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ABSTRACT

This work aims at application in both internal and external flows. An analytical
and computational study is described which attempts ultimately to uncover the nature of
the flow structure surrounding the wake closure region of a long recirculatory eddy
following separation off an isolated aerodynamic element. This problem area forms
a critical element in the development of a formally rational model for a massive
separation eddy at large Reynolds number. An approach is developed here for addressing
the external aerodynamic problem through a family of internmal, cascade flow, solutions
with increasing gap spacing. Each element of this family is formally correct, thus
providing a basis for systematic study of the desired limit case of an infinite gap
spacing.

The study is in two parts. Part I presents the structure for finite gap spacing
and the corresponding computational results. Part II discusses the possible flow
structures emerging for widely spaced cascades and their commection with, and
implications for, the external aerodynamic flow.
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PART I -~ THE FINITE-SPREAD CASCADE

I-1. INTRODUCTION

The study of the fluid flow at high Reynolds number through a cascade of bluff
bodies is useful, it is believed, for two major reasons. First, the resultant
predictions should have some relevance to the performance of the cascade itself,
serving in some sense as a model for flow past compressor and turbine blades, in heat
exchangers, and in other interactive body configuratioms. Imn practice, the resulting
breakdown of mainly attached flow can have severe consequences and so the predicted
drag and eddy lengths, among other things, are of immediate concern. The second
major reason for considering the cascade configuration is that it provides an alter-
native means of gaining extra insight into the properties of external motionms.

The main such properties are attained when the cascade becomes widely spaced apart.
Since, as shown here, the understanding of the separated flow structure produced by

the cascade configuration can be completed, this establishes a firm basis, therefore,
for advancing gradually toward anunderstanding of the still not fully known structure of
external flow past a bluff body (whereas direct analysis is hounded by nonuniqueness

and nonlinearity). In the latter case the most puzzling issue concerns reattachment,

or the closure of the recirculating eddy or eddies behind the body; fortunately, the
nature of the reattachment(s) behind a cascade is one of the most important issues of
the cascade problem, too. :

The present theoretical work supposes the Reynolds number Re to be large, the
fluid to be incompressible and its motion to be steady, laminar and two-dimensional.
There is a possible application [1981, M. J. Werle, private communications] of the
theory to turbulent flow also, however, with regard to the reattachment process. The
whole cascade is taken to be infinite in extent, and symmetric, so that only the flow
past the upper half of one body needs to be discussed provided the relevant lines of
symmetry are present (see Fig. 1). 1In nondimensional terms the chord of the bluff
body is 1, the given cascade spacing H is finite, of 0(1), the uniform freestream
speed is u = 1, and the velocities, corresponding Cartesian coordinates, stream function,
flow speed and pressure are (u,v), (x,y), ¥, q, p, respectively. The pressure level
far upstream is normalized to zero. The body is "bluff" in the sense that its typical
thickness is allowed to be 0(1) and its trailing edge, possibly wedged or blunt, is
not . cusped.

The separated flow structure is described in Section I-2 below and consists of
the body scale flow and the long eddy or reattachment scale flow, considered in turn.
The Kirchhoff free streamline solution with a slowly moving eddy gives the dominant
self-consistent account of the body scale flow, which leads to a constant 0(1l) eddy
width Hw downstream. The eddy is then closed, yielding reattachment, on a longer O(Re)
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length scale downstream. There, across the whole flow, the boundary layer equations
with unknown pressure control matters, with the viscous forces preventing any strong
backward jet from arising, and so overall self-consistency is achieved. The
reattachment problem depends only on the ratio H = HW/H (see Fig. 1) and its
numerical treatment is outlined in Section I-3. The treatment involves a three-
regioned scheme, designed to acknowledge the three-layered form of the starting
solution where the initial velocity profile is discontinuous, and windward-differencing
to accommodate the upstream influence within the reversed flow. The main results
obtained are presented for a range of values of H = HW/H , the nondimensional eddy
half thickness. Finally, Section I-4 presents our interim comments, preparatory for
Part II, including the connection with external flow obtained when H tends to zero
and certain possibilities regarding upstream influence in shear layers.

It is worth remarking here that the present reattachment problem opens probably
one of the most direct ways of approaching the puzzle of large-scale external
reattachment: see also Part 1I. The way seems easier or more direct than in triple-
deck calculations for instance. At the same time, the results for finite cascade
spacing could provide some helpful applications.
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I-2. THEORETICAL FLOW DEVELOPMENT

On the body scale, where x, y are 0(l), the separated flow structure is of the
inviscid Kirchhoff, free-streamline, type to leading order with appropriate extensions
(see Refs. 1, 2) to include the effects of viscosity. So the following properties
(a) = (1) hold.

(a) The relative error in the dominant inviscid solution is O(Re-l/l6); see
also (e) below. Thus,
-1/16
(U,ll‘:P) = (Uo’lpospo) + Re (ul’lpl’pl) + ... (1-2.1)

where uo,wo,p° is the Kirchhoff from (see sketch in Fig. 1).

(b) The dominant solution u ,wo,p then satisfies the condition of uniform
pressure on the separatgng streamline ¢ = 0, y = So(x) (Fig. 1), so that

P =C ony=S5 (x) (1-2.2)
o o o .

Here 2Co = [1~((HC/HW) /.(H /Hw-l))zl is a negative constant, from Bernoilli's
theorem and mass conservation considerations, with Hw being defined in Fig. 1 and
in (g) below.

(c) Within the eddy between the separating streamline and the x-axis, the
velocities are small, |ql << 1, and in particular u, =y =0, P =C .
It is possible that in fact {ql is as low as O(Re~1/2) i% the eday bu% v
that is the least value possible, due to entrainment, and the principal
contention of the theory does not yet need to be made more specific than
u = 0.
o

(d) On the body, between the front stagnation point and the separation point,
the pressure gradient is favorable, forcing automatically an attached
O(Re'l/z) boundary layer there.

(e) The viscous separation process is local, of the interactive triple-deck
form (see Refs. 1-3), and that is responsible (Ref. 1) for the relatively
large correction required in Eq. (I-2.1).
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(f) The gi7§ous shear layer surrounding the separating streamline has thickness

O(Re ) and is subjected to uniform external velocities of q % Hc/(Hc'HW) '

and q 4 0 at its upper and low extremes, respectively. At its start,
immediately beyond the separation point, it matches (Ref. 1) with the
interactive separation process of (e). At its other end, as x + =, its
O(Re'l/z) thickness grows like x1 2 as the Chapman similarity form is
acquired.

(g) The eddy width S (x) tends to a constant By downstream as x = «: c.f. the
unbounded growth of external flow (Refs. 1, 2). Here Hy depends only on
the cascade spacing H., for a given body shape, and is related to the
principal drag Cp on the body.

(h) 1If H, is large for a given body shape, then the dominant invisecid solution
effectively subdivides. First, for 0(1) values of x,y the Kirchhoff
form for external flow is retrieved as the presence of all the other
bodies becomes negligible, to leading order. So the unbounded growth
So(x) n (4 CD/'n)l/2 x 1/2 is retrieved downstream as x -+ « on that inner
subscale. Second, however, the presence of the O(Hc) distant confinement
reasserts itself on an outer subscale when x is 0(H.), with S5(x) then
being O(Hcl/z) for consistency. The adjustment there is similar to that
described in the appendix of Ref. 1, the earlier unbounded growth is
gradually halted and as a result the constant eddy width Hy is achieved
when x >> Hc. See also Part II. The property found is that
H o8 Y% vhen H_ is large. (1-2.3)
W c c
A like feature holds in effect if the cascade spacing Hc is kept fixed and the
body size is reduced appreciably instead.

(1) Some inviscid aspects of the above structure are considered in some
textbooks (see, for example, Ref. 9).

The structure of the body scale flow above is believed to be entirely self-
consistent with regard to the Navier-Stokes equations. We are left now with the
task of describing the ultimate wake closure process further downstream, beyond the
body scale, as the recirculatory eddy has to close and the motion then returns to
its uniform state eventually. The closure or reattachment takes place on the
longer O(Re) length scale in x downstream, since then the shear layer thickness of
(f) above grows to 0(1). So the expressions

(u,¥,p) = w*,v*,p*) + ... , with x = Re X*, y =0@1Q) (1-2.4)

hold in the closure phase, with the Navier-Stokes equations thereby reducing to
the classical boundary layer equations (as in Refs. 4-6), for x* > o0,



UTRC83-13

*®
3 au a® au ap* U

- — - = - — g —— -2.
ve g, U il re el (1-2.5a)

* *

with P dependent only on X . The formal relative error involved in Eq. (I-2.5a)
is remarkably small, of the order Re°2. The starting conditions required are those
of a step-like velocity profile initially:

* * 0 for 0 <y < Hw _
at X =0+, U = (I-2.5b)

Hc/(Hc-Hw) for HW <y=Z Hc,

to match with the slow eddy velocity and the Kirchhoff solution closer to the body.
The boundary conditions in y are .

v* = au*/ey =0 aty=0 (1-2.5¢)

w* = Hc, BU*/By =0atys= Hc’ (1-2.54)

* *
for X 2.0, from the cascade symmetry. The induced pressure P (X*) is unknown.

