A scheme is presented for the solution of inverse scattering problems for the one-dimensional
Helmholtz equation. The scheme is based on a combination of the standard Riccati equation for
the impedance function with a new trace formula for the derivative of the potential, and can be
viewed as a frequency domain version of the layer-stripping approach. The principal advantage
of our procedure is that if the scatterer to be reconstructed has m 2> 1 continous derivatives, the
accuracy of the reconstruction is proportional to 1 /a™, where a is the highest frequency for which
scattering data are available. Thus, a smooth scatterer is reconstructed very accurately from a
limited amount of available data.

The scheme has the asymptotic cost O(n?), where n is the number of features to be recov-
ered (as do classical layer-stripping algorithms), and is stable with respect to perturbations of the
scattering data. The performance of the algorithm is illustrated with several numerical examples.
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1 Introduction

During the last several decades, the inverse scattering problems for the Helmholtz equa?cion have
enjoyed a remarkable degree of popularity, both in pure and applied contexts (see, e.g., [1], [2]).
A number of algorithms has been proposed for the numerical treatment of these problems, in
such environments as medical diagnostics, non-destructive industrial testing, anti-submarine
warfare, oil exploration, etc. In the design of such a scheme, three major problems have to be
overcome.

1. The problem is highly non-linear, even in its purely mathematical form. In the one-
dimensional case, the problem can be reduced to a linear one, but the procedure is not stable
numerically.

2. Once a mathematically valid inversion scheme is constructed, it might or might not be stable
numerically. In fact, no numerically robust schemes seem to exist at this time, except in one
dimension.

3. The cost of applying the scheme on the computer tends to be extremely high, except in the
one-dimensional case.

The existing attempts to solve inverse scattering problems for the Helmholtz equation can
be roughly subdivided into four groups.

1. Linearized inversion schemes, attempting to approximate the inverse scattering problem by
the problem of inverting an appropriately chosen linear operator (see, for example, [2]).

2. Methods based on the non-linear optimization techniques, attempting to recover the param-
eters of the problem iteratively, by solving a sequence of forward scattering problems (see, for
example, [3], [4], [5]).

3. Gel’fand-Levitan and related techniques, converting the Helmholtz equation into the Schro-
dinger equation, the inverse problem for the latter being reducible to the solution of a linear
Volterra integral equation (see, for example, [1], [6]).

4. Techniques based on the so-called trace formulae, connecting the high-frequency behavior of
the solutions of the Helmholtz equation with the local values of the parameters to be recovered
(see, for example, [7], [8], [9]).

The approach of this paper falls into the category 4 above, and is different from the preceding
work in the choice of the trace formula (see Theorem 4.4 in Section 4.3). The new trace formula
leads to an algorithm with superior convergence properties for smooth scatterers (see Section
5 below), and the resulting numerical procedure is extremely stable and efficient.

The plan of the paper is as follows. Section 2 contains the exact formulation of the prob-
lem to be addressed, together with the relevant notation. In Section 3, we summarize the
background facts to be used in the paper. Section 4 is devoted to the development of the
mathematical apparatus used to construct the algorithm, and in Section 5 the scheme itself




is presented. In Section 6 we present several numerical examples demonstrating the actual
performance of the procedure. Finally, in Section 7 we discuss the possible generalizations of
the approach to higher dimensions and to systems of differential equations.

2 Formulation of the Problem

Following the standard practice, we will be considering the one dimensional scalar Helmholtz
equation

¢"(z,k) + k*(1 + q(2))4(z, k) = 0. (1)

Unless specified otherwise, we will be assuming that ¢ € ¢3([0, 1]), i.e., that ¢ is twice contin-
uously differentiable everywhere, and that ¢(z) = 0 for all ¢ [0,1]. Defining the function
n : R — R by the formula

n(z) = 1/1+ ¢(z), _ (2)

we will denote by ng, n; the minimum and maximum of n respectively, and assume that 0 < ng
so that

no < n(z) =4/1+q(z) < ny. (3)

For any complex k, we consider solutions of the Helmholtz equation ¢4(z,k) and ¢_(z,k)
which have the form

¢+($,k) = ¢inc+($ak) + ¢scat+(xak)a (4)
¢-—(x,k) = ¢inc—-(x7k) + ¢scat—-(x7 k) (5)
with .
¢i‘nc+(ma k) = eika:’ (6)
Gine— (m, k) = ek (7)
and @seqatt, Pscat— both satisfying the outgoing radiation boundary conditions
;cat(o’ k) + ik(bscat(oa k) = 0, (8)

¢;cat(1? k) - ik¢scat(1’ k) 0. (9)

Normally, ¢inct+ and @in.— are referred to as right-going and left-going incident fields respec-
tively, and ¢scar+ and ¢sqq¢— are called scattered fields corresponding to the excitations ¢inct

and ¢;n.—. The sum of an incident field and its corresponding scattered field is called the total
field.

Remark 2.1. Throughout this paper, given a function f(z,k), we will take the liberty to
denote 2L by f'(z,k), so that the derivatives in the formulae (15), (16) are with respect to .
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As is well-known, for any complex k, the scattered fields @scqrt (2, k) and ¢seet— (2, k) satisfy
the nonhomogeneous Helmholtz equations

{s,ca,t-i-(w? k) + k2(1 + q(x))¢scat+(x’ k) = _k2q($)eikx7 (10)

{s,cat—(m) k) + k2(1 + Q(w))¢scat—(x’ k) = —k2q(a")e—lk$' (11)

Since g(z) = 0 for all z ¢ (0,1), it is easy to see that for any k € C there exist two complex
numbers p4 (k), p_(k), identified as the reflection coefficients, such that

¢scat(zak) = /1'+(k) . e—ikw, fO’I' all z < 0, (12)

ODscat(z, k) p_(k)-e*=. forall z > 1, (13)

due to (10), (8) and (11), (9) respectively.
Denote by C* the upper half of the complex plane so that

Cct = {k € C|Im(k) > 0}. . (14)

For any k € C*, the impedance functions p; (2, k), p_(z, k) associated with ¢(z,k), p—_(z,k),
respectively, are defined by the formulae

pe(a,k) = %’% (15)
p_(2,k) = % (16)

Remark 2.2. For z outside the scatterer, it is easy to obtain explicit expressions for py,p_
in terms of reflection coefficients p4, p—. Indeed, combining (4) with (12), (5) with (13), we
have

¢+(z,k) = €% 4 py(k)e~™*=, for all 2 <0, (17)

¢-(z,k) = e * 4 pu_(k)e*®, forall z > 1, (18)
which can be reformulated as

$1(z,k) = & b (ke rer () for all z <0, (19)

¢—(z,k) = e * b _(k)ehoto-®) for all z > 1. (20)

with oy (k), a_(k) real numbers and b4.(k) > 0, b_(k) > 0, for any k € C. Consequently,
1 — b3 (k) + i2by (k) sin(kz — ay (k)

p+(z,k) = 1+ bi_(k) + 2b4 (k) cos(kz — ay(k)) )
for all z < 0, and
(o) = LT VL) F 26 (B sin(le — o (k) (22)

1+ b2 (k) + 2b_(k) cos(kz — a_(k))




for all z > 1.

For any complex number k, the boundary value problems for ¢, ,¢_ can be reformulated
as initial value problems. More specifically, formulae (4), (5), (12) and (13) imply that there
exist such complex constants a, 8, depending only on k, that

$+(z,k) = a-€e*, forallz > 1, (23)
¢-(z,k) = B-e7* forallz<O0. (24)

Furthermore, o, 3 are nonzero because, e.g., if 8 = 0, then ¢_(0,k) = ¢'_(0,k) = 0, according
to uniqueness theorem on initial value problems, ¢_(z,k) = 0 for all z € R, i.e.,

¢scat——(xak) = _¢inc-—(m>k) = _e—ikx’ v (25)

contradicting to (13). Clearly, formulae (23), (24) can be used as initial conditions for
equation (1) to (uniquely) determine the total fields ¢, é_.

Remark 2.3. While the existence and uniqueness of the functions ¢, (z,k),$_(z,k) are
quite obvious for any complex k, the functions py(z,k),p_(z,k) are only well-defined when
Im(k) > 0, and the proof of this fact is somewhat involved (see lemmas in Section 4.1 below).

Remark 2.4. It is easy to see that the impedance functions p;,p_ are independent of the
nonzero coefficients o, 8 in (23), (24). Therefore, for simplicity, the initial conditions (23),
(24) are reformulated as

bi(z,k) = €, forallz>1, (26)
é_(z,k) = e * foralz<0 (27)

The functions ¢4, é_ as solutions of equation (1) subject to boundary conditions (26), (27)
differ from those subject to boundary conditions (23), (24) by constants.

The classical inverse scattering problem for the equation (1) is as follows:
Problem 1. Given the impedance function p4(0, k) for all k¥ € R, reconstruct the potential ¢
for all z € [0,1].

It is well-known that this problem has a unique solution (and in the class of functions
g much broader than c([0,1]), and several constructive schemes for that purpose have been
proposed, most notably the Gelfand-Levitan and related methods. However, in applications
the impedance function p, (0, k) is measured with a finite accuracy and at a finite number of
(usually equispaced) values of the wavenumber k. Therefore, the following problem is more
relevant in numerical applications

Problem 2. Suppose that the impedance function p,(0,%) is given at a finite number of
frequencies k;,j = 1,2,..., N defined by the formulae k; = j - h, with h a positive constant.
Suppose further that the values p4 (0, k;) are given with the relative accuracy e. Reconstruct
the potential ¢ in the interval [0, 1] with the error that rapidly decreases with increasing N and
decreasing h.




The present paper is devoted to the construction of an algorithm for the solution of the
Problem 2. ‘

Observation 2.1. The value of impedance function py at z = zo, 2o < 0 can be obtained
from ¢4 (zo,k) in the following manner. Assuming that at z < 0, the total field ¢, (z,k) is
given by (17), from which u4 (k) can be obtained

wy(k) = (f4(z0, k) — €0 &0, (28)
the value of the impedance function p; at z = z¢ is then

¢ (zo, k) _ 1= py(k)e 2o

= - 29
p+($03 k) 2k¢+($0, k) 1+ u+(k)e—2zkz‘o ( )
eik:co ( )
= 2— 1 30
¢+($0>k)
Similarly, for any z; > 1,
_ 2tkxq —ikzy
p_(or, k) = Lo p=(B)e ™, e .. (31)

1+ p_(k)e2iker ~ “4_(z1,k)

3 Mathematical Preliminaries

In this section, we summarize several well-known mathematical facts to be used in the rest
of the paper. These facts are given without proofs, since Lemmas 3.1-3.6 are found in stan-
dard textbooks (see, for example, [11], [10], Michelin) and Lemmas 3.7-3.10 are easy to verify
directly.

Lemma 3.1 Suppose that A is a linear mapping C[0,1] — C[0,1] and that ||A|| < p, with p a
real number such that p < 1. Then for any g € L?*[0,1], the equation

¢=Ad+yg (32)

has a unique solution, which is the sum of the series (known as Neumann’s series)

=) Alg. (33)
j=0
Furthermore,
n . pn+1
o> Agll < —Ilgll- (34)
=0 l1-p




Lemma 3.2 Suppose that f € ([0, D)) (i.e., f has m continuous derivatives and f(z) = 0
for all z ¢ (0, D)), and that f'™ is absolutely continuous. Suppose further that g € ¢™+1(R),
g™tV is absolutely continuous and there ezist real number a > 0 such that ¢'(z) > a for all
xz € R. Then there ezists a real ¢ > 0 such that

I/D f(z)e*ete(@) gy (35)
0

c
< k[t
for all complex k such that Im(k) > 0.

