Distributed Applicative Processing Systems:
Project Goals, Motivation, and Status Report

Paul Hudak

3R/

Technical Report YALEU/DCS/TR-31%
May 1, 1984

Yale University
Department of Computer Science
New Haven, CT

This research was supported in part by NSF Grant MCS-8108177.

Table of Contents

1INtroduction . . . v v vt h e
2Whatis DAPSY e e
21 Motivationt e

22 Overview. e e e e e e e e e e e e
2.2.1 DAPS is based on graph reduction. oL
2.2.2DAPSis highlyparallel.
22.3DAPSisdecentralized.. o000

2.2.4 The reduction process accomplishes program execution.

2.2.5 The housc-keeping process handles the logistics of parallel computation.............

O b Wb b W GO

33 The DAPSSimulator o o e
4 Relationship to Al Programming

4.1 Sources of Parallelism in Al Programming. 10

4.2 The Importance of Eager Evaluation 11
5 Relationshipto Other Work o v v v v 12
6 Project SUIMMAry « « v« ¢ v v ¢ o v 0 0. e e e e e e e e e e 15
7 Acknowledgements L L Lo Lo Lo e e 15

6
6
7
3.2 Diffusion Scheduling. oo 7
8
9

Distributed Applicative Processing Systems:
Project Goals, Motivation, and Status Report

by
Paul Hudak

Abstract

Most existing parallel computers are successful only because of their ability to take advantage of
the regularity and predictability of many programs, especially those found in scientific
computation. On the other hand, there is a large class of programs (such as found in Al)
characterized by irregularity and unpredictability, for which existing machines are poorly suited.
Despite this problem, we argue that there are fundamental similarities in the dynamic behaviors
of these programs, for which parallel computer systems can be specially tailored.

We describe herein a class of network computers called Distrsbuted Applicctive Processing
Systems, or DAPS, that is based on the notion of dynamic task creation and distribution, using
an underlying graph reduction model of program execution. The model is completely
decentralized, and includes mechanisms to automatically perform “on-the-fly” garbage collection
and task management. Our goal is to develop a model that exhibits parallelism in a way
transparent to the user, and that executes unpredictable programs as effectively as predictable
ones. We are testing the model by simulation. This paper describes the motivation, goals, and
current status of the DAPS project.

1. Introduction

There have been a considerable number of proposals in recent years for machines that have the
outward appearance of a “dense, closely-coupled network of processing elements”, machines that
we refer to as network computers. Such machines have several very appealing features: they
have the potential for a great deal of parallelism, they are highly extensible, and with the advent
of VLSI they are fairly easy to build. However, none of the network computers in existence
today have succeeded in extracting a reasonable amount of parallelism from a general class of
programs. They have only performed well when the parallel components of the program have
been explicitly stated by the user, or explicitly allocated on particular processors, and generally
only for problems that have inherent regularity and predictability. No-one has demonstrated the
overall feasibility of the network computer for accomplishing the parallel execution of a general

range of programs, or even for a restricted class of, say, Al programs.

We feel that the network computer model is indeed a viable approach to “fifth generation”

computer design, but current efforts have been lacking in several respects:

1. Most network computers lack a consistent global computation model — the machines
are too often treated simply as an array of conventional processors that
“communicate by messages”, resulting in ad hoc solutions to a very difficult
problem.

2. Little attention has been paid to the complex issue of managing a highly parallel,
decentralized computation, especially in the presence of “eager” and non-
deterministic computations. Such issues become extremely complex in the
decentralized, distributed environment of the network computer, and cannot be
taken for granted.

3. There has been almost no empirical study of the quantitative performance
requirements of such machines. What should the ratio of processor speed to
communications bandwidth be, what is the appropriate network topology, and how
much memory should each processor have? All of these questions (and more) need to
be answered before actually committing to a particular design.

4. There is little to be learned from the success of parallel machines in scientific
computing, because these machines depend heavily on a program’s regularity and
predictabslity to get a high degree of parallelism. Such program behavior is common
in scientific computing, but is absent from Al programs and others for which we
would like the fifth generation machines to perform well. New techniques need to be
developed to deal with dynamic, unpredictable behavior.

For the past several years we have been developing a class of network computers called
Distributed Applicative Processing Systems [14], or DAPS, in which we have specifically
addressed the problems raised above. The DAPS model has a firm underlying computation
strategy derived from the lambda calculus, together with powerful mechanisms for managing the
logistics of a highly-parallel computation. Furthermore, we have begun studying the dynamic
behavior of the irregular, unpredictable programs that are characteristic of Al and a few other
application areas. From this we have developed a technique called “diffusion scheduling” to

handle the dynamic and unpredictable spawning of parallel tasks during a computation.