The basic closure problem is totally contained in Egs. (I-2.5a-d), which
require a numerical solution. The present standpoint is that the overall theory
is complete since the presence of significant viscous forces, in Eq. (I-2.5a),
during the closure is always sufficient to allow the constraint of Eq. (1-2.5b)
to be met. This constraint is necessary to prevent a strong backward jet from
entering the body scale flow and provided that is satisfied the earlier structure
then remains intact. The crucial action ‘of viscosity here is due to the flow
confinement caused by the cascade symmetry, which in turn restricts the lateral
distance y to 0(1) values. This is in direct contrast to the extensive dimensions
reached by external eddies (according to the same theory) where the influence of
viscosity is correspondingly much less clear and where in consequence our under-
standing has still to be completed (see also Section I-4 and Part II for further
discussion of the point). Five main features of the current closure problem can
be delineated, in (1)-(5) below, in terms of the renormalized form of the
governing equations )
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* 2
L) U _ 3y 3y 4P 93U -
U=%% P~ av~"a& T _2 (1-2.6a)
aY
N 0 for 0 <Y <H (I-2.6b)
atX =0+, P=C,U-=
1/(1-H) for H< Y <1 (I-2.6c)
Y =0U/3Y =0at Y=20 (1-2.6d)
\ y=1, 3U/3aY =0 at Y =1 (I-2.6e)
obtained by setting, in Eq. (I-2.5ad),
& %* * _* ' * 2 i
(U s ¥ 9P sx aY) = (Us chs P, Hc X, HCY), (1-2’7)
with
H = Hw/.Hc . (1-2:8)

defining the governing parameter H.

(1)

(2)

The solution depends only on the parameter H, the ratio of the incoming
eddy width to the cascade spacing.

Because of the initial discontinuous profile in Eqs. (I-2.6b,c) the
solution is singular as X + 0 +, with the Chapman similarity form being
recovered then. Thus, near Y = H, for small X,

v~ x/? £(n) + oo , with n = -my/xM 2, (1-2.9a)

where from Egs. (I-2.6a-c) fc satisfies the Blasius equation but with
shear layer conditions:

£ +-§ £ £ =0, £ (=) = 1/, £ (=) = 0 (1-2.9b)

The solution of Eq. (I-2.9b) gives
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(3)

£ (=) = —x (1-5) "1/2 (1-2.9¢)

where k = 1.24, although there is an uncertainty in the origin for

n (see also point (3) below).

The initial development of the solution for small X is three-layered but
is not uniquely determined by local considerations. Generally, Eq. (I-2.9b)

. yields the property

f ~ (n-n)/(1-H) as n + = (1-2.94)
[ o]

where no is an unknown constant origin shift. As a result, above the
Chapman layer

_ Y-H 1/2 .
Y = ( n ) + X ¢1/2 v + ... (I-2.10a)

for B <Y < 1, with Eqs. (I-2.6a,e) requiring

* 1/2
= -(1- ~Y); P =C - e I-2.
wl/Z ) (1-H) Pl/2 (1-Y); P Co Pl/2 X ( 10b)
Hence, from merging with Eq. (I-2.9d), we have
P, =+n /(1-H)°> . (I-2.10¢)
1/2 o

*
Then, from the form of P (X) in Eq. (I-2.10b), the solution below the
Chapman layer has the expansion

/

Y = Xl b GQY) + ... (I-2.11a)

for 0 < Y < H, since Eq. (I-2.6b) holds. Substituting Eqs. (I-2.1la) and
(I-2.10b) into Eqs. (I-2.6a,d) and imposing G(H-) = O in view of
Eq. (I-2.9a,c), it is found that

G(Y) =+ (2 Pl )1/2 g; sin (nm Y/H) o (I~2.11b)

/2
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(4)

(5)

where n is a positive integer. Physical sense and other considerations
(see Ref. 5) suggest that n = 1 here and then the - sign is the appropriate
one. The constant Ng remains undetermined throughout; moreover, an even
larger origin shift in Y itself is possible in Eq.(I-2.9a). If Ny = 0

then nonuniqueness can still arise in higher order terms of the three-
layered expansion Egs. (I-2.9a), (I-2.10a) and (I-2.1la). A special

case however is that with no = 0 and with the flow below the Chapman

layer being forced by the entrainment conditions, Eq. (I-2.9c), giving

1/

U= —x X 2 (1—H)-1/2

Y/H+ ... (1-2.12a)

there, which requires the pressure expansion to be

2
K

P = Co - %‘“————-§~‘X 4+ i (I-2.12b)
-7 (1-H)H

Along with Eq. (I-2.12a,b) we then have

, |
v = 1:&.)&,{ e L (1-2.12¢)
1-H ] 2 Hz

above the Chapman layer.

It follows from point (3) above that reversed flow is present immediately
in X > 0, below the Chapman layer. This feature also seems in line with
the nonuniqueness arising above since the governing equations are locally
parabolic in the flow direction, yielding upstream influence throughout

0 < X < Xpeaty Where X = Xreatt is the closure position.

Downstream, as X -+ «, the uniform state is recovered with U -+ 1. But
for all X the integrated momentum balance

1
P*(x) + f v2 (X,Y) dy = co + 1/ (1-H) (1-2.13)

[o}

holds, from Eq. (I~-2.6a-~3). Therefore the asymptotes
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* 1 H 2
U-r'l, P -r—‘E (ﬁ) as X »+ » (I-2.14)

give the far downstream behavior.

*
Henceforth we deal with the modified pressure P = P =~ Co’ for convenience.

11
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I-3. NUMERICAL TREATMENT OF CLOSURE/REATTACHMENT

The aspects of points (2), (3) and (4) noted above - the singularity due to
the discontinuous initial profile, the initial three-layered structure and the
upstream influence in the reversed flow - would seem to be so fundamental to the
closure problem that a satisfactory numerical treatment must acknowledge them
ultimately. Perhaps the most important aspect however is that of point (4),
which requires a numerical treatment to be not solely forward-marching. To
accommodate reversed flow we used a windward-differencing approach (see e.g.,
Ref. 7). This was used within three progressively more refined schemes I, II,
III: scheme I adopted uniform differencing in X, Y; scheme II adopted differencing
in coordinates sketched in the X, Y directions; and scheme III applied a three-
region technique (Refs. 5 and 8) to allow also for the features of points (2),
(3) above. All three schemes proved convergent with the windward differences
included, but we focus henceforth on the nominally most accurate one, scheme III.

The computational domain was split into three regions A-C; in line with
point (3) above. Region A was taken to be in effect below the middle Chapman
region B and Region C was taken above it (see Fig. 2). A new variable § = x1/2
is defined in A, with ¢ = g(§,Y), U = c(£,Y), 3U/3Y = e(£,Y), leaving the first
order governing equations as

_ o 8¢ % g _ _dr _ ., 2e -
c 3y € sy° © 3t 28 e dc 2 Y (I-3.1a)

from Eq. (I~2.6a), with the boundary conditions from Eq. (I-2.6d) as

g=e=0atyY=0 (1I-3.1b)

-1
In B, the variables were written y = £f(E,n), U = s(§,n), 3U/3Y = ¢ t(&,n)
because of Eq. (I-2.9a), so that here the equations become

of 3s ot , 1 1 98 oF
§ B e t & — _—t = f a5 E js—-t—+ dP/dE o (1-3.2)
am ' an'am 2 0 2 [ ot~ " et |

Then in C the solution has the same structure as in A, giving Eq. (I-3.la) again
but with the boundary conditions from Eq. (I-2.6e) as

L]

g=l,e=0at¥=1. (1-3.3)
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At any station § the three regions are inter-linked (Ref. 8) by ensuring that

¥, U, 3U/3Y are all continuous at the upper and lower boundaries n = ny,, Y = H

+ N4, £, of region B. Uniform differencing in n or Y as appropriate is applied

to Eqs. (I-3.la) and (I-3.2) and, with the 4 conditions of Egqs. (I-3.1b) and (I-3.3)
and the 6 inter-linking relations, sufficient information exists to determine the
solution at that  station upon applying (Ref. 8) Newton iteration, matrix inver-
sion and knowing the solution at the stations £ + Af. The differencing in the §
direction is allowed to account for the local flow direction however, consistent with
the reversed local influence. If U > 0 then the value of U is made to depend on the
value at E-AE, as obtained with differences for U3U/3X centered at E-AE/2. I£f U <O
then the latest known values at &, £ + Af are used instead with a forward difference
for U3U/3X. The starting solution at £ = 0 is set in the obvious way for regions A,
C whereas that for region B requires solving Eq. (I-3.2) at £ = 0, i.e., solving the
Chapman form of Eq. (I-2.9b) there.

The domain is swept and updated N times, each sweep passing from £ = 0 to
a sufficiently far downstream location £ = Ex where Eq. (I-2.14) is effectively
obtained, until the system converges. The convergence rate was accelerated
in later trials by sweeping back and forth, marching from £ = 0 to § = &,
then marching back from £ to 0, and so on, which admits the upstream influence
faster. The upstream influence enters the solution sweep-by-sweep through the
windward-differencing of the term U3U/3X; note that the term in 3¢/ 3X is not
windward-differenced, thus allowing Eq. (I-2.6c) to have its necessary influence
also. Various appropriate values of n4,,AE, of the steplengths An, AY in n, Y
and of the Newton iterative tolerance were taken and tests on the accuracy of the
results were made. Typically, satisfactory overall convergence is achieved when
N = 10 for moderate values of H, although this increases for smaller values of H.
Further comments are given in the next section.

13
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I-4. RESULTS AND DISCUSSION

The main results obtained for various values of H between 0.9 and 0.2
are shown in Fig. 3-5. In most cases the constant n, of Eq. (I-2.9d) was chosen
to be zero, with nonzero values having but a very small overall effect.