Lqmma 3.3 Suppose that f € c'(R) with | a nonnegative integer. Suppose further that
f(J)(O) =0 for0<j <1, fO is absolutely continuous. Then there exists a positive num-
ber ¢ such that

[ soetetar = - > (Ly fo @)+ (“1‘>l+l (F'(2) + b(a, b)) (36)
A R =AbT T\ 2ik ’
with b: R x Ct — C an absolutely continuous function of x € [0,1] such that

b, k)| < c. (37)

for all z € [0,1], k € C*. Furthermore, if f(z) = 0 for all x > D with D a positive number,
then

lb(z, k)| < c. (38)
for all (z,k) € Rx C*

Lemma 3.4 Suppose that a : [0,1] — R and b: [0,1] — C are two continuous functions, and
that a(z) > 0, for all z € [0,1]. Then for any two solutions u and v of the second order ODE

(a(z)¢(z)) + b(z)é(z) = 0, (39)
there exists a constant ¢ such that
a(2)(u(2)v/(z) - o(2)(2)) = ¢ (40)

for all z € [0,1]. Furthermore, ¢ # 0 if and only if u and v are linearly independent. (The
ezpression W (u,v) = u(z)v'(z) — v(z)u'(z) is referred to as the Wronskian of the pair u,v).

Lemma 3.5 Suppose that Gy, : [0,1] X [0,1] — C is the Green’s function of the boundary value
problem

V"(z, k) + k*(z,k) = 0, (41)
1/1’(0,]6)—]—1:];71/)(0,]6) = 0, (42)
¥'(1,k) — ikyp(1,k) = 0. : (43)




Jor any complex k # 0. Then the boundary value problem

¥"(z, k) + (K + n(2))¢(z, k) = f(z, k) (44)
¢I(0’ k) + ik¢(0’ k) =0, (45)
"/’,(1, k) - ik(1,k) = 0. (46)

is equivalent to a second kind integral equation

¥(e,k) = = [ Gule, Om()(t, D)t + 9(2, ) (47)

with f,9:[0,1]x C — C and g defined by the formula

1
9z, k) = / Gulz, ) f(1, k)dt. (48)
0
Lemma 3.6 For any complez k # 0, the Helmholtz equation
¥"(z, k) + k(2 k) = 0 (49)

with the outgoing radiation conditions (8) (9) has the Green’s function

1 { eik(t—x), z <t

Gil(e,t) = 2ik e”“(“’“t), z >t (50)

Lemma 3.7 Suppose that ¢: R — R is a c>—function such that ¢ > —1 forallz € R. Suppose
further that the functions n,z,S,n,9: R — R are defined by the formulae

n(z) = 1/1+ q(=), (51)

t(z) = /Ox n(7)dr, (52)
S(t) = e~ h T (53)

_5") (=)

=50~ o) (54)

o) = L. (55)
Finally, suppose that the function ¢: R X C — C satisfies the equation

#'(2,k) + K1+ q(2)) - 82, k) = f(z), (56)
and the function 1 : R x C — C is defined by the formula

(e, k) = B(a(2), K)/S (1) (57)




Then the function 1 satisfies the Schrédinger equation

P"(t, k) + (K + n(2)) - $(t, k) = g(2). (58)
at allt € R.

Remark 3.2. Lemma 3.7 provides a connection between the solutions of the Helmholtz equa-
tion (56) and those of the appropriately chosen Schrédinger equation (58). This connection
will be used in the following section as an analytical tool. However, it is not very useful in
numerical computations since the expression (53) can yield unmanageably large values of S
even for perfectly well-behaved gq.

Corollary 3.1 Suppose that under the conditions of the preceding lemma that ¢(z) = 0 for all
z & (0,1). Suppose further that the functions 4,%_ : R x C — C are defined by the formulae

Pi(t, k) = ¢4(2(2),k)/S(), (59)

bo(Lk) = é-(a(t),K)/S(0). (60)
Then 14,%_ satisfy the ODEs

PY(t k) + (K + (1) - i (t,k) = 0, (61)

PU(t k) + (K + (1) - o-(t,k) = 0 (62)
subject to the boundary conditions

b (1K) = E(k) - €T (63)
for allt > Ty, and

P_(t,k) = e (64)
for allt < 0 with Ty > 0, £(k) # O defined by the formulae

Ty = t(1)= /1 n(7)dr, (65)
0

Ek) = S(Ty)e®*. (66)

Furthermore,

Y (t, k) n'(z)
_ _ 67
YL(t, k) n'(z)

—iky_(t, k) = 2ikn(z)
Observation 3.1. Suppose that g(z) = 0 for all z ¢ (0,1). Then according to Lemma 3.7 and

Corollary 3.1,
t = =z, (69)
Sit) = 1, (70)

p—(z,k) = n(z) (68)

and consequently




$1(z, k) = Pp(t, k) (71)

for all z < 0. Now, suppose the function 14 is defined by formulae (59), (17). Defining the
scattered field ts.¢4 : R X C — C by the formula

¢+(t, k) = eikt + "/)scat+(t, k)7 (72)
we immediately see that
¢scat+(t, k) = /1'+(k) : e_ikt (73)

for all z < 0 due to (71), (17), (72). Finally, combining (72) with (61), we observe that
Yscat+ satisfies the Schrédinger equation

W 1)+ (2 4+ 10 s 1, 1) =~ OGP (74)
subject to outgoing radiation conditions (8), (9) (the latter due to (73), (63)).
Lemma 3.8 Suppose that under the conditions of the preceding lemma,
¢+(z0,k0) # 0, (75)
¢—(z0,ko) # O (76)

at some point (zo,ko) € R X C. Then there ezists a neighborhood D of (zo,ko) such that the
impedance functions p,.,p— satisfy the Riccati equations

Pi(z, k) = —ik(pi(z, k) = (1 +q(2)), (77)
p_(,k) ik(p2 (2, k) = (1+ (=) (78)

for all (z,k) € D.

Observation 3.2. Combining formulae (23), (24), we easily observe that

p+(z, k) = 1, forallz > 1, (79)
p—(z,k) = 1, forallz <0, (80)

for all complex k # 0.

Lemma 3.9 (Gronwall’s inequality) Suppose that u,v,w : [0,a] — R are three continuous and
nonnegative functions, satisfying the inequality

w(z) < u(z) + /0 " o(t)w(t)dt (81)
for all z € [0,a]. Then

w(e) S u(@)+ [ u@p(el Oay (82)




for all z € [0, al.

The following lemma is a special case of the general theorem about continuous dependence
on initial conditions and parameters of solutions of ODEs (see, for example, [10]).

Lemma 3.10 Suppose that a : C — C is an entire function and that A: R x C — C™*" is an
n X n-matriz whose entries a; ;(z,2),1,j = 1,...,n are continuous functions of * and entire
functions of z for all x € R. Then for any z € C, the differential equation

¥'(z,2) = A(z, 2) - y(z, 2) (83)
subject to the initial condition
y(0) = c(z) (84)

has an unique solution y(z, z) for all z € R. Moreover, y(z, z) is an entire function of z.

4 Impedance Functions and Their Properties

In this section, we investigate analytical properties of the impedance functions py,p_. Our
principal purpose here is to formulate exactly and prove the following three facts.

(1) For any z € R, the impedance functions p.(z, k), p_(z, k) are ana,lytlc functions of k in the
upper half plane C*. Furthermore,

pe(ek) = 1t - L8 . L oge), (35)

4(1 + ()
p_(z,k) = \/1+q(x)+4(%(zziv)—)-%+0(k"2), (86)

for all z € R, k € C* (see Theorem 4.1 below).

(2) For large real k, the difference between p3 and p_ is extremely small (it decays like =™,
where m is the smoothness of the scatterer, see Theorem 4.3 below). The expressions (85),
(86) are the first two terms in WKB expansions of the functions p,,p_, respectively.

(3) For any @ > 0, and all z € R, we have the so-called trace formula
2 a (e
(@) = 21+ 4(@) [ (04(2,k) = p-(a, K))dk + O(a~tD), (s7)

with m the smoothness of the scatterer (see see Theorem 4.4 below).

As often happens, the statements (1)-(3) above have extremely simple formulations, and a
transparent physical interpretation. However, their proofs are technical and do not follow any
simple physical intuition.
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4.1 Boundedness

The following five lemmas establish the basic properties of the impedance functions py,p—
introduced in Section 1. Lemma 4.1 is a technical one, describing the behavior of ¢, ¢_ in the
vicinity of £ = 0 in the complex plane. Lemma 4.2 describes the properties of the impedance
functions py,p_ near k = 0, Lemma 4.3 demonstrates the well-definedness of the impedance
functions for real k¥, and Lemmas 4.4 and 4.5 provide upper and lower bounds for the impedance
functions.

Lemma 4.1 Suppose that ¢ € ¢([0,1]) and A > 0 is a real number. Then there ezist three
positive numbers 6, o and 8 such that

L |p4(z, k) — 1] < alkl, (88)
2. [¢-(z,k) = 1| < ofk], (89)
3. |gh(z, k)~ ik| < BlK[?, (90)
4. |¢L(z, k) + ik| < BIKI?, (91)
5. ¢u(z,k)#£0, (92)
6. é_(z,k)#0, (93)

for all real € [— A, A] and complez k such that |k| < §.

Proof. Since the proofs of this lemma for ¢, ¢! and for ¢_,¢" are identical, we only
prove it in the case of ¢_, ¢’ . Defining two auxiliary functions ¢;,% : R X C — C by the
formulae

¢1(x7k) = (]5-(11),’6)-—1, (94)
Yz, k) = ¢L(z,k)+ik, (95)

and combining (94), (95) with equation (1) and the initial condition (27), we observe that
the functions ¢y, satisfy the linear first order ODEs

#i(z, k) = Pz, k)+ ik, (96)

P(z,k) = —k(1+q(2))(1+ ¢i(2,k)) (97)
subject to the initial conditions

$1(0,k) = 0, (98)

$(0,k) = o. (99)

We start with showing that there exist continuous functions M, N : RT x RT — RT such that,
for any s € R*, M(s,t), N(s,t) are monotonically increasing functions of ¢ for all £ € R* and

|$1(2, k)] < M(A,|k])|k], (100)
[¥(z, k)l < N(A,|k])IE|% (101)

First, we prove the estimate (101). Integrating (96) from 0 to z, we have
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dr(a k)= [k + it ), (102)

and substituting (102) into (97) and integrating the result of the substitution, obtain

W(z, k) = —k? /0 (14 q(0) (1 + /0 ik + (r, k))dr) dt. (103)

Denoting |¢(z, k)| by a(z, k) and observing that 1+ ¢(z) < n? (see (3) in Section 2), we obtain
z rt
|k [2n2 (lwl + 2ok + / / o(r, k)drdt)
o Jo

e (1ol + 5220k ) + 61253 [ (o~ (e, By (104)
0

for any ¢ € R. Gronwall’s inequality (see Lemma 3.9) implies that for any z € [0, A],

a(z, k)

IN

IA

a(z,k) < |k*n (le + %wzlkl +/ It| + %tzlkl(x _ t)e%(w—t)zdt)
0

It is easy to see that (105) is also valid for any = € [—A, 0], and we obtain the estimate (101)
with N(A, k) defined by the formula

