and succinctly expressed in Haskell. It is
significant that Mr. Domanski, Mr. Banowetz and Dr. Brosgol were all surprised and suspicious
when we told them that Haskell prototype P1 (see appendix B) is a complete tested executable
program. We provided them with a copy of P1 without explaining that it was a program, and
based on preconceptions from their past experience, they had studied P1 under the assumption
that it was a mixture of requirements specification and top level design. They were convinced
it was incomplete because it did not address issues such as data structure design and execution
order.

Haskell is a much better tool than Ada for comparing different application specific algorithms,
because the algorithms can be expressed mathematically without concern for choice of data
representation, memory management, or synchronization of access to data. Specifying and testing
an algorithm to predict when tracks will intercept regions is an ideal use of Haskell. Once
an algorithm is selected, it can then be implemented in Ada. It is also possible that when
implementing a chosen algorithm in Ada, an issue will arise as to modifications to the algorithm
which could yield a large factor in execution efficiency. In such a case, it will make sense to try
the revised algorithm in Haskell before investing in the engineering to do the production quality
implementation in Ada.

The issue of concurrency in the Haskell prototype is worthy of special discussion. Algorithms
expressed in Haskell provide many potentials for parallel execution, and that potential can be spec-
ified explicitly with an annotation. On the other hand, the design of efficient data representations
and control flow to take advantage of the potential parallelism involves substantial engineering.
The Proteus project involving Univ. of North Carolina, Duke and Kestrel has demonstrated a
variety of transformation techniques for this purpose, and indeed the Haskell annotations for
parallelism have a strong resemblance to those used in Proteus (see Reference 5). It will also

19

be desirable to prototype the mapping of Ada tasks and access to protect objects on the target
hardware, in order to optimize the implementation and to obtain performance metrics to guide
the transformation of the architecture independent algorithms onto the actual hardware.

6.7 Analysis of Yale Haskell Implementation

The Yale Haskell implementation is a production quality tool available by anonymous ftp from
Yale. No bugs were encountered in programming any of the prototypes. It is an excellent
interactive tool for prototyping, so in comparing productivity data with standard models the tool
support should be rated as excellent.

We did not measure the performance of the models which were created. Haskell is most
useful for defining the functionality of algorithms. A research area being addressed in ProtoTech
is how to relate the performance of a model written in Haskell to the performance of a production
implementation written in a language such as Ada.

6.8 Comments on This Experiment

The discipline used in performing the experiment sets an example for future larger experiments.
The experiment problem statement was excellent. It provided a concise definition of a problem
with wide ramifications which could be absorbed quickly. It was also a problem that could be
explored at many different levels of sophistication.

This experiment was constrained to be completed in two weeks, and with limited resources.
Therefore, there was no way to compensate for differences in the productivity of individual
programmers. It is safe to assume that the programmers were all at the highest productivity levels
for their profession, and that none of them had any prior experience with the problem domain.
Also, since the time spent on each task was so small, time measurements are subject to error; all
numbers should be taken as indicative rather than precise.

20

7 Baseline Haskell Solution (Prototype 2)

This section presents our "Prototype 2," a Haskell solution to the problem outlined in Reference 1
and modified by Reference 2. This prototype meets all required specifications.

Taking advantage of Haskell’s support for "literate programming,” the IAIgX source code for
this section also serves as a directly executable version of the prototype. Each line of Haskell code
is preceded by a right angle-bracket (>) in the left-most column - all other lines are treated as
comments.

To aid understanding by those not familiar with Haskell, we havealso included an explanation
of Haskell language features one-by-one as they are arise in the program. These comments are
indented and printed in smaller font, and would not normally be included if Haskell were familier
to the majority of readers.

The remainder of this section is organized into four subsections:

1. Primitive definitions and equations which establish basic mathematical relationships for
geometrical analysis. These primitives had to be written for this problem, but in most
situations they would already have existed in a library. We refer to these primitives as the
domain specific language for geometric regions. Examples of concepts defined include point,
origin, regions, and various operations on regions. By reading this section, you can see how
the mapping between Haskell and the problem domain is created. This can also be viewed
as the foundation for a "doctrine region authoring system" as mentioned in Reference 2.

2. Definition of issues related to object tracking, such as sensor/track file representations,
dispositions, and situation assessment. These definitions and equations build upon the
primitives defined in the first section, and create a richer mapping between Haskell and the
problem domain.

3. A function which solves the problem defined in references 1 and 2. This "program" is only
three lines long, because it is implemented in terms of the functions which have been defined
previously.

4. Sample data and execution results. This section provides the test data specified in the
problem statement, and demonstrates that the correct results are printed.

This presentation of the program is "bottom-up,” in that it starts with primitive definitions,
and gradually builds up to the problem solution. However, order is not important in a Haskell
program, and we could have chosen to present the program function first in the source text. We
have chosen this presentation order to facilitate readability and understandability, and to highlight
the generality and reusability of the primitives from which the program is built.

21

7.1 Defining a Domain Specific Language for Geometric Regions

In this section a set of datatypes and functions are defined for abstractly specifying geometric
regions.

711 Points

A point is used to identify a location in space and will be represented by a vector of floating point
coordinates.

> data Vector a Pt a a deriving (Eg, Text)
> type Point = Vector Float

data and type are keywords. The first line above defines a new polymorphic datatype called vector,
and can be read as: "For any type a, an element of the datatype Vector a consists of values of the form
Pt x y, where x and y are of type a." (The deriving addendum ensures that equality (through the
class Eq) and printing (through the class Text) are defined on Vector.) The second line above is a type
synonym, which simply gives a name to an existing type; in this case Vector Float is being given the
name Point.

In particular, the origin is described by the point with zero coordinates:

> origin :: Point
> origin =Pt 0 O

The first line above is a type signature, which simply declares the type of an identifier. The second line
binds origin to a specific value of type Point.

These definitions are easily modified to extend the program to three-dimensional space. For ex-
ample, some form of spherical coordinates (e.g. longitude, latitude and altitude) would obviously
be more appropriate to model regions around the (curved) surface of the earth.

To simplify our work, we define the usual operations of vector addition and subtraction:

> instance Num a => Num (Vector a) where
> Pt x y + Pt u v = Pt (xt+tu) (ytv)
> negate (Pt x y) Pt (-x) (-y)

> Pt x y - Pt uv Pt (x-u) (y-v)

Num is a type class. Types that are instances of Num can be given method definitions for the operations in
the class. In this case Vector a is being given definitions for (+), (-}, and negate, so that we can use
these operations on Vectors just as we do with numbers. Also note the use of pattern matching on the
left hand sides of the equations.

22

It will also be useful to calculate the length of a vector (i.e. distance from the origin):

> sqrDist :: Num a => Vector a -> a
> sqgrDist (Pt x y) = X*x + y*y

The second line above defines a new function called sqrDist. From thisdefinition its type can be inferred
by the compiler, but we provide the type signature on the first line to aid readability. It should be read as:
“sqrDist is a function that, for any type a in the class Num, maps elements of Vector a into elements

of type a.”

For convenience, we have chosen to use a sqrDist function that returns the square of the distance
of its argument point from the origin. This avoids unnecessary calculations and loss of accuracy
that would be caused by taking square roots.

In fact, the definitions given above are more general than necessary for the current problem.
However, the extra flexibility that this gives may be useful in other situations or in further
extensions to the program at a later date.

7.1.2 Regions

A region is a set of points in space. However, the only thing we need to know about a region
is whether or not it contains a given point. This leads to a simple and elegant implementation,
modelling a region as a function that takes a point as its argument and returns a boolean value to
indicate if the given point is inside the region that the function represents. In Haskell notation,
this can be described as follows:

> type Region = Point -> Bool
T1 -> T2 isthe type of functions that map elements of T1 into elements of T2.

We will also define a simple function to allow us to determine whether a point is in a region.

> inRegion :: Point -> Region -> Bool
> p ‘inRegion® r = r p

The left-hand-side could have been written inRegion p r but we have chosen (stylistically) to use
inRegion as an infix operator to aid readability, which is accomplished in Haskell by enclosing the
identifier in backquotes.

In fact, for the current representation of regions, we can obtain the same result just by applying
a region to a point. However, the use of an operator like inRegion gives us more of the feel of
an abstract data type and will allow us to modify the representation of regions at a later point,
for example to deal with engageability, without requiring changes to other parts of the program
using regions.

23

7.1.3 Some Primitive Regions

We start by defining a collection of primitive regions from which the full regions that we are
interested in can be constructed. In fact, for the purposes of this project, only two different kinds
of primitive regions are required; circles and halfplanes. However, we can easily extend this
framework to build a larger library to accomodate other kinds of region as required. Thus this
has the feel of a domain specific language, or "authoring tool", for region construction.

Circlular Regions The point p lies inside the circle of radius r if and only if its distance from the
origin is less than r. This translates directly into Haskell notation (using the square of the distance
and the square of the radius instead for convenience):

> type Radius = Float

> circle :: Radius -> Region
> circle r = \p -> sqrDist p < r*r

An expression of the form \x -> exp is a lambda expression, i.e. a (nameless) function. The second
line is equivalent to: circle r p = sqrDist p < r*r, but we prefer the above version because it
emphasizes the way in which circle will typically be used: it will be applied to one argument to yield
a region (which just happens to be a function).

Half Plane Regions Half planes are another useful form of region, representing the set of points
that are on one particular side of a given line. We will define the region halfPlane a b tobe
the half plane of points to the left of the line joining the point a to the point b.

With some simple geometry using the vector cross product, the sign of the component of
(a— p) x (b — a) in the perpendicular plane can be used to determine whether a particular point
p lies in the specified half plane. Once again, this translates directly into Haskell notation:

> halfPlane :: Point -> Point -> Region
> halfPlane a b = \p -> zcross (a - p) (b - a) >0
> where zcross (Pt x y) (Pt u v) = x*v - y*u

7.1.4 General Operations on Regions

This section defines some useful general purpose operators that can be used to obtain new regions
of various kinds. There are many other examples of useful general operations in addition to
those described in the sections below that can also be described elegantly and concisely in this
framework, for example to modify a region by arbitrary linear transformations such as rotations
and reflections on the coordinate space. However, none of these is required for the problems that
.we deal with in the current prototype.

24

Complements It is sometimes useful to be able to specify a regionasa complement; i.e. as theset
of points that are out side some other given region. This is captured by the following definition:

> outside :: Region -> Region
> outside r = \p -> not (r p)

Intersections and Unions It is often useful to be able to describe regions as the intersection or
union of some simpler regions. These operations can be described directly using the (/\) and
(\/) functions, respectively, as defined below:

> (/\) , (\/) :: Region =-> Region -> Region

>rl /\ r2 = \p -> (rl p && r2 p)
> rl \/ r2 =\p -> (rl p || r2 p)
(s&) and (] 1) are Haskell’s boolean "and" and "or" operations, respectively.

Using the standard Haskell function foldrl, we can extend the (/\) and (\/) operators to
calculate the intersection of arbitrary (non-empty) lists of regions:

> intersect, union :: [Region] -> Region
> intersect foldrl (/\)
> union foldrl (\/)

(T] is the type of lists whose elements are all of type T. The use of foldr1 is a typical way to extend an
infix operation to work on a list.

For example, intersect [rl,r2,r2] = rl /\ r2 /\ r3.

If x, y, and z have type T, then the list (%, v, 2] has type [T].

Translations The regions that we have defined so far are all fixed at particular locations in space.
However, it is easy to describe the translation of regions by specifying the position of objects
relative to some new origin. We represent this in Haskell using the operator at defined by:

> at :: Region -> Point -> Region
>r ‘at* p0 = \p -> r (p - p0)

For example, all of the regions produced by the circle primitive described in Section 7.1.3 are
centered on the origin, but we can use the at operator to obtain a circle centered at some other
point. For example, circle r ‘at‘ cisacircular region with radius r centered at c.

The at operator satisfies a number of useful and intuitive laws, including, for example:

25

r ‘at’ origin = «r
(r “at" pl) ‘at' p2 = r ‘at' (pl+p2) = (r ‘at’ p2) ‘at® pl

The first of these shows that setting a new origin that is the same as the current origin leaves the
region unchanged. The second describes the way that repeated translations are combined. The
ability to state and prove results like this is useful because it helps to ensure that our definitions
are reasonable and that they behave in the ways we expect. In addition, laws like these can also
be very useful in program development and optimization.

7.1.5 Derived Regions

The tools introduced in the previous sections can be used to definea wide range of useful regions.
We illustrate this with some examples that will be useful in the following work.

Annulus Regions An annulus, containing all those points whose distance from the origin is
between radius values r1 and r2 can be described as the intersection of the outside of a circle of
radius r1 with a circle of radius r2:

> annulus :: Radius =-> Radius -> Region
> annulus rl r2 = outside (circle rl) /\ circle r2

Function application always has higher precedence than infix application. Thus the rhs of the definition
above parses as: (cutside ({(circle rl)) /\ (circle r2j.

Convex Polygons Many useful regions can be described using convex polygons. The following
definition allows us to construct arbitrary convex polygons by listing the vertices in counter-
clockwise order:

> convexPoly :: [Point] -> Region
> convexPoly (v:vs) = intersect (zipWith halfPlane ([v]++vs) (vs++[v]))

(++) is the list append (i.e. concatenation) function.

The key idea here is that, if the vertices are given by points [v0, v1, ..., vn], then the
interior of the polygon is just the intersection of the halfplanes joining adjacent points (including
a line from vn to v0). In the definition above, zipWith halfPlane is used to produce this list
of half-planes, and then intersect is used to produce their intersection. The zipWith function
is a standard function included as part of the Haskell standard prelude.

26

Segment and Pie Regions It will also be useful to be able to deal with segment-shaped regions
of the plane; i.e. regions obtained by sweeping a line emanating from the origin through a given
range of angles (like a beam from a lighthouse). The easiest way to deal with this is to think of the
segment as the intersection of two half planes:

> type Angle = Float

> segment :: Angle -> Angle -> Region

> segment 1 u

> = halfPlane (radial u) origin /\ halfPlane origin (radial 1)
> where radial a = Pt (cos theta) (sin theta)

> where theta = a * (pi / 180)

A where clause is simply a way to add local definitions.

The auxiliary function radial defined here is used to calculate a point on the unit circle corre-
sponding to a given angle a. Note that the angles 1 and u, in degrees, are multiplied by pi/180
to convert them to radian measure as required by the sin and cos functions.

Using segment regions, we can define another function for constructing pie-shaped portions
of a circle:

> pie :: Radius -> Angle -> Angle -> Region
> pie r 1 u = segment 1 u /\ circle r

This will be used, for example, to define weapon doctrine regions.

7.2 Object Tracking

In this section the object representations and tracking algorithms are fully defined.

7.2.1 Sensor/Track File Data

We assume that sensor information is supplied as a stream of "packets" (presumably froma sensory
subsystem). Individual packets will be represented by a triple containing:

¢ The position of ownship,
o The positions of an arbitrary collection of slaved objects, and

o The positions of an arbitrary collection of objects to be tracked.
In Haskell notation, each packet can be represented as value of type trackingData where:

> type TrackingData = (Point, [Point], [Point])

27

7.2.2 Dispositions

A disposition provides a snapshot of the current positions of the regions and objects of interest ata
given point in time. It is represented by a pair containing a list of named regions, and a list of the
objects that are being tracked:

> type Disposition ([NamedRegion], [NamedObject])
> type NamedObiject (String,Point)
> type NamedRegion = (String,Region)

The representation for a named object includes a string (used to identify the object in diagnostic
messages), and a vector giving its current position.

A disposition can be obtained from the data in an input packet specifying the position of each
object:

> makeDisposition :: TrackingData -> Disposition

> makeDisposition (pown, pslaves, pobjs)

> = ([("weapon doctrine", weaponDoctrine ‘at' pown),

> ("engageability zone", engageability ‘at‘ pown)]

> ++ zipWith (\(name,r) p -> (name, r ‘at‘ p)) slaves pslaves
> ++ tightZones,

> zip objectIds pobjs)

The list of named regions is made up from two regions centered on ownship, together with the
slave doctrine regions and the tight zones. (For simplicity, we have assumed a single ownship,
although it would be easy to extend the program to use an arbitrary list of ownships.) Note
that there are several free variables in this definition that can be set within a specific application
as appropriate. This includes weaponDoctrine, engageability, slaves, tightZones and
objectsIDs. Suitable values for these variables corresponding to the sample data provided in
the original problem description document are presented in Section 7.4.

7.2.3 Situation Assessment

Having constructed a suitable disposition, the next task is to assess the situation that it describes,
producing reports to indicate when an object is in a given region. This is captured by the assess
function which produces a single string containing all the reports for the current disposition. We
use the par function to indicate that these individual reports can be generated concurrently ina
parallel implementation (Reference 5 contains details on these issues of parallelism in Haskell):

> assess :: Disposition -> String
> assess (regs, obijs)
> = unlines (par [r | obj <- objs, r <- objectReport obj regs 1)

.An expression of the form [exp | x <- xs, y <- ys] is called a list comprehension, and is a way to
construct a list that resembles set construction in mathematics. It can be read: "The list of all exp’s such
that x is taken from the list xs and y from the list ys."

28

7.24 Report Generation

The objectReport function is used to produce the list of reports for a specific object relative to
the list of regions of interest. The report begins with a display of the current position of the object,
followed by reports for individual regions. As before, the paxr function is used to indicate that
these reports can be produced in parallel.