Figure 3(a) provides an overview of the flow behavior by monitoring the
center line velocity, UC , and the top edge velocity, Up, for relatively ;arge
values of H, corresponding to small cascade gap spacing. In all cases comnsidered
the closure process is seen to occur quite rapidly, with the normalized position
of the centerline flow reversal always within half a gap width of the initial
plane.

It is immediately striking from Figs. 3(a) and 3(b) that as H decreases
the closure distance Xre ct shrinks very fast and that the minimum centerline
velocity Umin decreases gut less rapidly, while the flow properties near closure
become more abrupt. For larger values of H the features are rather milder, in
keeping with an asymptotic analysis which shows that

/2

« (1—u)'1/2 U . « (l—H)—l

Xreatt ’ oi as H-»+1 -, (I-4.1)

The extreme smallness of Xyop¢ Once H is less than about 1/3 is more clearly
shown in Fig. 3(b) in terms of the centerline velocity behavior. This aspect of
the flow adds to the computational task of course and in practice it was found to
1limit the applicability of the first two numerical schemes I, II noted in Section
3. It also emphasized the overriding need for accuracy in the calculations, for
checks to be made on the effects of mesh size (see Figs.) and for the proper
notice to be taken of the significant upstream influence. This last is more
clearly demonstrated in Fig. 3(c¢) which compares the centerline velocity distri-
butions with and without™® upwind differencing in the reversed flow region.

The computational method and program appeared to work satisfactorily for
moderate values of H but difficulties became pronounced as H decreased. This was
due mainly to the relatively fast change in the solution near wake closure then
and the resultant switching between forward and backward differences there, which
led to characteristic oscillations from sweep-to-sweep of the flowfield. Incorpo-
rating relaxation in the updating per sweep, or fixing the choice of directional
differencing for several sweeps, or refining/stretching the mesh near wake closure,
all alleviated the problem somewhat but not permanently, and the same was found for
other modifications made in view of certain analytical features for small H suggested

T . ' .
This result is actually achieved in the first sweep of the iterative algorithm by

zeroing out the longitudinal convective term for reversed flow, an idea originally
1
introduced by Reyhner and,Flhgge-Lotz (Ref. 16).

14
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by Part II below. The flow properties are better viewed perhaps in the streamline
patterns and velocity profiles of Figs. 4(a)-(e), showing the increasingly rapid
turning of the flow toward the wake closure point as H decreases from 0.9 to

0.25. Obviously as H decreases the computational difficulty is aggravated, raising
serious concerns for the proper numerical modelling of the convective processes
then.

The pressure response P and closure distance X, ., are given in Fig. 5 for
various values of H. It is noteworthy that P(xreatt) is close to H and xreatt
is closely proportional to 3 [see log-log plot] at the smaller values of H: c.f.
“Part 1I.

As regards the hope that an inkling of the unknown structure for external flow
past a bluff body should emerge as H becomes small, the major questions perhaps
concern the bahavior of Xpeary and X ;. (the position at which U = Uys,), as
H > 0. We might expect both to tend to zero rapidly then, in line with the pre-
sent numerical results (Figs. 3-5), but what matters is the rate of these trends®.
Suppose, for instance, that X ., ¢y = H4 as H + 0. Then the unscaled closure
distance, which is Xpoare © Re Ho® Xpoare from Eqs. (I-2.4) and (I-2.7), remains
O(Re) as H, + = with the body fixed, since Eqs. (I-2.8) and (I-2.3) link H to H,
then. Accordingly, the eddy length remains O(Re) and that leads directly to the
extended Kirchhoff account of external bluff body flgw. If instead X gty © i
as H.~ 0, however, then xpo,;y © Re H 2 H6 « Re H,™~ for H, >> 1 by similar
reasoning. So then X ., ¢ falls to O(i) as H, is increased to O(Re) (the order
required for external flow properties to be most relevant: see Ref. 1) and that
points strongly to the alternative Prandtl-Batchelor account for external flows.

See also Part 1I.

Again, therefore, there is a call for sufficient accuracy in any further
calculations at even smaller values of H, to help settle the matter of the
external closure properties.

In the meantime, it is interesting that, on the body scale, the Kirchhoff
solution for external flow does emerge as H. becomes large and the maximum eddy
width increases without bound then. It would be remarkable if this process
could be reversed, at greater cascade spacing, by the change in closure properties
considered above. This issue is amplified in Part II.

Various features of the limit structure for the closure problem as H + 0
are considered in Part II. A relatively thin detached shear layer tends to be
promoted from the Chapman region then but the means of reversal of its entrained
fluid (where ¥ < 0) during closure at X = X, ..t has to be established, given the
requirement of effectively zero backflow at X = 0+. The means may involve a

E JUC Y . . . . .
A less sensitive quantity to examine may be the ratio xmin/xreatt which defines
to some extent how local the reattachment process is for a given H. However, any
indication of the correct limiting form for H + 0 is useful.

15



UTRC83-13

localized strong interaction near the closure point, in view of the above discussion,
which requires the detached shear layer to admit some upstream influence ahead of
the closure. One kind of upstream influence studied is discussed in detail in
Appendix A. There it is shown that upstream influence is possible (see Egs.

A-4a-f) and an interaction between the oncoming shear layer and the motion beneath
it can start. The interaction is found_to become nonlinear as X becomes finite

and it involves the setting up (due to Ug) of a significant motion beneath the

shear layer. The ultimate properties of this interaction could be significant and
might enable the shear layer to rid itself of all the entrained fluid eventually,

in readiness for the closure, for instance. Again further study of the consequences
of the upstream interaction of Egs. (A-1 - A-4g) below should be well worthwhile.
Appendices B and C summarize other means of upstream influence. Like Appendix A
they bring viscosity into play, the importance of which is stressed in Part II.

They also have certain repercussions for separated flow stability. Another form

of upstream influence which is currently under consideration and may be relevant

is that occurring in separated flow as studied in Ref. 10, on the airfoil trailing
edge stall/separation problem.

Whatever the limiting form of the present closure problem is as H + 0, all
the above serves to emphasize a major point:. the resolution of the puzzle concerning
‘large-scale external closure is contained within the standard boundary layer equa-
tions. We believe that still further examination on both the numerical and the
analytical sides of the present basic topic could be very rewarding, therefore.

Part II below addresses the limit problem for H + 0 and its connection with
external flow.

16
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PART II: THE WIDE-SPREAD CASCADE AND EXTERNAL FLOW
II-1. INTRODUCTION

Given the basic structure, results and guidelines for cascades of finite
spread H'l in Part I, our concern henceforth is with understanding the wake closure
in a wide~spread cascade (H+0) and then its connection with the external motion
‘past an isolated bluff body. There are two main contenders for the wake flow des-
cription, the Kirchhoff free-streamline solution (extended) and the Prandtl-Batchelor
model. The latter tends to flounder for any slender wake, however, due to the lack
of a sustained pressure gradient, whereas Kirchhoff's description already works
apparently for the long slender wake of the finite-spread cascade. So the essential
matter is whether or not the Kirchhoff solution continues to hold good for wide-
spread cascades also.

Wide-spread cascades require analysis of just the boundary layer equatioms,
from Part I, for wake closure as H+*0, like the flow beyond a step-like trailing
edge. This is started in Section II-2 below, which considers the underlying scales
and sublayers implied. The Prandtl-Batchelor model can soon be ruled out. Indeed,
near the wake centerline Y = 0 all inviscid mechanics fails to maintain consistency
at wake closure, thus calling for significant viscous action. Section II-2 also
stresses the 0(H) pressure rise P and 0(H3) length scale in X suggested by the
Part I calculations although the need for wake closure then is not definite. On
the contrary, Section II-3 shows that self-consistency is apparently maintained
by wake closure on the 0(l) scale in X, where the required viscous action comes into
play accompanied by a significant pressure gradient. Alternative accounts present
themselves, however, due to the nonlinear, recirculating, nature of the earlier
eddy motion, as discussed in Section II-4. The Section II-4 findings lead on to the
work in Sections II-5 and II-8 in fact.

Section II-5 considers viscous wake closure occurring with negligible pressure
gradient, unlike the closure in Section II-3. Similarity wake solutions are found
which yield algebraic dependence at the edge of a shear layer on the verge of closure.
Other similarity solutions exist, one showing that Goldstein's (Ref. 11) form of
the near-wake of an aligned flat plate is not unique: see also Ref. 17.

Another spin-off from Section II-5 concerns reattachment onto a solid surface.
The reattachment may be achievable with negligible pressure response, a desirable
property, and secondary separation can be induced further upstream. Applications
of wide interest exist, to flow past ramps, over bluff bodies with splitter plates,
or in wind-tunnels, and these matters are considered in Settion II-6.

In Section II-7, extermal flow and its relation to the wide-spread cascade are
studied. The linear dependence of eddy length on Reynolds number Re, as indicated
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by previous studies (Refs. 4~6), is supported by an examination of certain
exponentially small terms provoked by Kirchhoff's solution. In turn, the earlier
limit forms for H~0 all support the emergence of Kirchhoff's solution for external
flows, on the body scale.

