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Abstract

We make use of Padé approximants and Krylov’s sequence (z, Az, A%z,..., A™ 'z) in the pro-
jection subspace methods for computing a few eigenvalues of a hermitian matrix A of order n.
This process consists of approximating the poles of R,(\) = ((I — AA)~ 'z, z), the mean value of
the resolvant of A, by those of [m — 1/m|g,(\), where [m — 1/m]g,()) is the Padé approximant
of order m of the function R;(A). This is equivalent to approximating the eigenvalues of A by
the toots of the polynomial of degree m of the denominator of [m — 1/m]g,(A). This projection
method, called the Padé-Rayleigh-Ritz (PRR) method, provides a simple way to determine the
minimum polynomial of z in the Krylov’s method for the symmetrical case. The numerical stabil-
ity of the PRR method is ensured if there is not “considerable” variation in the matrix elements
of A. The mainly expensive portion of this method is its projection phase, which is composed of
the matrix-vector multiplications and, consequently, is well suited for parallel computing. This is
also true when the matrices are sparse, as recently demonstrated, especially on massively parallel
machines. This paper shows that a relationship between the PRR and Lanczos methods can be
established by orthogonalizing the Krylov’s vectors sequence. We then compare the PRR and
Lanczos methods with regard to stability and natural parallelism.

Keywords : projection method, large symmetrical eigenproblem, Padé approzimant, Krylov’s

sequence, numerical stability, and parallelism.




1 Introduction In numerical analysis one is often faced with the problem of computing a

few eigenelements (A, ) of a large hermitian matrix A :
Au = du (1)

Projection methods provide a convenient approach to this problem. With these methods, instead
of solving a problem whose size is n, one solves a problem restricted to a subspace F,, whose
dimension is m with m < n. Recently a number of authors have significantly contributed to the
theoretical and practical development of these methods [5, 8, 11, 13, 17].

One of the most-used projection methods is the orthogonal projection method, also called the
Rayleigh-Ritz (RR) approximation method when A is a hermitian matrix. This method allows
one to compute, for every couple (A, u) of matrix A, a sequence of approximated eigenelements
(A(™) (™)), One can show[10] that (A(™)),,, is a monotonic sequence (with A(®) = A). The
drawback of a possible lack of strict monotonicity of the (A(m))m sequence is that one can choose

the m parameter larger and larger (m < n) without significantly approaching the exact solution.

The Padé-Raleigh-Ritz (PRR) method, developed by D. Bessis and M. Villani [1] is a version of
the RR method and is used in quantum mechanics and physics. The PRR method uses the Padé
approximants and the Krylov’s subspace as a projection subspace for solving the spectral problem
of the Hamiltonian operator H, which has an important role in quantum mechanics. The authors
carried out calculations for a semibounded self-adjoint operator H having the discrete (resp.

continuous) part of the spectrum positive (resp. nonpositive).

This paper presents an adaption of the PRR method to the case of large matrices in the scope
of numerical analysis (n < 00), generalizing it to the case of hermitian matrices (definite positive
or not). Also, a new PRR projection method for solving a hermitian eigenproblem is formulated
and studied. Furthermore, we propose to use this method iteratively; that is, restarting a PRR
step on a new Krylov’s subspace with the same dimension until achieving satisfactory accuracy

for the approximated eigenpairs.

The PRR method consists of approximating the poles of R,(3) = ((I-BA) 1z, z), the mean value
of the resolvant of A, by those of [m—1/m|g,(8), where [m—1/m]g,(8) is the Padé approximant
of order m of the function R;(8). This is equivalent to approximating the eigenvalues of the matrix

A by the roots of the polynomial of degree m of the denominator of [m — 1/m]g, ().,

Let (/\(m), u(m))m be an approximated eigenelements sequence obtained by this method. We state -
that (/\(m))m is a strictly monotonic sequence for m < s where s is the number of poles of the mean
value of the resolvent of A. Consequently, two different choices, m; and my, of the parameter m
allow us to have two different approximated eigenvalues, A(™1) and A(™2), for the exact eigenvalue
A of A with :

|,\(m2) - )< |)‘(m1) Y (2)

'We posed 8 = A™" in the original form of the mean value of the resolvant of A: ((A — AI)™'z,z) where z is
any non null vector in C".
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for my > my.