> objectReport :: NamedObject -> [NamedRegion] =-> [String]

> objectReport (what,p) rs

> = [what ++ ": " ++ showP p] ++

> par [rep | reg <- rs, rep <- regionReport p reg]

> where showP (Pt x y) = "(" ++ show x ++ "," ++ show y ++ w"

Finally, we have the regionReport function that produces the reports for a single object at
point p and a specific named region.

> regionReport :: Point -> NamedRegion -> [String]
> regionReport p (region,r) = [" -- In " ++ region | p ‘inRegion® r]

Note that, in the first case, if the object is currently outside the region concerned, then no reports
are generated (or more precisely, the list of reports is empty).

7.3 The Complete Program

The complete program is described by a function that takes an input stream of tracking data td
and turns each one into a disposition which can then be assessed to produce the output reports
that are required:

> program :: [TrackingDatal] -> [String]
> program = map (assess . makeDisposition)

. is Haskell’s infix function composition operator. The map function is used to apply a function to a list
of values, producing the list of results. eg. map £ [x1, ..., xnl = [f x1, ..., f xnj.

7.4 Sample Data and Execution

This section provides the sample data corresponding to the information given in the original
problem description, and subsequent extensions.

We start with the descriptions of the weapon doctrine, engageability, slave doctrine and tight
zone regions, and the list of objects that are being tracked:

29

> weaponDoctrine = pie 59 (-120) 120
> engageability annulus 22 44

> slaves [("carrier slave doctrine", circle 40)]

> tightZones = [("tight zone",

> convexPoly [Pt 0 5, Pt 118 32, Pt 118 62, Pt 0 25] \/
> convexPoly [Pt 118 32, Pt 259 5, Pt 259 25, Pt 118 62])]
> objectIds = ["commercial aircraft", "hostile craft"]

The positions of the various objects at different times are given by the following table of packets,
with coordinates taken directly from the original problem description:

> trackingData :: [TrackingDatal

> trackingData = [(Pt 113 64, [Pt 180 140], [Pt 38 25, Pt 258 183]),
> (Pt 123 64, [Pt 180 130), [Pt 58 30, Pt 239 164]),
> (Pt 133 64, [Pt 180 119], [Pt 100 43, Pt 210 136]),
> (Pt 163 64, [Pt 180 81], [Pt 159 36, Pt 148 73]),

> (Pt 192 64, [Pt 180 60], [Pt 198 27, Pt 110 37])]

For convenience, we assume a time interval of 20 between each of these packets:

> timeInterval :: Float
> timeInterval = 20

To demonstrate how this data can be used with our prototype implementation, we define the
following function to print the list of reports, including an indication of the elapsed time at the
beginning of each report:

> demo :: Dialogue

> demo = display (zipWith (\t r -> "Time " ++ show t ++ ":\n" ++ r ++"\n")
> (iterate (timeInterval+) 0)

> {(program trackingData))

> where display = foldr (\rep -> appendChan stdout rep exit

> appendFile "trackFile" rep exit) done

(timeInterval+) is an example of the partial application of an infix operator; it is equivalent to
\x-> timeInterval+x.

The display function defined here is used to interleave writing of the reports to the standard
output channel and the trackFile file.

30

Running this program produces the following output:

Time 0.0:

commercial aircraft: (38.0,25.0)
-- In tight zone

hostile craft: (258.0,183.0)

Time 20.0:

commercial aircraft: (58.0,30.0)
-— In tight zone

hostile craft: (239.0,164.0)

Time 40.0:

commercial aircraft: (100.0,43.0)
-- In engageability zone
—- In tight zone

hostile craft: (210.0,136.0)
-— In carrier slave doctrine

Time 60.0:

commercial aircraft: (159.0,36.0)
-- In engageability zone
-- In tight zone

hostile craft: (148.0,73.0)

-- In carrier slave doctrine

Time 80.0:
commercial aircraft: (198.0,27.0)
-- In engageability zone
-- In carrier slave doctrine
-- In tight zone
hostile craft: (110.0,37.0)
~- In tight zone

31

8 Conclusions

A disciplined prototyping experiment has been conducted to explore algorithms for an AEGIS
GEO Server. Product and process metrics have been evaluated relative to both NSWC and Pro-
toTech goals. Subjective information collected during the experiment has also been documented.

We have shown that the mapping between the Haskell language and this problem is extremely
good. The mathematics of the problem translates into functional expressions, parallelism falls out
naturally, and communication between subsystems maps directly into streams (i.e. lists) of data.
There was absolutely nothing in the problem specification that was difficult to model because of
a mismatch between language and domain.

We have also shown that Haskell can be used to address very different and complementary
issues to those addressed by prototypes written in Ada 9X. With Ada, one can focus on software
engineering issues associated with the efficient mapping of algorithms onto physical hardware.
The object oriented capabilities of Ada 9X were particularily valuable in developing a solution for
this problem.

The results suggest many additional experiments which should be performed. We look for-
ward to working with NSWC to define additional experiments which build upon the foundation
which has been created. This foundation is in two areas. The first consists of the prototypes them-
selves. The prototypes which have been written are flexible tools which can be enhanced and used
to address a variety of issues. The second area is the methodology for performing experiments
in a short period time with rigorous record keeping and careful documentation of experimental
results. An investment has been made in learning to work together that can pay large dividends
in the future.

32

A Enhanced Functionality: Prototype 3

This Appendix presents our "Prototype 3,"” an enhanced version of Prototype 2 that, in addition to
satisfying all required specifications, includes notions of "engageability" and "operator interaction”
(which were labeled "optional” in the email correspondence, Reference 2).

This appendix A, which is a complete executable Haskell program, was written by Mark Jones
of Yale University, and is covered by the copyright notice on this report.

A-1

A.1 Defining a Domain Specific Language for Geometric Regions

In this section a set of datatypes and functions are defined for abstractly specifying geometric
regions.

A1l Points

A point is used to identify a location in space and will be represented by a vector of floating point
coordinates. The same representation will be used for directions/velocities.

> data Vector a = Pt a a deriving (Eg, Text)
> type Point Vector Float
> type Velocity = Vector Float

In particular, the origin is described by the point with zero coordinates:
> origin :: Point
> origin = Pt 0 0

These definitions are easily modified to extend the program to three-dimensional space. For ex-
ample, some form of spherical coordinates (e.g. longitude, latitude and altitude) would obviously
be more appropriate to model regions around the (curved) surface of the earth.

To simplify our work, we define the usual operations of vector addition and subtraction:

> instance Num a => Num (Vector a) where

> Pt x y + Pt u v = Pt (x+u) (y+v)
> negate (Pt x y) = Pt (-x) (-y)
> Pt x y - Pt uv = Pt (x-u) (y-v)

Other useful operations on vectors include multiplying a vector by a given scalar, taking the dot
product of a pair of vectors, and calculating the length of a vector (i.e. distance from the origin):

> scale :: Num a => a -> Vector a -> Vector a
> scale k (Pt x y) Pt (k*x) (k*y)

> dot :: Num a => Vector a -> Vector a -> a
> Pt x y Yot Pt u v = x*u + y*v

> sgrDist :: Num a => Vector a -> a

> sqrDist (Pt x y) = x*x + y*y

For convenience, we have chosen to use a sqrDist function that returns the square of the distance
of its argument point from the origin. This avoids unnecessary calculations and loss of accuracy
that would be caused by taking square roots.

In fact, the definitions given above are more general than necessary for the current problem.
However, the extra flexibility that this gives may be useful in other situations or in further
extensions to the program at a later date.

A-2

A.12 Regions

A region is a set of points in space. In the original problem description, the only use for a
region was to determine when it contained specific points. This leads to a simple and elegant
implementation, modeling a region as a function that takes a point as its argument and returns a
boolean value to indicate if the given point is inside the region that the function represents. This
approach was used in our prototype implementation of the problem presented in the original
problem description document.

After the original problem description was circulated, it was decided to extend the prototype
to allow prediction of the times when a given object might be expected to enter or leave a region,
based on its current position and velocity.

This can be dealt with by generalizing the simple notion of regions used in our original
prototype. To understand how this works, suppose that the position of an object is given by the
line p + tv, where p is the position at time ¢ = 0 and v is the velocity vector. We can describe
the progress of the object through a region by a trail, containing a boolean to indicate whether the
object is initially inside the region and a list of times at which it subsequently enters or leaves the
region.

As a simple illustration, an object that starts outside the region at point p, enters, leaves,
re-enters and finally leaves again at times g, t1, &2 and t3, respectively might be pictured as:

P to ot 13

{ i ! |

and represented by the trail (False, [t0,t1l,t2, £3]). Note that we are only interested in
predicting where an object will go, not where it has come from; i.e. we restrict our attention to
trails in which all time values are positive.

In Haskell notation, this representation for regions is described as follows:

Point -> Velocity -> Trail
(Bool, [Time])
Float

> type Region
> type Trail
> type Time

i

We will also define a simple function to allow us to determine whether a point is in a region,
discarding the rest of the trail (lazy evaluation ensures that we don’t waste any time trying to
calculate these extra values):

> inRegion :: Point -> Region -> Bool
> p ‘inRegion' r = b where (b,ts) = r p origin

A.13 Some Primitive Regions

We start by defining a collection of primitive regions from which the full regions that we are
interested in can be constructed. In fact, for the purposes of this project, only two different kinds

A-3

of primitive regions are required; circles and halfplanes. However, we can easily extend this
framework to build a larger library of regions that is easily extended to accommodate other kinds
of region as required. Thus this has the feel of a domain specific language, or “"authoring tool", for
region construction.

Circular Regions In vector notation, the set of points inside a circle centered on the origin with
radius r is given by the equation [x| < r. To find the points of intersection of a line of the form
p + tv with this circle, we need to find values for ¢ such that:

2> p+ivP=lpP+2tp-v+Evf
In other words, the only possible values of ¢ are those between the roots of the quadratic:
2 v +2tp-v+(pf - %) =0
By standard results, the roots of the quadratic az? + bz 4 ¢ = 0 are given by the formula:

—b+ 8 —4ac
2a)

It follows that, for @ > 0, the list of (real) roots of this quadratic can be obtained directly (in
ascending order) using the Haskell definition:

> quadRoots .. Float -> Float -> Float -> [Float]
> quadRoots a b ¢ | discr > 0 = [(-b - s) / twoa, {-b + s) / twoal
> | discr == = [-b / twoa]

> | discr < 0 = []

> where discr = b*b - 4*a*c

> s = gqrt discr

> twoa = 2*a

To produce the trail for a given point we use quadRoots to solve the quadratic above for ¢. If
there are no real roots, then the line p + tv does not meet the circle. Similarly, if there is only one
root, then the line is a tangent to the circle. In the remaining case where the quadratic has two
distinct roots t; and 13, then the line must pass through the circle, and we can determine whether
point p lies inside the circle by testing whether t; < 0 < #;. Since weare only interested in positive
values of ¢, we obtain the following Haskell definition:

> type Radius = Float

> circle :: Radius -> Region

> circle rpv | a =20 = (¢c<0, [1)

> | otherwise = between True (quadRoots a b ¢)
> where a = sgrDist v

> b=2*v ‘dot' p

> ¢ = sqgrDist p - r*r

A-4

The definition of circle uses the auxiliary function between defined below to produce an
appropriate trail from the list of roots of a quadratic. The argument s specifies whether the
portion of the line between the two roots is to be considered as being inside the region.

> between :: Bool -> [Time] -> Trail
> between s [t1,t2] | t1 > O = (not s, [tl, t2])

> | t2 > 0 = (s, [t2])

> | otherwise = (not s, [])

> between s other = {(not s, [])

Half Plane Regions Half planes are another useful form of region, representing the set of points
that are on one particular side of a given line. We will define the region halfPlane a bto be
the half plane of points to the left of the line joining the point a to the point b.

With some simple geometry using the vector cross product, the sign of the component of
(a — p) x (b — a) in the perpendicular plane can be used to determine whether a particular point
p lies in the specified half plane.

For the intersection of a line p + tv with the line joining two points a and b, we need to find
values of u and ¢ such that:
p+tv=a+pub-a).

Taking the vector product with b — a, this gives:
tvx(b—a)=(a—p)x(b-a)

If vand b — a are linearly dependent, then the two lines are parallel, and the cross product on the
left is zero. Otherwise, taking components in the plane perpendicular to both vand b — a, wecan
calculate the required solution (ignoring values ¢ < 0):

> halfPlane :: Point =-> Point -> Region

> halfPlane a b p v | par == = (pos>0, [1)

> | otherwise = (pos>0, filter (>0) [pos/par 1)
> where par = zcross v (b - a)

> pos = zcross (a - p) (b - a)

The zcross function uses the standard definition to calculate the component of the vector product
in the direction perpendicular to the two dimensional plane that we are working in:

> ZCross :: Num a => Vector a -> Vector a =-> a
> zcross (Pt x y) (Pt u v) = x*v - y*u

A.14 General Operations on Regions

This section defines some useful general purpose operators that can be used to obtain new regions
of various kinds. There are many other examples of useful general operations in addition to

A-5

those described in the sections below that can also be described elegantly and concisely in this
framework, for example to to modify a region by arbitrary linear transformations such as rotations
and reflections on the coordinate space. However, none of these is required for the problems that
we deal with in the current prototype.

Complements It is sometimes useful to be able to specify a region as a complement; i.e. as the
set of points that are out side some other given region. In this case, the list of times in any given
trail is the same for both the original region and its outside; only the boolean flag indicating when
the starting point is inside the region needs to be changed.

> outside :: Region -> Region
> outside r = \p v -=> let (x,ts) = r p v in (not x, ts)

Intersections and Unions It is often useful to be able to describe regions as the intersection or
union of some simpler regions. These operations can be described directly using the (/\) and
(\/) functions, respectively, as defined below. (These symbols were chosen because of their
similarity to the N and U symbols used in typeset mathematics to denote intersection and union,
respectively.) Both intersection and union will be defined in terms of a t railMerge function that
combines a pair of trails, merging the events in chronological order. A function parameter is used
to determine where the object enters the appropriate combined region; the boolean ‘and’ operator,

(&&) is used for the intersection, while boolean ‘or’ (| |) is used for the union:
> (/\) , (\/) :: Region =-> Region -> Region

>rl /\ r2 = \p v -> trailMerge (&&) (rl p v) (r2 p v)
> rl \/ r2 = \p v -> trailMerge (||) (¥l p v) (r2 p v)

The definition of trailMerge is as follows, using three auxiliary functions described below:

> trailMerge :: (Bool -> Bool -> Bool) -> Trail -> Trail -> Trail
> trailMerge f trl tr2 = (x0, changes x0 (tmerge f x1 x2 tsl ts2))
> where x0 = f x1 x2

> (x1,tsl) = trailExpand trl

> (x2,ts2) = trailExpand tr2

~ The trailExpand function is used to convert a trail into a form with a boolean associated with
each time to indicate whether the object is entering or leaving the region at that time:

> trailExpand :: Trail -> (Bool, [(Time, Bool)])
> trailExpand (x,ts) = (b, zip ts bs)
> where (b:bs) = iterate not x

Next, tmerge is used to combine these modified trails, taking account of the times for each event,
and using earlier values x0 and y0 whenand object enters or leaves one region without a transition
in the other:

A-6

> tmerge £ x0 y0 [] rs [(f x0 y1, r) | (xr,yl) <- rs]
> tmerge £ x0 y0 1s [] = [(£ x1 y0, 1) | (1,x1) <- 1ls]
> tmerge f x0 y0 1s@((1l,x1):1xs) rs@((r,yl):rys)

> | 1 < r = (f x1 y0, 1) : tmerge f x1 y0 1lxs xs
> | 1 ==1r = (f x1 yl, 1) : tmerge f x1 yl 1lxs rys
> | 1> r = (f x0 yl1,) : tmerge f x0 yl 1ls zrys

Finally, the changes function is used to find the list of times at which the output for the resulting
merged trail actually changes:

> changes :: Bool -> [(Bool,Time)] -> [Time]
> changes s0 [] = []

> changes s0 ((sl,t):sts)

> | sO0==sl = changes s0 sts

> | otherwise = t : changes sl sts

Using the standard Haskell function foldr1, we can extend the (/\) and (\/) operators to
calculate the intersection of arbitrary (non-empty) lists of regions:

> intersect, union :: [Region] =-> Region
> intersect = foldrl (/\)
> union = foldrl (\/)

For example, intersect [rl,r2,r2] = rl /\ r2 /\ 3.

Translations The regions that we have defined so far are all fixed at particular locations in space.
However, it is easy to describe the translation of regions by specifying the position of objects
relative to some new origin. We represent this in Haskell using the operator at defined by:

> at :: Region -> Point -> Region
>r ‘at* p0 = \pv ->r (p - p0) v

For example, all of the regions produced by the circle primitive described in Section A.1.3 are

centered on the origin, but we can use the at operator to obtain a circle centered at some other
point. For example, circle r ‘at‘ cisa circular region with radius r centered at c.

The at operator satisfies a number of useful and intuitive laws, including, for example:
r ‘at' origin = «r
(r ‘at® pl) ‘at’ p2 = r ‘at' (pl+p2) = (r ‘at' p2) ‘at' pl
The first of these shows that setting a new origin that is the same as the current origin leaves the

region unchanged. The second describes the way that repeated translations are combined. The
ability to state and prove results like this is useful because it helps to ensure that our definitions

A-7

are reasonable and that they behave in the ways we expect.. In addition, laws like these can also
be very useful in program development and optimization.