A proposed mechanism for the subsequent lengthy wake closure is provided by
non~entraining viscous shear layers, implied by Sections II-4, II-5 and addressed
in Section II-8. Their four main attributes are: first, they yield algebraic
decay of the velocity in the lower reaches of the shear layer; second, they show
that Chapman's solution for a shear layer far downstream is nonunique; third, they
avoid the severe difficulties associatéd with supplying entrainment to classical
shear layers; fourth, they suggest a means for massive eddy closure to take place
without provoking a strong backward jet along the wake centerline. Final comments
are presented in Section II-9.
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II-2. ON LENGTH SCALES FOR THE WIDE~SPREAD CASCADE

From Part I, the wake of the cascade with finite spread is governed by the
boundary layer equations

2
.8y 3 Sy v . U
' = KA R + 1I-2.
5y * U ax T X 8y PTX) 2 (112.1a)
3Y
subject to
3U -
¢=B—Y=0atY=0,X>0 (11-2.1b)
U
\p=l,-ﬁ=0atY=l,X>0 (II-2.1c)
(1-m T form <y S1
U= at X = 0. (I1-2.14d)

0 for 0 Y <H

Our present concern ié with the flow behavior for wide-spread cascades, where H->0.
The following tentative arguments (see also Fig. 6) may be made then.

At sufficiently small distances X ~ A from the start a thin viscous shear layer
is present, originating from the Chapman form and positioned a distance O(H) (at
Y = HS(X/4) +..., say) from the center line Y = 0, in view of (II-2.1d). The charac~-
teristic velocity, mass flux and width of the shear layer are of the orders 1, al s
Al 2 in turn. The pressure force has negligible effect here since, above the shear
layer, on a Y scale of 0(1), inviscid linearized properties hold, yielding the
pressure-displacement law of one-dimensional channel flow, P = H ~ HS, for mass
conservation.

Hence, on this scale we have

X = AX, P = HP(X) + ... (11-2.2a)
. = . - - 1/2
with P(0) = 0 and in the shear layer I, where Y = HS(X) + A Yo, (v, U) =
(Al 2 Vos Ug) + ..., the pressure-free boundary layer equations
2
o, 8, oy, BU_ 37D
Yo=% »U%3x.” 3% . 2 (11-2.2b)
o o BYO
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apply. Here and below the Y-coordinate could be displaced further if necessary
because of Prandtl's transformation. The constraints here are the familiar ones
for detached shear layers,

_ _ 1 for ¥ >0
U X =1, 0 (X,-=) =0, U (0,Y)= . (11-2.2c)
0 for Y <0

essentially from the starting form (II-2.1d). The Chapman singularity

=1/2

= =1/2
lPo ~ X fC(n)’ X'*O; ns YO/X

(11-2.2d)

holds at the start. Above the shear layer where Y is 0(1) (region II) we have

(v,0) = [Y + H(1-P)(¥-1), 1 + H(1-P)] + O(H) (11-2.3)

for mags_and momentum conservation, from (II-2.la, ¢, d). Matching with layer I as
Y - H S(X) + then gives

B =1 - 5(X), (11-2.4)

as anticipated above. Further terms in the expansions of regions I, II, and 1II
below, may be written down in principle but the balancing of the leading order con-
tributions sets the major task.

A complete solution for the shear layer of (II-2.2b-d) is the Chapman form
(1I-2.2d) but holding for all X>0. We take that as the solution for now (although
it is found later to be nonunique: see Section II-8)and follow its implicatioms.

The main point then is that, since fc(-w) =« gk < 0, a finite fraction of the
viscous shear layer I contains fluid entrained from below I, with ¢, < 0. This
fluid must be ejected further downstream before reattachment/closure of the wake
eddy or eddies can occur. The viscous entrainment forces the conditioen

= 1
. x1/2 A /2

Y o> = (=yp) as ¥ > HS(X) - , (1I-2.5)

which causes the fluid below I to be set into motiom.
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Immediately the length scale A = 0 (H3) sugpgests itself. For, as P is
typically O(H) from (II-2.2a), then predominantly inviscid mechanics in th7 0(H)
thick layer III (occupying O < Y < HS(X)) beneath I implies that U is O(H ) there,
corresponding to an ¢ of O(H ), due to the pressure response. So a comparison
with the viscous condition (II-2.5) indicates that A = O(H”) may represent a
crucial stage in the flow development, as indeed the calculations of Part I suggest
also. On a shorter sc¢ale A << H” the entrainment Vg is negligible compared with a
pressure~induced y of O(H 3/2 ) in layer III, so that such a flow in layer III, if
nontrivial, must recirculate between I and the center line. This is not implausible,
but it leads to no clear sign of eddy closure or anything of 51gnif1cance. For
Bernouilli's law holding in layer IIT does not allow positive pressure P, from the
center line flow, therefore S(X\ > 1 from (II-2.4) and that excludes the closure
requirement S + 0. The same objection must be overcome for all inviscid analysis
along the centerline.

In passing we note four asides. First, a reasoning similar to the above tends
to rule out the Prandtl-Batchelor proposal of a strong mainly inviscid recirculating
eddy of uniform vorticity, as follows. If such an eddy is thin, then it induces
little pressure change, from (II-2.4), so that the bounding forward :shear layer
cannot be forced back at closure. On the other hand, if the eddy is thick, with
Y of 0(1) [0 < Y < s(X), say], then between 15 and Y = 1 the inviscid properties
holding allow no significant vorticity 3 w/BY because of the uniform starting
profile in (II-2.1d), and mass and momentum conservation then give the nonlinear
counterpart of (II-2.4), P (s /12 - s)/(1 - s) since s(0) = 0 to leading order;
however, constant vorticity azw/aY = (0 inside the eddy yields ¢ = QY(Y-s)/2,

U=Q(Y - s/2), P=- 92 s2/8 on integration; so the pressure match demands the final
result s(i) = 0. Both cases lead to failure, therefore. The above requires the
length scale A to be small, incidentally, study of the 0(1l) scale in X being deferred
to Section II-3 below. Second, viscous forces in the lowest layer III remain
secondary effects provided |UsD/5X| = O(HA™L) 1s larger than |2 u/av?| = o3/2),
i.e., for A << B> s given the proposed scalings of (II-2.2a) - (II-2.5). Conse-
quently, inviscid mechanics can still apply in Part III at the suggested X n H3 stage.
Third, preliminary comparisons with the computed solutions of Part I for small H

are indicated already. Thus, the X ~ H” scaling ties in well with the computations
(Fig. 5), and the law (II-2.4) leads to P = H + o (H) at eddy closure (where S -+ 0),
in fair agreement again with the calculated results (see Fig. 5). There is also
agreement concerning the initial pressure drop (see also (II-2.7) below) and the
consequent rise initially in the velocity U(X,1) at the upper symmetry line, from
(11-2.3), as Figs. 4-5 show. Fourth, since reversed flow is present, combined non-
uniqueness and nonlinearity locally require further caution. It is not known yet
what the upstream influence of closure is on the short X scale under discussion.

For instance, a strong backward jet of fluid near the center line could be produced
by the closure downstream (see later comments) and its presence when X is 0(4)

would modify our earlier reasoning.
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Nevertheless, the agreement just noted does give encouragement, albeit guarded,
to a study of the description in (II-2.2a) -~ (II-2.5), which is self-consistent so
far anyway, and we continue for now with the latter. That description emphasizes
the stage A = H” at which (II-2.5) first becomes significant, leaving the motion
in sublayer III controlled by the inviscid system

5.2 2 _ oA g -
U= U% 5 55 P'(X) (I1-2.6a)
- 30 s .
V=T = 0 at Y = 0 [center line],
with (II-2.6b)
- =1/2

U =~-x X at Y = §(i) [entrainment].

Here Y = H?, and the expansion implied above,

h V,0) = (H3/2 v, gt/2 U) + (szl, H‘ﬁl) + ... (11~2.6c)

has been used. Also, the full symmetry condition is imposed in (II-2.6b) at the
center line. For in the reversed motion there viscous forces cannot act substan-
tially and, in addition, vorticity conservation in layer III coupled with the initial
zero profile (II-~2,1d) requires zero vorticity au/ oY along the center line w = 0+,
Viscous action in layer III,which could destroy a nonzero vorticity aU/BY, is
negligible so far on this _X ~ H scale, being confined to the next order terms

¥1s> U1, Py which satisfy Ul = awl/aY and

. oU - - = 9U Y - dp 2~
v 4 B2 1 101,20 (11-2.6d)
ax Lax X oY X % dxX .32
3/2 = .
where H Py is the next order pressure term in (II-2.2a). The whole local flow

is then dictated by the hyperbolic problem (I1-2.6a, b), with (II-2.4), the charac-
teristics being the lines § = const., X= const., and we might expect the condition

V,P+0as X~ 0. (1I-2.6e)

to hold, from (II-2.1d).
A point of strategy here is that

P = -2 &0 So (11-2.7)
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from (II-2.6a, b, e), so that g(i) > 1 from (II-2.4) and wake closure S + 0 is not
attainable directly yet, as remarked before. The equivalent. Bernouilli constraint
(II-2.7) persists downstream in fact as long as the center line flow properties
remain predominantly inviscid. So for wake closure (S+0) to be achieved it seems
essential for viscosity to come back into play significantly before or during the
closure process. Inviscid mechanics alone apparently fails to explain the eddy
closure here.