N(A k)= sup n? (|x| + Lo + [+ Lo - t)e%(””‘t)zdt) : (106)
—A<z<A 2 0 2
We now turn our attention to the estimate (100). Substituting (101)into (102), we obtain
¢1(e, B < [l ([l + N (4, kDK
< M(A, |k])|E], (107)
with
M(A, k) = A(1+ [k|N (A, k), (108)

for all real 2 € [ A, A] and complex k, which proves (100).
Now, the estimates (89) and (91) easily follow from (100) and (101). Indeed, since
M(A,1) is a continuous, monotonically increasing function of ¢, there exists a real § such that

M(A,8)-6< 1. (109)

Denoting M(A, 6) by o, N(A, §) by B and observing that M(A, |k|), N(A, |k|) are monotonically
increasing functions of |k|, we have

[$1(2, k)| < M(A,|k|)|k| < M(A,6)|k| = o], (110)
[¥(z, k)] < N(A,k|)|k| < N(A,6)|k| = Blk[?, (111)

from which (89), (91) follow immediately.
Finally, (93)is a direct consequence of (110) and (109). O
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Lemma 4.2 Suppose that ¢ € c3([0,1]) and A > 0 is a real number. Then there exists § > 0

such that the impedance functions p;,p_ are continuous functions of (z,k) for all real (z,k) €
D with

D = {(z,k)|z € [-A,Al,k€ C,k #0,|k| < §} (112)
Furthermore,

lim pi(z,k) = 1, (113)

Ilci_xg)p_(w,k) = 1. (114)

Proof. Due to Lemma 4.1, there exists a positive number § such that ¢, (z,k) # 0,
¢_(z,k) # 0 for all real (z,k) € D. Therefore, the functions py,p_ are well-defined in D, and
their continuity follows from the continuity of ¢, ¢/, ¢_, ¢_ and the formulae (15), (16).
Finally, (113), (114) are direct consequences of Formulae (88)- (91). O

Remark 4.1. While the impedance functions py,p_ are continuous in the vicinity of ¥ = 0
in the complex plane, formulae (15), (16) fail to define p;,p_ at k = 0. We now can define
p4(2,0) = p_(2,0) =1 for all z € R due to Lemma 4.2.

Lemma 4.3 For any realk # 0 and allz € R

¢4(z,k) # 0, (115)
¢y (z,k) # 0, (116)
¢-(z,k) # 0, (117)
& (z,k) # o. (118)

Proof. Again, since the proofs of this lemma for ¢, ¢, and for ¢_, ¢ are identical, we
only prove (117) and (118). Denoting the real part of ¢_ by u and the imaginary part by v,
so that

¢ (z,k) = u(z,k)+ iv(z,k), (119)
¢ (z,k) = u(z,k)+iv'(z,k), (120)

we observe that each of the functions u, v satisfies equation (1) (since the coefficients of the
equation are real). Combining the initial condition (27) with (119), we immediately see that

u(z, k) = cos(kz), (121)
v(z,k) = sin(kz) (122)

« for all z < 0 and k # 0. Therefore, the Wronskian of the pair u, v is

W (u,v) = k, (123)
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for any z € R (see Lemma 3.4), and u(z, k), v(z, k) can not be both zero, nor can v'(z,k),
v'(z,k), for any z € R and k # 0. Now, formulae (117) and (118) immediately follow from
(119) and (120) O

We have shown that the impedance functions py,p_ are well-defined for all real k (see
Lemmas 4.2, 4.3 and Remark 4.1). Now, we turn our attention to the well-definedness of the
impedance functions on the upper half of the k-plane. First we provide the lower bounds for

P+yP--
Lemma 4.4 For all z € R and any k such that Im(k) > 0,

Re(py(z,k)) > mnosin(arg(k)), (124)
Re(p_(z,k)) > mngsin(arg(k)) (125)

‘with 0 < ng < 1 the minimum of n(z) (see (3) in Section 2), and arg(k) the argument of the
complex wave number k.

Proof. Since the proof of (124) and that of (125) are identical, we only provide the latter.
Observing that

Re(p_(z,k)) = p_(z,k) = 1 > nlsin(arg(k)), (126)

for any I'm(k) > 0 and all # < 0 (see (80) in Section 3), we will prove (125) by showing that

o (Re(p-(z,K))) > 0 (127)
for any z > 0 such that
0 < Re(p_(z,k)) < ngsin(arg(k)) (128)

(obviously, 0 < arg(k) < = for any k such that Im(k) > 0).
We will denote by a,b, u,v the real and imaginary parts of k¥ and p_ respectively, so that

k = a+ibd, (129)

p—(z,k) = u(z,k)+iv(z, k), (130)
with b > 0. Now, we can rewrite the Riccati equation (78) for p_ in the form

v o= b(v? - u?+ n?) - 2auv, (131)

v = —a(v? —u? +n?) - 2buw. (132)

We observe that -é;"—xu(w, k) is a function of u,v given by the formula
o]
gu(:v,k) = f(u,v) = b(v? = u? + n?) — 2auwv. (133)

Denoting the interval [0, ngsin(arg(k))] by I, and defining the region D C R X R via the formula
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D = {(u,v)|lu € I,v € R}, (134)
we observe that

(J,%}IelD f(u,v) =b(n*-=nd) >0 (135)

which proves (127) given (128). Now, (125) follows immediately form (126), (127) and
(128). O

As a direct consequence of Lemma 4.4, the following lemma establishes the upper bounds
of the impedance functions in the upper half-plane.

Lemma 4.5 For any k such that Im(k) > 0 and all z € R,
n1

I(p4(z, k)| < sin(arg(R))’ (136)
G- < s, (137)

with ny > 0 the mazimum of n(z) (see (3) in Section 2).

Proof. Again, we only give the proof of (137) since the proof for (136) is identical.
According to Lemma 4.4, the function

r(z,k) = 1/p_(z, k) (138)

is well-defined for any I'm(k) > 0. Combining (138) with the equation (78) and the boundary
condition (80) for p_, we observe that 7(z, k) obeys the Riccati equation

(e, k) = ikn?(z) (rz(m, k) — 55%53) , (139)

subject to the initial condition 7(0,k) = 1. Reproducing the proof of Lemma 4.4 almost
verbatim, we obtain a lower bound for the real part of r

Re(r(z, k) > %"‘Jg—(k—)). (140)
1
Now, the upper bound
. < 1l ™M 141
is readily obtained by combining (138) with (140). O
Corollary 4.1 For all z € R and k such that Im(k) > 0,
¢+($7k) # O, (142)
¢y (z,k) # 0, (143)
¢-(z,k) # 0, (144)
¢_(z,k) # 0. (145)
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Proof. We prove this corollary by contradiction. First, we observe that

¢4(z,k) =0 (146)
implies
¢y (z,k) =0 (147)
and vice versa, since both ¢4 (z, k) and ¢/, (z, k) are continuous functions of z, and their ratio
: ¢y (2, k)
tk-py(z,k) = 148
p+( ’ ) ¢+($,k) ( )

is bounded from both above and below due to Lemmas 4.4, 4.5.
Suppose now that for some z9 € R, Im(ko) > 0,

¢+(z0, ko) = ¢, (z0, ko) = 0. (149)
Then the pair of functions

B(5) = b4(o,ko), (150)

P(z) = ¢ (z,ko) (151)
satisfies the system of ODEs

#x) = ), (152)

P(2) = —k§(1+q(2))¢(z), (153)
subject to the initial conditions

$(20) = (20) = 0, (154)
However, the initial value problem (152), (153), (154) has a unique solution

$(z) = Y(z) =0 (155)

for all < z¢, which contradicts the condition (26), proving (142), (143).
The proof of (144), (145) is identical. O

Observation 4.1. Due to Lemma 3.8, it is easy to see that

p+(z,k) = p+($,—E), (156)

@R = p_(a,F), (157)
for all € R and k € C™. For real k, equalities (156), (157) assume the form

p+($ak) = p+((1:,—k), (158)

P&k = p(s,-h) (159)

Indeed, combining the complex conjugate of (77) with that of (79), we obtain the ODE
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(7+@R) = —i(-F)pr( k) — (1 + g(a)) (160)

subject to initial condition

p+(0,k) = 1. (161)
Now, replacing k by —k in (77) and (79), we have

Py(2,~F) = —i(~F)(p4 (2, B — (1 + ¢(a)), (162)
and

py (0,-F) =1. (163)

We notice that py(z,k), py(z,—Fk) satisfy identical differential equations (160), (162) with
identical boundary conditions (161), (163), from which (156) follows. A similar calculation
proves (157).

4.2 Smoothness and Asymptotics

The following two technical lemmas describe the asymptotic behavior of the functions %4, %_
(see Corollary 3.1 in Section 3), ¢4 and ¢_ at large frequencies. They will be used in proofs
of Theorems 4.1, 4.3, describing the high-frequency asymptotics of the impedance functions
P+, p—. Theorems 4.1, 4.3 are in turn used in the following section to derive the trace formulae
(278), (282), which are the principal analytical tool of this paper.

Lemma 4.6 Suppose that for any a > 0, the region K(a) C C is defined by the formulae
K(a) = {k|k € C,Im(k) > 0,|k| > a}. (164)

Suppose further that q € c3([0,1]), g(z) > —1 for all = € R, and the second derivative of q is
absolutely continuous. Then there ezist real numbers A > 0, ¢ > 0 such that

bt k) = ERHD (14 L it e wm), (165)
e k) = kR (1 b [ i 6,0,8) (166)
o) = e (10 [ @), (167)
k) = ik (14 o [amar o @ p), (168)

with £(k) : C — C, Ty > 0 defined by (66), (65) (see Corollary 3.1 in Section 3), and
€y,€_,04,6_ : R X K(A) — C continuous functions such that

lex(t, k)] < e k72 (169)
64(t, k)] < e k72 (170)
le-(t,k)] < ¢ k72, (171)
[6_(t, k)] < c k2 (172)
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for all (t,k) € R x K(A).

Proof. Since the proofs of this lemma for 1., and for ¥_,9’ are identical, we only
prove it in the case of ¥_, 9’ . Introducing two auxiliary functions m,n : R x C — C by the
formulae

m(t, k) = e*oy_(t,k), (173)

n(t k) = ey (1) (174)
and combining (62), (64) with (173), (174), we observe that m satisfies the equation

m"(t,k) — 2ikm/(t, k) = —n(t)m(t, k) (175)

(n € co([0,T1]) is absolutely continuous, see (54) for the definition of 7) subject to the initial
conditions

m(0,k) = 1, (176)
m'(0,k) = 0. (177)

Multiplying (175) by e~%** and integrating the result from 0 to ¢, we have
t : :
m'(1,k) = — / n(7)eX* (7, k)dr. (178)
0
Integrating (178) from 0 to ¢, we obtain the second kind Volterra integral equation for m
m = Fi(m)+1 (179)

with the mapping Fj : ¢(R) — ¢(R) defined by
t .
RO = 5 [ n(r)(1 - 4 f(ryar. (150)
21k 0
Combining (178) with (173), (174), we observe that
t -
n(t, k) = m(t, k) — 5% / (1)) m(r, k)dr. (181)
0

Since 7 € ¢o([0,T1]), the function n(7)(1 — €2*(=7)) is bounded for all real t,7 and k € K(0).
Therefore, there exists a real number ¢; > 0 such that

C1
Fll < — 182
“ k” = Ikl? ( )

and hence there exists a real number A > 0 such that

Ikl < 1 (183)
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for all £ € K(A). Now, according to Lemma 3.1, for all (¢,k) € R x K(A), the unique solution
of (179) can be approximated by the Neumann’s series truncated at the second term

t .
m(t,k) = 1+§1E / (7)1 = 2*E=DVdr 4 a(t, k)