The linear dependence of a Krylov’s vectors sequence ST* = (z, Az, - -+, A™ 'z) is very important
in the orthogonal projection methods which use the Krylov’s subspace F,, spanned by these

vectors. We thus give a necessary and sufficient condition for the linear dependence of S™.

This paper suggests possible choices for the initial vector z and the projection subspace size
m. We use this condition in the study of the PRR method, in which an assumption of linear

dependence or independence takes place at every step.

The connection of the Padé approximants with the theory of orthogonal polynomials allows us
to establish a relationship between the PRR and Lanczos methods[7, 2, 9]. In fact, it can be
shown that by orthogonalizing the Krylov’s vectors sequence ST , we reproduce the results of the
Lanczos method. A consequence of this equivalence is that the approximated eigenvalue sequence

(A(™),,, obtained by the Lanczos method is a strictly monotonic sequence.

We propose, in section 4, a simple iterative PRR algorithm, showing its important points. We

shall see that for a fixed m, except for the projection phase, we must:

1. Solve a symmetric linear system of order m.
2. Compute the roots of a polynomial of degree m or compute the eigenvalues of a non-

symmetric and sparse Hessenberg matrix of order m.

Then, in section 5, we present a comparison of the stability, complexity, and parallelism between
the PRR and Lanczos methods.

Finally, in conclusion, we present the criteria for a reliable assessment of the PRR method.

2 Preliminary Study of the PRR method. Let = be any non null vector in C™, let
S§™ = (z, Az, -+, A™1z) be the sequence of Krylov’s vectors, and let P,, be the projector onto
the subspace F),, spanned by the sequence S7*. Consider the mean value of the resolvant of

A, = P, AP, the projection matrix of A onto F,,:

RZ(B) = ((I - BAm) "2, 2) (3)

The PRR method consists of approximating the poles of R,(8) by ones of R™(3). We will see
that this is equivalent to approximating the poles of R;(8) by those of [m — 1/m]g,(3), the Padé

approximant of order m of this function.

During the study of the PRR method, we show|[7] that the sequence of approximated eigen-
values (A(™)),, is strictly monotonic. In other words, (A(™),,, (for m < n) is a strictly monotonic

sequence of bounds for the exact eigenvalue A of A.

For this, the function 8 — BR;(8) not being determinate in the position of the poles, one defines
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the auxiliary function f(8) = arctg(8R,(8)). This function has the remarkable properties that
it is holomorphic and monotonic on the real axis. Consequently, the poles have been changed
into points of holomorphy of f(3). It is now possible to obtain bounds for f(3). This enables us
to build up a strictly monotonic sequence of bounds for the poles Aj, A, - -+, A; of BR,(8), and

consequently for some of the eigenvalues of A [9].
Some properties of the resolvant of A.

The spectral decomposition of the resolvant of A allows us to redefine the mean value of the

resolvant of A by:

BR.(8) = (B(I - fA) "z, z) = Z : gjﬂﬂ' (4)

where a; = (¢;z,z) > 0, with ¢; the eigenprojection corresponding to the eigenvalue \; = (5;)!

and p the number of the distinct eigenvalues of A.

o The function 8 — BRy(0) is well defined for all § € C, except for some poles. These poles
B1, B2, -+, Bs are given by the inverse of the eigenvalues for which z is not orthogonal to

the corresponding eigenspace M; (for 7 = 1,..,):

(z, M;) # 0 (%)
e Since for all B € R (B # 6i):
TORAB) =3 0 > 0 0

the function § — BR,(B) is strictly increasing in (3.
o We note by f; (resp. B;) the positive (resp. negative) poles of BR(3). Suppose that

they are ordered following the scheme:

Bs—<'°'<Ez<—51<0<ﬂ~1<ﬂ~2<"'<lgs+ (7)

Where st + s~ = s. The function 8 +— BR,(B) is positive for 0 < 8 < 81, null in
B = 0 and negative for 8; < 8 < 0. Therefore, it has ezactly one zero between each two

successive poles (Fig. 1).

The definition of a regular function from the resolvant.