The solution in layer III still requires a downstream condition to be set,
however, and so several distinct possibilities arise. These possibilities are
followed through in the subsequent sections.
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II-3. THE LONG EDDY

The simplest flow solution of (II-2.6a, b, e) is

1/2 2 X
P CL g S .S S e (I1-3.1)
5(X) 5(X) (58X

'which yields locally uniform reversed streaming. This motion can continue for all
positive X, in principle, and corresponds to a downstream condition of negligible
vorticity in layer III. Allied with (II-2.4), it gives the implicit equation

52 -352- % % X, with 5(0) = 1, (11-3.2)

for g(i), the solution being shown in Fig. 7. The width §(§) of sublayer III grows
monotonically with distance X and as X + = '

RO /2)1/3 1/3 = (2£)1/3 1/6 (11-3.3)

so that the reversed flow becomes accentuated. An eddy closure at finite X,
yielding a small X, o5¢¢ of O(H ) seems unlikely within such a structure. Instead
(II-3.3) continues downstream until X becomes O(H™ ), or X » 0(1), at which stage
the pressure P ~ HP increases to 0(1l) and the outer motion in layer II becomes
disturbed significantly, from (II-2.3).

The next (and final) stage, therefore, is relatively far downstream where
¥, U, P, X, Y are all of 0(1) and so there the full governing equations (11-2.la~-c)
apply across the entire flow. To leading order the starting condition is now

U+1,y+YasX+0for0<YZ1 (1I-3.4a)
but with P ~ - (r<2/2)1/3 Xl/3 then and
1/3 _1/6
vov- T Xy (11-3.4b)
U~ - (2K)1/3 X1/6 for O z Y < (v<2/2)1/3 Xl/3
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to match (II-3.3). The Chapman s}ngularity is still present, but in an O(Xl/z)
layer centered around Y = (k /2) as X+ 0, and it requires ¥ ~ - ¢ Xl 2 there.
This is satisfied by (II-3.4b). Further terms in the small X expansion (I1I-3.4b)

can be generated in principle.

The current stage shows up a surprising nonuniqueness in the boundary layer
equations, in fact. For, with the constraints (II-3.4a) holding, one solution of
(II-2.1la-c) is simply the uniform stream U =1, ¢ = Y continuing for all X, Y. So
the starting form (II-3.4b) represents a second (eigen) solution, branching from

~the incoming uniform stream. Again, the branching solution appears to be self-
consistent for small X and it can be shown to satisfy the momentum integral equa-~
tion

P(X) + U dy =1 (I1-3.5)

obtained from (II-2.la), as well as the momentum integral of Part I.

There appears to be no theoretical objection to this account at first sight,
nor any obvious reason why wake closure and subsequent flow recovery should not
occur downstream, for X > 0, yielding self-consistency: Fig. 7. The objection
raised earlier by (II-2.7) for instance is overcome here because viscosity reasserts
its necessary influence when X is 0(1). Accordingly, it would be very interesting
to see the results of a numerical study of the branching solution stemming from
(I1-3.4a, b). On the other hand, there is little evidence yet from the finite-
spread calculations of Part I to support the prediction of an 0(1) eddy length
as H+ 0. It could well be that the trend of a small eddy suggested by those cal-
culations at smallish H values is misleading and that a switch to the current
structure with a longer eddy will emerge for still smaller values of H, but that
remains to be seen. Subsequently, we search for an account which yields a smaller
eddy, alternative to that in (II-3.1)-(II-3.5), bearing in mind the need (satis-
fied by the above solution) for viscous action during the closure process but
noting that simultaneously the pressure force is likely to become negllglble then
because of the relation (II-2.4) with (II-2.2a). The latter property leads to the
study in Section II-4 of alternative downstream forms for sublayer III and to the
study in Section II-5 of viscous closure under zero pressure gradient. Section II-5
has quite general application since many eddies are slender in practice (e.g., in
external flow: see later) and so cannot produce an extensive zone of significant
pressure gradient.

*This is more in line with the calculations of Part I. In additiom, both the
pressure-displacement law (II-2.4) at closure (5+0) and the momentum integral of
Part I demand the same small pressure rise overall, namely P = H + o(H), when H
is small.
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II-4. SHORTER EDDIES

Few other self-consistent downstream conditions seem immediately possible for
the sublayer III of Section II-2, as described in (II-2.6a~e) at least, although
they do all tend to suggest eddy lengths shorter than that just considered. Two
categories (a) and (b) arise (see Fig. 8), as described below.

In the first, the sublayer III continues for all positive X. 1In consequence,
-a description must be obtained for (II-2.6a, b, e) when X - w, Since S 2 1 from
(11-2.4), (11-2.7), there are only two plausible trends (labelled (al), (a2) below),
then: either S - « or S (=) is finite.

For subcategory (al) if S > @ as X > @, one solution is the form with negligible
vorticity, giving S = x1 , which was discussed in the previous section. Other
candidates arise as follows (Fig. 8). Suppose

- On
Sas XP©
o

as X > o, (I1-4.1)
with the unknown constants s,, n, ‘both positive. Then P - So X0 from (11-2.4).
Hence (II-2.7) implies that U is O(X 0/2) sufflciently near the wake center line,
say for an extent 0(X 1) [ng Sn ol_ in th? Y direction, giving ¥ of order X M1tno/2
there for continuity, so that ¥ N X1 *no/2 £(n) with n = ¥/X"1 of 0(1). Here £(n)
satisfies

2
n £'7° - (no + an) ff'' = 2no S, £(0) =0, £"(0) = 0 (I1-4.2a,b,c)

+ -
from (II-2.6a,b). We may take it that f # - (2s0)1/2 n, for otherwise we are led

back to the earlier solution and to the result n, = nj (= 1/3). Again, if nj = np
it can be shown that the earlier solution is the only permissible one. Therefore
we cgnsider n] < n, and £ 3 ¥ (2s°)1/ n. Then, as n=+0 (II~4.2a) requires

f « . So the derivative of (II-4.2a), (n - 2ny) £'f" = (ng + 2n1)ff'", which
gives the vorticity conservation result

f" « \f]M, (11-43)

requires f" = EM as n 0, where M = (n, - 2n7)/(ny + 2n7). In addition, further
away from the center line, as n > o, fa« —plt no/2n1 from (IT-4.2a) and the restric-
tion ny > 0 is necessary. So w c =Y l+n°/2nl therg, and Ehe entrainment condition
(II-2.6b) leaves us with n +n02/2n1 = 1/2, since S is O(Xng) from (II-4.1). Hence
M=1- 4n,, giving M < 1. However, f must be regular as n + 0, to prevent an
irremovable singularity in higher order terms in layer III (see (II-2. 6d) above),
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and that points to the value M = 1. Accordingly, no extra solution is forthcoming
here except perhaps in the limit as ny -+ 0, n; = 0 (noz). It is tempting here to
support the candidate M = 0O (no = 1/4, n) = 1/8), incidentally, associated with the
simple solution

v=(282-83%/2) IT,Q/R8-5/25-2=x /2, 5-1-5
1/2 (I11-4.4)
G=v/285-2-07%, with § ~ (%?) /4 s X > w
Q

and a constant vorticity level $§§ = - Q. This is an interesting solution which
produces forward flow along the center line and reversed flow nearer the shear
layer 11, with a dividing streamline v =0, Y=2/28-2/0 returning in reversed
flow towards the center line if © > 0. Nevertheless the requirement (II-2.6b) is
not fully satisfied and, although the forward motion along the center line can
allow viscosity to exert a smoothing effect there, the starting condition (II-2.6e)
is still violated. As always in inviscid tﬁeory, the possibility of discontinuous
solutions comes to mind, here and elsewhere, but their relevance does not appear
especially likely at the present stage.

Still assuming that S+ as X -+ o, and that the trial (II-4.1) points>us in’
the right direction, we are left only with the question of the limit n, - O, then,
with n; of order noz. This corresponds to a linear vorticity dependence

wﬁ = A Y (II-A.S)

in fact, from (II-4.3), where A is a constant. Thus with (II-4.5) holding another
exact solution of (II-2.6a, b, e) is obtained,

7= - A sinh02 9y, T = - 2® 22 cosnn? )
‘ 1 o (11-4.6a,b,c)
P = - E‘X AT (X)

(provided X > 0) where A(X) is unknown but A(0) = 0. Substituting (II~-4.6a-c)
into (II-2.4), (1I-2.6b), we have then

5® =1+ 2®, i® stm0M2 5@) = « 272,

2 (1I-4.7a,b)

two equations determining g(i), g(i) for all X, given the value of A (see Fig. 8).
The solution is regular for all X and, as X » «, S(X) grows only logarithmically with
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-

n X
1/2

SR v - PR A2 +0[%n (Gn B)]. (11-4.8a,b)

2 2
A link with (II-4,25)-(II-4.3) for n small, n; « noz, is then achieved.
The solution (II-4.5)-(II-4.8b) appears to be self-consistent for all X. The

next issue is whether it preserves consistency on all longer scales further down-
stream. It is fou d that the next distinct stage downstream arises when X is of

order H 5/2 (-4n H) . There, in a reversed sublayer where Y = HY and Y is again
0(1), uU=8H /2( fn H) 1/2 % U, ¢ = H3/ (-2n H)l/2 U from (II-4.6a)-(II-4.8b) and
1/2 noA :
= [=(~n H)/ (4 )+ X, &n(-fn H) + P(X)] H (11-4.9a)