In this report we hope to justify the DAPS approach and describe the status of our current
research. We expect the results of our work to be useful to existing network computer designs,
but our long-term goal is to design and build a general-purpose DAPS machine that does equally .
well on unpredictable programs as it does on predictable ones. We do not believe that the user
wishes to concern him/herself with the details of parallel computation -- such mechanisms should
occur transparently to the user’s program. To reach this goal our current work has centered
upon careful simulations to gather the necessary empirical data to allow sound reasoning to guide
our design. At this stage in the research, this is a far more economical and flexible approach

than building a real machine.

2. What is DAPS?

2.1. Motivation

The DAPS philoéophy is motivated primarily from the desire to solve the problems outlined
above, coupled with the following important observations: First, to attain the degree of
parallelism that we desire, the shared-memory model (or “von Neumann bottleneck”) must go.
On the other hand, carrying this to the extreme taken by data-flow researchers results in a great
deal of communications overhead [11]. What we propose instead is a collection of memory
partitions, to which each is assigned a small number of processing elements (perhaps just one).

This leads naturally to a network computer model.

Second, any resource allocation mechanisms that depend solely on static analysis will be
inadequate to deal with the dynamic behavior of many types of programs. One quickly concludes
that the existing score of “supercomputers” will not do, since they rely almost exclusively on
compile-time analysis. We propose instead an architecture that (perhaps with the aid of static

analysis) makes run-time task distribution and resource allocation decisions.

Finally, a highly-parallel, extensible system cannot rely on centralized knowledge to accomplish
dynamic resource allocation. Such a centralized database can only introduce another von
Neumann bottleneck, a feature that the parallel system was trying to avoid in the first place.
The only feasible solution is a decentralized mechanism that relies on incomplete knowledge of
the system state to properly spawn new parallel tasks. Our solution is a technique called
ds ffusion scheduling in which the workload tends to “diffuse” through the network of processor

resources.

2.2. Overview

The foregoing observations have led us to a class of architectures that is radically different
from conventional “von Neumann” machines. Physically, a DAPS machine is a highly-parallel,
closely-coupled network of autonomous processing elements having only local store and
communicating by messages. Logically, DAPS accomplishes program execution by graph
reduction. All control in DAPS is entirely decentralized, including memory and task
management, thus avoiding any bottlenecks to effective parallel computation.

In this section we describe the salient features of DAPS, returning later with more detail on

certain features as they relate to this proposal.

2.2.1. DAPS is based on graph reduction.

In DAPS a program is represented as a directed graph (called the computation graph) whose
vertices are labeled with primitive operators and values, and whose edges reflect data
dependencies between operators and values (cf. [2, 4, 7, 23, 25, 26, 35]). Program execution is
accomplished via transmutations (called reductions) to the graph. This includes not only
relabeling vertices with their ultimate value but also changing the connectivity of the graph,
which can result in the implicit deletion of some vertices as well as the explicit creation of new
ones. (New vertices, for example, are added as the result of a function invocation.) The graph
thus expands and contracts as the computation progresses. Figure 2-1 shows several examples of
the reduction process. (This figure is intended to convey the general flavor of graph reduction

-- we have left out many of the details of an actual implementatior.)

There are several significant advantages to the graph reduction approach: First, program and
data are the same, simplifying the architecture and facilitating important Al tasks such as graph
searches in semantic networks (see Section 4). Second, it is fairly easy for a compiler to
determine the parallel components of a computation graph through straightforward flow analysis.
Finally, it is possible to describe important properties of a parallel computation in terms of graph
connectsvity, allowing the development of effective strategies to deal with the logistics of a

highly-parallel computation (as discussed in paragraph 2.2.5 below).

2.2.2. DAPS is highly parallel.

The DAPS parallel execution strategy amounts to dividing the computation graph into
partitions that are assigned to autonomous processing elements (PE's) in a closely-coupled
network. Internally, each PE consists of a local store in which the partition is maintained, a
task queue containing tasks ready for execution, a communications system through which
tasks are spawned to other PE’s, and two processors, one responsible for graph reduction, the
other for house-keeping functions. The number and complexity of the primitive operations
(“machine code”) of a PE are minimal, corresponding to the chosen set of primitive graph
mutations and data operators. DAPS thus supports the notion of a RISC architecture and is
amenable to VLSI design.

2.2.3. DAPS is decentralized.

The network topology is completely homogeneous, meaning not only that each PE is identical,
but also that the interconnecctions between them are the same. There is no concept of a
“parent” or “child” node, and to ensure extensibility each PE has a fixed number of neighbors.