1. We define the function f(3), for § € R by:

f(B) = arctan(SRs(8)) (8)
by normalizing it at § = —oco and prolonging it by continuity:
f(—o0) = arctan( hm ﬂRw(,B)) 9)
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Figure 1: st =4 and s~ =3

with
(25 + 1)% < f(~o0) < —(25~ — 1)-’25 (10)
‘We hayve:
d . a5(BR(0))
%f(ﬂ) =11 PR (11)

The function 8 — BR,(B) being meromorphic in C, equation (11) shows that % f(B) is
holomorphic for 8 € R. Therefore, f is also holomorphic in a vicinity of R. On the other
hand, equation (11) shows that we have always % f(B) > 0, then, fis a strictly increasing
function of 8. Consequently, this function passes through the values —(2k — 1)7 (resp.
+(2k — 1)) for B = By, (resp. B = f) and tends to a finite limit f(+o00) when § — 400
(fig. 2) with:

(2s% — 1)% < f(+00) < (25T + 1)% (12)

2. Let P, be thelorthogonal projection onto subspace F,, of C", and let A,, = P,AP,, be
the projection matrix of A onto F,,. We define, in the same way as 1, the function F,,
by:

fm(B) = arctan(BR(6)) (13)

This function has the same properties as f.

2.1 Padé-Rayleigh-Ritz = (Rayleigh-Ritz) + Krylov + Padé. Suppose F,, is the
subspace spanned by the Krylov’s vectors sequence S™ = (z, Az,---, A™ 'z). The subspace F,,

so defined is called Krylov’s subspace spanned by vector z with respect to matrix A.
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Figure 2: st =4 and s~ =3

By expanding the functions R,(8) and R™(3), in power of 3, we have formally:

Ro(B) = (T - A)12,2) = - Cif* (14)
k=0

RP(8) = (I - BAn)2,2) = 3 O B (15)
k=0

with Cy = (A*z,z) and C* = (A z,z). We have the following fundamental result [1, 7] :

Theorem 1 Suppose S7* is a linearly independent Krylov’s vectors sequence. Then, the Padé
approzimation [m — 1/m]R,(B) constructed out of the first 2m moments Cy = (AFz,z), k =
0,1,.....2m—1, fulfills [m — 1/m]r,(8) = R7(B). If the Krylov’s vectors §™ are linearly depen-
dent, then [j — 1/4]r,(8) = Ra(B) for all j5]..

Proof 1 The hypothesis of linear independence of the vectors ST* = (z, Az, - -+, A™ 'z) spanning

the subspace F,, implies:
Af;wx = (PmAPm)Zx = Az for 0<L<m-1 (16)
and
AlHlg = (P AP A & = P Al Hig Jor 0<€ <m—1 (17)

because (Pp,)? = Pn,. By using the inner product of (16) and (17) , for 1 <L+ € +1<2m -1,

we have:

(Af;"‘“lzz;,z) = (PmAzl"'lx, Alz) = (All“x, PnA'z) = (All"'l"'lw,a:) (18)
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or
= (AF 2,2) = (AFz,2) = C} for 0<k<2m-1 (19)

Then, by using equations (14,15) and the equalities (19), we have:

o0

Ro(B) — R7(B) = Y _(Cr — CF)B* = O(6*™) (20)

k=0
Consider the spectral decomposition of the matriz Ay, (which is of rank m):
v ()
m
A =Y AMpm (21)
i=1
where K is the eigenprojection corresponding to the eigenvalue /\;m) of An,. Since:

I )_i( (A7)

R =((I - pA, -1 y ) =
e (8) = (( BAR) T, ) (I—ﬂE”_‘-_l Agm)hm = hm(l 13)\(7”))

2)  (22)

and (h7*)? = K. We have, then:

RZ(B) = Z e 3)

This equation shows that R7'(B) is a rational fraction with a denominator of degree m and a
numerator of degree m—1 in 3. On the other hand, equation (20) shows that it differs from R,((3)
by a factor of order ™. Consequently, according to the definition of the Padé approzimations,

we have:

[m —1/m]r.(8) = R (B) (24)

If the vectors (z, Az, A%z, ..., A" 1z) are linearly dependent, we have:

Afn:c = (PmAPm)‘Za: = Alz forall £>0 (25)

Hence:
[m —1/m]r,(B) = R7'(8) = R.(B) ' (26)
a

According to the above result and some properties of the Padé approximants [2, 9, 12], the function
fm(B) can also be define by:

fm(B) = arctan f[m — 1/m]g,(8) = arctan[m/m]gg,(8) (27)




2.2 Strict Monotonicity of the Approximated Eigenvalues. The definition of f,,

and some properties [2, 9, 12] of Padé approximations allow us to show[1]:

Theorem 2 (Bessis-Villani, Emad) For 8 > 0, we have always fmi1(8) > fm(B8). If at
one point B* # 0, we have frmi1(6*) = fm(B*), then, for all k (0 < k < n — m), we have

fntk(B) = fm(B) = f(B), and for 8 < 0 we always have frm41(8) < fm(B).

Proof 2 Suppose:

P (/6)
Qm ()
where Pr,—1(B) and Qn(B) are polynomials in 8 of degree m—1 and m respectively, and Q.,,(0) =
1. Let be D; = det(A;) (cf: section 4). We recall the following identity [9]:
]
Qm(B)Qm+1(8)

For a hermitian matriz, we can show that D, is always positive. In fact, we have the following

[m —1/m|r.(8) = (28)

[m/m +1]r.(8) - [m — 1/m]r,(8) = (29)

relationship:
Dy, = Ym D (30)

where (Ym)m is some sequence of the real positive values and D_; = 1. The above equality shows

that if for some mg, D,,, =0, we have then:
Dotk =0 for all k such that 0<k<(n—1)—mg (31)

and the mean value of the resolvant of A will be reduced to its Padé approzimant of order m:

Ro(B) = [n = 1/n]R,(8) = -+ = [mo — 1/mo]R.(8)

On the other hand, by using equation (29) we see that if a point B* # 0 ezists such that f,41(8*) =
fm(B%), then D,, = 0 and therefore:

fm4k(B) = fm(B) = f(B) forallk such that 0<k<(n-1)—m (32)

Apart from this particular case, we see that for § > 0 the fu4+1(8) and f(8) functions have
no point of intersection. Consequently, in order to fiz their relative position, we consider their

relative values in the vicinity of zero. In fact, we deduce from (29) that:

Fmt1(B) = Fm(B) = (Dm)* ¥ 1 + O(57"+?) (33)

Because the Taylor’s development, in the vicinity of zero of the function fn,,(B8) = arctan(Z,,)
with Z,, = plm — 1/m]g,(B) provides that:

fm(B) = arctan(Zp) = Zm + O(8*™*1) = [m/mlgr.(8) + O(F>™+") (34)

we have:

fm41(B) > fm(B) for B >0
Jm41(B) < fm(B) for <0




As long as the Krylov’s vectors z, Az,...,A™ 1z are linearly independent, the poles of [m —
1/m]g,(B), which are the eigenvalues of A,,, are all real and distinct. Suppose they are ordered

in the following scheme:

Aot < < B < B <0 < B < B << p) (35)
where m* + m™ = m. According to the definition of f,, (for k=1,---,m~ and j = 1,---,m%) .
we have:
—(m ™ ~(m . s
@) =@k -1)7  and  fu(B) = 25-1)F (36)

On the other hand, the orthogonality properties of the denominators of the Padé approximations
[m/m]gr,(B) imply that between two successive poles of [m/m|gr,(3), we have ezactly one pole
of [m 4+ 1/m + 1]3r,(8), except between the two poles nearest to the origin of the [m/m]gg,(8).
In fact, between those two poles (i.e.: ﬁ{m) and B‘&m)), there are two poles of [m+1/m+1]gr,(3),

one positive and one negative. In other words:
B < B < 0 < I < glm) (37)
Because in the contrary case, we have:
B B <o o 0< B < it (38)

Then, the function 8 — f,(f) is strictly increasing and the sequence (f,(3))m is strictly mono-

tonic. Combining theses two properties of f,, with equation (38), we have:

T (B < f (B = (39)
125 = fm(B™) < frnaa (B = '721 (40)

which is a contradiction in the two cases. Consequently, the sequence of the poles (B,(cm))m (resp.