1
1 _

with X = HS/2 (-4n H) /2 % X now, X > 0, and A = 1/(4x 1/2 ) isa constant. The sub-

layer therefore achieves an inviscid-viscous balance but is pressure-free, its

governing equations being

30 3y U 220~ 3y
U_..:_ ~ — = 0 +-——-2-’ U =—f— N (II-'acgbgC)
39X 9X 9y Y Y
and symmetry requires
N aﬁ
w = == 0 at ¥ = 0, . (II—aogd)
Y

from (II-2.la,b). The outer condition required here is one of matching,

oo 2731234 exp[xl/2(§ -3X%)] as ¥ » = (11-4.9e)

and needs further comment. The function g(&) represents an unknown displacement
effect on this length scale. The viscous detached shear layer, orlginallv layer

I in Section II-2, is now centered at Y = H{} =2nH) /4X 1/2 =A12n(-2nH) + 52(X)} from
(I1-4.8a) and is of thickness 0 {H5/4(-lnH) } from Sectlon I1-2, where the
function 2(X) is unknown. Between the detached shear layer and the reversed
center line viscous sublayer of (II~4.9b-d) the fluid mechanics is basically inviscid
and pressure-free and so the y-profile there must be purely exponential in Y to merge
with layer III upstream. Hence the form (II-4.9e) continues across_the entire gap
betxeen the present two viscous layers; i.e., for 1 << ¥ < (- 2nH)/4A1 2 -2 ln( LnH) +
62(¥X). At the upper limit here, i.e., the shear layer, under the assumption that the
similarity result (II-2.5) still holds in effect, entrainment then demands that
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1/2 ~ A~ noA 3/2 . 3/4 n1/2
exp[X / (GZ(X) -8(X))]1 =2 / A / k X / . (I1-4.10a)
Finally, above the shear layer, linearized inviscid channel flow theory applies

again, giving the relation

Ly N
P(X) = - 52(X). (I;-4.10b)

_The rationale her% is that the viscous sublayer problem (II-4.9b-e) is the central
one, determining 6& hencem(II—A.IOa) determines 0,, then (II-4.10b) determines the
pressure response P, and P then drives higher order corrections to the flowfield.

n,
The rationale works for small positive X, where a match with the earlier
properties for X finite is achieved. Thus the reversed sublayer (11-4.9b~-e) be-
comes predominantly inviscid then, and is regular, with

PR @ +XE @ + 0¥ (1I-4.10¢)

_ml/2,=3/4

inh (AI/

where F_ = 2 3) from (1I-4.6a)-(1I-4.8a). Here (II-4.9b-d)

requires that

Fl(§) « cosh(xl’2 ) (tan t [exp(xl/2 )1 - 1/4) (11-4.10d)

and so we have

n n n
|6] = X as X » 0 +. (1I-4.10e)
. n
Further terms can be generated for small X.

N
The description apparently cannot coRtinue for all positive X however. A sim-
ilarity solution does suggest itself for X - =, in the form

n, n N - ‘
¥ v X F(Y) + 0(1) (11.4-11)
n .
which yields for F the nonlinear differential equation
- o L)

Fm o+ FE - F1? = 0 with F(0) = F' (0) = 0 (11-4.12a-c)

from (II-4.9b-d). But an integral of (II-4.12a-c) is
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Y Y )
o= expl- [ ¥ av.1 [ ¥l expl [/ For) dy.d dy.  (11-4.13
(o]

(s} o

n, -
so that F'" > 0 for Y > 0. Hence the required asymptote,

nv= 273273 oM @ - const)] as T e (11-4.13b)

e

from (II-4.9e), is unobtainable since (II-4.13b) requires %" < 0. Instead
(I1-4.12a)-(1I-4.13a) can be shown to give

Fa a; exp(xl/2 D, ¥+, a, > 0- (11~4.13c)

In a sense it is a pity that (II-4.13b) cannot be satisfied with (II-4.12a-c). For
(I1-4. l3b) with (II—4711), implies that Fn a2 gn ¥ as X » w; 50 (II-4.10a,b)
give —P % (172 A )Zn X + -~ and the detached shear layer approaches the

center 11ne at last; the shear layer and the reversed center line sublayer then
merge (anticipating closure) downstream when X is O(H ); the boundary layer equations
apply there without pressure gradient; and self-consistency could be achieved. The
nonexistence of a solution to (II-4.12a-c¢) with(II-4.13b) rules .out such an account,
of course, but it does raise again the question of wake closure occurring without
significant pressure forces: see Section II-5 below.

For the reversed sublayer of (II-4. 9b-e) the solution most likelymterminates in
a singularity at a finite positive value X of % The Eingularity as X + X - is given
by (I1I-4.11) again, effectively, with X replaced by (X-X,) and selfwconsistency is
maintained now with (II-4.13c) yielding

B® v a2 & - B as X - X - (11-4.14)

Hence, g and gz + + = then, the detached shear layer departs further from the

center line and the pressure response j I ~w . from (II-4.10a,b). The further pres-
sure fall due to this departure from the center line eventually a{fec&s the flow

in the reversed sublayer first, within a more local scale around X = Xo. and so

then the relations (II-4.9e), (II-4.10a) become altered. No clear means of closure
of the eddy in these circumstances has emerged yet, but the pressure response could
cause the detached shear layer to reverse its trend abruptly and turn back towards
the center line within the localized scale. For no solut%on gf the sublayer
(I1-4.9b-e) exists just downstream of the singular point X = X,, and so a change of
structure is necessary locally. If that causes wake closure the prediction Xreatt =
O[H 5/2 (-2nH) 1/2 ] follows.

So far, therefore, only two accounts have avoided obvious failure, the one of
Section II-3 and the one just described in (II-4.5)-(I1I-4.14).
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A third candidate emerges, subcategory (a2), when g(w) is assumed to be finite.
This yields the property

P> M, V>0 (¥, P>1-5() as X»> = (11-4.15a)

in layer III_of Section II-2. Here the profiles Em(§), ﬁm(§)_2 ﬁm'(§)arearbitrary
except that y_(0) = y."(0) = O for symmetry, we might expect_U,(0) < O and, because
. of the increasing entrainment (II-2.6b), Em(§) + -» as Y + S(*) -. So the
reversed velocity in III becomes accentuated just below the shear layer I.

The nature of the reversed acceleration here controls what happens further
downstream on longer length scales. Suppose that

V(D) n b (5(=)- 1 Vas ¥ > S(=) - (11-4.15b)

where by, v are positive constants. Then as X »> «

1-5=Fn1-8 40, ¥/, 323 @+TY 5@  araiso
and, from (II-2.6a,b,e),
| P
v, () =-b, U (D) i (11-4.15d)
A 2(Y) .
o

with the constant b2 remaining unknown. Hence EA induces an increasing displace-
gent_effect as Y » S(«)=-. As a result (Fig. 8), in a thinner layer just below
Y = S(»)-, the solution is :

= =1/2 =Y
Yy b1 X [b2 IA n] (I11-4.15e)
- = = =1/2y S) g o -
forn= (Y - S(=)) X now of the order unity. Here the constant I, Ejy U _~(Y)dy
- (o)

is finite and positive, while (II-4.15e) merges with (II-4.15c,d) as n > -= and
enforces the entrainment condition

=Y _ Y _
b1 1+ IA) b2 K (11-4.15%)
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from (II-2.6b), since the shear layer is at E = -b2 Equation (II-4.15f) fixes the
value of b, in terms of the final profile ww(Y), since the latter determines bl and
I,. Further contributions can be generated, in inverse powers of X, and forms other
than (II-4.15b) are also possible, but the main point is that again a self-consistent
description of layer III emerges.

Can this third account also remain consistent further downstream, producing
wake closure? The next distinct stage arises when, in layer III, the maximum
(reversed) velocity rises to 0(1) because then the forward shear layer I must be
affected significantly by the motion underneath it. This maximum occurs where
(II-4.15e) holds, giving U of order X(Y+l)/zY i.e,, U of order nl/2 X(Y*+1)/2Y from
(I1-2.6¢), when X >> 1. Consequently, since X = B3 X, the stage X = O[H(ZY+3)/(Y+1)],
greater than B3 but less than H2, is the next crucial one downstream. Note that the
thin layer where (II-4.15e) holds is of thickness O[H X 2Y] i.e § l+3/ZYX.'I/ZY]
hence at the stage just mentioned the thickness decreases to O[H(2Y+3 /(2Y+2)]
exactly the viscous thickness of O(Xl 2) associated with the Chapman solution.

The latter solution can apply no longer then and the whole viscous shear layer must
change in character. This prospect is studied further in Section II-8 below.

The second category, category b, has the sublayer III terminating after a finite
distance, at X = X - say, suggesting X, . ¢¢ = 0(#°). Terminal forms can be written
down which prov1de a self-consistent description of layer III as X*X -. The
mechanism for completing eddy closure in such cases remains elusive, however, mainly
because of the objection (to inviscid theory) arising from (II-2. 7). Viscous forces
must_exert a strong influence before closure can take place; yet a termination at
X = X provides no clear sign of increased viscous action there. In contrast, the
arguments supporting the earlier possibilities of Section II-3 and (al), (a2) above
all bring viscosity back into play before closure. A number of alternatives arise
here including: the ‘different forms of viscous shear layers (Section 1I-8); higher
order terms in III, e.g., as in (II-2.6d), may reinstate viscous effects near the
center line as X+X if P U0 there; layer III may have a discontinuous inviscid
solution; multlple eddies may occur, e.g., if A in (II-4.5) is negative; a backward
jet may be present along the center line. None of these has been found to produce
a complete self-consistent argument for a finite X termination yet, although Section
1I-8 below, concerning nonentraining shear layers, does ‘revitalize the possibility.
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II-5. ON PRESSURE-FREE VISCOUS WAKES

Viscosity has to come back into the reckoning, for wake closure to take place,
but if in addition the length scales governing the closure are relatively small
(unlike Section II-3) then the induced pressure is small, in view of (II-2.4).
Negligible downstream pressure is an attribute of the new inviscid solutions of
Section II-4, for instance. Since the shear layer velocities are of 0(1) by con-
trast, the properties of pressure-free viscous closure must be addressed.