The at function allows us to define translations in space, but we can also define translations
in time, for example, to describe a region that is moving through space at some constant speed.
This is accomplished using the movingAt operator defined below, replacing the velocity v of the
specified object with its velocity relative to the moving region:

> movingAt :: Region -> Velocity -> Region
> r ‘movingAt v0 = \p v -> r p (v - v0)

As with at, there are a number of useful laws that the movingAt operator satisfies:
r ‘movingAt‘ origin = r
(r ‘movingAt‘ vl) ‘movingAt‘' v2

r ‘movingAt‘ (v1+v2)
= (r ‘movingAt‘ v2) ‘movingAt' vl

In addition, we have the following law demonstrating the independence of translations in space
using at with those in time using movingat:

(r ‘movingAt' v) ‘at* p = (r ‘at' p) ‘movingAt‘' v

A.15 Derived Regions

The tools introduced in the previous sections can be used to define a wide range of useful regions.
We illustrate this with some examples that will be useful in the following work.

Annulus Regions An annulus, containing all those points whose distance from the origin is
between radius values r1 and r2 can be described as the intersection of the outside of a circle of
radius r1 with a circle of radius r2:

> annulus :: Radius -> Radius -> Region
> annulus rl r2 = outside (circle rl) /\ circle r2

Convex Polygons Many useful regions can be described using convex polygons. The following
definition allows us to construct arbitrary convex polygons by listing the vertices in counter-
clockwise order:

> convexPoly :: [Point] -> Region
> convexPoly (v:vs) = intersect (zipWith halfPlane ([v]++vs) (vs++[v]))
The key idea here is that, if the vertices are given by points [v0, v1, ..., vn], then the

interior of the polygon is just the intersection of the halfplanes joining adjacent points (including
a line from vn to v0). In the definition above, zipWith halfPlane is used to produce this list
of half-planes, and then intersect is used to produce their intersection. The zipWith function
is a standard function included as part of the Haskell standard prelude.

A-8

Segment and Pie Regions It will also be useful to be able to deal with segment-shaped regions
of the plane; i.e. regions obtained by sweeping a line emanating from the origin through a given
range of angles (like a beam from a lighthouse). The easiest way to deal with this is to think of the
segment as the intersection of two half planes:

> type Angle = Float

> segment :: Angle -> Angle -> Region

> segment 1 u

> = halfPlane (radial u) origin /\ halfPlane origin (radial 1)
> where radial a = Pt (cos theta) (sin theta)

> where theta = a * (pi / 180)

The auxiliary function radial defined here is used to calculate a point on the unit circle corre-
sponding to a given angle a. Note that the angles 1 and u, in degrees, are multiplied by pi/180
to convert them to radian measure as required by the sin and cos functions.

Using segment regions, we can define another function for constructing pie-shaped portions
of a circle:

> pie :: Radius -> Angle -> Angle -> Region
> pie r 1 u = segment 1 u /\ circle r

This will be used, for example, to define weapon doctrine regions.

A2 “Reacheability and Engageability

One remaining problem that we need to deal with is to describe the set of points that can be
reached by some object traveling from the origin at some given speed. For example, this might be
used to describe when an object is within range of a missile or radar signal.

This can be described using a circular region around the origin whose radius increases at the
given speed. For simplicity, we have assumed that the speed is constant and that trajectories can
be treated as straight lines. Although the mathematics would be a little more complex, the ideas
used here can be extended to more realistic assumptions..

If s is the speed of expansion, then we can reach a point p + tv at time ¢ if:
]p;+tvl<ts.
Squaring both sides, gives a quadratic:
(& = V)P ~2tp v —[pf >0

There are three cases to consider, depending on the comparative difference in the speeds s and |v|
which determine the sign of the leading coefficient of the quadratic:

A-9

o If s > |v|, then the region is expanding faster than the object is moving and the quadratic
above takes positive values outside the range between its roots.

o If s < |v|, then the object is moving faster than the region is expanding. The leading term of
the quadratic is negative so it only takes positive values between the roots (if there are any).

o If s = |v], then the leading coefficient is zero and the quadratic reduces to:
2
=2tp-v > |pl°.

There are two further subcases: If p - v > 0 then there are no solutions for ¢ > 0. But if
p - v <0, then we require t > ~ Ipl2/2p - v.

Combining these various cases, gives the following definition for a circular region that is expanding
with speed s:

> type Speed = Float

> expanding :: Speed -> Region
> expanding s pv | a> 0 = between False (quadRoots a (-b) (-c))
> l a< 0 = between True (gquadRoots (-a) b c)

f b< 0 = (False, { -c / b 1)

| otherwise = (False, [])

where a = s*s - sqrDist v
b 2 * p ‘dot v
c sgrDist p

vV VV VYV

A.3 Object Tracking

In this section the object representations and tracking algorithms are fully defined.

A.3.1 Sensor/Track File Data

For the purpose of this program, we assume that sensor information is supplied as a stream of
packets. Individual packets will be represented by a triple containing:

¢ The position of ownship,
o The positions of an arbitrary collection of slaved objects, and
o The positions of an arbitrary collection of objects to be tracked.
In fact, it will be useful to take a slightly more general approach and allow other kinds of data -

for example, velocities — to be held in a packet. We will therefore use the following representation
for tracking data, together with a more general Packet datatype:

A-10

> type TrackingData = Packet Point
> type Packet a = (a, [al, [a])

To estimate the velocity of an object, we just take the difference in the position of the object overa
period of time and divide by the length of the interval:

> estimateVelocity :: Point -> Point -> Velocity
> estimateVelocity new old = scale (1l/timelInterval) (new - old)

For simplicity, we have assumed that packets are supplied at regular intervals, specified by
the constant timeInterval defined in Section A.5, and we have used a very simple formula
to estimate velocities. More sophisticated approaches can be accommodated by providing a
timestamp for different input packets, or using calculations that make more use of earlier position
data to predict velocities, even when some intermediate readings are missing.

A.3.2 Estimating Velocities

The next thing we want to do is extend the approach to take a stream of packets of positions and
produce a stream of estimated velocity packets as our output. Since there is no previous data, the
velocities produced for the first input packet are all zero. Subsequent velocities can be estimated
using the est imateVelocity function defined above:

> estimateVelocities :: [TrackingData] -> [Packet Velocity]
> estimateVelocities [] = []

> estimateVelocities (pk:pks)

> = mapPacket (\p -> origin) pk

> zipWith (zipPacket estimateVelocity) pks (pk:pks)

The estimateVelocities function above was defined in terms of two general purpose
functions for working with packets of information of various kinds. The first of these applies a
specified function to each value held in a packet, the second combines each of the corresponding
components in two packets to produce a packet of results. These functions are analogues of the
standard Haskell functions map and zipWith for lists, motivating the choice of names for these
functions here:

> mapPacket :: (a -> b) -> Packet a -> Packet b

> mapPacket f (own, slaves, objs)

> = (f own, map f slaves, map f objs)

> zipPacket :: (a -> b -> c) -> Packet a -> Packet b -> Packet c¢
> zipPacket f (own, slaves, objs) (own’, slaves’, objs’)

> = (f own own’, zipWith f slaves slaves’, zipWith f objs objs’)

A-11

It would certainly have been possible to present the definition of estimateVelocities without
introducing these additional operators. However, our experience with programming in Haskell
suggests that the additional generality that this provides is often very useful because they can
be reused when additional features are added to the program at a later stage. In addition, to an
experienced functional programmer, the use of auxiliary functions like this makes the program
much easier to read and understand.

A.3.3 Dispositions

A disposition provides a snapshot of the current positions of the regions and objects of interest at
a given point in time. It is represented by a pair containing a list of named regions, and a list of
the objects that are being tracked:

> type Disposition = ([NamedRegion], [NamedObiject])
> type NamedObject (ObjectId,Point,Velocity)

> type NamedRegion (String,Region)

> type ObjectId String

The representation for a named object includes a string (used to identify the object in diagnostic
messages), and vectors giving the current position and (estimated) velocity.

Dispositions are parameterized by the list of regions centered on the ownship, the current slave
doctrines, the (fixed) positions of tight zones and the names being used to identify the regions that
are currently being tracked. We represent these parameters by a tuple:

> type Params = ([NamedRegion], -- regions centered on ownship
> [NamedRegion], -- slave doctrine regions

> [NamedRegion], -- tight =zones

> [ObjectId]) -- objects being tracked

(For simplicity, we have assumed a single ownship, although it would be easy to extend the
program to use an arbitrary list of ownships.)

A disposition can be obtained by combining the data from these parameters, an input packet
specifying the position of each object and a corresponding packet of estimated velocities:

> makeDisposition :: Params -> Packet Point -> Packet Velocity -> Disposition
> makeDisposition (ownRegions, slaveRegions, tightZones, objectIds)

> (pown, pslaves, pobjs) (vown, vslaves, vobis)

> = (map (position pown vown) ownRegions

> ++ zipWith3 position pslaves vslaves slaveRegions

> ++ tightZones,

> zip3 objectIds pobjs vobis)

> where position p v (name,r) = (name, r ‘at‘ p ‘movingAt' v)

A-12

A.3.4 Situation Assessment

Having constructed a suitable disposition, the next task is to assess the situation that it describes,
producing reports to indicate when an object is in a given region, or when it can be expected to
enter or leave a given region. This is captured by the assess function which produces a single
string containing all the reports for the current disposition. We use the par function to indicate
that these individual reports can be generated concurrently in a parallel implementation:

> assess :: Disposition -> String
> assess (regs, objs)
> = unlines (par [r | obj <- objs, r <- objectReport obj regs])

A.3.5 Report Generation

The objectReport function is used to produce the list of reports for a specific object relative to
the list of regions of interest. The report begins with a display of the current position and velocity
of the object, followed by reports for individual regions. As before, the par function is used to
indicate that these reports can be produced in parallel.

> objectReport :: NamedObject ~-> [NamedRegion] =-> [String]

> objectReport (what,p,v) rs

> = [what ++ ": " 4+ showP p ++ " =-> " ++ showP v] ++

> par [rep | reg <- rs, rep <- regionReport p v reg]

> where showP (Pt x y) = "(" ++ show x ++ ","™ ++ show y ++ ")}"

Finally, we have the regionReport function that produces the reports for a single object at
point p moving with velocity v through a particular named region. These reports are generated
by using the information obtained from the trail for the current object and region.

> regionReport :: Point -> Velocity -> NamedRegion -> [String]

> regionReport p v (region,r)

> = case r p v of

> (False, [1]) -> {1

> (False, (t:_)) -> [" -- Expected in " ++ region ++

> " at t+" ++ showApprox t]

> (True, [1) -> ["* -- Currently in " ++ region]

> (True, (t:)) -> [" -- In " ++ region ++

> v, expected to leave at t+" ++ showApprox t]

Note that, in the first case, if the object is currently outside the region concerned with no expected
entry time (indicated by the trail (False, []), thenno reports are actually generated in this case
(or more precisely, the list of reports is empty).

Finally, we have included a simple routine to print the time values produced by the trail
calculations to a single digit of accuracy (of course, theaccuracy of the output figures is determined
by the accuracy of the input data).

A-13

> showApprox :: Time -> String
> showApprox t = front ++ take 2 rest
> where (front,rest) = span (’.’/=) (show (t+0.05))

A4 Complete Program

The complete program is described by a function that takes a set of disposition parameters params,
and an input stream of tracking data td and produces a list of String reports as its output. The
input stream td is combined with the estimated velocities to produce a stream of dispositions,
each of which is passed to the assess function to obtain the reports required:

> program :: [Params] =-> [TrackingData] -> [String]
> program params td
> = map assess (zipWith3 makeDisposition params td (estimateVelocities td))

The parameter stream used here, typically generated from operator inputs, allows the situation
being monitored to change dynamically over a period of time.

A.5 Sample Data and Execution

This section provides the sample data corresponding to the information given in the original
problem description, and subsequent extensions.

We start with the descriptions of the weapon doctrine, engageability, missile range, slave
doctrine and tight zone regions, and the list of objects that are being tracked.

> params :: Params

> params = (ownRegions, slaveRegions, tightZones, objectIds)

> where

> ownRegions = [("weapon doctrine", pie 59 (-120) 120),

> ("engageability zone", ezone},

> ("missile range", missile}]

> where ezone = annulus 22 44

> missile = ezone /\ expanding missileSpeed

> slaveRegions = [("carrier slave doctrine", circle 40)]

> tightZones = [("tight zone",

> convexPoly [Pt 0 5, Pt 118 32, Pt 118 62, Pt 0 25] \/
> convexPoly ([Pt 118 32, Pt 259 5, Pt 259 25, Pt 118 62])]
> objectIds = ["commercial aircraft", "hostile craft"]

This data will be used as parameters to makeDisposition. For the data given in the problem
description, the same parameters are used throughout, so the corresponding stream of input
parameters required is just repeat params.

Two additional parameters, supplied in the list of extensions to the original prototyping
document are the interval between packets and the speed of missiles:

A-14

> timeInterval :: Time
> timelInterval 20

> missileSpeed :: Speed
> missileSpeed 20 / timelInterval

Finally, the positions of the various objects at different times are given by the following table of
packets, with coordinates taken directly from the Figures in the original problem description:

> trackingbata :: [TrackingData]

> trackingData = [(Pt 113 64, [Pt 180 140], [Pt 38 25, Pt 258 183]),
> (Pt 123 64, [Pt 180 130], [Pt 58 30, Pt 239 164]),
> (Pt 133 64, [Pt 180 119)], [Pt 100 43, Pt 210 1361),
> (Pt 163 64, [Pt 180 81], [Pt 159 36, Pt 148 73]),
> (Pt 192 64, [Pt 180 60], [Pt 198 27, Pt 110 37])]

To demonstrate how this data can be used with our prototype implementation, we define the
following function to print the list of reports, including an indication of the elapsed time at the
beginning of each report:

> demo :: Dialogue

> demo = display (zipWith (\t r -> "Time " ++ show t ++ ":\n" ++ r ++ "\n")
> (iterate (timeInterval+) 0)

> (program (repeat params) trackingData))

> where display = foldr (\rep -> appendChan stdout rep exit

> appendFile "trackFile" rep exit) done

The display function defined here is used to output the reports on the standard output channel
with a newline character inserted after each (as a result of the call to unlines).

Running this program produces the following output:

Time 0.0:

commercial aircraft: (38.0,25.0) --> (0.0,0.0)
—— Currently in tight zone

hostile craft: (258.0,183.0) --> (0.0,0.0)

Time 20.0:
commercial aircraft: (58.0,30.0) --> (1.0,0.25)
-~ Expected in weapon doctrine at t+131.3
-- Expected in engageability zone at t+52.5
~- Expected in missile range at t+52.5
-- Expected in carrier slave doctrine at £+94.5
~~ In tight zone, expected to leave at t+93.2
hostile craft: (239.0,164.0) --> (-0.95,~0.95)

A-15

-- Expected in weapon doctrine at t+55.6

-- Expected in engageability zone at t+65.0

-- Expected in missile range at t+65.0

-- Expected in carrier slave doctrine at t+26.9
-- Expected in tight zone at t+111.5

Time 40.0:
commercial aircraft: (100.0,43.0) --> (2.1,0.65)
-- Expected in weapon doctrine at t+22.8
-- In engageability zone, expected to leave at t+10.2
-- Expected in missile range at t+34.3
-- Expected in carrier slave doctrine at t+31.8
—- In tight zone, expected to leave at t+19.8
hostile craft: (210.0,136.0) --> (-1.45,-1.4)
-- Expected in weapon doctrine at t+19.6
-- Expected in engageability zone at t+26.1
-- Expected in missile range at t+31.6
-— In carrier slave doctrine, expected to leave at t+44.3
-- Expected in tight zone at t+55.1

Time 60.0:
commercial aircraft: (159.0,36.0) --> (2.95,-0.35)
-- Expected in weapon doctrine at t+16.2
-- In engageability zone, expected to leave at t+20.9
—- Expected in carrier slave doctrine at t+3.9
-- In tight zone, expected to leave at t+33.9
hostile craft: (148.0,73.0) --> (-3.1,-3.15)
-- Expected in engageability zone at t+l.4
-- In carrier slave doctrine, expected to leave at t+2.1
-- Expected in tight zone at t+4.8

Time 80.0:
commercial aircraft: (198.0,27.0) =--> (1.95,-0.45)
-- In engageability zone, expected to leave at t+11.9
-— In carrier slave doctrine, expected to leave at t+4.0
-- In tight zone, expected to leave at t+31.3
hostile craft: (110.0,37.0) --> (-1.9,-1.8)
-~ In tight zone, expected to leave at t+5.0

A-16

B Prototypel

This Appendix presents our "Prototype 1," a Haskell solution to the original problem specification
given in Reference 1. It is being included to fully document the evolution of our prototype, and
to demonstrate the graceful extensibility of programs written in Haskell.

This appendix B, which is a complete executable Haskell program, was written by Mark Jones
of Yale University, and is covered by the copyright notice on this report.

B-1

B.1 Point

A point is used to identify a location in space. Following the simplifications required by the
problem statement, we will represent a point by a pair of coordinates:

> type Point = (Float, Float)

These definitions are easily modified to extend the program to work in three dimensional space
with other kinds of values, for example, floating point numbers, as coordinates.

To simplify our work with points, we define operations of addition and subtraction, treating
points as vectors:

> instance (Num a, Num b) => Num (a,b) where

> (x,y) + (u,v) = (x+u, y+v)
> negate (x,y) = (=%, -y)
> (x,y) - (u,v) = (x-u, y-v)

It will also be convenient to be able to determine the distance of a point from the origin; this
can be calculated using Pythagoras’ theorem:

> type Distance = Float

> dist :: Point -> Distance
> dist (x,y) = sgrt (x*x + y*y)

B.2 Regions
A region is a set of points in space. Since our main object is to construct regions and test to see
when an object is inside a region, we will represent regions as predicates, returning True if a

given point lies within a given region:

> type Region = Point =-> Bool

B.2.1 Some Primitive Regions

We start by defining a collection of primitive regions from which the full regions that we are
interested in can be constructed. This provides a library of regions that can easily be extended as
necessary to accommodate new kinds of region as necessary.