The petwork provides logically complete communication, in that any PE may spawn tasks to

(b) structure access

i

Soc

e

(c) function invocation via “macro-expansion”

Figure 2-1: Examples of Graph Reduction

any other (via a store-and-forward message protocol), although it is less expensive to

communicate with a PE’s immediate neighbors.

2.2.4. The reduction process accomplishes program execution.

Logically, DAPS should be viewed as two processes working simultaneously on the computation
graph; this is reflected by the two processors comprising each PE. The objective of the
reduction process is program execution. Each task in this process is responsible for a primitive
operation such as data manipulation or a primitive graph mutation. Through diffusion
scheduling, expanding portions of the graph are allocated to other PEs to try balancing processor
load while maintaining locality of reference (more on this in Section 3.2). Since all knowledge is
decentralized, these run-time decisions are made based on incomplete knowledge of the system
state.

2.2.5. The house-keeping process handles the logistics of parallel computation.

Central to the DAPS philosophy is the inclusion of mechanisms to automatically perform most
of the house-keeping chores required to manage a large parallel computation. Simple problems
such as garbage collection become non-trivial in such an environment, and cannot be taken for
granted. The house-keeping process executes concurrently with the reduction process (thus
avoiding annoying interruptions in program execution), and is completely decentralized. Its
global behavior dynamically accomplishes (1) garbage collection, (2) deletion of eagerly invoked
computations subsequently found to be irrelevant, (3) detection of deadlock, and (4) updating of
task priorities. This process is the most novel yet crucial aspect of DAPS, and is an extension of

our work on decentralized graph-marking algorithms [15, 16, 17, 18].

3. Further Development

Our previous research has fairly well developed the “mechanistic details” of the DAPS model,
as discussed in the last section. In some sense enough detail exists to build a prototype machine.
Our preferred approach, however, has been to refine certain particularly important aspects of the:
model, to test them via simulation, and to study the dynamic behavior of programs for which we
want DAPS to perform well, in particular Al programs. In this section we will elaborate on these
ideas further.

Although we feel strongly that the DAPS model is ideal for the parallel execution of Al
programs (and others), it is not clear what the appropriate distribution and scheduling strategics
should be. The distribution strategies determine what should be distributed for parallel

execution, and the scheduling strategies determine where to distribute the work. Our solution to

the first problem is the use of serial-combinators, and to the second problem, a technique

called diffusion scheduling.

3.1. Serial-combinators

A combinator is a lambda expression composed only of applicative forms, and containing no
free variables [5]. It turns out that any deterministic program can be rewritten into an equivalent
one using a fixed set of constant combinators. Indeed, based on this idea we have built a
compiler for ALFL (a functional language developed at Yale) targeted for a conventional machine
[19]. We have also done experiments in distributed combinator reduction on DAPS [20]. The

following idea is an extension of the latter.

Hughes generalized the notion of a combinator to include ones derived from a given source
program that he calls super-combinators [21]. In this way the program itself determines the
set of combinators that it is to be defined in terms of, creating ones that are maximal (in number
of terms) for that program. Thus their execution is in general more efficeint than a composition
of many finer-grained combinators. A serial-combfnator is our own refinement of a super-
combinator to mazimal czpressions having no concurrent substructure; ie., all of its
subexpressions must be computed serially. The idea is that such expressions are most efficiently
computed on a single PE — there is no advantage to subdividing the computation further, since
that can only add communications cost to the already serial computation. Serial-combinators are

therefore the smallest objects that are distributed for parallel execution in DAPS.

Since serial-combinators have no free variables, they can be easily implemented via graph
reduction [35], and their detection can be done at compile-time as an extension to our work in
[19]. Modifications our underway to our current compiler to include serial-combinator analysis,
and that compiler will then become the “front end” to the DAPS simulator (discussed further
below).

3.2. Diffusion Scheduling

Diffusion scheduling attacks the problem of deciding where to distribute new work. This
decision is crucial to obtaining good performance, but must be done quickly, at run-time, and
based on decentralized knowledge. It is not possible, therefore, to make optimal decisions -- a
heuristic solution is required that attempts to balance processor load (thus increasing the degree
of parallelism) while still maintaining locality of reference (thus minimizing commuications
overhead). Given a new task t created on a PE n, the heuristics behind diffusion scheduling

spawn t for execution either on n or on an immediate neighbor of n, based on a weighted sum of

several factors, including:

8

1. The processing load on n (i.e., the number of tasks waiting for execution on n's task
queue).

2. The memory load on n (i.e., how much free space is available).
3. The processing and memory load of each neighboring PE.