(ﬁ}cm))m) is strictly decreasing (resp. strictly increasing)

Hence, if the eigenvalues \; = (3;)~! and X; = (;)~! of the matrix A and ones \{™ = (3{™)-1

and Xf."‘) = (E,("‘))-l of the matrix A,, are ordered as follows:

M< A< <A <0< Xt <o < Xa < Ny (41)
PRI VP L PO RIS (P L) (42)
they fulfill:
'Xg’nend) << Xl(cm+1) < chm) <0 (43)
0 < Am X+ L o §(mend) (44)
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In other words, for m = 1,-- -, m.nq, the sequence of positive approximated eigenvalues (:\gm))m
is strictly increasing and the sequence of negatives approximated eigenvalues (X}cm))m is strictly

decreasing.

But, what is the m¢,q? It is clear that the sirict monotonicity of the approximated eigenval-
ues is true as long as the eigenvalues of A,, are all real and distinct. We have seen before that
this is true as long as the sequence of the Krylov’s vectors S™ is linearly independent. Therefore,
Mend is the value of the parameter m beyond which we have linear dependence of S™. Conse-
quently, we are interested in locating the moment from where the Krylov’s vectors sequence $™

is no longer linearly independent. We will address this question in the next section.

3 A Necessary and Sufficient Condition for the Linear Dependence of a Krylov’s
Vectors Sequence. Let My, My, ..., M, be the eigenspaces corresponding to p distinct eigenval-
ues of A. We denote the orthogonality of the vector = with the subspace M; by (z, M;) = 0. We ‘

can show the following;:

Theorem 3 (Emad) Let A be a normal (in particular hermitian) matriz of order n and let x be
any non null vector of C*. If (x, M;) # 0 for i=1,..,t and (z, M;) = 0 for i=t+1,...,p, then S%, is

linearly independent and S} is linearly dependent for all m > t, where ST* = (z, Az, ..., A" 1z).

Proof 3 Since A is a normal matriz, there is an orthogonal basis uy,uy, -+, u, of its eigen-
vectors. Let uy,,ug;,- -, uq; be the eigenvectors associated to the eigenvalue \;, and let M; =

span{uy;,ug;, -, uqd; } be the eigenspaces corresponding to ;. Then:

»
n= Zd,- and C" =o!_| M; (45)

=1

The vector x € C™ = © = Y o_; x; where each vector z; € M;. Our hypothesis for © implies z; # 0
fori=1,---;tandz; =0 fori=t+1,---,p. Hence:

t
T = Emi (46)
=1
Consider now:
m—1 .
. E a; Az for y = (a0, a1,y Q1) €C™ (47
—
FEquation (46) implies:

1
Az =3 Alg, forall — j>0 (48)

=1




On the other hand, for all i € {1,---,t}, there exists a vector (B1;,Ba;, "+, B4;)t # 0 such that:

d;
z; = Z Brug because z; € M;
k=1;

Hence, for all j >0 andi=1,---,t :

d; .
Algi =AY Brug = Me;
k=1;

m—1 t m-1
Z OtjAj:lt = Z(Z aj/\f:):ni
7=0

i=1 j=0

Linear independence of the vectors (zy,- - -, z;) implies:

m-—1 ) m-—1 .
EajAszOii)ZajAf:O Vie{1,---,t}
J=0 J=0

This is equivalent to the following system:

a0+C¥1A1 +a2/\§ + ...+am_1)"in—1 =0
g+ agA; + a2l + ...+am_1)\3n-—1 -0

g+ ardt+ @A+ @ AT =0

which is equivalent to:

1 A A2 o A1 ao
1 >\2 }\2 ........ m—1 aq

.2 2 = Vny=0
1 A A2 A1 Qm1

(49)

(50)

(51)

(52)

(53)

(54)

As the approzimated eigenvalues Ay, - - -, \; are distinct, the Vander Monde matriz V,, is invertible

for m =t. Hence:

Viy=0&y=0

(55)