Circular Regions A simple example of the kind of regions that will be useful to us in following
work, is a circle with a specified centered and radius. The points inside this region are those whose
distance from the center is less than or equal to the radius:

> type Radius = Float

> circle :: Point -> Radius -> Region
> circle c ¢ = \p -> dist (p - ¢c) <=1

Half Plane Regions Half planes are another useful form of region, representing all those points
on one particular side of a given line. With a simple bit of geometry using the vector cross product,
the half plane of points to the left of the line from a point a to a second point b can be described
by the region halfPlane a b, where:

> halfPlane :: Point -> Point -> Region
> halfPlane a b = \p -> let (x,y) = p - a
> {u,v) = p -b
> in (x*v - y*u) >= 0

Segment Regions It will be also useful to have a way of representing regions of the plane that
are obtained by sweeping a line emanating from a give point p0 through the angles 1 to u (like
the beam from a lighthouse). This can be defined by:

> type Angle = Float

> segment :: Point -> Angle -> Angle -> Region

> segment p0 1 u = \p -> let (x,y) =p - p0

> theta = degrees (atan2 y Xx)
> in 1 <= theta && theta <= u

Note that the angles specified by 1 < u should be in the range —180° to 180° (i.e. ~ to radians).

We have also used an auxiliary function degrees to convert the angle (in radians) returned
by the atan2 function to the corresponding number of degrees. We could have simply included
this as a constant in the definition of segment. However, it seemed sensible to make degrees
available as a general utility, since this may be useful in other parts of the program.

> degrees :: Angle -> Angle
> degrees angle = (angle / pi) * 180

B.2.2 General Operations on Regions

There are also a number of more general operations on regions. For example, we can represent
the intersection and the union of two regions using the operators (/\) and (\/), respectively,
defined by:

B-3

> (/\) , (\/) :: Region -> Region -> Region
>rl /\ x2 = \p -> (rl p && r2 p)
> rl \/ r2 =\p -> (r1 p || r2 p)

It is sometimes useful to specify a region as the set of points that are out side some other given
region:

> outside :: Region -> Region
> outside r = \p -> not {(r p)

It is easy to extend this framework with other operations for working with regions, for example
to calculate the intersection or union of a list of regions, or to modify a region by an arbitrary
transformation on the coordinate space (for example, linear transformations such as reflections
and rotations). However, none of these is required for the problems that we deal with in this

prototype.

B.2.3 Derived Regions

The tools introduced in the previous sections can be used to define a wide range of useful regions.
For example, an annulus containing all those points whose distance from a center point c is
between rl and r2 can be described by:

> annulus :: Point -> Radius -> Radius -> Region
> annulus ¢ rl r2 = outside (circle ¢ rl) /\ circle ¢ r2

It will also be useful to have ways of specifying regions contained within arbitrary convex poly-
gons, specified by listing the vertices in counter-clockwise order:

> convexPoly :: [Point] -> Region
> convexPoly (v:vs}) = foldrl (/\) (zipWith halfPlane ([v]++vs) (vs++[v]))

The key idea here is that, if the vertices are given by points [v0, v1, ..., wvn], then the
interior of the polygon is just the intersection of the halfplanes joining adjacent points (including
a line from vn to v0). In the definition above, zipWith halfPlane is used to produce this
list of half-planes, and foldrl (/\) is used to construct their intersection. Both zipWith and
foldrl are standard functions in Haskell.

B.3 Regions for Prototyping Problem

According to the data provided in Figure 6 of the problem description, there are four regions of
interest in the sample problem, each of which will be described below. In a larger program these
might be placed in a separate module as constants that can be changed without needing to modify
the rest of the program.

B-4

o The Weapon doctrineis described by a portion of acircle, radius 59, centered around ownship
with all points in the range —120° to 120°:

> weaponDoctrine Point -> Region

> weaponDoctrine ownship = circle ownship 59 /\

> segment ownship (-120.0) 120.0

e The engageability zone is an annulus with inner radius 22 and outer radius 44, centered
around ownship:

> engageabilityZone
> engageabilityZone ownship =

Point -~> Region
annulus ownship 22 44

e The slave doctrine for the carrier, given by a circle of radius 40 around the carrier:

> slaveDoctrine
> slaveDoctrine carrier =

Point -> Region
circle carrier 40

¢ The tight zone for commercial traffic. This can be described as the union of two convex

polygons:

> tightZone Region

> tightZone = left \/ right

> where left = convexPoly [(0,5), (118,32), (118,62), (0,25)]

> right = convexPoly [(118,32), (259, 5), (259,25), (118,62)]

A complete disposition, given the position of ownship and the carrier, and including names
for each of the zones, is given by the following:
> type Disposition = [(String, Region)]
> makeDisposition :: Point -> Point -> Disposition
> makeDisposition ownship carrier

> = [("weapons doctrine”,

> ("engageability zone",
> ("slave doctrine",

> ("tight zone",

B.4 Putting Everything Together

weaponDoctrine ownship),
engageabilityZone ownship),
slaveDoctrine carrier),
tightZone)]

" The aim of the prototype is to assess configurations of regions and objects, indicating when
particular objects are inside specified regions. We will describe this by a function:

B-5

> type Object = (String, Point)

> assess :: Point -> Point -> [Object] -> String

> assess ownship carrier situation

> | null reports = "all quiet!\n"

> | otherwise = unlines reports

> where disp = makeDisposition ownship carrier

> reports = [what++" in "++region | (what,p) <- situation,
> (region,r) <- disp,

> rpl

The first two arguments give the current positions of ownship and the carrier, respectively. The
third argument is a list of pairs containing the name (represented by a String) and a point
(indicating the position) of each object that is being tracked. The output is a string providing the
required status report.

To specify the set of problems that we want to assess, we use the following data, giving the
names of the objects being tracked and their positions:

> objectNames = ["commercial aircraft", "hostile present"]
> trackingData :: [(Point, Point, ([Point])]
> trackingData = [((113,64), (180,140}, (38,25), (258,183)1]),

[
> ((123,64), (180,130), [(58,30), (239,164)1]),

((133,64), (180,119), [(100,43), (210,136)1]),
((163,64), (180,81), [(159,36), (148,73)1),
((192,64), (180,60), [(198,27), (110,37)1)]

Vv V V

To display the reports for each of these situations using the definitions given in this paper, we
just run the following program:

> demo :: Dialogue

> demo = appendChan stdout (unlines reports) exit done

> where reports = [assess ownship carrier (zip objectNames positions)
> | (ownship, carrier, positions) <- trackingData]

Using the data above the demo program produces the following output:
commercial aircraft in tight zone

commercial aircraft in tight zone

commercial aircraft in engageability zone

commercial aircraft in tight zone
hostile present in slave doctrine

B-6

commercial aircraft
commercial aircraft
commercial aircraft

in
in
in

weapons doctrine
engageability zone
tight zone

hostile present in slave doctrine

commercial aircraft
commercial aircraft
commercial aircraft
commercial aircraft

in
in
in
in

weapons doctrine
engageability zone
slave doctrine
tight =zone

hostile present in tight zone

B-7

C Trainee Version of Prototype 1

This Appendix presents a Haskell solution to the original problem specification written by a recent
college graduate who was given only eight days to learn Haskell just prior to the experiment.

This appendix C, which is a complete executable Haskell program, was written by Kevin
Coram of Intermetrics, and is covered by the copyright notice on this report.

> module AEGIS where

There are three basic types of things we will need to keep track of, each with their own geometric
regions. These are: the Aegis ship with its weapon doctrine, and engageability zone; objects being
tracked with their slave doctrine; and fixed Tight Zones, which can be specified by a two functions,
which make up the lower and upper boundaries of the zone. Since the tight zone boundaries
can be piecewise continuous functions, we will store the lower and upper boundaries as lists of
functions. For all object types, there is a position. Since none of the information in a report will
change from time instance to time instance other than the position, the position information will
be stored external to the object information.

> data Object type = Aegis Name Doctrine E_Zone
> | Track Name Doctrine
> | T Zone [Function] [Function]

Give every object some type of identifying name. The names must be unique so we can filter
out things like an object being in its own slave doctrine.

> type Name = [Char]

The position of any object is specified by its Cartesian coordinates.

> type Position = (Float, Float)

There are two types of doctrines. The first is the weapon doctrine of the Aegis ship. It is the area
of a circle of given radius, possibly with a wedge removed. Thus, it can be represented buy the
radius of the circle, and the information for the wedge. We do not have a wedge associated with

a slave doctrine, and therefore only need know the radius.

> data Doctrine = Weapon Radius Wedge
> | Slave Radius

The engageability zone is modeled as the volume that a rectangle rotated around the Aegis ship
sweeps out. Since for this model we are ignoring the altitude component, this becomes the area
between two concentric circles centered at the ship.

> data E Zone = Zone (Radius, Radius)

For this model, represent the radius of a circle by a real number.

> type Radius = Float

Represent the wedge removed from the weapon doctrine as the degrees for the start of the removed

wedge, paired with the degrees for the end of the wedge. Use the X-axis in the Cartesian coordinate
grid as the zero for the angles. The lack of a wedge can be represented by (0.0,0.0).

C-2

> type Wedge = (Float, Float)

For this model, the functions used to bound a tight zone are straight lines. We can specify them
with two points on the line, and the lower and upper bounds of the function along the X-axis.

> type Function = (Position, Position, Float, Float)

An object can be specified by the object’s type, and it’s current position. Note that the position
field for a Tight Zone is redundant.

> type Object = (Object_type, Position)

Define the data for each of the objects in the model:

> aegis_ship Aegis "Aegis Ship"
> (Weapon 59.0 (120, 240))
> (zone (22.0, 44.0))

Track "Carrier"™ (Slave 40.0)

> carrier

> hostile

Track "Hostile" (Slave 0.0)

il

> commercial Track "Commercial Airline" (Slave 0.0)

> tight zone = T_Zone [((0.0, 25.0), (118.0, 62.0), 0.0, 118.0),
> ((118.0, 62.0), (259.0, 25.0), 118.0, 259.0}]
> [(¢ 0.0, 5.0), (118.0, 32.0}), 0.0, 118.0),
> ((118.0, 32.0), (259.0, 5.0), 118.0, 295.0)]

For each positional report, make a list of type Object, with one entry per object, specifying the
position for each object. By convention, the Aegis ship will always be the first record in the list.

> initial :: [Object]

> initial = [(aegis_ship, (118.0, 64.0)),
> {(carrier , (180.0, 140.0)),
> (hostile , (258.0, 183.0)),
> (commercial, { 38.0, 25.0)),
> (tight_zone, (0.0, 0.0))
>]

> report2 :: [Object]

> report2 = [(aegis_ship, (133.0, 64.0)),
> (carrier , (180.0, 119.0})),
> (hostile , (210.0, 136.0)),
> {(commercial, (100.0, 43.0)),

C-3

> (tight_zone, (0.0, 0.0}))

>]

> report3 :: [Object]

> report3 = [(aegis_ship, (123.0, 64.0)),
> (carrier , (180.0, 130.0)),
> (hostile , (239.0, 164.0)),
> (commercial, {(58.0, 30.0})),
> (tight_zone, (0.0, 0.0))
>]

> reportd4 :: [Object]

> report4 = [(aegis_ship, (163.0, 64.0)),
> (carrier , (180.0, 81.0})),
> (hostile , (148.0, 73.0})),
> {(commercial, (15%.0, 30.0)},
> (tight_zone, (0.0, 0.0))
>]

> report5 :: [Object]

> report5 = [(aegis_ship, (192.0, 64.0)),
> (carrier , (180.0, 60.0)),
> (hostile , {(110.0, 37.0)),
> (commercial, (198.0, 27.0)),
> (tight_zone, (0.0, 0.0))
>]

The distance between two points on the Cartesian plane can be found by the following function.

> distance :: Position -> Position -> Float
> distance (x,y) (x’',y’) = sart ((x-x')"2 + (y-y’')"2)

Given a point, and a circle (center point paired with the radius), determine whether or not the
point is inside the circle.

> inCircle :: (Position, Radius) -> Position -> Bool
> inCircle (pl,r) p2 = (distance pl p2) <=1

Given an engagement zone, paired with the center of the zone, and a point, determine if the point
is within the engagement zone. It is in the zone if the point is inside the outer radius and not
inside the inner radius.

> inZone :: (Position, E_Zone) -> Position =-> Bool
> inZone (pl, Zone (rl, r2)) p2 = (inCircle (pl, r2) p2) &&
> not (inCircle (pl, rl) p2)

C-4

Given a weapon doctrine, paired with the center of the doctrine, and a point, determine if the
point is within the doctrine.

> inWeapon :: (Position, Doctrine) -> Position -> Bool
> inWeapon (pl, (Weapon r w)) p2 = (inCircle (pl, r) p2) &&
> not (inWedge (pl, w) p2)

Given a wedge paired with the coordinates of the ‘tip’ of it, and a point, determine if the point is
in that wedge.

> inWedge :: (Position, Wedge) -> Position -> Bool
> inWedge (pl, (d1,d2)) p2 = ((angle pl p2) > dl) && ((angle pl p2) < d2)

Given two points in the Cartesian plane, determine the angle a ray from the first to the second
makes with the positive X-axis.

> angle :: Position -> Position -> Float
> angle (x,y) (x',y") | x /= x" && y /=y’ toDegree (phase ((x'-x):+(y’'-y)))
> | otherwise = 0.0

The phase (and indeed all the Haskell trig functions) operate on radians. However, we are storing
our angles as degrees. Function toDegree will change radian measures into degrees. The constant
57.29577951 is the number of degrees per radian. Also, the range for the Haskell trig functions is
(-pi,pi) and what we want is (0,360), thus we add 180 degrees to the result of the radians-to-degrees
calculation when the radian measure is negative.

> toDegree :: Float -> Float
> toDegree x | x < 0 = 180 + (x * 57.29577951)
>] x> 0 = x * 57,29577951

Given an Aegis ship and an object being tracked, return a string telling us whether the tracked
object is in the Weapon doctrine of the ship. If the first object is not an Aegis ship, return the null
string.

> weapon_doctrine :: Object -> Object =-> String

> weapon_doctrine ((Regis nl doct _), pl)

> ((Track n2 _) , pP2) = if (inWeapon (pl,doct) p2)

> then

> (n2 ++

> " within weapon doctrine of "
> ++ nl ++ ".")

> else ""

> weapon_doctrine _ _ = nn

C-5

Given an Aegis ship and an object being tracked, return a string telling us whether the tracked
object is in the Engageability Zone of the ship. Again, if the first object is notan Aegis ship, return
the null string.
> engageable :: Object -> Object -> String
> engageable ((Regis nl _ zone), pl)

> ((Track n2 _) , p2) = if (inZone (pl,zone) p2)

> then

> (n2 ++

> " within engageability zone of "
> ++ nl ++ ".")

> else ""

> engageable _ _ = "

Given two objects, return a string telling us if the second object is in the Slave Doctrine of the
first. The Aegis ship does not have a slave doctrine, so if it is the first object, returna null string.
Likewise, tight zones do not have any doctrines, so return a null string for them as well.

> inSlave :: Object -> Object =-> String

> inSlave ((RAegis _ _ _), _) _ = "

> inSlave ((Track nl (Slave r)), pl)

> ((Regis n2 _), p2) | nl /= n2 = if (inCircle (pl,r) p2)

> then

> (n2 ++

> " within slave doctrine of "
> ++ nl ++ ".M)

> else ™"

> | nl == n2 = ""

> inSlave ({(Track nl (Slave r)), pl)

> ((Track n2) , p2) | nl /= n2 = if (inCircle (pl,r) p2)

> then

> (n2 ++

> " within slave doctrine of "
> ++ nl ++ ".%)

> else nn

> | nl == n2 = "¢

> inSlave _ _ = nu

Given a function (as defined above), we may want to evaluate the Y value of that function for a
given X value. Function evaluate does this for us. It takes in the list of the piecewise function
and finds the range that our X value is in. It then calls the appropriate function evaluator given
the function definition for the range on the X value, returning the Y value for the function. If the
X value is not within one of the ranges where the function is defined, the error routine is called,
givin us a run-time error.

C-6

> evaluate :: [Function] =-> Float -> Float

> evaluate [] _ = error "Point out of range in function evaluate"”
> evaluate (x:xs) val = if inBounds x val then

> straight_line x val

> else

> evaluate xs val

Function inBounds takes a single function and an X value and returns Trueis the X value is within
the bounds for the function definition.

> inBounds :: FTunction -> Float =-> Bool
> inBounds (_, _, 1, u) ¥ = (1 <= x) && (x <= u)

Our functions are straight lines, specified by two points on the line. The function below uses those
two points to form a function that will map X values into Y values. Notice that m is our slope,
and the (y-m*x) term is our Y intercept.

> straight_line :: Function -> Float -> Float
> straight line ((x,y), (x',y’), _, _) val =m *val +y -m?*x
> where m = (y-y’)/(x-x")

Given a point and a function, determine if that point is above or below the function curve.

> below :: Position -> [Function] -> Bool
> (x,y) ‘below' fs = (evaluate fs x) <=y
> above :: Position -> [Function] -> Bool
> (x,y) ‘above' fs = (evaluate fs x) >=y

Given a tight zone and a point, determine if the point is within the tight zone. The point is inside
the tight zone if it is above the lower bounding function and below the upper boundng function.