4. A weighted measure of the “direction” of references from t to other nodes in the
network.

The effect of (1)-(3) is to push tasks away from busy nodes, and the effect of (4) is to draw them
toward those to which they have global references (thus maintaining locality of reference). In
this way work “diffuses” through the network in the direction of least resistance, as suggested by
Figure 3.2 for a hypothetical two-dimensional network. We are currently investigating several

variations on the method by which the weighted sum is computed.

NORTR
LF= 4
K&ke?azmcss
WEST ,,aAM,ﬁs_fg;mcz |
R0 > 0 < _ EasT
" LE=7 LF=4

LF= Lotd Factop, d\
A= naw TASK,

LF¥=¢

% = LEAST RESIsTAnce SOUTH

Figure 3-1: Diffusion Scheduler Chooses to Spawn Task to the North

3.3. The DAPS Simulator ,

We have recently completed a prototype simulator for DAPS on a network of Apollo
workstations [20]. With it we can easily vary physical parameters such as network topology (and
its size and degree), communications bandwidth, and the structure of each PE, as well as logical
parameters such as the house-keeping process, the reduction process, and of course the

distribution and scheduling heuristics. The simulator includes mechanisms to time-stamp

messages so that simulated parallelism can be measured, but it can also be run by simulating a

set of PE's on an arbitrary number of workstations, thus emulating true parallelism.

We are using the simulator in two ways. First, we are experimenting with refinements to our
reduction and diffusion scheduling strategies. The simulator’s flexibility makes it possible to vary
network and processor parameters in response to quantitative data as it is gathered. For
example, the optimal values of the physical parameters mentioned in the last paragraph cannot
be adequately determined until sufficient data has been gathered via simulation. Second, we
have begun using it to empirically analyze the dynamic behavior of unpredictable programs, with
special attention to be paid to Al applications. This is discussed further in the next section.

4. Relationship to Al Programming

In recognition of the importance of Al in future programming tasks, we plan to make Al the
“applications test-bed” for DAPS. The programs found in Al are precisely the kind that exiéting
“super-computers” do not execute efficiently, and are the kind that we are tailoring DAPS

especially for.

Although many Al systems have at least gross structural components, their run-time behavior
is usually quite unpredictable. This is perhaps an inherent characteristic of “knowledge-based”
systems, since their behavior depends directly on the knowledge base, which is often changing.
The structural components themselves are also rather unstable — the possibilities are as varied as
the theories in Al — and there is simply no analog to the “array” that is at the heart of the
regularity in scientific computation. As a result, architectures that rely on predictability or
regularity are doomed to perform poorly when executing Al programs. The DAPS model, on the

other hand, assumes such irregularity, and is designed to deal with it dynamically.

Despite our claims about Al programs, they do have certain things in common, and are not
beyond run-time behavioral analysis. For example, a common characteristic of many Al
programs is graph searches. Indeed, it is easy to argue that graph searching is an inherent
bebavioral aspect of “knowledge-based” systems, where data-retrieval operations on a graph of
conceptual dependencies (semantic networks) are very common (we speak of semantic networks
generically here, ignoring their differences [27, 33]). These searches fall nicely into the DAPS
model, where the knowledge-base takes the form of a distributed program graph, and the

searches occur in a highly-parallel manner via the spawning of tasks,

The DAPS model is able to support both sides of two on-going arguments in the Al

community: the so-called declarative/procedural argument [1, 36], and the use of logic versus

10

semantic networks in representing knowledge [8, 22, 28]. Our intuition tells us that these
arguments are of a high-level representational flavor, and that the dynamic behaviors of
programs differing only in these respects are actually very similar. For example, the unification
and backtracking mechanisms that underly resolution in logic programming languages are not
unlike explicit inferencing mechanisms on semantic networks. We feel that it is possible to
effectively support the underlying commonalities by a suitably designed machine. Just as a good
understanding of the regular behavior of matrix algorithms preceded the design of effective vector
machines, we feel that a good understanding of the dynamic behavior of Al programs should
precede the design of a fifth generation computer.

4.1. Sources of Parallelism in AI Programming

Clearly those Al theories containing ezplicit parallelism, such as those modeling perceptual
processes, could be made to run much faster on a parallel machine. Our primary interest,
however, is in the smplicit parallelism to be gleaned from a more general class of Al programs.
As a simple but pon-trivial example, consider a typical database of an expert system. The
knowledge may appear as rules of the form “IF <condition> THEN <implication>", or in a
production system as “<situation> — <action>" [30]. In both cases the enabling conditions
take the form of a logical formula of an arbitrary number of terms, each of which could be
computed in parallel. Furthermore, the inferencing mechanisms may explore the enabling and

invocation of several rules simultaneously.