= 145 n(T)dT + B(t, k) + a(t, k) (184)

with o, 8: R X K(A) — C such that

2¢2
<=L 185
ol < 7% (185)
(see Lemma 3.1), and
1t 2ik(t—7) v
= —— T, 186
Bt k) = =50 [ n(r)etHear (156)

Since ¢” is absolutely continuous and ¢(z) = 0 for all z < 0, we observe that 7 is absolutely
continuous and 7n(z) = 0 for all z < 0 (see (54) in Lemma 3.7). According to Lemma 3.3,
there exists co > 0 such that

182, k)| < 35 (187)

Ikl2

for all z € [0,1], k € C*. Now, combining (184) with (185) and (187), we observe that there
exists ¢z > 0 such that

3
- _ 188
m(t, k) (1 + 5k n(r)dr) ThE (188)
for all (t,k)e Rx K (A) Slmilarly, there exists ¢4 > 0 such that
n(t, k) — (1 o (r)dr) lil‘— (189)

due to (181), (188).
Now, (167), (171) follow immediately from (188), (176), and (168), (172) are a direct
consequence of (189), (177). O

Lemma 4.7 Suppose that ¢ € ¢}([0,1]), 7 > 2, ¢ is absolutely continuous and q(z) > —1
for all x € R. Then for any integer 1 < | < v, the l-th interate m; : R x Ct — C defined by
the formulae

mo(t,k) = 0, (190)
mu(t,k) = 1+ Fy(mu)(t,k) (191)
= Lt g [ ()= EHDymuy (1, k)dr (192)

(see (179), (180)) assumes the form
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mu(t, k) =1+ g (21_1@)] a;(t) + <%)va,y(t,k) (193)

witha; :R— R, j=1,...,y—1,ay: RXx C* — C such that
4" a;(t)

s (194)

are bounded and absolutely continuous for allz € R, j=1,...,7—1, and
a (i) (195)
is bounded and absolutely continuous function of t for all (t,k) € R x C*.
Proof. We prove this lemma by induction. For [ = 1, formulae (190), (192) yield
my(t, k) =1 (196)
for all (t,k) € R x C*, which is already in the form (193) satisfying conditions (194), (195).
For [ > 1, assuming that m;(¢,k) is in the form (193) satisfying conditions (194), (195),
we obtain miyq using (192):
mip(t,k) = 1+ 5%—,; Ot n(r)(1 = ¥y (1, k)dr
= 14 ILi(t, k) + L(t, k) + Is(t, k) + 14(t, k) (197)
with I; : Rx CT — C, 1 < j < 4 defined by the formulae

1 t -1 1 \J rt
_ L 1 . 198
Bk = g [ e X () [ aes-ain (199)
t :
k) = o [ () - ), (199)
2ik Jo
=y AN 2ik(t—7) IS
- . ) TR\L—T = — 200
Btk = =3 (55) [ 10 i == 001 (200)
t :
Ltk) = — | n(n)anm)a - e e=D)ar. (201)
2tk 0
Clearly, we only need to show that I;, 1 < j <4 can be expressed in the form
(LY LY 202
j}; <ﬂ) oj(t) + (ﬂ) (1, k) (202)

with @; : R = R, 1 < j < — 1 satisfying condition (194) and ., : R X CT — C satisfying
condition (195). Obviously, I; and I4 are already in the form (202). We now use Lemma 3.3
to show that I, I3 can also be expanded in the form (202). Observing that 7(t) = 0 for all
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t ¢ (0,T1), n('=2) is absolutely continuous (see Lemma 3.7), and that ag'y_j ), 1<j<vy—1are
absolutely continuous (due to the assumption of the induction), we can use formula (36) in
Lemma 3.3 to expand I; and each term Js (s =1,...,7—1) of I3 as

Ltk 5 (L) 60 LY byt k 203
2(t, k) = ;(ﬂ> U (t)+<§715) A8, k), (203)
1\° rt .
Js(t, k) = (ﬂ) A n(T)as_l(T)e21k(t-—T)dT (204)
v-1 ; e
1 \/ d(J s—1) 1\7
T jfij:l (ﬂ) dt(j—_s—_l)(n(r)a(s-l)“<ﬂ) bs(t, k) (205)

with bs : R X Ct — C uniformly bounded on R x C* (see Lemma 3.3). Therefore, I, is in the
form (202) due to (203), and I5 is of the form (202) due to (205), (200). Thus, m41(t, k)
can indeed be written in the form (193) satisfying conditions (194), (195). O

Corollary 4.2 Suppose that for any a > 0, the region K(a) C C is defined by the formulae
K(a) = {klk € C,Im(k) > 0,|k| > a}. (206)

Suppose further that the functions m,n,m,,n, : R X Ct — C are defined by the formulae
(173), (174), (192) and

1 [t -
ma(t,8) = mo(t, ) = 5oz [ () (r, kyr (207)

respectively. Then under the conditions of the preceding lemma, there exist positive numbers
A, 1, ¢o,c3 such that

m(t,k) = my(t, k)] < TT (208)
In(t,k) = ny (k)] < W (209)

for all (t,k) € R x K(A), and

n(t, k) Cc3
m(k) IE TR

Jor all (t,k) € [Ty, 00) x K(A).

(210)

Proof. Due to (182), the norm of the integral operator Fj in (192) is of the order O(|k|™1)
for any k£ € C*, from which we observe that there exists A > 0, such that (208) is true.
Subtracting (207) from (174), we obtain

(6, ) = (1, k) = m(t, ) = a0, K) = 5 [ m(r)EH () = o, ). (21)
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Now, the estimate (209) is a direct consequence of (211), (208) and the fact that in (211),
the expression

1 2ik(t—) 212
Sar"(7)e (212)

is uniformly bounded for all k € K(A4), —oco < 7 <t < 0.
We now prove (210) by showing that there exists a positive number c3 such that

ny(, k) c
o ‘3 | (213)

NP

for all (t,k) € [T1,00) X K(A). According to Lemma 4.7, m.,(t, k) can be expressed in the form

mo(t, k) =1 +§ (2_21.’5)1'%(7:) n (ﬁ)”’m(t,k), (214)

with a;,j = 1,...,7 satisfying conditions (194), (195). Therefore, we can assume that the
constant A has been chosen such that for all (¢,k) € R x K(A),

a8, 1)1 2 5 | | (215)

Combining (207) with (214), we obtain
(1, K) = m (1, ) + Lo(t, B) + (4, k) + Ts(t, ), (216)
with I, I3(t, k) defined by (199), (200), and I5(t,k) defined by the formula

1 \Y+1 t .
Is(t, k) = (—) / n(r)ay(r, k)e¥* =) dr, (217)
21k 0

Noticing that n(t) = 0 for all ¢t > T3, we have
Ltk L) b,k 218
2(t7 ) - <§z—k> l(t’ )’ ( )
Js(t, k LY bs(t, k 219
(B = (57) b (219)
for all (¢,k) € [T1,00) X K(A), due to (203), (205). Consequently, there exists ¢ > 0 such that
|La(t, k) + Is(t, k) + Is(t, )| < ﬁ,— (220)

for all (t, k) € [Ty, 00) x K(A), since a,(t, k), bs(t, k) are bounded for all (¢, k) € [T1,00) X K(A),
and s=1,...,y—1.

Now, (213) follows immediately from (216), (220) and (215). The estimate (210)is a
direct consequence of (213), (208) and (209). O
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Lemma 4.8 Suppose that q € ¢3([0,1]), v > 2, ¢ is absolutely continuous and ¢(z) > —1
for all x € R. Then there exists a positive number ¢ such that

221

p-(e.B) -1 < 7 (221)

foralz>1,kecCt.
Proof. According to Corollary 3.1 and formula (68),
P (L, k)
= . 222
for all t > T} (i.e., for all z > 1), k € Ct. According to (173), (174) and (222)
m(t, k)
— 223
p-(e,) = ) (223)

for all t > Ty, k € C*. Now, the lemma follows immediately from (223) and (210). O.

Remark 4.2. By a similar calculation, one can show that under the conditions of the preceding
lemma, there exist positive numbers A > 0, ¢ > 0 such that

P+, k) — 1] < = (224)

Ikl"
forallz <0,keC™.
Theorem 4.1 Suppose that ¢ € c([0,1]), q(z) > —1 for all = € R and ¢" is absolutely
continuous. Suppose further that

D = {(z,k)|z € R,Im(k) > 0}. (225)

Then

(a) ¢4 and $_ are continuous functions of (z,k) and analytic functions of k for all z € R and
keC;

(b) p+ and p_ are continuous functions of (z,k) and analytic functions of k in D;

(c) there ezists a positive number ¢ such that for all (z,k) € D

peleh) = VI4ae) - grhims 5 + @) (226)

p_(z,k) = 1+q()+ 4(1q Jr(:zm)) _+€_(x k), (227)
with €;,e_ : D — C continuous functions such that

e (2, )| < W, (228)

le—(z,k)| £ — |k|2 (229)
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Proof. We only give the proof for ¢_,p_ since the proof for ¢, ,p; is identical. We
introduce two auxiliary functions ¢ and ¢; via the formulae

$(z,k) = ¢-(z,k), (230)
(]51(.’13,’6) = ¢{—($>k)7 (231)

so that the equation (1) and the initial condition (5) for ¢_ can be rewritten as a system of
linear ODEs

#(z,k) = (k) ' (232)
¢,1($7k) = —k2n2(a:)¢>(a:,k), (233)

subject to initial conditions

#(0,k) = 1, (234)
$1(0,k) = —ik. (235)

According to Lemma 3.10, ¢, ¢; are continuous functions of (z,%) and entire functions of &
for all z € R and k € C, from which (a) follows immediately. Similarly, we obtain (b) by
combining (a) with (16) and the fact that ¢_(z,k) # 0 for all (z,k) € D (see Remark 4.1,
Lemma 4.3 and Corollary 4.1).

The expansion (227) and the estimate (229) follow immediately from (68) (see Corollary
3.1 in Section 3), (167), (168), (171),and (172) (see Lemma 4.6). O

Corollary 4.3 Denote by p py or p—. Then under the conditions of the preceding theorem,
there exist positive number ¢y, cy such that

Q2ik [ p(rk)dr <e, (236)

forallt,z €[0,1], k€ R, orfor all0<t<z<1,keCt, and
(2, )] < 2, (237)
forallz € R, ke CT.

Proof. Due to Statements (b), (c) of Theorem 4.1, the real part of the function
2ik/ p(7,k)dr (238)
t

is uniformly bounded from above for ¢,z € [0,1],k € R,orforall 0 <t <2 <1,k € C*, from
which (236) follows immediately. Estimate (237) is a direct consequence of Statement (c) of
Theorem 4.1, and formulae (77), (78). O

Global upper and lower bounds for the impedance functions will be established in Theorem
4.2. We first obtain a partial result in the following lemma.
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Lemma 4.9 Suppose that for any positive numbers a,a, the domain K(a,o) C C is defined
by the formula

K(a,a) = {k|k € C, Re(k) € [-a,a], Im(k) € [0, a]}. (239)

Then under the conditions of the preceding theorem, for any A > 0, there exist positive numbers
B,b,§ such that

Ip+(z, k)| < B, (240)
p-(e,k)| < B, (241)
Re(ps(a,k)) > b, (242)
Re(p_(z,k)) > b, (243)

in the domain R X K(A,?§).