Our reasoning here hinges on the flow features near the centerline, given the
pressure-free equations (for X 2 0)

2
3
- gw ’ g U gw gU -0 +_£Ll%£ (I1-5.1a)
Y1 % 9% Y 8y,
1/2

holding on some short length scales X = A1 X3, ¥ = 4 y1, with U = 0(1). Here
4y << 1 is unknown as yet, but 44 >> 4 and the constraints are

w:ﬂ =0’ y1=0(symmetry), and U+ 1

9y ' - (1I-5.1b,¢)
as y; + « (freestream).

The constraints stem from (II-2.6b) and (II-2.3), respectively, for the wide~-spread
cascade, but the application intended is broader since many other wake flows with
closure seem too slender to provoke a substantial pressure force.

If the starting profile at x; = 0% has only forward velocities then (II-5.la-c)
can be integrated forward in x;, giving a standard wake problem. If closure has
still to occur, however, the starting profile must contain some reversed velocities.
We consider whether such reversed flow can be present near the center line (to set
up a downstream condition for a layer such as III above) and be initially small (to
avoid sending a strong reversed jet back into the earlier, shorter length scale,
motions). That indicates a local similarity solution holding as xl*O , of the form
V= le/( *1)G(E) where € = yllxll K*1) | Here K is an unknown constant but |K|>1
s0 that U= (K'l)/(K+1)G (E) is small. If K > 1 this viscous region is contracting
as x1+0 ’ whereas it is expanding if K < -1, The function G satisfies -

K+1)G"M+KGG6" - (K~-1) G'2 =0 (1I-5.2a)

G(0) = G"(0) =0 (I1-5.2b)
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from (II-5.1a,b). An integral of (II-5.2a,b)

€ €
wo K1 K_ 02 X_
€ %1 P )ka fG(El) d&y f Gy exp gy
o o
£ (I1-5.3a)
2
f G(g)) dg, ¢ dE,
o
then shows that the vorticity is positive,
G" >0 for £ > 0, (1I-5.3Db)

since lK[ > 1. ‘Therefore the velocity G'(£) increases, with £, from the unknown
center line value G'(0). As £ continues to increase only two ultimate trends can
be observed: see Fig. 9. For K < -1 a singularity is encountered at a finite
position £ = Eo > 0, with '

K]

G+ (& - £) + '0(50 - 5)_1 as £ > - (1I-5.4a)

whereas for K > 1 the solution continues for all {, giving (apart from an origin
shift) ‘

G o+ C2 EK + O(Eﬁl) as £ -+ =, (1I-5.4b)

Here Cq and C, are unknown constants but both are positive because of (II-5.3b), so
that the ultimate trends produce forward flow, G' - + =, It is interesting that the
forms (II-5.4a,b) are inevitable for any starting value G'(0), whether positive or
negative (the case G'(0) = 0 gives the trivial result G = 0 and is of no concern).
This implies the surprising result that, for instance, the near-wake solution of
Goldstein (Ref. 11) corresponding to K = 2 above is not unique (see Ref. 17): if
reversed center line flow G'(0) < 0 is allowed then a second solution exists which,
like Goldstein's, still gives G"(=) finite and positive. '

Suppose first that K < -1, the expanding case, implying the property (II-5.4a).
A slimmer region of thickness 0(1) in y; is induced (see Fig. 9) near { = &, to
smooth out the growth of (II-5.4a). The solution there has faster flow with U, ¢
of 0(1), say
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v ( )(§) as x; < 0 (1I-5.5a)

where yq = Eo ¥ -1/(|K|-1) + ; is large. The governing equations (II-5.la) are

satisfied, and the profile w(°)(y) remains arbitrary apart from the requirement

(@ —!-IKl

) v o ly as y > = (11-5.5b)

of matching with (1I-5.4a), at one extreme, and, at the other, a matching condition
required as y - ». The latter depends on how multi-structured the local wake is.
The simplest condition is

w(°)kw) =1 . (I1-5.5¢)

which satisfies (II-5.1c) directly and gives, for the wake displacement &(x;)
defined by ¥ v y; - é(xl) in (II-5.la-c), the growth

1/(!Kl -1)

8(xy) ™ € (+ =) as x, > ot. (1I-5.54d)

This growth upstream appears physically sensible with regard to both the wake
closure anticipated further downstream and to the detached flow properties (Sections
II-2,4) holding on shorter scales. So the question arises of whether those shorter
scale flows can be joined to the present viscous structure for small x;, or not,
given that in particular the 0(1l) thick region of fast flow in which (II-5.5a)

holds must exhibit the algebraic decay (II-5.5b) with |k|] > 1. Again, realistic
conditions other than (II-5.5c) are possible for y » ». For instance, a decay

like that in (II-5.5b) can be achieved for y - = with

w(°)(§) v ey ¥ C, v ‘ (II~5.5¢€)

where v (> 0), C4 and Cq (a mass flux) are constants. If (II-5.5e) holds then a
further thicker viscous region arise7 above the fast flow region with thickness

0( -1/ G 1)) and y - C3 = 0(x; ) is small provided v > 1. 1In effect,
the governlng equation then is (II~5 2a) again, with K replaced by -v and (II-5.2b)
is replaced by

GnvC, (E-£) asi>E 4 (11.5-5%)
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from (II-5.5e). As £ increases further the solution tends to one of two forms,
both yielding slower motion (see Ref. 17, however),

G~ 6 E-l or const,, as § + =, (I1-5.5g)

consistent with (II-5.2a3); or a singularity like (II-5.4a) is repeated. Conversely,
if Vv < 1 then no such outer region arises. This -enables the present form to be
joined directly to a further incoming shear layer more removed from the center line
if the mass flux Y approaches the value C3 in the lower reaches of the shear layer.
There is a strong connection between these properties, involving algebraic decay

at the onset of wake closure, and those of Section II~4(a2), where algebraic decay
was found to be permissible nearer the start of the motion, and Section II-8 below
pursues that theme. ‘

If K > 1, on the other hand, the relevance to any shorter scale detached flow
appears less, in view of the feature (II-5.4b) where C, > 0 gives forward motion.
Thus the majority of the wake is initially forward on the present scale and major
adjustments of the earlier detached motion would need to have taken place already,
on a shorter scale. In particular, a join from the center line y; = 0 to an incoming
detached shear layer is unlikely with K > 1 unless the lower part of the shear
layer has acquired substantial forward motion beforehand.

Other issues arising here are as follows. First, the limit as K - = above
recovers the finding of Section II-4(al), in (II-4.11)~(II-4.13c), where the equa-
tion is related to that of the asymptotic suction profile. Second, simple power
solutions for G(£) in (II-5.2a) exist only for K = 1,2, For K = 1,

G() = %t const. £ satisfies all of (II-5.2a,b) but this corresponds to U = % const.,
producing a centerline flow which is not coming to rest, in contradiction to the
shorter scale features. For K = 2, G(§) = t d1£2 satisfies (II-5.2a) but not
(II-5.2b); instead, it satisfies a no slip condition, a matter taken up in Section
I1I-6. Third, although (in consequence) a study of the limit K~1+ suggests itself,
further analysis shows that still, with virtually no pressure gradient present, a
pronounced interval of reversed flow remains impossible, in line with (II-5.4b).

If a significant pressure gradient is acting then more possibilities open up but
really that forces us straight back to the self-consistent solution of Section II-3
and its scalings, in contrast with the smaller scale phenomena being sought here.
Fourth, quite different self-consistent accounts for the start of the viscous wake
(II-5.la-c) are obtainable, with the centerline motion reversed as figuired, if U, ¥
are ta&en to have finite nonzero profiles for y; of 0(1), say ¢ » (v1), as

Xy > 0. This is similar to (II-5.5a). The structure on a shorter length scale,
however, then has to contend with a strong backward jet at the centerline, and that
is a major task: see Sections II-7, II-8 below.
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Next, an integral of (II-5.la-c) requires the momentum deficit integral to
be conserved,

-4

fU(l -U) dy, = I (11-5.6a)

(o}

where I, is a constant, deducible from the starting form of the motion. Far
downstream if wake recovery occurs, then the left hand side of (II-5.6a) tends to
5§(»), so that §(») = I,. But17ge linearized relation (II-2.4) still applies in
effect here, i.e., P = H - 4 G(xl) for all x; since the present length scales
are short. Hence )

1/2

~P>H~ A Io as x, > «. (II-5.6b)

1

The corresponding integral of the entire problem (I1-2.1la~d) requires

P+H+H2 +H3+ (II-5.6¢)

far downstream, however. Therefore two cases emerge. Either 4 2 O(Hz) (yielding
Xreatt 2 O(Hz)), in which case the starting solution for (II-5.la-c) must satisfy
I, = 0, which is a severe comstraint. Or 4, << ", xreatt << B, in which case I,
can be nonzero if b, = BE* but otherwise must be zero again. Notice that I, cannot
be positive, from (II-5.6b,c). This singles out the scaling Ay = H', N . 4¢ = H

if the integrated momentum deficit Io is initially nonzero and negative. Moreover,
if I, < O then initially there must be substantial regions of strong reversed flow

(U < 0) or of velocity overshoot (U > 1), because of (II-5.6a). 1In any region

where iUI is small the integral in (II-5.6a) contributes only the jump in ¥ across
the region and this is negligible from the starting forms of (II-5.2a-c). Some

care is necessary over these conclusions when & (o+) is not finite, as in (II-5.5d),
of course, since’ (II-5.6b) becomes questionable and the connection back to the
earlier shorter scale properties then is not yet clear; nevertheless, the results
(I1-5.6b,c) must always be reconciled.