As a more general example, consider the set of Horn clauses making up the following Prolog
program [3]:
" Al — Bl1 AB12 A ... A Blk:l
A2 — B21 AB22 A ... A szz

An < Bnl ABn2 A ... ABok
together with the goal G = C1 A C2 A ... A Cj. Any resolution theorem prover could be used
to prove the goal through refutation. Intuitively, the strategy is to prove G by first proving the
atomic formulae C1 through Cj in turn. Each term is proved by umifying it with the head of
one of the clauses, say Ai, which reduces the problem to proving the conjunction Bil A Bi2 A
-« A Bik;. The algorithm then recurses. In most Prolog systems the resolution process utilizes
variations of Robinson's unification algorithm [31, 32] to reduce each goal to an empty
conjunction of terms (indicating success), or to a non-empty conjunction with no more

unifications possible (indicating failure). On a conventional sequential computer, the overall

11

process depends on extensive backtracking mechanisms to recover from failure. On the other
hand, with an appropriate parallel machine, several unifications could be attempted
simultaneouslj'. The problem reduces to computation of a large AND/OR tree, where AND
nodes represent the conjunction of terms, and OR nodes correspond to the possibility of a goal
being unifiable with the heads of several different Horn clauses. An arbitrary number of sub-trees

could be explored in parallel.

It should be clear that this style of execution of a Prolog program will generate a great deal of
parallelism. Indeed, one might argue that a judicious invocation of parallel tasks will be required
to avoid overwhelming the parallel resources! For example, consider the simultaneous unification
of a goal with two clauses -- it is only necessary that one be successful, since it is the OR of the
results that determines overall success. Imagine that one unification succeeds quickly, but that
the other takes a very long time (or perhaps does not terminate at all!). Clearly this is a waste of
resources, since the latter task may recursively generate an arbitrary mass of other parallel (and

equally irrelevant) tasks.

The above problem highlights the need for a dynamic task manager, since it is quite doubtful
that static analysis alone would be sufficient to make effective decisions (indeed the
undecidability of the halting problem prevents us from knowing whether a sub-process will
terminate). Recall that diffusion scheduling, for example, considers proccssor load before
deciding where and when to allocate a new task, and this information is obviously only available

at run-time. We are investigating several strategies for attaining parallelism of this sort.

4.2. The Importance of Eager Evaluation

The simultaneous computation of several terms in a logical formula is an example of an eager
computatidn, since all of the values are not necessarily needed. Performing eager computations
(resources permitting) has the effect of increasing the effective parallelism of a program, which is
quite important since studies have shown that many programs simply do not have enough strict
parallelism to effect an overall speed-up of more than a factor of 5 or so. From an Al
standpoint this argument is strengthened by Fahlman’s observation that we currently expend too
much effort “optimizing” graph searches; or, in his words, “we can rearrange the order of the

paths to be searched to gain efficiency, but it is dangerous to leave anything out” ([8],p.8).

A key aspect of the DAPS graph reduction strategy is the differentiation of eager tasks
(whose results might not be needed) from vital tasks (whose results are known to be needed).

The inclusion of eager tasks seems innocuous enough, until one considers that:

12

1. Eager tasks “compete” with vital ones, so it is important to assign a higher priority
to the latter, especially when resources are limited.

2. It may be subsequently discovered that the result of an eager computation ¢s necded,
in which case all of the resulting eager tasks that comprise that (sub)jcomputation
are now vital. We thus need a mechanism to dynamically upgrade task prioritics.

3. Worse, one may discover that an eagerly invoked computation is not needed — the
tasks comprising such a computation then become irrelevant. These tasks behave
no differently than any others, and may distribute through the system generating an
arbitrarily large (and irrelevant) parallel workload. We therefore need 2 mechanism
to find and delete srrelevant tasks.

4. If shared subexpressions are allowed, a fourth type of task arises when an eager task
is dereferenced from the vertex that initially spawned it, but is still accessible from
some other vertex that has not requested its value yet. We refer to this as a
reserve task, and it requires a unique priority as well.