> tight :: Object type -> Position —-> Bool
> tight (T_Zone 1ls us) p = (p ‘below®' us) && (p ‘above' 1s)

Using the above function, output a string if the object is in the tight zone. If the first object is nota
tight zone, return the null string. Likewise, if both objects are tight zones, return null since having
one tight zone inside another is meaningless.

> inTightZone :: Object -> Object -> String

> inTightZone ((T_Zone ls us), _)

> ((ARegis nl _), pl) = if (tight (T_Zone 1ls us) pl)

> then

> nl ++ " is in a tight zone."
> else "M

C-7

> inTightZone ((T_Zone 1ls us), _)

> ((Track nl1), pl) = if (tight (T _Zone 1ls us) pl)

> then

> nl ++ " is in a tight zone."
> else ""

> inTightZone _ _ = nn

To generatea report, we will splice together the output strings from applyingtheweapon_doctrine,
engageable, inSlave, and inTightZone functions together. For weapon_do ctrine and
engageable, we map the functions, with the Aegis ship as the argument, onto all the rest of the
objects in the list of objects for the position report. To check the slave doctrines and tight zones,
we must look at all pairs of objects. To do this, we use list comprehension rather than mapping,
All this generates a list of strings. Using the filter function to remove any strings that are null, we
then use the unlines function to splice the list of strings into a single, longer string.

> genReport :: [Object] -> String

> genReport (x:xs) = unlines $

> filter (/= "") $

> {"Weapon Doctrine Report:"] ++

> (map (weapon_doctrine x) xs) ++

> ["\nEngageability Zone Report:"] ++

> (map (engageable x} Xxs) ++

> ["\nSlave Doctrine Report:"] ++

> [inSlave y z | y <- X:xXs, z <—- X:ixs] ++
> ["\nTight Zone Report:"] ++
> [inTightZone y z | y <- X:iXs,

> z <- x:X8]

The heart of the program interface is the printReport dialogue. It will print out onto the standard
output the report for the given positional report list. To runit, select Ccrtoruna dialogue and
then type printReport <report list> where <report list> is the name of the positional report list for
which we want a report.

> printReport :: [Object] =-> Dialogue
> printReport xs = appendChan stdout (genReport xs) exit done

Appendix D

An Ada 9X Solution to the
AEGIS Weapons System (AWS)
Prototyping Demonstration Project*

* Prepared by Benjamin M. Brosgol, consultant to Intermetrics, Inc.

PageD -1

This appendix provides a solution to the AWS prototyping problem, written in Ada 9X. A
solution to this problem has two aspects. First, it is necessary to model the architecture of the
system: the objects (ships, tracks), antributes (position, weapon doctrine, etc) and relationships
(such as when a track is in a given region). Second, it is necessary to implement the geometry to
prototype the algorithms. Both of these are essential. Focusing solely on the 1st may yield a
design that, though sound in theory, overlooks issues (such as performance) that are important in
practice. On the other hand, focusing solely on the second may yield a simple working demo
quickly but does not necessarily "scale up"; major redesign may be needed to meet the
requirements of the full problem.

Ada provides facilities that allow us to address both aspects. In this paper we will present a
solution using Ada 9X. An Ada 83 version is also feasible, but for a more complete exploitation
of Object-Oriented Programming (OOP) methods, the emerging Ada 9X standard supplies the
needed capabilities.

D.1 System Architecture

Table 1 of the Prototype Description reveals the kinds (classes) of objects that the program will
deal with. In this section we define these object classes, the attributes of each class, and the
relationships among the classes. (Note that the term "attribute” is used in this paper in the OOP
sense of a fetchable/storable component of an object, rather than in the Ada syntactic sense.) We
also summarize the required processing, indicating the potential parallelism.

D. 1.1 Class/Attribute/Relation Notation

The notation defined in this section allows the succinct expression of an OOP-based system
design. It is an abstraction of OOP syntax as found in traditional OO languages, and the
description employs conventional OOP terminology ("class", "subclass”, "attribute”). It can be
easily (in fact, mechanically) mapped to Ada 9X packages, with a "class" corresponding to both
a package (possibly a child) and a tagged type.

The form:

Class_Name [Attr_1 : Attr_Type_1;
Attr_2 : Attr Type_2:
...
{ Func_1(Parameter_ Types_1l) : Func_1_Return Type;

.

defines the class Class_Name; any object of this class has attributes Attr_1 of type Attr_Type_1,
Attr_2 of type Attr_Type_2, etc. Moreover, Func_1 applied to the object and also to parameters
of the types specified in the list returns a value of type Func_1_Return_Type, etc.

Implicitly associated with the class Class_Name are two operations, one to construct a new
object and the other to delete an existing object.

PageD -2

function New Class_Name (Attr_1 : Attr Type_1;
Attr_ 2 : Attr_Type_2;
...) return Class_Name_Ref;

procedure Delete (Object : in out Class_Name_ Ref);

where Class_Name_Ref is an access type whose designated type is Class_Name'Class (see
below for definition of 'Class).

Each attribute [Attr : Attr_Type] is implemented by two operations:

. a procedure that sets a new value for the attribute:

procedure Set_Attr(Object : in out Class_Name;
New_Value : Attr_Type):

. a function that retrieves the current value of the attribute:
function Attr (Object : Class_Name) return Attr_ Type;

Each function {Func(Parameter_List) : Return_Type} is implemented by a corresponding
function:

function Func (Object : Class Name; Parm_ 1 : Parm Type 1/ ...)
return Return_Type;

where Parm_Type_1 etc correspond to the Parameter_List.

Indentation defines the class-subclass relationship; a subclass may introduce new attributes and

functions, override existing attributes and functions, or both. For example,

Class_1 [Attr_1 : Attr_Type 1]
Class_2 [Attr_2 : Attr_Type_ 2]
Class_3 [Attr_1 : Attr_Type_ l;

Attr_3 : Attr_ Type_3]

defines the class Class_1 and two "subclasses”, Class_2 and Class_3. Let Class_1'Class denote

the discriminated union of Class_1 and its subclasses. Then the following properties hold:

. An object of class Class_1 has (only) the attribute Attr_1. An object of class Class_2 has

the attributes Attr_1 (inherited from the parent class) and Attr_2. Similarly, an object of
class Class_3 has the attributes Attr_1 and Attr_3. Note that the value of Attr_1 fora
Class_3 object is given by the "inner” attribute definition.

An object from Class_1'Class is an object from one of the classes Class_1, Class_2, and
Class_3, together with a "tag" identifiying which class.

Those familiar with OOP will see that the above notation is a succinct way of identifying
inheritance (the subclass/class hierarchy), polymorphism (an object from C'Class can be in class

PageD -3

C, or in any subclass of C), and dynamic binding (the interpretation of an attribute of an object
from C'Class depends on which class it is in).

The notation
Relation_Name (Class_1l, ..., Class_n)

indicates that there is a relation Relation_Name such that for any objects Obj_1, ..., Obj_n in
classes Class_1, ..., Class_n, respectiveley, the condition Relation_Name(Obj_1, ..., Obj_n) is
either true or False.

D.1.2 Definition of AWS Prototype Object Classes

With the above notational conventions in place, we can succinctly portray the object classes
relevant to the AWS example. The attribute types shown will be defined later.

Ship [Position : Ship Position_Type]

Ownship [Weapon_Doctrine : W_Doctrine_Type;
Engageability Zone : E_Zone_Type]
Carrier [Slaved Doctrine : S_Doctrine_Type]
Track [Position : Track Position Type] {Kind() : String};
Friendly!]
Hostile[]

Commerciall[]
Tight Zone [Boundary : Boundary_ Typel

Note that since weapon doctrine, engageability zone, and slaved doctrine exist only in terms of a
host ownship or carrier, they are modeled as attributes as opposed to object classes. On the other
hand, since a tight zone is an object independent of ships and tracks, it is modeled by an object
class.

Some attribute values are updated periodically as part of the behavior of the program. (In the
above example, these are the Position attributes of Ship and Track.) Other attribute values
change either infrequently or not at all.

The Track hierarchy lets us model the situation where an aircraft is either known to be friendly,
hostile, or commmercial, or is unknown. In particular, the function Kind returns "Unknown"
when the parameter is in class Track, "Hostile" when in class Hostile, and "Commercial" when
in class Commercial.

D.1.3 Relationships among the object classes

The following relations are of relevance to the program; each may be regarded as a function that
delivers a Boolean result based on whether the condition holds:

In_Weapon_Doctrine (Track_Ref, Ownship)

PageD -4

In_Engageability Zone(Track_Ref, Ownship)
In_Slaved Doctrine(Track_Ref, Carrier)

In_Tight_Zone(Track Ref, Tight_Zone)

Note that there are many different ways in which these functions could be implemented. For
example, each track object could initiate a check of which regions it is in, every time its position
is updated. Alternatively, a separate part of the program could do this checking asynchronously.
The above relations are thus an abstract statement of what is required, independent of the
implementation.

D.1.4 Processing Model
The addendum to the problem description states:

"Prototypers are encouraged to think in terms of three concurrent processes, sensor/track
file building, geo-region computation management, and operator interface; and two data
structures with protection for concurrent access, track file and geo-region descriptions.”

This is readily modeled in Ada; in fact, the above object class summary is independent of
whether the underlying processing model is sequential or parallel. As we will see in the next
section, each object class can be implemented by one or more protected objects, thus ensuring
that in the parallel case an update operation to an attribute value is mutually exclusive with all
other accesses to that value.

The problem statement leaves open a number of alternatives for modeling the potential
concurrency, but strongly suggests that the track updates and engagement calculations be
independent. To satisfy this requirement, our design has the following tasking structure:

. One periodic task updates the position of each ship and track.

. For each track, there is a periodic task that uses the current positions to update the
relationships (therein performing the engagement calculations) and to produce an
appropriate output message identifying when a track is in one of the regions.

. A server task manages the output messages, ensuring that a shared device such as the
operator console is not the simultaneous target of several output operations.

D.2 Ada Specification of the System Architecture

Each of the package specifications below can be derived mechanically from the
Class/Attribute/Relation notation of section 2. To enforce the "concurrent read, exclusive write"
protocol on attribute accesses, each attribute is implemented via an Ada 9X protected type.

The attributes at the various levels of the type hierarchy have independent protection; thus it is
possible, for example, that the Weapon_Doctrine of an Ownship could be accessed while the

PageD -5

Position of the Ownship is being updated. This increases the opportunity for parallelism. If the
attributes were not independent, a richer protection strategy would be required. Note that the
enforcement of this strategy would be part of the definition of the ship/ownship abstraction and
thus transparent to clients. (That is, the traditional but error-prone technique of having client
code explicitly lock and release semaphores can be avoided in Ada; more reliable mechanisms
are available.)

D.2.1 Ship Package Hierarchy

--Ship [Position : Ship Position Type]

-- Ownship [Weapon Doctrine : W_Doctrine Type;
-- Engageability Zone : E Zone Type]
-- Carrier [Slaved Doctrine : §_Doctrine Typel

D.2.1.1 Package Ship_Pckg

with Geometry_ Pckg; use Geometry Pckg;
package Ship Pckg is
type Ship is tagged limited private
type Ship Ref is access all Ship'Class:

function New_Ship (Position : Ship_Position_Type)
return Ship_ Ref;

procedure Delete (Object : in out Ship_ Ref);
function Position (Object : Ship) return Ship Position_Type;

procedure Set_Position (Object : in out Ship;
New_Value : Ship Position_Type);

private
protected type Position Protector is
function Position return Ship Position_ Type:;
procedure Set Position (New_Value : Ship Position_Type);
private
Position_ : Ship Position_Type;
end Position_ Protector;

type Ship is tagged limited
record
Position : Position_ Protector;
end record;
end Ship_ Pckg;

D.2.1.2 Package Ship_Pckg.Ownship_Pckg

package Ship Pckg.Ownship Pckg is
type Ownship is new Ship with private;

PageD -6

function New_Ownship
(Position : Ship_Position_Type;
Weapon_Doctrine : W_Doctrine_ Type;
Engageability Zone : E_Zone Type)

return Ship Ref;

procedure Delete (Object : in out Ownship Ref);

function Weapon_ Doctrine (Object : Ownship) returnm W_Doctrine_Type;
function Engageability Zone (Object : Ownship) return E_Zone Type:;

procedure Set Weapon_Doctrine (Object : in out Ownship;
New_Value : W _Doctrine Type):

procedure Set_Engageability Zone (Object : in out Ownship:;
New Value : E_Zone_ Type);

private
protected type Weapon_Doctrine Protector is
function Weapon Doctrine return W Doctrine Type;
procedure Set_Weapon Doctrine(New_Value : W_Doctrine_Type);
private
Weapon_Doctrine_ : W_Doctrine Type;
end Weapon_Doctrine Protector;

protected type Engagagement_Zone_Protector is

function Engageability Zone return E_Zone_Type;

procedure Set Engageability_Zone(New_Value : E_Zone_Type);
private

Engageability_ Zone_ : E_Zone_Type:
end Engagament_ Zone_Protector;

type Ownship is new Ship with
record
Weapon_Doctrine : Weapon_Doctrine_Protector;
Engagement_Zone : Engagement_Zone_Protector;
end record;
end Ownship_Pckg:;

D.2.1.3 Package Ship_Pckg.Carrier_Pckg

package Ship Pckg.Carrier Pckg is
type Carrier is new Ship with private;

function New_Carrier
(Position : Ship Position_Type;
Slaved Doctrine : S_Doctrine_Type;)
return Ship Ref:

procedure Delete (Object : in out Carrier Ref);

function Slaved Doctrine (Object : Ownship) return S_Doctrine_ Type;

PageD -7

procedure Set_Slaved Doctrine (Object : in out Ownship:
New_Value : S_Doctrine_Type);

private
protected type Slaved Doctrine_Protector is
function Slaved Doctrine return S_Doctrine_Type;
procedure Set Slaved Doctrine (New_Value : S_Doctrine_Type):
private
Slaved Doctrine_ : S_Doctrine Type;
end Slaved Doctrine Protector;

type Carrier is new Ship with
record
Slaved Doctrine : Slaved_Doctrine Protector;
end record;
end Ship Pckg.Carrier Pckg:

D.2.2 Track Package Hierarchy

--Track [Position : Track Position Type] (Kind() : String};
-- Friendly[] {(Kind() : String}

- Hostile[] (Kind() : String}

- Commercial{] (Kind() : String}

D.2.2.1 Package Track_Pckg

with Geometry Pckg; use Geometry Pckg;
package Track_Pckg is
type Track is tagged limited private;
type Track Ref is access Track'Class;

function New_Track(Position : Track_Position_Type)
return Track_Ref;

procedure Delete (Object : in out Track_Ref);
function Position (Object : Track) return Track Position_Type;

procedure Set_Position (Object : in out Track;
New_Value : Track_Position_Type);

function Kind (Object : Track) return String;
private
protected type Position Protector is
function Position return Track Position_Type;
procedure Set Position (New_Value : Track_Position Type):
private
Position_ : Track_ Position_Type;
end Track_Protector;

PageD -8

type Track is tagged limited
record
Position : Position_Protector;
end record;
end Track_Pckg:

D.2.2.2 Package Track_Pckg.Friendly_Pckg

package Track_Pckg.Friendly Pckg is
type Friendly is new Track with private;

function New Friendly(Position : Track Position_ Type)
return Track Ref;

function New Friendly(Position : Track_Position_Type)
return Friendly Ref;

function Kind (Object : Friendly) return String;
private

type Friendly is new Track with null record;
end Track_Pckg.Friendly Pckg;

D.2.2.3 Package Track_Pckg.Hostile_Pckg

package Track Pckg.Hostile_ Pckg is
type Hostile is new Track with private;
type Hostile Ref is access Hostile'Class;

function New_Hostile(Position : Track_Position_Type)
return Track_Ref;

function New_Hostile(Position : Track Position_Type)
return Hostile Ref; '

function Kind (Object : Hostile) return String;
private

type Hostile is new Track with null record;
end Track_Pckg.Hostile Pckg;

D.2.2.4 Package Track_Pckg.Commercial_Pckg

package Track Pckg.Commercial Pckg is
type Commercial is new Track with private;
type Commercial Ref is access Commercial'Class;

function New Commercial (Position : Track Position_Type)
return Track Ref:

function New Commercial (Position : Track_Position_Type)
return Commercial Ref;

PageD -9

function Kind (Object : Commercial) return String;

private
type Commercial is new Track with null record;

end Track_ Pckg.Commercial Pckg:

D.2.3 Tight Zone
--Tight_Zone [Boundary : Boundary Type]

with Geometry Pckg; use Geometry Pckg;
package Tight_Zone_Pckg is
type Tight Zone is tagged limited private;
type Tight_Zone_Ref is access Tight_Zone'Class;

function New_Tight_Zone (Boundary : Boundary_Type)
return Tight_Zone Ref;

procedure Delete (Object : in out Tight_Zone_Ref);
function Boundary (Object : Tight_Zone) return Boundary_Type;

procedure Set_ Boundary (Object : in out Tight_ Zone;
New_Value : Boundary_ Type);

private
protected type Boundary Protector is
function Boundary return Boundary_Type;
procedure Set_Boundary (New_Value : Boundary_Type);
private
Boundary : Boundary Type;
end Boundary Protector;

type Tight_Zone is tagged limited
record
Boundary : Boundary Protector;
end record;
end Tight_Zone_ Pckg;