Proof. Since the proof of (240), (242) is identical to that of (241), (243), we only provide
the latter. Denoting by u, v the real and imaginary parts of p_ so that

p-(a,k) = u(o, k) + iv(a, k), (244)
the Riccati equation (78) for p_ can be rewritten in the form

v = —2kuv, (245)

v = —k(v? —u? 4 n?), (246)

for any k € R. Integrating (245) on interval [0, 2] and observing that

u(z, k) =p_(z,k)=1 (247)
forall z <0, k € C (see (80)), we have

Qmmk):e-%ﬂﬁﬂ¢wt>0 (248)

for all z,k € R. For any A > 0, p_,u = Re(p-) are continuous functions of (z,k) in the
compact domain [0,1] X K(A,§). Therefore, there exist positive numbers b1, §, By such that

u(z, k)
lp—(z, k)l
for all (z,k) € [0,1] x K(A, ), which proves the estimates (241), (243).
We now prove the estimates (241), (243) for all > 1 using the formula
1 — b2 (k) + 12b_(k)sin(kz — a_(k))
1+ b2 (k) + 2b_(k) cos(kz — a_(k))’

by >0 (249)

2
< B17 (250)

p—(a,k) = (251)

(see Remark 2.2). According to Remark 2.2, b(k) > 0 is a real-valued continuous function of
k € C. We observe that
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0<b(k)< 1 (252)
for all £ in the close domain K (A, §) since otherwise if b(k) > 1, the real part of p_(1,k)
1-b2(k)
1+ b2 (k) + 2b_(k) cos(kz — a_(k))

will be non-positive, contradicting (249). Due to (252), (251), there exist positive numbers
ba, By such that

u(e,k) > b, (254)
p-(e,k)| < By, (255)

forallz > 1, k € K(A,9).
Now, (241), (243) follow immediately from (249), (250), (254), (255), and (247). O

u(l,k) = (253)

2
<

Theorem 4.2 Suppose that q € c&([0,1]), g(z) > —1 for all z € R and the second derivative
of q is absolutely continuous. Then there exist real numbers B > 0, b > 0 such that

lp+(z, k)| < B, (256)
lp-(z,k)| < B, (257)
Re(pi(z,k)) > b, (258)
Re(p-(z,k)) = b, (259)

in the domain
D = {(z,k)|z € R, Im(k) > 0}. (260)

Proof. Since the proof of (256), (258) is identical to that of (257), (259), we only
provide the latter. According to the high-frequency asymptotics (227) in Theorem 4.1, there
exist positive numbers A, b; such that

Re(p_(a:, k)) > b17 (261)
in the domain D; C D defined by
Dy = {(z,k)|z € R, k| > A, Im(k) > 0}. (262)

Since p_(z, k) is a continuous function of (z,k) € D;, there exists a positive number B; such
that

lp-(2,k)| < By, | (263)

for all (z,k) € D;. For such a number A > 0, according to Lemma 4.9, there exist positive
numbers §, By, by such that

lp-(z,k)| < B, (264)
Re(p-(z,k)) 2> b, (265)

in the domain Dy C D defined by the formula
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Dy = {(z,k)|z € R, Re(k) € [~ A, A], Im(k) € [0, 6]} (266)
Now, according to Lemmas 4.4, 4.5, there exist positive numbers Bs, b3 such that

lp-(z,k)] < Bs, (267)
Re(p-(z,k)) > b3, (268)

in the domain D3 C D defined by
Ds = {(z,k)|z € R, Re(k) € [-A, A], Im(k) > §}. (269)

The estimates (257), (259) for (z, k) € D follow immediately from the estimates for (z, k) € Dy,
Dy, D3 since D = DU D, U D3, O

The following theorem furnishes the analytical apparatus for the error analysis of the trun-
cated trace formula (see (282)).

Theorem 4.3 Suppose that q € c§([0,1]), m > 2, ¢ is absolutely continuous and ¢(z) > —1
for all z € R. Then there exists a positive number a such that

—_— a
[p+(2,F) - p_(2,k)| < T (270)
for all (z,k) € Rx C*.
Proof. According to Lemma 4.8 and Remark 4.2, (270) is true for all z ¢ (0,1). In order

to prove the theorem for z € (0, 1), we observe that p and p_ obey the same Riccati equation
(78) due to (77), (78). The difference, s = py — p_, satisfies the ODE

s'(z,k) =1k (pr+p-)s (271)
with the solution
s(z, k) = e Jo (p+ RV - (6R))dt g gy (272)

Corollary 4.3 indicates that there exists constant b > 0 such that

e~k J5 (o (R +p—(t.k) )t , (273)

for all (z,k) € [0,1] X R. Due to Remark 4.2, there exists a positive number ¢ such that for all
k € R,

|5(0, k)| = [p+(0, k) — p—(0, k)| = |p+(0,k) — 1| <

c

i (274)

Now, (270) for z € (0, 1) follows immediately from (272), (273), (274). O
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4.3 Trace Formulae

In this subsection, we prove Theorem 4.4, which is both the purpose of this section, and the
principal analytical tool of this paper. Theorem 4.4 describes the so-called trace formulae for the
impedance functions py,p— (for a more detailed discussion of the term ”trace formulae”, see, for
example, [7]). In fact, only the formula (278) is to be used by the reconstruction algorithm of
the following section. We present the formulae (275), (276), (277) for completeness, since some
of them appear to be well-known, and attempts have been made to use them in reconstruction
algorithms (see, for example, [8]). See also Subsection 5.1 below for a more detailed discussion
of the use of trace formulae in reconstruction schemes

Theorem 4.4 (Trace formulae) Suppose that q € c¢2*([0,1]), m > 2, ¢(™ is absolutely contin-
uous and ¢(z) > —1 for all x € R. Then

(a)

Vi+a@) = lim_ -2% _Z pi(a, k)dE. (275)
)

(@)= lin Z(1+4@) [ k-pi(o, Rk (276)
(c)

Vita@) = tin_ oo [ e,k + p-(a, B)dk. (277)
()

(@)= 21+ 9@) [ (@4, k) = p-(z, ). (275)

More precisely, there exist positive numbers cy, ¢z, €3, ¢4 such that

1 a Ci
Vi@ - o [ pitepar| < 2, (279)

(@) - 2 +a@) [ kepitabin| < 2, (250)
V4@ - 5 [ et +p-inar| < 2, (281)
@) - 20+ 4@) [ aa ) - )] < 2 (252)

forallz € R.

Proof. Since the proofs of trace formulae (a),(b),(c), and (d) are similar, we only present
that of (d). According to statement (c) of Theorem 4.1, there exists ¢ > 0 such that
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(p+ (2 ) = p-(@. k) = (31 f”;zw))jc)l < e (283)

for all (z,k) € R x C*. Denoting by T' the upper half circle of radius A4, with clockwise
orientation, in the complex k-plane, i.e.,

T = {klk € C*, |k| = A}, (284)
and noting that py — p_ is an analytic function of £ € C*t, we obtain
A
| @@= p-(@ Bk = [ (s (2,8) = p-(2, K (285)
Substituting (283) into (285), we have
4 q'(z)
k) —p_(z,k))dk = ——""— + O(k™! 286
[ etk = ook = T s 4 00 (286)

from which (278) follows immediately.
In order to prove the estimate (282), we rewrite (278) as

(@)= 20+ 4@) [ @4(2,8) = p (2, k))dk + I(0) (287)
with I(a) given by the formula

1@ =20+ a@) ([ "+ [7) s, 0) - p-(z, R (288)
Now, formula (158) implies

1@)= 2+ a@) ([ 4 [7) (@R - p (e a, (289)
and according to (270), there exists a constant ¢4 such that

@) < fory (200)

from which (282) follows immediately. O

5 The Reconstruction Algorithm

5.1 Reconstruction via trace formulae—an informal description

An examination of the formulae (275)-(278) in combination with the Riccati equations (77),
(78) immediately suggests an algorithm for the reconstruction of the parameter g given the
impedance function p, (2o, k) measured at some point 2o € R outside the scatterer. Namely,
one is tempted to substitute one of the formulae (275)- (278) (for example, (275)) into (77),
obtaining
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P (e, k) = —ik (pi(x,k) ~tim (5 [ p+(z,k)dk)2> , (201)

and attempt to view (291) as a differential equation for the function p : R x R! — C.
Needless to say, standard existence and uniqueness theorems are not applicable to ‘differen-
tial equations’ of the form (291). Furthermore, in order to be numerically useful, the integral in
(291) would have to be replaced with some finite quadrature formulae. The latter procedure is
significantly complicated by the fact that the function py is defined on the whole real line, and
its domain of definition has to be truncated before discretization. It turns out that the solution
of (291) is not unique, except in a very carefully chosen class of functions p. Such a class of
functions has been successfully specified (see, for example, [8]). The resulting numerical scheme
is, however, quite expensive, and the construction is not rigorous, though we believe that this
could be made so. The same problem arises if one attempts to use the trace formulae (276),
(277), and the conceptual reason for this situation is summarized in the following observation.

Observation 5.1. An immediate consequence of the formula (275) is

V I+ q(a:) = a]_j,llloo 2_1(1- ) (/:;bp+(x7 k)dk + /ba p+($, k)dk> ’ (292)

for any positive real b. Thus, the ‘differential equation’ (291) can be replaced with

(e, k) = —ik (p.i(z,k) : (agrfw o ( Ry “p+(m,k)dk)) ) (209)

and a convergence, uniqueness, etc. proof valid for (291) would also be valid for (293), unless
some extremely subtle phenomenon interfered.

However, given a smooth scatterer g, for any ¢ > 0, one can choose a sufficiently large b
that

Vi+ a@) - pi(e,h)

for any k > b. If the scattered data pi(zo, k) have been collected at some point z¢ outside a
smooth scatterer, (294) assumes the form

<e (294)

11— py(z,k)| <. (295)

In other words, a reconstruction algorithm using the ‘differential equation’ (293) with a suffi-
ciently large b would effectively reconstruct the parameter ¢(z) for all z € [0,1] from a single
measurement, the latter being equal to 1 (!). Another way to make this observation is to notice
that the formula (275) is simply the WKB approximation to the impedance function p,, and
that in the WKB regime, the back-scattered field is absent. A similar problem arises if one
attempts to combine formulae (276), (277) with (77), and view the result as a ‘system of
ordinary differential equations’.
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In the case of a discontinuous scatterer ¢, the WKB expansions (226), (227) are invalid.
On the other hand, the trace formulae (275), (278) are valid (if the limits in these formulae
are interpreted properly), and can be combined with the equations (77), (78) to obtain a
numerical scheme for detecting discontinuities in the scatterer. If ¢ is piece-wise constant, such
a scheme will reconstruct it effectively, and time-domain versions of this procedure are known
as layer-stripping algorithms (see, for example, [12], [13], [14]).

While the authors failed to find the trace formulae (276, (277) in the literature, they appear
to be well-known among specialists, being an immediate consequence of the WKB analysis of
the equation (77). On the other hand, the formula (278) does appear to be new, and its
combination with the equation (77) immediately leads to a robust reconstruction algorithm.
While we postpone a detailed construction and analysis of such a scheme till Subsections 5.2,
5.3, in the following observation we summarize the conceptual reasons for its analytical and
numerical effectiveness.

Observation 5.2. (282) means that approximating the trace formula (278) with its ‘trun-
cated’ version

0(@)~ 2+ 0(@)) [ (o4 (2,8) = p-(a, W)k, (206)

we make an error of the order a=(™~1), where m is the smoothness of the scatterer. Thus, for
a sufficiently smooth scatterer and a sufficiently large a, (296) is an extremely good approxi-
mation to the trace formula (278).