As can be seen, allowing eager computations (which we see as crucial to getting the high degree
of parallelism that we desire) creates an interesting logistical problem. An initially eager task
may expand into a highly parallel workload of many other tasks, each of whose priority is subject
to change as the computation proceeds. An important advantage of DAPS is the inclusion of
mechanisms to automatically prioritize tasks, detect and delete irrelevant tasks, as well as
perform system-wide garbage collection and deadlock detection. As discussed in Section 2, these
algorithms are part of the house-keeping process, and execute concurrently with program
execution. Just as all LISP systems provide automatic garbage collectors, DAPS provides these
house-keeping mechanisms to make the subtle details of parallel computation transparent to the

user's program. We can't over-emphasize the importance of this aspect of the DAPS model.

5. Relationship to Other Work
We are not alone, of course, in our quest for a viable “fifth generation” computer. We discuss
in this section the relationship of our work to several other significant efforts. This discussion is

useful in further highlighting our philosophy and research goals.

First, we must mention the Japanese Fifth Generation Computer Systems (FGCS) Project
[29, 34], being administered by Japan's Institute for New Generation Computer Technology
(ICOT). The Japanese overall research plan is actually quite complex, and still evolving. One of
their chief goals is the design of “knowledge information processing systems” or KIPS, whose
underlying computation model is based on first-order predicate calculus. The machine language
of KIPS will thus have a Prolog flavor, and performance will be measured in “logical inference
per second™, or LIPS. Another goal of the Japanese plan is the development of a high-

performance database machine to support expert systems.

13

Although the Japanese goals are quite bold (indeed radical), we see several flaws in their
overall plan. First, we believe it is overly restrictive to base a machine on logic programming. -
Prolog is a very effective language for certain applications, but it has by no means become
universally adopted, even in the Al community alone. To quote Feigenbaum and McCorduck;

The Prolog language has features as well as flaws. One good feature is a logical calculus... Its
flaw is that the knowledge so represented is often opaque, incomprehensible, and arcane. A
second good feature of Prolog is that it solves problems by proving theorems in first-order
predicate calculus using computationally fast methods (that can be made even faster by using
parallelism). The user never has to be concerned with the details of the problem-solving
process.... |but] The last thing a knowledge engineer wants to do is abdicate control to an
“automatic” theorem-proving process that conducts massive searches without step-by-step control
exerted by knowledge in the knowledge base. Such uncontrolled searches can be extremely time-
consuming. The parallelism that can be brought to bear is a mere palliative, a Band-aid... [10)

Even the inferencing mechanisms that underly the Prolog model are overly restrictive, in that
pew inferencing theories are emerging in Al whose behavior might be obscured when “forced”
into the Prolog model, as well as make them less efficient than a more explicit encoding of their

strategy.

The DAPS computation model is essentially more primitive than that of KIPS, and as a result
more general. It is just as easy to build a flexible Prolog interpreter in the “micro-code” of a
DAPS machine as it is to build any other inferencing engine. Similarly, a variety of high-level
languages could easily be supported — not only Prolog and LISP, but also Al specific languages
and systems such as SRL, KL-one, PSN, KRL, Planner, etc. Rather than restrict the design to a
specific language or inferencing strategy, DAPS instead concentrates on the issues of initiating
and coordinating highly-parallel computations, issues that have not been emphasized in the

Japanese research plan.

A final objection to the Japanese approach is their idea of a special database machine serving
as a “backend” to speed up information retrieval. This approach is not extensible, and simply
introduces another “von Neumann bottleneck”, something that we are adamant about avoiding.
As discussed earlier, the DAPS model supports highly-parallel graph searches, and does so in a

flexible, decentralized manner.

The research plan whose underlying philosophy is most similar to DAPS is Keller's Rediflow
multi-processor, a blend of data-flow and reduction ideas [24]. Although there are some gross
differences between Rediflow and DAPS (such as the lack in Rediflow of mechanisms to deal with
eager computation), there are two key similarities; the first being the use of graph reduction, the
second being the dynamic scheduling of tasks (referred to as “load-balancing” in Rediflow).

However, there aré some important but subtle differences even in these features. For example,

14

Rediflow considers memory utilization of a PE as part of its diffusion beuristics (something that
DAPS does not do), but does not use information about global pointers to help maintain locality'
(an important feature of the DAPS strategy). Second, Rediflow's graph reduction strategy is
based heavliy on user-defined functions rather than using the more optimal serial-combinator
analysis that we use. All in all, the two models are complimentary, and lend each other support

in the viability of this style of machine.

Another related effort is Hewitt's Apiary System [12]. Physically the Apiary is similar to our
current image of DAPS, although neither machine has been built. Logically there are some
important differences, the foremost being that the Apiary is based on the ACTOR model of
computation, rather than graph reduction. We feel that the graph reduction approach is more
versatile for several reasons. First, it more directly supports the idea of graph searches in
knowledge bases. Second, our global virtual graph space allows one to better coordinate the
overall computation, thus facilitating the all-important house-keeping chores discussed earlier.
Third, it more directly supports Algol-like languages, including LISP and functional programming

languages.