D.2.4 Package Relations
package Relations is

function In_Weapon_Doctrine (Target : Track_Ref;
Vessel : Ownship) return Boolean;

function In Engageability Zone (Target : Track Ref;
Vessel : Ownship) return Boolean;

function In_Slaved Doctrine (Target : Track_Ref;
Vessel : Carrier) return Boolean;

Page D - 10

function In_Tight_ Zone (Target : Track_Ref;
Region : Tight Zone) return Boolean;

end Relations;

D.2.5 Package Geometry
package Geometry is

subtype Real is Float;
subtype Degrees is Float range =-180.0 .. 180.0;

type Point is
record
X, Y : Real;
end record;

type Ship Position_Type is new Point;
type Track_Position_Type is new Point;

type W_Doctrine_Type is

record
Radius : Real;
Angle : Degrees;

end record;
-- Assumes that the direction of motion is parallel to X-axis

type S_Doctrine_Type is
record
Radius : Real;
end record;

type E_Zone_Type is
record
Inner_Radius : Real;
Outer_Radius : Real;
end record;

type T_Zone_Endpoint is new Point;

type T Zone_Array is array (Positive range <>) of
T Zone_Endpoint;

type Boundary Type is access T Zone_Array;
-- A tight zone is modeled by a pointer to an array of points

-- The points are considered to be connected to form a closed polygon

end Geometry;

PageD - 11

D.3 Ada Implementation of System Architecture
D.3.1 Ship Package Hierarchy

D.3.1.1 Package Ship_Pckg

with Unchecked Deallocation;
package body Ship_Pckg is

procedure Free_ Ship is
new Unchecked Deallocation(Ship'Class
Ship_ Ref):

function New_Ship(Position : Ship_Position_Type)
return Ship Ref is
Ref : Ship_ Ref;
begin
Ref := new Ship;
Ref.all.Position.Set_Position(Position);
return Ref;
end New_Ship;

procedure Delete (Object : in out Ship Ref) is
begin

Free_Ship(Object);
end Delete’

protected body Position_Protector is
function Position return Ship Position Type is
begin
return Position_;
end Position;

procedure Set Position (New_Value : Ship_Position_ Type) is
begin

Position_ := New_Value;
end Set_Position;

end Position_Protector;

function Position (Object : Ship) return Ship Position_Type is
begin

return Object.Position.Position; =-- Calls function
end Position;

procedure Set Position (Object : Ship;
New Value : Ship_Position_Type) is
begin
Object .Position.Set_Position (New_Value);
end Set_Position;

end Ship Pckg;

Page D - 12

D.3.1.2 Package Ship_Pckg.Ownship_Pckg
package body Ship Pckg.Ownship Pckg is

function New_Ownship
(Position : Ship Position_Type:;
Weapon_Doctrine W_Doctrine_Type;
Engageability Zone : E_Zone Type)

return Ship Ref is
Ref : Ship Ref;

begin
Ref := new Ownship;
Ref.all.Position.Set_Position(Position);
Ref.all.Weapon_poctrine.Set_Weapon_Doctrine(Weapon_Doctrine);
Ref.all.Engageability Zone.

Set_Engageability_Zone(Weapon_Doctrine);

return Ref;

end New_Ownship;

se e

function Weapon_Doctrine (Object : Ownship)
return W Doctrine_Type is
begin
return Object.Weapon Doctrine.Weapon_Doctrine;
end Weapon_Doctrine;

function Engageability Zone (Object : Ownship)

return E_Zone_ Type is
begin

return Object.Engageability_ Zone.Engageability_Zone;
end Engageability Zone;

procedure Set_ Weapon Doctrine (Object : in out Ownship;
New Value : W _Doctrine_Type) is
begin
Object .Weapon_Doctrine.Set_Weapon_Doctrine (New_Value);
end Set_Weapon Doctrine;

procedure Set Engageability Zone (Object : in out Ownship;
New Value : E_Zone Type) is
begin
Object .Engageability Zone.Set_Engageability Zone(New_Value);
end Set_Engageability Zone;

protected body Weapon Doctrine Protector is
function Weapon Doctrine return W_Doctrine_Type is
begin
return Weapon Doctrine_;
end Position;

PageD - 13

procedure Set Weapon Doctrine (New_Value : W_Doctrine Type) is
begin

Weapon_Doctrine := New_Value;
end Set_Weapon _Doctrine;

end Weapon_Doctrine_Protector;

protected body Engageability Zone Protector is
function Engageability_ Zone return E_Zone_Type is
begin
return Engageability Zone :
end Position;

procedure Set Engageability Zone (New_Value : E_Zone_Type) is
begin

Engageability Zone_ := New_Value;
end Set_Engageability Zone;

end Engageability Zone_Protector;

end Ship Pckg.Ownship Pckg;

D.3.1.3 Package Ship_Pckg.Carrier_Pckg
package body Ship Pckg.Carrier Pckg is

function New_Carrier
(Position : Ship Position_Type:
Slaved Doctrine : S_Doctrine_Type)

return Ship_ Ref is
Ref : Ship_Ref;

begin
Ref := new Carrier;
Ref.all.Position.Set_Position{(Position);
Ref.all.Slaved Doctrine.Set_Slaved Doctrine(Slaved_Doctrine);
return Ref;

end New_Carrier;

function Slaved Doctrine (Object : Carrier)
return S_Doctrine_Type is
begin
return Object.Slaved Doctrine.Slaved Doctrine;
end Slaved Doctrine;

procedure Set Slaved Doctrine (Object : in out Carrier;
New_Value : S_Doctrine_Type) is
begin
Object.Slaved Doctrine.Set_Slaved Doctrine (New_Value);
end Set_Slaved Doctrine;

Page D - 14

protected body Slaved Doctrine_Protector is
function Slaved Doctrine return S_Doctrine_Type is
begin
return Slaved Doctrine_;
end Slaved Doctrine;

procedure Set Slaved Doctrine (New_Value : S_Doctrine_Type) is
begin

Slaved Doctrine_ := New_Value;
end Set_Slaved Doctrine;

end Slaved Doctrine Protector;

end Ship Pckg.Carrier_ Pckg;
D.3.2 Track Package Hierarchy

D.3.2.1 Package Track_Pckg

with Unchecked Deallocation;
package body Track_ Pckg is
function New_Track(Position : Track_Position_Type)
return Track Ref is
Ref : Track_Ref;
begin
Ref := new Track;
Ref.all.Position.Set_Position(Position);
return Ref;
end New_Track;

procedure Free_Track is
new Unchecked Deallocation(Track'Class, Track Ref);

procedure Delete (Object : in out Track_Ref) is
begin

Free_Track (Object):
end Delete;

function Position (Object : Track) return Track_ Position_Type is
begin

return Object.Position.Position;
end Position;

procedure Set Position (Object : in out Track;
New Value : Track_Position Type) is
begin
Object .Position.Set_Position{New_Value);;
end Set_Position;

Page D - 15

function Kind (Object : Track) return String is
begin

return "Unknown";
end Kind;

protected body Position_Protector is
function Position return Track_Position_Type is
begin
return Position_;
end Position;

procedure Set Position (New_Value : Track_Position_Type) is
begin
Position_ := New_Value:;
end Set_Position;
end Position_Protector;

end Track_Pckg;

D.3.2.2 Children of Track_Pckg

package body Track_Pckg.Friendly Pckg is
function New Friendly (Position : Track_Position_Type)
return Track Ref is
Ref : Track_Ref;
begin
Ref := new Friendly;
Ref.all.Position.Set_Position(Position);
return Ref;
end New_Friendly:;

function Kind (Object : Friendly) return String is
begin
return "Friendly";
end Kind;
end Track_Pckg.Friendly Pckg;

package body Track_Pckg.Hostile Pckg is
function New Hostile (Position : Track_Position_Type)
return Track_Ref is
Ref : Track_Ref;
begin
Ref := new Hostile;
Ref.all.Position.Set_Position(Position);
return Ref;
end New_Hostile;

function Kind (Object : Hostile) return String is
begin
return “Hostile";
end Kind;
end Track_Pckg.Hostile_ Pckg;

PageD - 16

package body Track_Pckg.Commercial Pckg is
function New_Commercial (Position : Track_Position_Type)
return Track_Ref is
Ref : Track_Ref;
begin
Ref := new Commercial;
Ref.all.Position.Set_Position(Position);
return Ref;
end New_Commercial;

function Kind (Object : Commercial) return String is
begin
return "Commercial";
end Kind;
end Track_Pckg.Commercial_ Pckg;

D.3.3 Tight Zone

with Unchecked_Deallocation;
package body Tight_ Zone_ Pckg is

procedure Free Tight_ Zone is
new Unchecked Deallocation(Tight_Zone'Class
Tight_Zone_Ref);

function New _Tight_Zone (Boundary : Boundary_ Type)
return Tight_ Zone_Ref is
Ref : Tight_Zone_ Ref;
begin
Ref := new Tight_ Zone;
Ref.all.Boundary.Set_Boundary (Boundary);
return Ref;
end New_Tight_ Zone;

procedure Delete (Object : in out Tight Zone Ref) is
begin

Free_Tight_Zone (Object);
end Delete'

protected body Boundary_ Protector is
function Boundary return Boundary Type is
begin
return Boundary_;
end Boundary;

procedure Set_Boundary (New_Value : Boundary Type) is
begin

Boundary := New_Value;
end Set_Boundary;

end Boundary_ Protector;

PageD - 17

function Boundary (Object : Tight Zone) return Boundary Type is
begin

return Object.Boundary.Boundary; -- Calls function
end Boundary;

procedure Set_Boundary (Object : Tight_Zone;
New_Value : Boundary_Type) is
begin
Object .Boundary.Set Boundary (New_Value);
end Set_ Boundary;

end Tight_Zone_Pckg;

D.3.4 Implementation of Package Relations

All of the assumptions about the geometry are encapsulated in the processing described in this
section.

D.3.4.1 Package Real_Elementary_Functions

with Numerics.Generic_Elementary Functions;
with Geometry;
package Real Elementary Functions is
new Numerics.Generic_Elementary_ Functions (Geometry.Real);

D.3.4.2 Math Utilities

with Geometry; use Geometry:;
package Math Utilities is
Degrees_Per_Radian : constant := 180.0 / Numerics.Pi;

Math_Error : exception;
function Distance (Point_1, Point_2 : Real) return Real;

function Angle (Origin, Destination : Point) return Degrees;

-- Measures the angle made by a ray from Origin as it is rotated
-- until it reaches Destination

—-- Returns a result in the interval (~180.0, 180.0]

-- If the rotation is counterclockwise, the sign is positive

-- If the rotation is clockwise, the sign 1s negative

procedure Get X Intercept{End_1l, End_2 : Point;
X Intercept : out Real;
Parallel : out Boolean);
-- If the line defined by the endpoints End 1, End 2 are
-- parallel to the X-axis, then set Parallel to True
-- If the line defined by the endpoints is not parallel
-~ to the X-axis, set Parallel to False, and set X Intercept
-- to the value where the line intersects the X-axis

Page D - 18

—- Note: the intercept might not be on the line segment
-- Precondition: End 1 /= End 2 (else Math Error raised)

end Math Utilities;

with Real Elementary_ Functions;
package body Math Utilities is
use Real Elementary Functions;

function Distance (Point_1, Point_2 : Point) return Real is
begin
return Sqrt((Point_2.X - Point_1.X)**2 +
(Point_2.Y = Point_1.Y)**2);
end Distance;

function Angle (Origin, Destination : Point) return Degrees is
Radians : Real;
begin
Radians := Arctan (Y => Destination.Y - Origin.Y,
X => Destination.X - Origin.X):;
return Radians * Degrees_Per_ Radian;

end Angle;
procedure Get_X_ Intercept(End_l, End_2 : Point;
X_Intercept : out Real;
Parallel : out Boolean) is
Parallel : Boolean := False;
m, b : Real; =-- Slope, Y-Intercept

begin
if End 1 = End 2 then
raise Math_Error;
elsif End_1.Y = End_2.Y then

Parallel := True;
return;

elsif End_1.X = End_2.X then
X _Intercept := End.X;
return;

else

~- Equation is y=mx+b
-- b =yl - m*x1

-- x = (y-b)/m
-- x-intercept is thus -b/m
m := (End 2.Y - End 1.Y)/(End_2.X-End_1.X)
b := End_1.Y - m * End_1.X%;
X_Intercept := -b/m;
end if;

end Get_X Intercept;

end Math Utilities;

Page D - 19

D.3.4.3 Body of Package Relations

with Real Elementary Functions; use Real Elementary_ Functions;
with Geometry; use Geometry:;

with Ship Pckg.Ownship Pckg, Ship_Pckg.Carrier_Pckg;

use Ship Pckg.Ownship_Pckg, Ship_Pckg.Carrier_Pckg;

with Track_Pckg.Hostile Pckg, Track_Pckg.Commercial_ Pckg;

use Track Pckg.Hostile Pckg, Track_Pckg.Commercial Pckg;
package body Relations is

function In_Weapon_Doctrine (Target : Track_Ref;
Vessel : Ownship)
return Boolean is
Target_Position : Track_ Position Type :=
Position(Target.all); =-- Dispatches
Vessel Position : Ship_Position Type :=
Position (Vessel);

Radius : Real := Weapon_Doctrine (Vessel) .Radius;
Angle : Degrees := Weapon Doctrine(Vessel) .Angle;
Result : Boolean;

begin
Result :=

Distance (Target Position, Vessel Position) <= Radius and then
Angle (Origin => Vessel Position, Destination => Target_Position)
not in 180.0 - Angle .. 180.0 + Angle;
return Result;
end In_Weapon Doctrine;

function In_Engageability Zone (Target : Track;
Vessel : Ownship)
return Boolean is
Target Position : Track_Position_Type :=
Position{(Target.all); -- Dispatches
Vessel Position : Ship Position_Type :=
Position(Vessel);
Inner Radius : Real := Engageability Zone(Vessel).Inner Radius;
Outer_Radius : Real Engageability Zone (Vessel) .Outer_Radius;
begin
return Distance(Target Position, Vessel Position) in
Inner Radius .. Outer Radius;
end In Engageability Zone;

"

function In_Slaved Doctrine (Target : Track;
' Vessel : Carrier)
return Boolean is
Target_Position : Track_Position_ Type :=
Position(Target.all); -- Dispatches
Vessel Position : Ship_Position_Type :=
Position(Vessel);
begin
return Distance (Target_Position, Vessel Position) <= Radius;
end In_Slaved Doctrine;

Page D - 20

function In_Tight_Zone (Target : Track;
Region : Tight_Zone)

return Boolean is
-— Translate coordinates so that Target is (0.0, 0.0)
-~ Draw a ray from the origin to +infinity, along the x-axis
-- Count the number of region segments with which the ray intersects
-~ The target point is in the region if and only if that number
- is odd

Translated_Boundary : Boundary_ Type:;

Trandlated Boundary_Length : Positive;

Translated Region : Tight Zone;

Intersections : Natural;

X Intercept : Real;

Parallel : Boolean;
begin

-- First extend boundary so that last point is first point
Translated Boundary Length := Boundary (Region) .all'Length+1;
Translated Boundary :=
new T Zone_ Array(Translated Boundary_ Length);
Translated_Boundary.all(l..Translated Boundary_ Length-1) :=
Boundary(Region) .all;
Translated Boundary.all(Translated Boundary_Length) :=
Translated Boundary.all(l):;

~-- Now translate to put Target at (0.0, 0.0)
for I in Translated Boundary.all'Range loop
Translated Boundary.all(I) .X
Translated_Boundary.all(I).
Translated_Boundary.all(I) .Y
Translated Boundary.all(I).Y - Position(Target).Y;

end loop;

- Position(Target) .X;

Mo

Intersections := 0;
for I in Translated Boundary.all'First+l
Translated Boundary.all'Last loop

X1 := Translated Boundary.all(I-1).X;
X2 := Translated Boundary.all(I).X;
Yl := Translated Boundary.all(I-1).Y;
Y2 := Translated Boundary.all(I).Y;

Get_X Intercept (End_1 => (X1, Y1),
End_2 => (X2, Y2),
X Intercept => X_Intercept,
Parallel => Parallel);
if not Parallel then
if X Intercept > 0 and then

X_Intercept in Real'Min (X1, X2) .. Real'Max(X1l, X2)
then

Intersections := Intersections+l;
end if;

else

Page D - 21

-- If the segment is along the x-axis itself

-— then check if it includes the origin

if Y1 = 0.0 and then
0.0 in Real'Min(X1,

then

Intersections :=

end if;
end if;
end loop;

X2) Real 'Max (X1,
Intersections+l;
= 1; -- True if odd,

return (Intersections mod 2)

end In _Tight_Zone;

end Relations;

D.4 Specific Prototyping Example

with Geometry; use Geometry;
package Simulation_Script is

type Initial_Data_Record is

record
Aegis
Weapon_Doctrine
Engagement_Zone
Carrier
Slaved Doctrine
Commercial
Hostile
Tight_Zone

end record;

Initial_Data
(Aegis

Weapon_Doctrine =

Engagement_Zone

Carrier

Slaved Doctrine
Commercial
Hostile
Tight_Zone

Ship Position;

: W_Doctrine_Type;
: E_Zone_Type;

=>

Ship Position;

S _Doctrine_Type;
Track_Position;
Track_Position:

Boundary_Type:;

Initial Data_ Record :

X2)

False if even

(X => 113.0, Y => 64.0),
(Radius => 59.0, Degrees => 60.0),
(Inner_Radius => 22.0,
OQuter_Radius => 44.0),
(X => 180.0, Y => 40.0),
(Radius => 40.0),
(X => 38.0, Y => 25.0),
(X => 258.0, Y => 183.0),
new T_Zone_Array'({