Now, for the system of equations (77), (78), (296), it is not hard to prove existence,
uniqueness, etc. theorems of the type valid for systems of ODEs (since now for a fixed value of
z, the functions py(z,k),p_(z,k) : [~a,a] — C are defined on a compact interval, as opposed
to the whole line). The remainder of the paper is devoted to proving such facts (see Theorem 5.1
below), and to a numerical implementation of the resulting procedure. The latter is also quite
straightforward, since it only involves constructing a quadrature formula for the evaluation of
the integral in (278), where it is taken over an interval of finite length. Furthermore, for all
practical purposes, the integrand vanishes at the ends of the domain of integration together
with all its derivatives, completely obviating the issue of the choice of the quadrature formula,
and leading to extremely accurate numerical procedures (see Remark 6.1 below).

5.2 Reconstruction via trace formulae—a formal description

Now, we are prepared to construct a system of integro-differential equations whose initial
conditions are the values:of the impedance functions p;,p_ measured outside the scatterer,
and whose solution reconstructs the potential ¢ for all z € [0,1]. We will consider a system of
integro-differential equations

Poa(e,k) = —ik(p(2,F) = (1+ 0a(a), (207)
Po(@:k) = ikl (2,F) = (14 a(@))), (209)
@) = 2046@) [ (pure,) = po-(2,2)dz, (209)
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with respect to the functions py4,pa— : [0,1] X [-@,a] — C, ¢, : [0,1] — R, subject to the
initial conditions

pa+(0>k) = pO(k)7 (300)
pa—(o’k) = 1, (301)
g(0) = 0. (302)

It turns out that for sufficiently large a, the system (297)-(302)has a unique solution for all
z € [0,1], that this solution is stable with respect to small perturbations of the initial data
po(k) , and that g, converges to ¢ as a — 0o. The following theorem formalizes these facts.

Theorem 5.1 (Convergence of the inversion algorithm) Suppose that ¢ € ¢§*([0,1]), m > 4,
¢'™ is absolutely continuous and g(z) > —1 for all z € R. Then there exist constants A >
0,¢ > 0 such that

4
l9(2) = @a(2)] £ oy (303)
forallz € [0,1], a > A.

Since the proof of this theorem is quite involved, we break its technical part into three
lemmas which are then directly used in the proof of Theorem 5.1.

Lemma 5.1 Suppose that ¢ € ¢2([0,1]), m > 4, ¢™ is absolutely continuous and q(z) > —1
for all z € R. Suppose further that the function space ¥ is defined by the formula

% = {[o, 8,7]le, B € ¢([0,1] X [~a,a]),7 € ¢([0,1])}, (304)
equipped with the norm
11l = max (llall, 18]I, 171, (305)

with f = [, B,7] € X. Finally, suppose that for any a > 0, the functions f,,w,¢, : R — R are
defined by the formulae

fu@) = 2 [ ek - p-(a W)k, (306)
w(@) = =(1+q), (307)
@ = —u@) ([ + [7) @ale, ) - p (o, Rk (308)

Then the error function u = [ey,e_,h] € ¥ defined by the formulae

er(2,k) = par(z,k)— pi(, k), (309)
6_(:E,k') = pa—(mak)_p—(xak)a (310)
h(z) = qi(z)-q(2) - (31D

satisfies the equation
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L(u)(z, k) = N(u)(t, k) + [0,0, &(2)],
where L, N : ¥ — ¥ are defined by the formulae

L(u) =

N(u) =

er(z, k) —ik [y h(t)e_%k S pe(rbydr gy

e_(z, k) + ik [T h(1)e2* [ p=(rB)dr gy ,
| 1) = J§ B La(0)dt — T 0(0) 2 (e 0,2) = e (2, )t

—ik f(;l,‘ 6?}_ (t, k)e—2ikf:‘ P+(’T,k)d1‘dt
ik [ €2 (t, k)e¥* [ p- (R gy

| 2 [F (D) [2,(ex(t,2) — e_(t, 2)dzdt

Proof. We know that the functions p,,p_, g satisfy the ODEs

(2, k) =
p(z,k) =

d(z) =

—ik(pi(z,k) — (1 + ¢(2)),
ik(p2(z,k) — (1 + q(z)),

(14 4@) [ (pae,B) = p- (2, k),

for all 2 € R, any k € C*, and that the functions p,4,ps—, g, satisfy the ODEs

p:z+(xak)
py(z,k) =

g.(2) =

_ik(pz_*_(:t,k’) - (1 + ‘_Ia(x)))7
ik(p2_(z, k) — (1 + ¢u())),

21+ 0u(@)) [ (e (2,2) = po-(2,2))d.

for all (z,%) € [0,1] X [—a, a], subject to initial conditions

Pat(0,k) =
pa—((), k) =
qa(O) =

p+(07 k))
p-(0,k) =1,
q(0) = 0.

(312)

(313)

(314)

(315)
(316)

(317)

(318)
(319)

(320)

(321)
(322)
(323)

for all k € [—a,a]. Subtracting equations (315), (316), (317) from equations (318), (319),
(320) respectively, we observe that [e4,e_, h] (see (309), (310), (311)) satisfies the ODEs

é(z,k) =
e (z,k)

h' ()

—ik (2p4(2, K)es (2, k) + € (2, k) - h(z)),
ik (2p_($, k)e_(z, k) + € (z,k) - h(m)) )

h(z) fa(z) + (o) _ua(e+(.z', 2) = e_(z,2))dz

+2h(2) [ (e4(2,2) = e-(2,2))dz + eala),

subject to the initial conditions

e+(0,k) =e_(0,k) = h(0) = 0.
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We now convert the initial value problem (318)-(323) as a system of integral equations. Mul-
tiplying (324) by the function

e2ik j:: P+ (t,k)dt’ (328)
we have
-;—a; (ezikfomp‘* (t'k)dte+(:v, k)) = —ik - 2k Jy P+t (ei(a:, k)— h(w)) . (329)

Integrating the result over the interval [0, z], we obtain

er(a, k) — ik / h(t)e™ 2k T pe Ry g / ¢ (1, k)e 2k S PRy (330)
0 0

A similar calculation reduces (325) to the equation
T . z T . T
e_(z,k)+ zk/ h(t)ezzkft p—(rk)dr gy — ik/ e’ (t, k)ezzkft p-(rk)dT gy (331)
0 0
An integration of (326) over the interval [0, z] converts (326) into the integral equation

h(z) - /0 " W) fu(t)dt /0 " () /_ aa(e+(t,z)—e_(t,z))dzdt

-2 /0 * ht) /_ aa(e+(t,z)—e_(t,z)dzdt+ /0 * ea(t)dt. (332)

T
Clearly, equations (330), (331), (332) is equivalent to (312), which completes the proof. O
Lemma 5.2 Under the conditions of Lemma 5.1, there exists a positive number ¢y such that

for any f,g € ¥, there exist continuous functions &,8, : [0,1] X [-a,a] — C, 83 : [0,1] = C
such that

N(f)(w7 k) - N(g)(wv k) = [6l($ak)7 62(x7k)’/0x 63(t)dt]’ (333)
and
max (|64], [|62], [|6all) < e - @ - max (|| f], lglDlIf - gl- (334)

Proof. Formula (333) is a direct consequence of (314). In fact, we have
bi(z,k) = —ik / (F2(t, k) = g3(t, k))e™ 2k S e (mkldrgy (335)
0
S2(w,k) = ik / (F3(t, k) — gh(t, k)2 p=trirgy, (336)
0

@) = = [ (@A) - fils ) - 6@)n@) - aNd (350
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for any f = [f1, f2, f3) € 2, g = [91,92,93] € X. In order to prove (334), we first observe that
due to Corollary 4.3, there exists a positive number ¢4 such that

e-—-2z’k f: p4(7,k)dr

S C4, (338)

2k [ p—(r.k)dr

< e, (339)

for all ¢,z € [0,1], k € R. Observing that |k| < a, 0 < z < 1, and using the estimate (338), we
obtain the estimate.

61l < a-eallf +gll - IIf = gll- (340)

A similar calculation shows that

62l < a-callf +gll - IIf - gl (341)

and we obtain the estimate for §3 by first regrouping (337):

e = 2 sup (00 - ) [ (i(62) - ot )i

z‘G

+0s) [ ((h(0:2) = 0a6,2) = (lt,2) ~ 0t )iz
2 (0=l [ 17+ glldz+ gl [ 2017 - gla)

a- 217 = gl (1 + 1l + 2l (342)

Now, (334) follows immediately from (340), (341), (342). O

IA

IN

Lemma 5.3 Under the conditions of Lemma 5.1, there exist positive numbers cq, c3 such that
for any 6 € X of the form

8(2, k) = [61(a, ), 62(o, k), /Ow 6a(1)d1], (343)
the linear equatz"on
L(v)=46 (344)
has a unique solution v = [vy,ve,v3] € . Furthermore,
[[oll < ¢z - amax(||64], ||621]) + csl|6s]|- (345)

Proof. We only need to prove (345), since the existence and uniqueness of the solution
v of the linear equation (344) is a direct consequence of the estimate (345). Due to (313),
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(343), the equation (344) can be rewritten in the form
& . T
vi(e,k) = ik / vs(t)e~ 2R S PRI G L8 0 gy
0

va(a k) = —ik / v3(t)eX* Pk gy L 5 )
0

ve(z) = /()xv3(t)fa(t)dt+ /:w(t) /_aa(vl(t,z)—vz(t,z)dzdt—{— /0 " 8a(t)dt.

(346)
(347)

(348)

In order to prove (345), we first eliminate vy, v, from (348) and obtain an estimate for vs.
Subtracting (347) from (346), and integrating the result over the interval [—a,a], we obtain

_Z (v1(=,2) — vo(z, 2))dz

/z vs(t) ’ 1z (6_2iz ftz p4(7,2)dr + o212 ftz P—(‘r,z)dr) drdt
0

—a

Il

+ /_ ':(51(.»0, 2) — 63(z, 2))dz
- /0 " ga(@, )us(t)dt + 4a - s(2),
with g, : [0,1] x [0,1] = C, s, : [0,1] — C given by the formulae
ga(z,1) = /“ iz (621'2 JECOLN eziszp_(r,z)dr) dz,
sa(2) zlg /_ aa(ﬁl(x,z) _ 8y(a,2))dz.
Combining (348) with (349), we obtain
va(z) = /0 " a(0) fu(t)dt + /0 " w(t) /0 " ga(t, T)os(r)drdt
t+a /0 " w(t)sa(t)dt + /0 " Sa(t)dt.