The Connection Machine [13] is perhaps the most radical and Al-specific proposal that we
have seen, but like the Japanese approach is overly restrictive (although in a different way). The
machine is designed specifically for concurrent manipulation of knowledge stored in a semantic
network, by mapping every node and link in the network to its own autonomous processing
element and communications channel. Such a strategy provides the potentsal for a high degree of
parallelism, but in reality only a small subset of the processing elements will be active at any
given time. The graph partitioning strategy in DAPS tries instead to assign a subgraph of a
semantic network to a single processing element. More specifically, the intent of the serial-
combinator analysis is to partition the network in such a way that knowledge obtainable only
through sequential inferences is resident in one partition. That is, if two nodes in a semantic net
are always traversed sequentially, there is no advantage to assigning them to separate PE’s as the

Connection Machine does by default.

The Connection Machine is actually an extension of earlier work by Scott Fahlman on systems
for representing “real-world knowledge”. Fahlman has developed a system called NETL that is
both a theory of knowledge representation and a design for a massively parallel machine to
realize the theory [8]. Like the Connection Machine, NETL maps each node and link in the
semantic network to a physical processor and communications channel, respectively. Special
marker passing algorithms are used to perform highly-parallel graph searches to accomplish

inferencing on the semantic network. Limitations of the marker-passing strategy have recently

15

led Fahlman to alter his model somewhat to accomodate value-passing strategies as well. From
this effort has emerged a new model of knowledge representation called Thistle, together with a -

new parallel architecture called the Boltsmann Machine [9].

All of our comments about the overly restrictive nature of the Connection Machine apply to
Fahlman's work as well. The theories of knowledge representation that underly all of these
machines have not been adequately tested, and even if sound are not likely to be adopted as
universal theories by the Al community. It should be noted that any of these theories could be
implemented on DAPS (just as they could be implemented on a serial computer) with greater
flexibility. The result would be more efficient use of processing power (since more PE’s would be
kept busy), but we would probably not achieve as high a degree of parallelism as the more

“massively parallel” approach.

6. Project Summary

DAPS represents a class of network computers vastly different from conventional machines.
Our underlying philosophy assumes unpredictable program behavior, highly-parallel decentralized
computation, and integral memory and task management mechanisms. We feel that DAPS is a
viable fifth generation computer model, but is sufficiently radical and untested that building
hardware at this time is decidedly premature. We are instead embarking on a detailed study of
the feasibility and effectiveness of our ideas, including a detailed simulation of a DAPS machine,
where great flexibility is attained at an affordable cost. No hardware construction is planned
until we have proven that parallelism can be adequately exploited by the network-computer
model. Our long-term goal is to either retrofit an existing network computer with the DAPS

strategies, or to design a DAPS machine from scratch.

7. Acknowledgements

Many thanks to Ben Goldberg, who built the current DAPS Simulator, and to David Kranz,
who helped build the current ALFL Compiler. Also thanks to Bob Keller, whose influence has
been most pervasive. Several other useful discussions have taken place with the many fine

students and faculty at Yale.

(2]

3]

[4]

(8]

(9]

[10]

[11]

16

References

Barr, A., and Feigenbaum, E.A.
The Handbook of Arts ficial Intelligence.
HeurisTech Press, 1981.

K. J. Berkling.
Reduction languages for reduction machines.
In Proc. 2nd Annual Symposium on Computer Architecture, pages 133-140. IEEE, 1975.

Clark, K.L.
An introduction to logic programming.
Gordon and Breach, 1982, pages 93-112.

Clarke, T., Gladstone, P., MacLean, Norman, A.

SKIM - the S, K, I reduction machine.

In Davis, R.E., and Allen, J.R. (editors), The 1980 LISP Con ference, pages 128-135.
Stanford University, August, 1980.

Curry, H.K., and Feys, R.
Combinatoroy Logic.
Noth-Holland Pub. Co., Amsterdam, 1958.

Dahl,V.
Logic programming as a representation of knowledge.
Computer 16(10):106-111, October, 1983.

Darlington, J. and Reeve, M.

ALICE: A multi-processor reduction machine for the parallel evaluation of applicative
languages.

In Functional Programming Languages and Computer Architecture, pages 85-76. ACM,
October, 1981. ‘ '

Fahlman, S.
NETL: A System for Representing and Using Real-World Knowlege.
MIT Press, Cambridge, MA, 1979.