(X => 0.0, Y => 5.0),

(X => 0.0, Y => 25.0),

(X => 118.0, Y => 62.0),

(X => 259.0, Y => 25.0),

(X => 259.0, Y => 5.0),

(X => 118.0, Y => 32.0)) ;

PageD - 22

type Position Data_Record is

record
RAegis
Carrier
Commercial
Hostile
end record;

-

Ship Position;
Ship Position;
Track_Position;
Track_Position;

Position_Data : array (Positive range <>)

of Position_Data_Record

(1 => (Regis => (X => 133.0, Y => 64.0),
Carrier => (X => 180.0, ¥ => 119.0),
Commercial => (X => 100.0, Y => 43.0),
Hostile => (X => 210.0, Y => 136.0)),

(2 => (RAegis => (X => 123.0, Y => 64.0),
Carrier => (X => 180.0, Y => 130.0),
Commercial => (X => 58.0, Y => 30.0),
Hostile => (X => 23%.0, Y => 164.0)),

(3 => (Regis => (X => 163.0, Y => 64.0),
Carrier => (X => 180.0, Y => 81.0),
Commercial => (X => 159.0, Y => 38.0),
Hostile => (X => 148.0, Y => 73.0)),

(4 => (Regis => (X => 192.0, Y => 64.0),
Carrier => (X => 180.0, Y => 60.0),
Commercial => (X => 198.0, Y => 27.0),
Hostile => (X => 110.0, Y => 37.0)));

Time Periods : constant Natural := Position_Data'Length;

end Simulation Script;

with Calendar; use Calendar;
with Simulation_Script; use Simulation_Script;
with Strings.Unbounded; use Strings.Unbounded;
with Geometry; use Geometry;
with Ship Pckg.Ownship Pckg, Ship_Pckg.Carrier Pckg;
use Ship Pckg.Ownship Pckg, Ship Pckg.Carrier_Pckg;
with Track Pckg.Hostile Pckg, Track Pckg.Commercial Pckg;
use Track_Pckg.Hostile Pckg, Track_Pckg.Commercial Pckg;
procedure Simulation is

The_Aegis_Ship, The Carrier : Ship Ref;
Tight Zone_Ref;
The_Commercial_ Aircraft, The Hostile Aircraft

The_Tight_Zone

task type Track Monitor is

entry Initialize

end Track_Monitor;

(Identity : Track_Ref;
Period : Integer);

Track_Ref;

PageD -23

Commercial Monitor, Hostile_Monitor : Track_Monitor;

task Position_Updater is
entry Set_ Period(Seconds : Integer);
end Position Updater;

task Output_Manager is
entry Put_Line(Item : Unbounded_String):
end Output_Manager;

task body Position Updater is
Next_Time : Time;
Period : Duration;

begin
accept Set_Period(Seconds : Integer) do
Period := Duration (Seconds);
end Set_Period;
Next_ Time := Clock;

for I in 1..Time Periods loop
Set_Position(The_Regis_Ship, Position_Data(I) .Regis);
Set_Position(The_Carrier, Position_Data(I).Carrier);
Set_Position(The_ Commercial Aircraft,
Position_Data(I).Commercial);
Set Position(The_Hostile Aircraft,
Position_Data(I) .Hostile);

Next_Time := Next_TimetPeriod;
delay until Next_ Time;
end loop;

end Position_Updater;

task body Track Monitor is -- per track
Next_Time : Time;
Identity : Track Ref;

Period : Duration;
Output_Message : Unbounded_String;
begin
accept Initialize(Identity : Track_Ref;
Period : Integer) do
Track_Monitor.Identity := Identity;

Track_Monitor.Period Duration (Period);

end Initialize;
Next_Time := Clock;
for I in 1..Time Periods loop

if In_Weapon_ Doctrine(Identity, The_Aegis_Ship) then
Output_Message :=
To_Unbounded_String (Integer'Image(I) & ": " &
Kind (Identity) &
" in Weapon Doctrine”);
Output Manager.Put_Line(Output_Message);
end if;

Page D - 24

if In Engagement_Zone (Identity, The_ Regis_Ship) then

Output_Message :=
To_Unbounded_String (Integer'Image(I) & ":
Kind(Identity) &

" in Engagement Zone")

Output_Manager.Put_Line (Output_Message) ;
end if;

if In Slaved_Doctrine(Identity, The_Carrier) then

Output_Message :=
To_Unbounded_String (Integer'Image(I) & ":
Kind(Identity) &
" in Slaved Doctrine"
Output_Manager.Put_Line (Output_Message)
end if;

if In Tight_Zone(Identity, The_Tight_Zone) then
Output_Message :=
To_Unbounded_String (Integer'Image(I) & ":
Kind(Identity) &
" in Tight Zone");
Output_Manager.Put_Line(Output_Message);

end if;
Next_Time := Next_Time+Period;
delay until Next Time;

end loop:

end Track_Monitor;

task body Output_ Manager is
Local : Unbounded_String;
begin
loop
select
accept Put_Line (Item : Unbounded String) do
Local := Item;
end Put_Line;
Text_ IO.Put_Line(To_String(Local));
or
terminate;
end select;
end loop;
end Output_Manager;

begin
The_Aegis_Ship :=
New_Ownship(Position =>

Initial Data.Regis,

Weapon_Doctrine =>
Initial Data.Weapon_Doctrine,

Engageability Zone =>
Initial Data.Engageability Zone);

”

"

):

&

&

PageD - 25

The Carrier :=
New_Carrier(Position =>
Initial Data.Carrier,
Slaved_Doctrine =>
Initial Data.Slaved Doctrine);

The Commercial Aircraft :=
New_Commercial (Position => Initial Data.Commercial);

The_Tight_Zone :=
New_Tight_Zone(Boundary => Initial Data.Tight_Zone);

Position Updater.Set_Period(Seconds => 2);

Commercial Monitor.Initialize(Commercial_ Monitor, 2)
Hostile_Monitor.Initialize(Hostile_Monitor, 2)

end Simulation;

D.5 Conclusions

Although Ada 9X compilers are not yet at the implementation level that would allow us to run
the code displayed above, a manual execution step-through gives the following output:

GO LU D s Ww Wk

: Commercial in Tight Zone

: Commercial in Tight Zone

: Commercial in Engageability Zone
: Commercial in Tight Zone

: Hosile in Slave Doctrine

: Commercial in Weapon Doctrine

: Commercial in Engageability Zone

Commercial in Tight Zone
Hostile in Slave Doctrine

: Commercial in Weapon Doctrine

: Commercial in Engageability Zone
: Commercial in Slave Doctrine

: Commercial in Tight Zone

: Hostile in Tight Zone

As an example of the adaptability of the design, it is straightforward to enhance the
Track_Monitor implementation so that it maintains a history of positions (versus just using the
most recent position) or so that it performs engageability analysis. These enhancements are
localized; no other modules are affected. Moreover, an Ada program comprising periodic tasks
is amenable to analysis through results from mathematical scheduling theory (in particular, Rate
Monotonic Analysis), allowing the system designer to predict in advance whether it is feasible
for deadlines of all the periodic tasks to be met.

In summary, the Ada 9X solution offers flexibility and has the software engineering benefits of
packages for modularization, private and tagged types for data abstraction and object-oriented
programming, and tasking and protected types for concurrency. As an upcoming standard, it
also provides portability.

Page D - 26

E A Relational LISP Solution to the AEGIS Wepons System (AWS) Pro-
totyping Demonstration Project

E-1

Relational Abstraction Solution
for
ProtoTech HiPer-D Joint Demonstration Problem

USC Information Sciences Institute
(part of the SOYII ProtoTech Team)

Abstract

Relational Abstraction is a prototyping language extension for constructing executable func-
tional prototypes with delayable implementation commitments, and for migrating these functional
prototypes into production code via declarative choices for those delayed implementation commit-
ments. These delayable commitments include data representation selection, what intermediate
results are saved, when constraints are checked, and the order in which expressions are evaluated.

Relational Abstraction employs a database metaphor in which relations are used to model the
logical structure of the data, the datais accessed associatively via queries, transactions encapsulate
compound updates, constraints ensure the well-formedness of the data after each transaction, and
computations can be activated (triggered) by those transactions.

Relational Abstraction has been implemented and used as a Lisp extension for many years
and is currently being implemented as an extension to Ada and C++.

Enclosed below is our solution to the ProtoTech HiPer-D Joint Demonstration Problem in
Relational Lisp. This solution was produced and debugged in three hours and successfully run
on the example data sets. With a few declarative implementation choices, its performance was
improved by a factor of three. Moreover, without modification, it handles possible enhancements
B (asynchronous receipt of tracks in bundles), D (dynamically added, modified, and/or deleted
regions), and J (slaved doctrine extended to aircraft).

It is particularly instructive to understand that coverage of the asynchronous track receipt and
dynamic region definition enhancements results directly from the reactive nature of Relational
Abstraction. A trigger (automation rule) was created for a tracked-object entering a geometric-
region, and this region-entering condition was defined by a set of logic formulas — one for each
type of region. This automation rule fires no matter how its trigger becomes true. The two
enhancements just altered how this condition might become true (one by dynamically creating,
changing, or deleting regions, and the other by altering the timing of location updates for tracked-
objects).

E.1 Relational Abstraction Concepts

In Relational Abstraction relations are used to model the various attributes of an object. Some of these
attributes, such as the location of tracked-objects, are primitive and are changed by direct update.
Other attributes, such as the location of a doctrine, are defined logically in terms of other relational
data (either primitive or itself logically defined). In the case of doctrine-location, it is defined as the

E-2

location of the tracked-object over which the doctrine is placed (which we name the covered-object).
Once this logical relationship is established, the doctrine-location will always be derived by this formula
whenever it is needed so that it will always be the same as the location of that covered-object as that
object moves around (or the doctrine is placed over some other tracked-object).

This is a very powerful feature because higher and higher level attributes can be defined in terms
of lower level ones. For example, the bearing of the center of the wedge in a weapon doctrine is defined
as the sum of the weapon doctrine’s threat axis and the offset of the wedge from this threat axis. The
bearings of the two edges of the wedge are then defined as the sum and difference of this bearing and
the angle which is the size of half the wedge. These bearings are then in turn part of the determination
of whether a given bearing is inside or outside this wedge. Finally, in-weapon-doctrine is defined as
those tracked-objects whose location is in the circle defined by the radius of the weapon-doctrine and
is outside the weapon doctrine’s wedge.

Thus, as objects move (or the primitive attributes of a weapon doctrine are changed) the in-weapon-
doctrine attribute is automatically rederived as needed. In a similar way, in-slave-doctrine, in-
engagability-region, and in-tight-zone are defined as derived logical formulas. These four attributes
are combined to define the top level attribute in-region which defines which objects are in which
geometric-regions. _

Since in this problem we need to know when tracked-objects enter into a geometric-region, we
define an automation-rule which triggers whenever this attribute (relation) becomes true. Its body
will be executed each time any tracked-object enters any geometric-region. These automation rules
can have the start, end, or change in the truth-value of any primitive, derived, or compound relation
(i.e. one defined by a quantified well-formed formula) as its trigger. Thus, we could easily change the
solution to react to tracked-objects leaving geometric-regions, or have it do both.

The imperative portion of this solution is very, very small. It consists only of the code
to reposition the tracked-objects (in response to data theoretically coming from the sensors) and the
automation rule body which reacts to tracked-objects entering geometric-regions (here just notifying
the user). Everything else is declarative — the type hierarchy, the primitive relations
between the types, and derived relations such as the formulas by which in-region is
defined.

Most of this declarative information is expressed in quantified well-formed formulas that are fully
understood by the Relational Compiler and can be used multi-directionally to find and test the objects
satisfying the relation (that is, (R X Y) can be used to find Ys given an X, or find Xs given a Y, or
find the Xs and Ys given neither, or to test the relationship given both an X and a Y). However,
some of this declarative information is more naturally expressed as Lisp predicates or Lisp functions
which can act as testers of a relation or as generators which find the objects occupying some set
of columns of the relation given values for the objects occupying the other columns of the relation.
One such computationally defined relation is tight-zone-tester which uses a library routine (actually
transliterated from C) to test whether a point is within a polygon. Another computationally defined
relation is +. This relation uses the built-in Lisp plus function to sum two numbers, and the built-in
Lisp minus function to determine one of the addends given the other addend and the sum.

Thus, any functional (non-state changing) computation can be relationally encapsulated and used
like any other derived relation. Similarly, functions and procedures (state-changing routines) can be
supplied to perform the access and update operations for a relation. This is how different represen-
tations are chosen for relations. In this example, we added a declaration that the representation of
the X and Y attributes of positions should be fields of a record rather than the default representa-

E-3

tion of relations (a linked list). These implementation declarations resulted in a three-fold increase in
performance.

E.2 Demonstration Problem Solution

This is the executable code for the demonstration problem expressed in Relational Lisp. Timings for
its execution and the performance improvement obtained by adding declarative optimization choices
are given in the Collected Data section.

Commentary has been added to the code to describe the Relational Abstraction notation and its
semantics.

E.2.1 Data Declarations

In this section we define the modeled objects and their attributes.

Define a new type named position and has required attributes z and y which are of type number.
Similarly define tracked-object with a required attribute location of type position, and Aegis-ship, carrier,
commercial-airliner, and hostile-aircraft as subtypes of tracked-object without any additional attributes.
These subtypes inherit the location attribute defined on their parent type tracked-object.

(define-type position () £ number y number)

(define-type tracked-object () location position)

(define-type Aegis-ship tracked-object)

(define-type carrier tracked-object)

(define-type commercial-airliner tracked-object)

(define-type hostile-aircraft tracked-object)
Define geometric-region as a new type (it will become the supertype of doctrine, engagability-region,
and tight-zone. Doctrine in turn will become the supertype of weapon-doctrine and slave-doctrine).

(define-type geometric-region ())

(define-type doctrine geometric-region)
Define required attributes covered-object (the object at the center of the doctrine), ownership (the
owner of the doctrine), radius, and doctrine-location for doctrine. Doctrine-location is derived as the
location of the object which is the covered-object of the doctrine. These attributes are inherited by the
subtypes of doctrine (i.e. weapon-doctrine and slave-doctrine).

(define-type doctrine geometric-region covered-object tracked-object

ownership tracked-object radius number)
(defattribute doctrine-location doctrine position
:definition ((doctrine position)
s.t. (E (tracked-object)
(and (covered-object doctrine tracked-object)
(location tracked-object position)))))

We restrict the ownership of weapon-doctrine to be the covered-object and require this not be true of
slave-doctrine.

(alwaysrequired ownership-equals-covered-object

(A (weapon-doctrine#)
(E (tracked-object)

E-4

(and (ownership weapon-doctrine tracked-object)
(covered-object weapon-doctrine tracked-object)))))
(neverpermitted ownership-equals-covered-object-in-slaved-doctrine
(E (slave-doctrine# tracked-object#)
(and (ownership slave-doctrine tracked-object)
(covered-object slave-doctrine tracked-object))))
Define angle and compass-direction® as types whose range is restricted to be between 0 and 360. These
types are used to restrict the valid range values of the attributes that follow.
(defrelation angle :definition ((z) s.t. (and (>= z 0) (< z 360))))
(defrelation compass-direction :definition ((z) s.t. (and (>= z 0) (< £ 360))))
Define threat-azis, engagement-region, removed-wedge-half-size, and removed-wedge-offset as primitive
attributes of weapon-doctrine, and removed-wedge-direction, wedge-min-bearing, and wedge-maz-bearing
as derived attributes of weapon-doctrine. The removed wedge attributes (removed-wedge-half-size and
removed-wedge-offset are optional, but they must both either be present or absent.
(define-type weapon-doctrine doctrine threat-azis compass-direction
engagement-region engagability-region removed-wedge-half-size angle :optional
removed-wedge-offset angle :optional)
(defattribute removed-wedge-direction weapon-doctrine compass-direction
:definition ((weapon-doctrine wedge-direction)
s.t. (E (wedge-offset threat-direction)
(and (removed-wedge-offset weapon-doctrine wedge-offset)
(threat-azis weapon-doctrine threat-direction)
(+ threat-direction wedge-offset wedge-direction)))))
(defattribute wedge-min-bearing weapon-doctrine compass-direction
:definition ((weapon-doctrine wedge-min-bearing)
s.t. (E (wedge-direction angle)
(and (removed-wedge-direction weapon-doctrine wedge-direction)
(removed-wedge-half-size weapon-doctrine angle)
(- wedge-direction angle wedge-min-bearing)))))
(defattribute wedge-maz-bearing weapon-doctrine compass-direction
:definition ((weapon-doctrine wedge-maz-bearing)
s.t. (E (wedge-direction angle)
(and (removed-wedge-direction weapon-doctrine wedge-direction)
(removed-wedge-half-size weapon-doctrine angle)
(+ wedge-direction angle wedge-maz-bearing)))))
(alwaysrequired legitimate-removed-wedge-description
(A (weapon-doctrine#)
(equiv (removed-wedge-half-size weapon-doctrine §)
(removed-wedge-offset weapon-doctrine §))))
Define min-radius and maz-radius as attributes of engagability-region and require that the former is
always less than the latter.
(define-type engagability-region geometric-region min-radius number maz-radius number)
(neverpermitted maz-radius-less-than-min-radius

1Compass-direction has an implicit orientation as degrees from North.