(349)

(350)

(351)

(352)

We will obtain the estimate (362) for vs (see below) by first proving (353), (354), (355), and

(359) for functions f,,w, ga,s,. Obviously, there exist constants c5 > 0, cg > 0 such that

lw(z)| < e
for all z € R due to (307), and
|fa(2)] < co
for all z € [0,1], any a > 0, due to (306), (282), and

|sa(2)] < max ([|6y],1182]]) -
due to (351). Observing that
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/a 2. e_%zftz p+(T,z)drdz - _ /a 2. e2izft$p+(‘r,z)drdz (356)

—a —a

due to (156), and combining (350) with (356), we have
ga(x,t) _ /a is (e2izft‘”p_(r,z)d‘r _ eZizpr"_'_(fr,z)dT) dz. (357)
—a
According to Theorem 4.3, for any =z € R, the function

p-(2,k) - py(z, k) (358)

decays uniformly like k=™, for k¥ € R, and consequently, the integrand in (357) decays like
k~(m=2) uniformly with respect to ¢,z € [0, 1]. Since we have assumed that m > 4, there exists
a constant ¢7 > 0 such that

lga(xat)l S C7, (359)

for all t,z € [0,1], @ > 0. Now, combining the integral equation (352) with the estimates
(353), (354), (355), (359), we have

x x pt
los(z)] < ce /0 |os(t)|dt + c5 - 7 /0 /0 |oa(7)|dtdr
+4a- ¢s - o max (|8l |2l]) + 15
[ (ot s enlus(®lde + 40 s - amax (1], 521 + 6] (360)

IA

Now, the estimate for v3 follows from Gronwall’s inequality (see Lemma 3.9),

ls(2)] < da- s - max (8], 152]) + l16s]
+es [ (40 s - tmax (8]l 52]) + o]} ==, (361)
0

with cg = ¢6 + ¢5 - ¢7. Clearly, there exist positive numbers cg, c1g such that

|v3(2)] < comax (||é1]], [|62]]) + 10]l3], (362)

for all z € [0,1], we thus have the estimate for v3 (see (345)).
In order to obtain similar estimates for vy, v, we first provide an estimate for the derivative
of v3. Differentiating (352), we have

v53(2) = v3(z) fa(2)dt + w(z) _/Oz ga(z,t)v3(t)dt + 4a - w(z)s,(z) + 83(z). (363)

Combining (363) with (362), we observe that there exist positive numbers ¢y, ¢12 such that

|v3(2)] < ez max (||61]], [162]]) + er2llés]|- (364)
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Integrating by parts in (346) yields
1 [ ws(t) <—2ik IN (Tk)df)
vi(z, k =—/—de ¢ P + 61(z, k
(e, k) 2Jo p4(t,k) 1z k)

= k)t (p:?if)k)

B /x v3(t)p+(¢, k) — v3(t)py (2, k)e—2z'k N p+(’f,k)d7dt) . (365)
0

pi(t, k)

For all (z,k) € Rx C*, p, is uniformly bounded, Re(py ) is uniformly bounded from below by
a positive number (see Theorem 4.2). Dut to Corollary 4.3, p/, and

o2k [T pe(rk)dr (366)

are uniformly bounded for all z,¢ € [0,1], £ € R. Therefore, combining (365) with (362),
(364), (236), we observe that there exist positive numbers c;3, ¢14 such that

[vi(z, k)| < exzmax (|é1]], [|62]]) + caalld3]], (367)
and a similar calculation shows that
|v2(@, k)| < cazmax (||61]], [|62]]) + c14]|63]| (368)

for all 2 € [0,1], k € [—a,a]. Now, the estimate (345) follows immediately from (362), (367),
(368). O

Using Lemmas 5.1, 5.2, 5.3, we now proceed with the proof of Theorem 5.1.
Proof of Theorem 5.1. Theorem 4.4 implies that there exists positive numbers by, bo
such that

ful) < b, (369)

b2
lea(z)] < prey (370)

We prove the theorem by showing that there exist positive numbers A, ¢ such that for all a > A,
the solution u = [e4,e_, h] € ¥ exists (see Lemma 5.1 for the definitions of u, ), and that

4

llull < am=1)"

(371)

We will obtain the solution u of the equation (312) via the following iterative procedure:

u = 0, (372)
L(ungr) = N(un)+[0,0,e(t)], (373)

with L, N defined by the formulae (313), (314), respectively. Clearly, we only need to show
that there exist positive numbers A, ¢ such that for all a > A
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lluall < (374)

Pl

and the sequence u,, n = 0,1,... converges (to the solution u). The first iterate u; satisfies
the equation

L(u1) = [0,0, ()], (375)
and according to (308), (282), there exists a constant b such that

lleall < (376)

a(m—l) -
Combining (375) with (345) and (376), we observe that there exist constant ¢4 such that

Cq

[lug]| < 2D (377)
Now, we choose a constant A > 0 such that
1
a-ci(cg-a+e3)|u] < 1 (378)
for all @ > A. Defining u_; = 2u; for convenience, we prove by induction that
1
[unsr = unll < Sllun = unall; (379)
lunsall < 2flwll, (380)

foralln >0,a > A.
The case n = 0 is a trivial one. For n > 1, (373) indicates that

L(tn41 = un) = N(tp) = N(tn-1), (381)

Due to Lemma 5.2, there exist continuous functions 8,62 : [0,1] X [-a,a] — C, 63 :[0,1] — C
such that

N(tn) — N(un_1) = [6(z, k), 6a(a, k), /0 " ba()d], (382)

Now, combining (381), (382) with (345), (334), and the assumption of the induction, we
obtain

lunt1 —unll < ez -amax(||é1],|62]) + cs]|8s]]
< a-cez-a+ez)max (||ual], [|un—1]]) llun — vn-al|
1
< Sllun = unall, (383)

which proves (379). The estimate (380) is a direct consequence of (379).
Finally, the sequence u,, n = 0,1,...converges to the solution u due to (379), and therefore

264

llull < 1)

(384)
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for all @ > A due to (380), (377), which was to be proved. O

Remark 5.2. The proof above requires that ¢ € ¢™(R), with m > 4. At the expense of a
considerable increase in the complexity of the proof, it is not difficult to extend this result
to m > 2. However, our numerical experiments (see the following section) indicate that the
scheme works quite well for continuous, piecewise continuously differentiable ¢, and even for
piecewise continuously differentiable ¢ with finite number of jumps. In the latter two cases, the
rates of convergence of the algorithm are 1/a and 1/+/a, respectively.

6 Implementation and Numerical Results

6.1 Implementation

In implementing the algorithm of this paper (see Section 5.2), the integral
" (p+(2,k) - p-(=, k))dk (385)

in equation (299) is approximated by the trapezoidal sum

M-1
T(h) = h Z (p+(£l?,kj) —p_((l?,kj))
j=—M+1
2 (42, =0) = p-(2, ) + (04 (2,0) = (2, 0)), (356)

with h = a/M, k; = jh, j = —M,..., M. Since for real k, p;(z,—k) = ps(z,k), p-(z,—k) =
p—(z, k) (see Observation 4.1), the ODEs (297), (298), (299) are discretized in the k-space
using M 4 1 nodes k; = jh, j =0,..., M, leading to a system of 2M + 3 ODEs

Phe(e,k) = ik (Phe(2,k5) — (1+ a(2))), ' (387)
Phela,ky) = ik; (Ph-(2,k5) - (1+ @(2)) , (388)
, 4h M-1
w(z) = —(1+aq(2)) (Z Re(pn+ (2, kj) — pr—(2, k5))
+3 (Re(phs(2,0) ~ ph-(2,0)) + Re(pre(2,0) = pu-(2,0)))) . (389)

subject to the initial conditions

Ph+(0,k5) = po(k;), (390)
ph_(O,kj) = 1, (391)
2(0) = 0 (392)
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(see (300)- (302)). These ODEs are then solved using a standard 4-th order Runge-Kutta
scheme.

When an integral is discretized via a quadrature formula, the rate of convergence of the
quadrature is critical to the numerical performance of the algorithm. It turns out that while
the estimate

p+(z,k) — p-(z,k) = O(a™™) (393)

(see Theorem 4.3) ensures a rapid convergence of ¢, to ¢ as a grows (see Theorem 5.1), it also
guarantees a rapid convergence of the trapezoidal quadrature (386) to the integral (385). This
fact is formalized in the following lemma. Its proof is based on the Euler-Maclaurin summation
formula (see, for example, [11]), and is ommitted, since it is quite involved, and incidental to
the purpose of this paper.

Lemma 6.1 Suppose that q € ¢g*([0,1]), m > 2, ¢ is absolutely continuous and q(z) > —1

Jor all z € R. Then there ezist positive numbers c,, n =0,... such that
d" (p+(z,a) — p_(z,a
(p+(z,a) — p( ))<cn. (s04)
dkn = |k|™
Furthermore, for any 8 > 0,b > 0, there exists a constant ¢ > 0 such that
e b
(942, k) — p— (2, k))dk— T (7,) <L (395)
—-a a a™

Using the estimate (395), and reproducing the proof of Theorem 5.1 almost verbatim, one
can prove the following theorem.

Theorem 6.1 Suppose that ¢ € cf*([0,1]), m > 4, ¢ is absolutely continuous and g(z) > -1
for all z € R. Suppose further that for given r > 0,s > 0, g(r,s,z) denotes the solution g
of the system (887)- (392) with h = r/a®. Then for any o > 0,83 > 0, there exist constants
A > 0,c> 0 such that

l9(2) — g(e, B, 2)] < 5. ' (396)

forallz € [0,1],a > A

6.2 Numerical Results

We have applied the algorithm of the present paper to the reconstruction of several types of
scatterers, from infinitely differentiable ¢ to discontinuous ¢. In the four groups of examples
presented below, unless specified otherwise, all scatterers have compact support [0,27]. The
computations were performed in double precision on a SPARC computer.

The results of four classes of numerical experiments are presented in this section.
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In the first class (Examples 1-2.2) are scatterers satisfying the smoothness conditions of
Theorem 6.1. In the second class (Example 3) is a scatterer ¢ violating the smoothness con-
ditions only mildly (it is continuous, but its derivative is discontinuous at two points). In the
third class (Examples 4.1, 4.2) are scatterers that strongly violate the smoothness conditions by
being discontinuous. Finally, in Example 5 we perform a crude test of stability of the algorithm
by truncating all measured data po(k;), j = 1,..., M after 1,2,3,4 or 5 digits.

In Tables 1-6, hy denotes step size of the trapezoidal rule in the k-interval [0, a], N, denotes
the number of points in the z-interval [0, 27], E%, E* represent the relative L? and maximum
norm of error of the reconstructed scatterer, respectively. In Figures 1-6, dotted lines denote
the exact solution, while solid lines denote the numerical reconstruction. In all examples, for
a given a, hy and N, were chosen such that further decrease of h; and increase of N, brought
no improvements on the accuracy of the reconstruction.

Remark 6.1. In order to obtain the scattering data py(0,k) for the Examples 1-3, the
scattered field ¢;..¢4+ was obtained as a solution of the boundary value problem (10), (8),
(9) via a high order algorithm described in [15]. The parameters in the scheme were chosen
in such a manner that at least 14-digit accuracy was always maintained. Formulae (4), (30)
were then used to obtain p4 (0, k) from ¢seaty-

In Examples 4.1 and 4.2, a standard procedure for the solution of the initial value problem
(1), (26) (for ¢4) with piecewise constant g was used (see, for example, [16]). Here, the
solutions were obtained with at least 15 correct digits. The scattering data p,(0,k) were
obtained from ¢, via formula (30).

Remark 6.2. In the examples below, no effort was made to optimize the code used, either
from the algorithmic or from the programming point of view. For example, we used the Runge-
Kutta scheme to solve ODEs (387), (388), (389). While it produced satisfactory results in
our experiments, it is by no means the most efficient scheme for the solution of problems of
this type.

Example 1. Reconstruction of a Gaussian distribution
z—m\2
q(z) = e=(55%) (397)

where the variant o given by the formula

™
o= Z\/loglo(e) = 0.5175854235. .. (398)

was chosen such that the function is effectively zero to double precision outside the interval
[0,27]. The results of this numerical experiment are depicted in Table 1 and Figure 1. For all
practical purposes, the scatterer (397) is a ¢*-function in R with the support on the interval
[0, 27], and therefore the algorithm should be expected to converge extremely rapidly. In fact,
the graphs of the two reconstructions are indistinguishable from each other, and from the graph
of the original ¢, and we only provide one of the reconstructions (Figure 1).