Fahlman, S.E., and Hinton, G.E.
Massively Parallel Architectures for Al: NETL, Thistle, and Boltzmann Machines.
In Proc. AAAI, pages 109-113. AAAI, 1983.

Feigenbaum, E.A., and McCorduck, P.
The Fi fth Generation.
Addison-Wesley Publishing Company, Reading, MA, 1983.

Gajski, D.D., Padua, D.A., Kuck, D.J., and Kubn, R.H.
A second opinion on data flow machines and languages.
Computer 15(2):58-89, February, 1982.

[12]

[13]

[14]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

17

Hewitt, C.

Design of the APIARY for actor systems.

In Davis, R.E., and Allen, J.R. (editors), The 1980 LISP Con ference, pages 107-118.
Stanford University, August, 1980.

Hillis, W.D.
The Connection Machine.
Technical Report Al-Memo 646, MIT, Sept, 1981.

Hudak, P.
Object and Task Reclamation in Distributed Applicative Proccssing Systems.
PhD thesis, University of Utah, July, 1982.

Hudak, P. and Keller, R.M.

Garbage collection and task deletion in distributed applicative processing systems.

In Park et al. (editors), Sym. on Lisp and Functional Prog., pages 168-178. ACM,
August, 1982,

Hudak, P.
Distributed Graph Marking.
Research Report 268, Yale University, January, 1983.

Hudak, P.
Decentralized marking of an evolving graph.
submitted to TOPLAS , 1983.

Hudak, P.

Distributed Task and Memory Management.

In Lynch, N.A,, et al. (editors), Proc. of Sym. on Prin. of Dist. Comp., pages 277-289.
ACM, August, 1983.

Hudak, P. and Kranz, D.

A combinator-based compiler for a functional language.
In 11th ACM Sym. on Prin. of Prog. Lang., pages 121-132. acm, January, 1984.

Hudak, P. and Goldberg, B.
Experiments in diffused combinator reduction.
In Sym. on LISP and Functional Programming, pages to appear. ACM, August, 1984.

Hughes, R.J.M.
Super-combinators: A new implementation method for applicative languages.

In Park et al. (editors), Sym. on Lisp and Functional Prog., pages 1-10. ACM, August,
1982.

Israel, D.J.
The role of logic in knowledge representation.
Computer 16(10):37-41, October, 1983.

(23]

[24]

[25]

(26]

[27]

(28]

(29]

(30]

[31]

(32]

(33]

[34]

18

Keller, R.M.

Semantics and applications of function graphs.

Technical Report UUCS-80-112, Department of Computer Science, University of Utah,
October, 1980.

Keller, R.M. and Lin, F.C.H.
Simulated performance of a reduction-based multiprocessor.
IEEE Computer 17(7):to appear, July, 1984.

Kluge, W., and Schlutter, H.

An architecture for direct execution of reduction languages.

In Chu et al. (editors), Proc. of the International Workshop on High-Level Language
Computer Architecture, pages 174-180. May, 1980.

Mago, G.A.

A network of microprocessors to execute reduction languages, Part 1.

International Journal of Computer and In formation Sciences 8(5):349-385, March, 1979
revised.

Minsky, M.
A framework for representing knowledge.
Al Memo 308, MIT, June, 1974.

Moore, R.C.

The role of logic in knowledge representation and commonsense reasoning.

In Proc. Natl Con ference Arti ficial Intelligence, pages 428-433. American Assoc. for
Artificial Intelligence, August, 1982.

Moto-oka, T., et al.
Proc. Int1 Conf. 5th Generation Computer Systems.
Japan Information Processing Development Center, 1981.

Quinlan, J.R.
Fundamentals o f the knowledge engineering problem.
Gordon and Breach, 1982, pages 33-46.

Robinson, A.
A machine-oriented logic based on the resolution principle.
JACM 12:23-41, 1965.

Robinson, J.A.
Fundamentals of machine-oriented deductive logic.
Gordon and Breach, 1982, pages 81-92.

Schank,R., Abelson, R.
Scripts, plans, and knowledge.
In Proc. Int1 Josnt Con ference Al, pages 151-157. Al, 1975.

Treleaven, P., Lima, I.
Japan's fifth-generation computer systems.
Computer 15(8):79-88, August, 1982.

19

[35] Turmer, D.A.
A new implementation technique for applicative languages.
So ftware-Practice and Ezperience 9:31-49, 1979.

(36] Winston, P.H.
Arts ficial Intelligence.
Addison-Wesley Publishing Co., Don Mills, Ontario, Canada, 1979.