E-5

(E (engagability-region# maz-radius min-radius)
(and (maz-radius engagability-region maz-radius)
(min-radius engagability-region min-radius)
(< maz-radius min-radius))))
Define range and bearing as computed relations which given two positions respectively derives the
distance and angle between them.
(defrelation range :types (position position number)
:derivation (lisp-function
(lambda (posl pos2)
(let ((delta-z (- (z posl) (z pos2)))
(delta-y (- (y posi) (y pos2))))
(sqrt (+ (* delta-z delta-z) (* delta-y delta-y))))) 2 1))
(defconstant degrees-per-radian 57.2958)
(defrelation bearing :types (position position angle)
:derivation (lisp-function
(lambda (posl pos2)
(let ((delta-z (- (z posl) (x pos2)))
(delta-y (- (y pos1) (y pos2))))
(* (atan delta-z delta-y) degrees-per-radian))) 2 1))
Define the directed-line type with attributes start-endpoint, end-endpoint, and line-slope (a derived
attribute which given a directed-line, Line-slope computes its slope) which will be used to form the
polygon that defines a tight-zone and is held in the tight-zone-lines attribute of tight-zone. This attribute
is set by the procedure that creates tight zones from a list of its vertices.
(define-type directed-line () start-endpoint position end-endpoint position)
(defattribute line-slope directed-line number
:derivation (lisp-function
4 (lambda (directed-line)
(let ((p1 (start-endpoint directed-line))
(p2 (end-endpoint directed-line)))
(/ (- (yp2) (yp1)) (- (z p2) (x p1))))) 1 1))
(define-type tight-zone geometric-region tight-zone-lines list)
(defun define-tight-zone (point-list)
(atomic
(let ((points (cdr point-list))
(prev (new-position (car (car point-list)) (cadr (car point-list))))
(tight-zone (create tight-zone))
line-sequence)
(loop for neat in points
for next-pos = (new-position (car next) (cadr next))
for line = (create directed-line start-endpoint = prev
end-endpoint = nezt-pos)
do (push line line-sequence)
(setq prev nezt-pos))
(++ tight-zone-lines tight-zone (reverse line-sequence))
tight-zone)))

E-6

Now we define the relations that derive whether a tracked-object is in a geometric-region. A separate
definition exists for each type of geometric-region. In-circle is used in the definition of several of these
regions. It determines whether the first position is inside of a circle with its origin at the second position
and radius number. It does so by determining whether the distance between the two positions is less
than the circle’s radius.
(defrelation in-circle :types (position position number)
:definition ((object-position circle-origin circle-radius)
s.t. (E (distance)
(and (range object-position circle-origin distance)
(< distance circle-radius)))))
In-slave-doctrine determines whether a tracked-object is in a slave-doctrine by seeing whether the location
of the tracked-object is inside of the circle whose origin is the location of the slave-doctrine and whose
radius is the radius of the slave-doctrine.
(defattribute in-slave-doctrine tracked-object slave-doctrine
:definition ((tracked-object# slave-doctrine#)
s.t. (E (doctrine-loc tracked-object-loc doctrine-radius)
(and (doctrine-location slave-doctrine doctrine-loc)
(location tracked-object tracked-object-loc)
(radius slave-doctrine doctrine-radius)
(in-circle tracked-object-loc doctrine-loc doctrine-radius)))))
Similarly, in-engagability-region determines whether a tracked-object is in a engagability-region by seeing
whether the location of the tracked-object is inside of the circle whose origin is the location of the
weapon-doctrine for which this is the engagement-region and whose radius is the maz-radius of the
engagability-region, and is outside of the circle whose radius is the maz-radius.
(defattribute in-engagability-region tracked-object engagability-region
:definition ((tracked-object# engagability-region#)
s.t. (E (weapon-doctrine maz-radius min-radius doctrine-loc tracked-object-loc)
(and (engagement-region weapon-doctrine engagability-region)
(doctrine-location weapon-doctrine doctrine-loc)
(location tracked-object tracked-object-loc)
(maz-radius engagability-region maz-radius)
(in-circle tracked-object-loc doctrine-loc maz-radius)
(min-radius engagability-region min-radius)
(not (in-circle tracked-object-loc doctrine-loc min-radius))))))
In-weapon-doctrine tests whether the tracked-object is inside the circle defined by the radius of the
doctrine and outside of the wedge removed from the in-weapon-doctrine. Outside-doctrine-wedge sees
- whether the bearing of the tracked-object from the doctrine-location is between (proceeding clockwise)
the max and min bearings of the wedge (that is outside the wedge). Clockwise-between is defined
computationally.
(defun test-clockwise-between (bearing start end)
(let ((heading (mod bearing 360))
(nstart (mod start 360))
(nend (mod end 360)))
(if (> nend nstart)
(and (<= nstart heading) (<= heading nend))

E-7

;; 860 break occurs between start and end
(or (>= heading nstart) (<= heading nend)))))
(defrelation clockwise-between :types (compass-direction compass-direction compass-direction)
:computation (lisp-predicate
(lambda (bearing wedge-maz-bearing wedge-min-bearing)
(test-clockwise-between bearing wedge-maz-bearing wedge-min-bearing))))
(defattribute outside-doctrine-wedge tracked-object weapon-doctrine
:definition ((tracked-object weapon-doctrine) s.t.
(E (doctrine-loc tracked-object-loc)
(and (doctrine-location weapon-doctrine doctrine-loc)
(location tracked-object tracked-object-loc)
(or (eql doctrine-loc tracked-object-loc)
(E (direction wedge-maz-bearing wedge-min-bearing)

(and(bearing tracked-object-loc doctrine-loc direction)
(wedge-maz-bearing weapon-doctrine wedge-maz-bearing)
(wedge-min-bearing weapon-doctrine wedge-min-bearing)
(clockwise-between direction wedge-maz-bearing wedge-min-bearing))))))))

(defattribute in-weapon-doctrine tracked-object weapon-doctrine
:definition ((tracked-object# weapon-doctrine#)
s.t. (E (doctrine-loc tracked-object-loc doctrine-radius)
(and (doctrine-location weapon-doctrine doctrine-loc)
(location tracked-object tracked-object-loc)
(radius weapon-doctrine doctrine-radius)
(in-circle tracked-object-loc doctrine-loc doctrine-radius)
(implies (removed-wedge-half-size weapon-doctrine §)
(outside-doctrine-wedge tracked-object weapon-doctrine)))))))
In-tight-zone determines whether a tracked-object is inside a tight-zone by invoking a library routine
(transliterated from C) which computes whether the location of the tracked-object is inside of the
polygon which defines the tight-zone.
(defun point-in-polygon (pnt poly)
”Returns T if point PNT is inside polygon POLY. A polygon is represented
as a list of three or more line segments forming a closed loop.”
(let ((targetX (z pnt))
(targetY (y pnt))
(polytail poly)
polyedge inside-p)
(labels ((xzcrossed (edge &aux (side (>= (z (start-endpoint edge)) targetX)))
;; returns two booland values.
;; first is true iff EDGE horizontally crosses targetX
;; (one end must be strictly to left, other at or to right)
;; second is true iff EDGE begins at or to right of targetX
(values
(not (eq side (>= (z (end-endpoint edge)) targetX)))
side))
(process-crossing-edge (edge)

E-8

;; edge is one which crosses the target y coord.
(multiple-value-bind (zcrossing side) (zcrossed edge)
(cond
(zcrossing
;; edge cannot be vertical
(when
(< targetX
;; zeoordinate of y crossing
(- (z (start-endpoint edge))
(/ (- (v (start-endpoint edge)) targetY)
(line-slope edge))))
55 Yy coord crossing is strictly RIGHT of targetX
(setf inside-p (not inside-p))))
(side;; y-crossing occurred to the RIGHT of target point

(setf inside-p (not inside-p)))))))
(loop named outer while polytail do

(cond
((>= (y (start-endpoint (first polytail))) targetY)
;5 follow edges until we drop below targetY
(loop while (>= (y (end-endpoint (setf polyedge (pop polytail)))) targetY)
do (unless polytail (return-from outer nil)))
(process-crossing-edge polyedge))
(t ;; follow edges until we rise above targetY
(loop while (< (y (end-endpoint (setf polyedge (pop polytail)))) targetY)
do (unless polytail (return-from outer nil)))
(process-crossing-edge polyedge)))))
inside-p))
(defrelation tight-zone-tester :types (position tight-zone)
:computation (lisp-predicate
(lambda (position tight-zone)
(point-in-polygon position (tight-zone-lines tight-zone)))))
(defrelation in-tight-zone :types (tracked-object tight-zone)
:definition ((tracked-object# tight-zone#)
s.t. (E (position)
(and (location tracked-object position)
(tight-zone-tester position tight-zone)))))
Finally, in-region is merely the logical-or of each of the types of geometric-region.
(defattribute in-region tracked-object geometric-region
:definition ((tracked-object geometric-region)
s.t. (or (in-slave-doctrine tracked-object geometric-region)
(in-weapon-doctrine tracked-object geometric-region)
(in-engagability-region tracked-object geometric-region)

2

2Polymorphism allows the proper in-region definition to be used for each type of region — that is, the type of region
determines which in-region calculation is appropriate.

E-9

(in-tight-zone tracked-object geometric-region))))

E.2.2 Imperative Code

We define the automation rule that will trigger when a tracked-object enters a geometric-region (that
is when in-region starts to be true). It’s body just prints out a notification for the user.

defautomation notify-operator-about-region-entr
y-op Y
((tracked-object geometric-region) s.t. (start (in-region tracked-object geometric-region)))
(lambda (tracked-object geometric-region)
(format T 7§ entering §%” tracked-object geometric-region)))

We also define the “driver” code which establishes the initial conditions and updates the location of
the tracked-objects as new sensor data arrives.

(defun new-position (z-coord y-coord) (create position z = z-coord y = y-coord))
(defun move-object (tracked-object z-pos y-pos)
(atomic (update location of tracked-object to (new-position z-pos y-pos))))
(atomic ;; initial conditions
(setq objl (create Aegis-ship location = (new-position 113 64)))
(setq obj2 (create carrier location = (new-position 180 140)))
(setq obj3 (create hostile-aircraft location = (new-position 258 183)))
(setq obji (create commercial-airliner location = (new-position 38 25)))
(setq regionl (create engagability-region maz-radius = 44 min-radius = 22))
(create weapon-doctrine covered-object = objl ownership = objl
radius = 59 threat-azis = 90 removed-wedge-half-size = 60
removed-wedge-offset = 180 engagement-region = regionl)
(create slave-doctrine covered-object = 0bj2 ownership = objl radius = 40)
(define-tight-zone *((0 5) (0 25) (118 62) (259 25) (259 5) (118 32) (0 5))))
(atomic ;; time increment I
(move-object obj1 123 64)
(move-object 0bj2 180 130)
(move-object 0bj3 239 164)
(move-object objf{ 58 30))
(atomic ;; time increment 2
(move-object obj1 133 64)
(move-object obj2 180 119)
(move-object 0bj3 210 136)
(move-object obj4 100 43))
(atomic ;; time increment 3
(move-object obj1 163 64)
(move-object 0bj2 180 81)
(move-object 0bj3 148 73)
(move-object obj{ 159 36))
(atomic ;; time increment 4
(move-object objl 192 64)
(move-object 0bj2 180 60)
(move-object 0bj3 110 37)

E-10

(move-object objf 198 27))

Separate Processes

As defined above, the Relational Lisp program will execute as required except that everything will
occur in a single process. To allocate the computation to separate processes the automation rule is
replaced by the following declarations which set up a sentinel that queues up the tuples that satisfies the
triggering predicate (that a tracked-object enters a geometric-region) and spawn a process that services
that queue. Thus the body of the original automation rule now operates in the newly established
process.
(def-process-sentinel notify-operator-about-region-entry
((tracked-object geometric-region)
s.t. (start (in-region tracked-object geometric-region))))
(fsd-process:spawn-process “operator interaction”
#’(lambda ()
(loop ;;infinite loop
(process-db-wait
(notify-operator-about-region-entry (tpls)
:; tpls is a list of tpls that triggered the sentinel rule
;; in a single atomic transaction.
(loop for (tracked-object geometric-region) in tpls do
(format T 7§ entering § %”
tracked-object geometric-region}))))))
We use the same mechanism to spawn a process that determines which tracked-objects are in which
geometric-regions. This process services the track-file data produced by the sensor process by moving
the objects to the location indicated in the track file, which causes the in-region derivations to be done,
which triggers the sentinel for tracked-objects entering geometric-regions.
(defrelation track-file :types (tracked-object number number)
:count ((tracked-object output output) :countspec :optional))
(def-process-sentinel process-updated-track-file
((tracked-object z-coord y-coord)
s.t. (start (track-file tracked-object z-coord y-coord))))
(fsd-process:spawn-process ”In Region Calculations”
#’(lambda ()
(loop ;;infinite loop
(process-db-wait
(process-updated-track-file (tpls)
;s tpls is a list of tpls that triggered the sentinel rule
;; in a single atomic transaction.
(atomic (loop for (tracked-object z-coord y-coord) in tpls
do (move-object tracked-object z-coord y-coord))))))))

E-11

E.3 Collected Data
E.3.1 Development Time
Understanding: 20 minutes

Although the problem was well explained ahead of time, detailed questions still arose during modeling
(this is inevitable). These questions included, which attributes were required and which were optional,
what was the relationship between ownership and slave-doctrines (I assumed that the owner of the
slave-doctrine around the carrier was the Aegis-ship), and what was the relationship between weapon-
doctrine and engagability-regions (I assumed that they were paired, i.e. each weapon-doctrine had a
single engagability-region).

Modeling(Specification): 105 minutes

This was the time to devise the Relational Abstraction model (in Relational Lisp) and enter it into the
computer. The model developed was executable but was uncompiled (unanalyzed), undebugged, and
unoptimized. It handled all parts of the problem except for the inclusion of the point-in-polygon func-
tion (which had not yet been transliterated from the C library) and the separation of the computation
into different processes (which we view as part of the implementation (migration).

Debugging: 50 minutes

Compile-Time Errors There were a variety of compile-time errors that were found before execu-
tion. These included:

e changing the name of a relation (doctrine-location) to eliminate its definition from inadvertently
being recursive (it was originally called location and was defined in terms of location (of tracked-
objects)).

o Avoiding name conflicts with existing relations (degree was already defined, so we renamed our
relation to angle).

e Misuse of an attribute name (wedge-direction) where its type (compass-direction) was required.

e Mis-clicking (the modern day equivalent of typos): picking up threat-direction instead of wedge-
direction (this was detected as an unbound variable).

o Real typos: asked to create a commercial-airline instead of a commercial-airliner.

o Stubbing: Had to define a stub routine for the missing library function point-in-polygon.

Type Errors One type error occurred when I forgot to return the newly created position as the
value of the routine new-position. In strongly typed languages such as Ada these types of errors would
be found at compile time. In Lisp, such errors aren’t detected (if at all) until run-time. In Relational
Lisp, this showed up as a run-time type error (relations are type checked unless the user individually

disables such checking).
A second type error occurred when I tried to create the initial data state. The transaction aborted

with an error from the ownership-must-not-equal-covered-object-in-slaved-doctrine constraint that the

E-12

owner of the newly created weapon-doctrine was not allowed to be the same as the covered-object of
that weapon-doctrine. This rule was being inappropriately being applied to weapon-doctrines instead
of being limited only to slave-doctrines. The fix was to add a type restriction to this constraint.3

Run-Time Errors Two semantic errors occurred within the solution which were only found by test-
ing and noticing inappropriate behavior (inaccurate reports positive or negative of objects in regions).

The first concerned a boundary condition — was the point at the center of a weapon-doctrine in
that weapon-doctrine? I forgot to consider that case and the way the logic equations were defined
made that point outside the weapon-doctrine (by including it in the removed wedge). I thought that
was wrong and changed the logic equations to make that point inside the weapon-doctrine.

The second semantic error resulted from sloppiness in the non-relational Lisp function that defined
the relation clockwise-between. It originally attempted to normalize the compass-directions by ensuring
that they were non-negative, neglecting to ensure that they were also less than 360. This partial
normalization caused erroneous derivation of the clockwise-between relation.

Delayed Optimization: 10 minutes

As we mentioned previously Relational Abstraction allows declarative optimization choices to be made
for how relations should be represented and which derived relations (intermediate results) should be
cached.

We selected representations (record fields) for the z and y attributes of position. This resulted
in a three fold increase in performance (the default representation was a linked list which had to be
linearly searched for the appropriate tuple). This speed-up would be much larger if realistic amounts
of data were being processed. To perform this delayed optimization, we merely added “:representation
structprop” to the declarations of the z and y represented)./footnoteln Relational Abstraction when
the representation of a relation changes, the existing data (i.e. tuples) in the relation are extracted
from the old representation and put into the new one, and this is done invisibly so that no state change
occurs. This is analogous to schema evolution in database systems.

We also decided to cache the values of the derived relations (i.e. intermediate results) doctrine-
location, removed-wedge-direction, wedge-min-bearing, and wedge-maz-bearing which resulted in an ad-
ditional 15% performance improvement. These caching decisions are also declared by adding “:repre-
sentation structprop” to the relation definitions (we are also selected how the cache should be relations.

E.3.2 Size & Experience

Excluding the library routine for calculating points-in-polygon and the various well-formedness con-
straints (which aren’t needed to run and don’t have any effect unless bad data is entered and are
probably not part of any other submitted solution) the Relational Lisp solution contained 148 lines.

Developer: Robert Balzer Experience with Formalism: Expert

3In Relational Lisp when such errors occur which abort a transaction, the user can back out of the atomic (reestab-
lishing the state before the transaction began), change the state or the rules in effect (here we corrected the overzealous
constraint) and retry the transaction. Thus, we were able to fix the error on the fly and continue execution.

E-13

3This page intentionally left blank.

E-14