Table 1. CPU Times and Accuracies for Example 1
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a | hg N, E? E> t (sec.)
5 | 0.1 80 | 0.146 x10~2 | 0.153 x10~2 | 0.600
10| 0.1 | 300 | 0.354 x10~5 | 0.415 x10~° | 4.41
10 | 0.05 | 600 | 0.177 x10~5 | 0.183 x107% | 16.7
10 | 0.05 | 1200 | 0.175 x10~% | 0.184 x107° | 34.2
20 | 0.05 | 2400 | 0.759 x10~° | 0.108 x10~8 141
20 | 0.05 | 4000 | 0.988 x10~10 | 0.143 x10~° 235
20 | 0.025 | 4000 | 0.982 x1071° | 0.142 x107° | 498

In the following two examples, we construct oscillatory scatterers of the form

g(z) = 3 ¢j(1 - cos(n;z)),
j=1

(399)

with nj,¢;, 7 = 1,2, 3 given below. For given n;, the coefficients c; were chosen in such a manner
that ¢ is five times continuously differentiable for all z € R, so that the rapid convergence of

the reconstruction algorithm is guaranteed (see Theorems 5.1, 6.1)

Example 2.1. A less complicated scatterer is given by the formula

q(z) =0.3 ((1 — cos(2z)) — g(l — cos(3z)) + %(1 - cos(4a:)> .

(400)

Reconstructions were performed with ¢ = 7, 14. The results of this experiment are depicted in
Table 2.1 and Figure 2.1(a). Since the scatterer is smooth, py(z,k) — p—(z, k) decays rapidly
as k grows. In particular, Re(po(k)) approaches 1 rapidly, as can be seen in Figure 2.1(b).

Table 2.1. CPU Times and Accuracies for Example 2.1

a | hg N, E? E® t (sec.)
7| 0.1 | 100 |0.523 x10=2 | 0.983 x10~2 | 1.05
7 | 0.05 | 600 |0.516 x10~2 | 0.833 x10~2 | 11.9
14| 0.1 | 300 |0.648 x10™* | 0.172 x10~2 | 6.04
14 | 0.05 | 600 | 0.568 x10~* | 0.948 x10~4 | 23.7
28 | 0.05 | 2000 | 0.231 x10~7 | 0.625 x10=7 | 170
28 | 0.025 | 4000 | 0.106 x10~7 | 0.155 x10~7 | 243

Example 2.2. A more complicated scatterer is given by the formula

g(z) =04 (1 — cos(3z)) —

1215

2783

(1= cos(11z)) + %(1 - cos(le)) .

(401)

Reconstructions were performed with ¢ = 10, 20. The results of this experiment are depicted
in Table 2.2 and Figure 2.2.

Table 2.2. CPU Times and Accuracies for Example 2.2
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a | hg N, E? E* t (sec.)
10| 0.1 | 300 | 0.288 x10~! | 0.376 x10~! | 4.41
10 | 0.025 | 600 | 0.281 x10~! | 0.367 x10~1 | 35.3
10 | 0.025 | 1200 | 0.281 x10~! | 0.367 x10~1 | 70.4
20 | 0.1 | 400 | 0.395 x10~2 | 0.754 x10~2 | 11.4
20 | 0.025 | 800 | 0.127 x10~2 | 0.226 x1072 | 98.7
20 | 0.025 | 1600 | 0.127 x10~2 | 0.220 x10~2 197
40 | 0.025 | 800 | 0.788 x10~* | 0.300 x10~3 | 202
40 | 0.025 | 1600 | 0.878 x10~% | 0.290 x10~% | 404

Example 3. In this example, we reconstruct a scatterer defined by the formula

g(z) = 0.2 sin(z). (402)
Note that ¢’ is discontinuous at the points z = 0, 27, and as a result p;(z,k) — p—(z, k) decays
like 1/k, as can be seen in Figure 3(b). We have not proven a convergence theorem for such
scatterers, but the algorithm seems to perform quite well in this case, and its rate of convergence

oned.texto be linear (see Table 3 and Figure 3(a)).

Table 3. CPU Times and Accuracies for Example 3

a | hg | Ny E? E* t (sec.)

5
10
20

0.1
0.1
0.1

75
150
300

0.482 x10~1
0.239 x10~1
0.119 x101

0.829 x10-1
0.462 x10~1
0.283 x 101

0.590
2.19
8.47

Example 4.1. Here, we reconstruct a scatterer defined by the formula

q(z) = {

In this example, the scatterer is discontinuous, and the conditions of Theorems 5.1, 6.1) are
violated. In fact, in this case the integrand p; — p_ does not even converge to zero as k — co.
The results of this experiment are depicted in Figures 4.1(a),(b) and Table 4.1.

04 ifzelL,2),

0 otherwise. (403)

Table 4.1. CPU Times and Accuracies for Example 4.1

a | hy | Ny E? t (sec.)
10 [ 0.4 | 50 0.165 0.230
20 | 0.4 | 200 0.119 1.51
40 | 0.4 | 400 | 0.843 x10~! | 6.03

Example 4.2. In this example, we reconstruct a staircase-shaped scatterer defined by the
formula
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(0 z € (—00,0.5]
0.1 z€(0.5,1.0]
02 =€ (1.0,L5]
04 e (1520
0.6 =z € (2.0,2.5]
0.5 =z €(2.5,3.0]
g(z)=< 03 =z €(3.0,3.5] (404)
0.1 =€ (3.5,4.0]
—0.1 z € (4.0,4.5]
—0.3 z € (4.5,5.0]
—0.2 z € (5.0,5.5]
—0.1 z € (5.5,6.0]
L 0 z € (6.0,00)

This example is similar to the preceding one, but the shape of the scatterer is more complicated.
The results of this experiment are shown in Table 4.2 and Figure 4.2.

Table 4.2. CPU Times and Accuracies for Example 4.2

a | hy | Ng E? t (sec.)
5 10.2] 100 0.149 0.430
10 | 0.2 | 150 | 0.936 x107! 1.18
20 | 0.2 | 300 | 0.682 x107} 4.40

In the following example, we investigate the sensitivity of the reconstruction to perturba-
tions of the initial data. In a somewhat crude test, we perturb the initial data for the algorithm
by truncating it after a specified number of decimal digits (both the real and the imaginary
parts). Clearly, after such a truncation, the maximum relative error is of the order 10°-1 (for
example, when the number 1.999 is truncated after D = 1 digits, the result is 1).

Example 5. Tables 5 and 6 demonstrate the numerical results of the reconstruction of
Examples 2.1 and 3, respectively, with various truncations of the input data. In each case,
a was chosen sufficiently large that the error from the truncation of the trace formula due to
finite a (see (278), (282)) is negligible compared to the error due to the finite number D
of digits retained. For a given a, the parameters hg, N, were chosen such that accuracy of
the reconstruction was not improved by a further decrease of hj and/or increase of N,. Also
see Figures 5.1-6.2 comparing the scatterers reconstructed using the perturbed data with the
prescribed ones.

Table 5. Accuracies for Example 2.1 with Truncated Data
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D|al| he | N, E? E>®
1| 7] 0.1 ]100 0.410 0.474
1 {14 0.1 | 300 0.412 0.473
2 7101|100 0.126 0.156
2 (14| 0.1 | 300 0.128 0.157
3| 7101 |100]0.174 x10°1 | 0.265 x10~!
3 14| 0.1 |300]|0.187 x10~! | 0.256 x10~!
4 [ 14| 0.1 | 300 0.126 x10™2 | 0.151 x10~2
4 | 28]0.05|600|0.118 x10~2 | 0.132 x10~2
5114 0.1 |300|0.297 x10~2 | 0.426 x10~3
5 |28 | 0.05 | 600 | 0.250 x10~3 | 0.324 x10~3

Table 6. Accuracies for Example 3 with Truncated Data

D|a | ht [N, E? E®
1[10]0.1]150 0.647 0.863
1]20]0.1]300 0.640 0.852
2 110 0.1|150 0.121 0.173
2 120/0.1/300 0.113 0.164
3 110(0.1150|0.314 x10~! | 0.602 x10~1
3 1200.1|300]0.206 x10~! | 0.439 x10~!

The following observations can be made from Tables 1-6 and Figures 1-6.

1. When the scatterer satisfies the conditions of Theorems 5.1, 6.1, the accuracy of the recon-
struction is somewhat better than that predicated by these theorems (see Example 2.1). This
indicates that (as expected) the estimates (303), (396) are somewhat pessimistic.

2. When the scatterer violates the conditions of Theorems 5.1, 6.1 mildly (by having discontin-
uous derivative at the points 0, 27), the reconstruction algorithm still converges. Qualitatively,
the reconstructions in Figure 3(a) should be described as good. A careful examination of Table
3 (and other data not presented in this paper) shows that the error of the reconstruction for
such scatterers is proportional to 1/a.

3. When the scatterer is discontinuous (Examples 4.1, 4.2), the algorithm produces results
depicted in Figures 4.1, 4.2. The oscillatory behavior near the discontinuities resembles the
well known Gibbs phenomenon. A careful examination of Tables 4.1, 4.2 (and other data not
presented in the paper) shows that in this case, the point-wise convergence is absent. In the
L?-norm, the error of the reconstruction behaves as 1/1/a.

4. When the initial data are perturbed, the resulting error of the reconstruction appears to be
proportional to the magnitude of the perturbation, and the proportionality coefficient is close
to 1. This is a much better estimate than the one of Lemma 5.3 which bounds the condition
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number of the algorithm by a. Qualitatively, it can be said that the algorithm is not sensitive
to errors in the initial data.

6.3 Generalizations and Conclusions

An algorithm has been presented for the solution of the inverse scattering problem for the
Helmholtz equation in one dimension. The algorithm is based on a combination of the standard
Riccati equation for the impedance function with a newly constructed trace formula for the
derivative of the potential, and leads to extremely accurate and efficient numerical schemes for
smooth scatterers. The principal differences between this scheme and various layer-stripping
techniques (see [12], [13], [14]) are:

1. Our algorithm operates in the frequency domain, while other efficient schemes are time-
domain ones.

2. While the layer-stripping algorithms assume (at least conceptually) that the scatterer is
piece-wise constant, and are best in this regime, our algorithm assumes that the scatterer
is continuously differentiable. When the scatterer has a sufficient number of derivatives, our
algorithm converges almost instantaneously (see Theorems 5.1, 6.1).

3. The principal drawback of the layer-stripping algorithms is the fact that they are an essen-
tially one-dimensional techniques, and the authors are not aware of any successful attempts to
generalize them to higher dimensions. We believe that our techniques do generalize to two and
three dimensions, and in fact an implementation of a two-dimensional version of the procedure
is in progress.

Following is a short discussion of other possible generalizations of the techniques of this
paper.

1. In their present form, Theorems 5.1, 6.1 require that the scatterer have at least four continu-
ous derivatives. Numerical examples 3—4 of the preceding subsection make it abundantly clear
that this is a superflous requirement. Obviously, Theorems 5.1, 6.1 can be generalized to at
least include the scatterers of the type reconstructed in examples 3—4. Including the scatterers
of examples 3-4 will be somewhat more involved, and will require a significant reformulation
of Theorems 5.1, 6.1.

2. The algorithm of this paper can be generalized for the Schrodinger equation. The general-
ization is faily straightforward and will be reported at a later date.

3. In the present paper, we are reconstructing a scalar potential q given the scattered data
for a single Helmholtz equation. In many problems of physical interest, the potential has
several components (such as the compressional and shear speeds of sound in a medium), and
the scattered data correspond to a system of Helmholtz equations (such as equations of elastic
scattering, or Maxwell’s equations in the frequency domain). An extension of our techniques
to these cases appears to be relatively straightforward, and will be reported at a later date.
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