Consequently, the sequence ST is linearly independent. For m = t + 1 the above system of

equations has at least one (nonzero) solution. This is equivalent to the linear dependence of S

for m > t. These results allow us to say:
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Sa'is linearly dependent < m > t (56)

a

An immediate consequence of this theorem is that for m > t the projection subspace F,, is an
invariant subspace of the normal matrix A. A,, is no longer a projection of A onto F,, but
a restriction of A to Fj,. Consequently, the eigenvalues of A,, are the ezact eigenvalues of A.
We propose then, a suggestion for possible choices of the initial vector z and parameter m: the
number £ is unknown in practice, but for any z and large =, it is, in general, large. This means
that if we choose m large, we can hope to have m > ¢. But this choice is in disagreement with the
general principle of projection methods for computing a few eigenvalues of a very large matrix
(i.e.: m < n). Now, with m small, according to the above result, we must choose an initial vector
z in such a way that it belongs to an invariant subspace M = M; & My @ ... ® M; and does not
belong to any other invariant subspace (i.e. #  MP™" = My11 @& Myyo @ ... & M,).

Suppose we want to compute r eigenvalues of matrix A (r < p < m < n). As a consequence of
the above theorem, we must attempt to find an initial vector £ whose components are nonzero
(resp.. zero) in the r eigenspaces corresponding to the wanted (resp. unwanted) eigenvalues. The

research of such initial vectors has been the aim of much investigation, particularly in [4, 5, 17, 16].

In the specific case of the PRR method, we can consider that the vector z defined in this method
fulfills the condition of the above theorem for ¢ = s, the poles number of R;(3). In other words,
the vector = belongs to the invariant subspace M® = My @ ... ® M, and does not belong to the
rest of invariant subspaces: MP™° = M, @ ...® M,. Consequently, for m > s the approximated
eigenvalues obtained by PRR are the ezact eigenvalues of A and the m.,q parameter, defined in

the last section, is equal to s. The inequalities (43, 44) can now be rewriten:

T =2 = Jmena) L X0 xm) g (57)
X = A = J{mend) o s 300D 5 XM 5 (58)

This shows that the ideal choice of parameter m is m = s = menq. As we have just seen, this is

accomplished by a good choice of the initial vector z.

Combining the strict monotonicity of the approximated eigenvalues sequence (A(m))m obtained
by the PRR method and the above theorem, we can show that if z is not orthogonal to any of
the eigenspaces, the approximated eigenvalues in the extremity of the spectrum converge to the
corresponding exact eigenvalues. Furthermore, the error bounds given by [16] show that these

approximations are more and more precise as they go up to the extremity of the spectrum of A.

4 The PRR Method Consider an even number of moments Cy,Cy, ..., Com—1. We con-

sider the denominator of the Padé approximation [m/m]gr,(3) built up on the resolvant of A:
11




Cl C2 ------------ Cm+l

Qm(A) = det : : : : (59) -
Crn-1 Cpm e Com-1
1 A A™

The PRR method consists of approximating m distinct eigenvalues of A by the m real and distinct
Toots ()\z(m))i=1,m of the polynomial @,,(A). The /\z(m) are the eigenvalues of A,,, the part of A

onto Fy,, = span(z, Az, A%z, ..., A™"'z) subspace with dimension(F,,) = m.
Computing roots of @),, () requires the polynomial coefficients bg, by, ..., by,—1 of

Qm(A) = Dpui(bo + byA + oo 4 b1 A™ 4 A™) (60)

This can be done using the following relations:
b; = —D;{10m+j Vi €{0,---,m—1} (61)

or by solving the following linear system:

CO Cl ........ Cm_l bm_]_ Cm
Ci  Co . Crm b2 Crut1
A : __ : (62)
Crn-1 Cm e Com—2 bo Com-1
Am—l b '

As soon as the vector b is known, we can use either:

1. A method to compute the roots of an explicit polynomial (for example: Bairstow).
2. A method to compute the eigenvalues of a non-symmetric and sparse matrix (for example:
QR). Since, if we let p; = —b; (for ¢ = 0,1,...,m — 1), then:

Qm(A) =A™ = PraA™ ™ = PrgAmoz — -+ — P1A — po (63)

where the companion matrix is:

Pm—=1 Pm—2 ceeeeenens P1 Do
1 0 0 0

H,, = 0 1 0 0 (64)
0 0 . 1 0

It is not difficult to show that the approximated eigenvector u; of A corresponding to /\z(m) can

be obtained by the following relation:

=m-1

J
W™= 3 4;Q;(0™)Q;(4)e (65)
3=0
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where @;(t) is the denominator of the Padé approximant [j-1/j](t) and d; = (D;D;_1)~" with
D; = det(A;) and D_y = 1. The special form of A; matrices and their inter-dependence allows
an important simplification for computation of uz(-m) and/or for solving the A,,_1b = c linear

system. In fact, we can show:

Dj = Cy;Dj1— || E; |? for all iset (66)
Q;(A\) = MD;_; — (Ej, A)) for all it (67) -
Qi(A)e = AizD; — (Ej,A?)  forall - (68)

where E; = (Cj, Cjy1,- -+, Coi-1)y Aj = (1, A, -+, X1 and A? = (z, Az, - -+, AT g},

Suppose, we want to compute some number 7 of the eigenelements of a matrix A of order n
(r < m < n). By using the PRR method, the realized accuracy of approximated eigenvalues can

be unsatisfactory.

We propose to use this method iteratively. That is, to restart a PRR step with a new initial
vector, until obtaining the desired accuracy. Concerning the choice of an initial vector, according
to the theorem in the previous section, we need to find a vector with nonzero (resp. zero) com-

ponents in the eigenspaces corresponding to the wanted (resp. unwanted) eigenvalues.

4.1 Iterative PRR Algorithm

1. Choice of m.
2. Choice of initial vector z.
3. Normalization of z : yo=z/ || z ||, Co =|| %0 [|*= 1
4. Computation of Cq,Cs,...,Com_1.
° y1 = Ayo
e Fork=1,m~-1,do
Cok-1 = (Yk» Yr-1)
Cak = (Yk, Yk)
Ye+1 = Ay
o End for k
° Com—1= (Ym>Ym-1)
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Linear system solving : A,,—1b = c.
Computation of the eigenvalues of H,, matrix.

Computation of the approximated eigenvectors uz(.m) for i = 1,...,m by (65).

®» NS e

If (miny<i<, || (A - /\gm)I )ufm) || > p : requested precision ) Then
with a new initial vector go to 3.

End if

9. End

5 Comparison with the Lanczos iterative method. Let us suppose dim(F,,) = m
with F,, = {z, Az,---, A" 1z},

The Padé approximants are deeply linked with the theory of orthogonal polynomials. As a
consequence, one can establish a relationship between the PRR and Lanczos methods. In fact,
if we orthogonalize the Krylov’s vectors sequence S7* by Gramm Schimdt orthogonalization,
we can show [7, 1] that the results of the Lanczos method will be reproduced. For this, let
¥* = (Yo,¥1,°* *» Ym—1) be this orthonormal vectors basis of Fy,. It is not difficult to show that

the following relations are satisfied (for 522 _,):

Yo such that || yo [|= 1
a; = (Ayj,y;)
Yis1 = fl‘l’yj — a;y;j — Bj—1yj-1 with ;=0
85 =l i |
Yji+1 = yj+1/,3j
Now, in the y* basis, A,, = P,AP,, is a tridiagonal and symmetrical matrix. In fact, if Y

represents the matrix of yo, 1, - -, Ym—1 vectors, we have:
Tm =Y'A,Y =Y'AY (69)

with (T)ii = @i = (A¥i,9i)s (Tm)ijivr = (Tm)ivr,i = Bi = (A%, Yig) and (Tin)ij = (Tn)ji = 0
forj>¢+2. If 'wz(m) is the eigenvector of T, corresponding to the eigenvalue Az(-m) , then the

(m)

approximated eigenvector v; ' of A corresponding to )\,(m) can be obtained by:

vz(m) = Y'wi(m) (70)

Equation (69) shows clearly that the A,, and 7}, matrices have the same eigenvalues. This process
of tridiagonalization of a matrix by orthogonalization of the corresponding Krylov’s sequence is
the Lanczos method. Because the PRR and Lanczos methods produce the same results it is

natural to compare them. Recall the iterative Lanczos method:

5.1 Iterative Lanczos Algorithm

1. Choice of m.
2. Choice of initial vector z.

3. Normalization of  : yo =2/ || z || and f—1 =0
14




4. Computation of T}, matrix elements.
e For j=0,m -2, do
o; = (Ayj,y;)

Yjir1 = Ay — a;y; — Bi-195-1

Bi =l yj4a |l
Yi+1 = yj+1/ﬂj
e Fnd for j

8 Qy—1 = (Aym—la ym—l)
. Computation of the eigenvalues of T, matrix.

. Computation of the eigenvectors wgm) of T,,, matrix.
Computation of the approximated eigenvectors v}m) for i =1,...,m by (70).

I (miny<i<r || (A - Az(-m)I )'vzgm) || > p : requested precision ) Then

0 N o o

with a new initial vector go to 3.
End if
9. End

A drawback of the Lanczos method, calling into question its stability, is that the vectors obtained
by the algorithm loose their orthogonality very rapidly. Several strategies of re-orthogonalization

[5, 4, 18] can be used, but this can become very expensive.

The PRR method does not have this problem. Instead, the projection matrix whose eigenvalues
approximate those of A is a non-symmetric and sparse upper Hessenberg matrix: our symmetric
eigenproblem is reduced to a non-symmetric problem! In order to circumvent this difficulty, an
alternative seems to compute the roots of the characteristic polynomial @,,(\) of which A,, is

the companion matrix.

In the PRR method, we must solve a symmetric linear system which is well conditioned if there
is not considerable variation in the size of matrix elements of A. Furthermore, its special form
permits use the Bordering [3, 6, 15] method, which is particularly well suited to these kind of
matrices. Computing approximated eigenvectors ugm) requires the evaluation of some expressions
(see (65)- (68)). The special form of these expressions and their inter-dependence allows a very

important simplification for their computation.

The mainly expensive parts of the Lanczos and PRR algorithms are their projection phases. The
complexity of which is m(a+ 28+ 5v) — (8 + 7v) for Lanczos and m(a +28) — 8 for PRR, where
a, B and 7 are, respectively, the complexities of matrix-vector multiplication, the inner product

of two vectors, and an elementary operation between a scalar and a vector of order n.

Suppose that we have O(n?) processors. Then, if we do not consider the communications time

and the mapping problems, we have:

a=4 and yr1 (71)

Nevertheless, we must recall that this is target machine dependent. Consequently, with O(n?)
15




processors and the above hypothesis, the complexity of the projection phases of the above version -

of PRR and Lanczos algorithms are respectively:
a(3m—1) and a(3n—-1)+5m -7 (72)

with @ = 14log, n in the case of dense matrices and o = 1+1log, ¢ in the case of sparse matrices,

where ¢ is the maximum number of the non zero elements in a column of A.

Consequently, for this portion of the algorithm, the PRR method can be more efficient than the
Lanczos method. Furthermore, the inclusion of re-orthogonalization makes the projection phaLse
of the Lanczos method almost two times more expensive. For the Arnoldi projective method on
the massively parallel architecture of the Connection Machine 2, it has been observed [14] that

n

with O(n?) processors in the general case and with O(nc) processors in the sparse case, for P

large, we have:
d(projection method) — d(projection phase)

where d(z) is the throughput of . We can conclude that for 2 large, the PRR method can be

two times less expensive than Lanczos (with re-orthogonalization) on such architectures.

On the other hand, large degree of parallelism is possible in the PRR algorithm due to the form

of the linear system in equation (62) and the expression of u,(-m).

6 Conclusion We have shown that the method developed in this paper and the Lanczos
method produce the same results. A theoretical comparison of the stability, complexity and nat-
ural parallelism of these methods was provided. We conclude that, under assumptions introduced

in the last section, the PRR method is more efficient in terms of complexity and parallelism.

Nevertheless, we think that the most important criterion for choosing a method must be its nu-
merical stability. We have seen that in this respect these methods are comparable. Consequently,
a reliable assessment of the PRR method requires using it and comparing numerical results with

those of the nearest method (i.e.: Lanczos).

Some theoretical results developed in this paper are sufficiently general that they can be applied

to other projection methods (i.e.: Lanczos).
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