The sixth and final issue here concerns the integral form

(v B vy :
. ex v, d f U LR ex vV, d d (I1-5.7a)
3y, P 1 9 3% P 1991 ( P2 -/a

[o] (o} o
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ottained from (II-5.la-c), where V. = - 3y/ox.: c¢.f., (II-5.3a). If the centerline
flow is coming to rest at Xy > 0+, U(xl,O)-+ 0, as supposed prior to (II-5.2a), then

(II-5.7a) yields 3U/3y; > 0 for small ¥, > 0. So the velocity U has a local minimum
at the centerline.
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II-6. ON MASSIVE EDDY CLOSURE AND REATTACHMENT
ONTO A SOLID SURFACE

This section, a by-product of Section II-5, hinges on the feature that the
exact solution of (II-5.2a) with reversed flow for K = 1 is G = -d; 52, giving

U=-2d y=-d (11-6.1a)

171’ ’1°?

the constant d; is assumed positive here. The local solution (II-6.1la) for small
xj satisfies the following co&?itions: (1) no slip holds at y; = 0; (2) the
Chapman entrainment ¢ = —=K X3 2 is supplied at the position

/2 x11/4_ ternn, (11-6.1b)

y, = (K/dl)l
around which the thinner O(xll/z) Chapman form applies; (3) the reversed velocities
U induced between the centerline y; = 0 and the shear layer at (II-6.lb) are small,
of order xll as x;+0, in keeping with an assumption of slower flow beneath the
shear layer on shorter length scales; (4) the pressure response required remains
negligible (see comments on previous section).

Hence the initial form (II-6.la, b) of the boundary layer (II-5.la,-c) can
describe the start of viscous, pressure-free, reattachment onto a solid surface,
in principle, with (II-5.1b) replaced by y = U = 0, ¥y = 0. See Fig. 10, also
Ref. 17. Further terms in the small-x; expansion stemming from (I1-6.1la, b) can
- be generated at will, including exponentials (see Section II-7 and Appendix D
below), integral properties like those of Section II-5 can be derived, and it
would be interesting to follow the subsequent downstream development of (II-5.la, c)
with no slip at y; = 0, which necessarily poses a challenging numerical task.
Meanwhile, we consider below the repercussions of (I1-b.la,b), and its features
(1)-(4) above, for the shorter scale motion. The applications in mind here include
the gross separation and subsequent reattachment in flow past ramps, past bluff
bodies with trailing splitter plates, and in wind-tunnels, all of which are of
wide concern. :

The first distinct stage encountered as the length scale is shortened (say
x1+0(A2), small) appears where the induced pressure, while still small, first
affects the centerline motion, since the latter is relatively slow and decelerating,
from (II-6.la, b). There the boundary layer equations 7till hold, with induced
pressure included, in a thin sublayer where yj is O(Azl 3) and U, ¢y, P become
0(A21/3, A22/3, A22/3) in turn. So, in effect, Eqs. (II—2.la) apply again but now,
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U=y¢y=0 at Y = 0 (no slip) (11-6.2a)

/Y —d1 Y2 as Y + » (outer match) (II-6.2b)
2,2/3

/Y —d £ X "as X -+ + » (downstream match) (II-6.2c)

1/3

where £ = Y/X » and the induced pressure is

P(X) = - (k/d )1/2 1/4- (11-6.2d)

Here (see Fig. 10) the pressure is provoked by a combination of the interaction
law P = ~S (due to the current small-scale effect on the outer flow, as in
(I1-2.4)), and the entrainment law w-*w*nxl/z as Y + § ~, from (II-2.5), giving

dl s =k X because of (II-6.2b). This combination is analogous to that

in Section II-4 (al) and is taken only as an example, relating to the cascade with
a splitter plate present along y = 0. The other applications mentioned above
yield pressure forms different from (II-6.2d), although equally simple in certain
cases.

The boundary layer problem (II-6.2a-d) with (II-2.la) looks unusual at first
sight, in having its starting condition at downstream infinity, in the uniform
shear flow (II-6.2c), but that is because the motion is reversed The flow
solution can develop satisfactorily there in the form

v d EZX2/3 / (g) +, X+ > . (I1I-6.3a)

‘Here g1 satisfies gl ' -4 (252 1"/3 - £ gj/2 + g1 /2) = .-(|</16d1)1/2 with
g1(0) = gl(O) = g '(») = 0, from (II—2 la), (II-6. 2a, b, d). Hence

3/4 r—7/12 5/6

gi' = (27K)1/2 J[ exp(-rd1§3)(2+9r)_ dr/[12(-—1/3)!dl ]
o

\ (11-6.3b)

and gi' (0) > 0. The incident reversed flow downstream is therefore decelerated
further by the pressure field as X decreases. Further terms, including an origin
shift in X, can be generated in the expression (II-6.3a).

Since the local problem (II-6.2a-d), (II-2.la) has a prescribed pressure
gradient which is adverse in the minus X direction, however, the flow solution
cannot continue for all X and come to rest at X = 0 + as the body scale properties
demand. Instead, either the classical Goldstein (Ref. 12) separation singularity
is produced at a finite positive value of X, say XﬂX3 +, or, due to an origin
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shift if allowed, the flow reaches X = 0 + with nonzero velocity. We expect the
former option in general. Fortunately, Goldstein's singularity is not necessarily
a disastrous occurrence here, if around X = X3 local interaction brings in the
pressure-displacement law (2.4) which yields regular separation, from Ref. 5.
Therefore secondary separation probably can be accommodated either directly or
interactively, depending on the particular local interaction near X = X3,

and self-consistency seems not unlikely. Moreover, in some applications the
pressure form replacing (II-6.2d) turns out to have favorable gradient, thus
preventing secondary separation, an aspect worth following through.

The overall trend of the flow structure produced above as a result of
(II-6.1a, b) is encouraging, then, as a strong back flow is prevented by means
of viscous action but little pressure force. There seems good reason to pursue
the matter further, relating to the specific applications mentioned before, but
that must be regarded as future work. We return now to the original wake closure

problem.
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II-7. CONNECTION FROM WIDESPREAD CASCADE TO EXTERNAL FLOV;
AND HOW FAR CAN THE KIRCHHOFF FARABOLA LAST?

Before considering the relation between the widespread cascade and external
flow, we discuss certain features of the external flow problem itself.

In external flow past a bluff body,. Kirchhoff's inviscid separated flow
solution produces a parabolic growth (Fig. 11)

S(x) ~ bx]'/2 as x +» & (11-7.1)

for the eddy height y = S(x) downstream, as mentioned in Part I. The viscous shear
layer near the eddy boundary, specifically where y = S(x) + Re'l/2 ¥ with y of 0(1),
also grows parabolically as x + = if the Chapman form (II-2.2d) holds then, with

n=9/xt2, e (), v Re2 X2 £ (my, £ (=) = 1, £, (-=) = 0, £ (=)= -x.
Also, Ref. 1 shows that the mild uniform reversed streaming

- K
Y v -Re 1/2 'EZ

~-1/2
02y« bxl/z’

u + - Re E-, as x » =, (11-7.2)

then satisfies the inviscid, but slower flow, properties of the eddy as well as the
entrainment (Y -» -« Re"‘l/2 xl/z, y - bxl/2 - ) and symmetry (y - 0) conditioms,
dovnstream.

Viewed separately, each of the three parts of the downstream flow here, (1) the
uniform stream u = 1 above the shear layer, (2) the Chapman form within, and (3)
the mild reversed stream (II-7.2) underneath, constitutes an acceptable downstream limit
for the Navier-Stokes equations, and so produces no call for wake closure to occur at
all. Yet, viewed together, (1)-(3) do not satisfy the Navier-Stokes equations in a
far-wake sense, for there (II-5.2a,b) apply with K = 1, so that (II-5.3a) then requires
zero vorticity G" and only the limit u = 1 remains acceptable. Therefore wake closure
has to occur, and the (open wake) description involving (1)-(3), stemming from
(II-7.1), must break down on some long length scale downstream. It cannot persist
indefinitely. '

This brings us to the question posed above: what is that length scale? Also,
what forces the breakdown to occur? The former question is important when the
relation between the widespread cascade and external flows is considered, while the
latter question leads to some perhaps unexpected aspects of separated motioms.

The reasoning involved must be tentative again, because recirculatory motion is
present, but consistency overall is the eventual aim.
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The matter centers on certain exponentially small terms.

Take the body scale

flow first (see Fig. 11). 1In the eddy (E), an acceptable solution is (¥, u, p) =
(Re'1/2$, Re-1/2 u, Re~l p + const.) to leading order, with x,y of 0(1), so that

¥, u, p are governed by the Egler equations. Vorticity conservation gives V

and if (II-7.2) applies then £ = 0. Also,

V=-x(x) at y=8(x)-, v=—=0 aty=0

from entrainment and symmetry respectively (see also Section 11-2).

v=EW)

(11-7.3a)

E(x)==-$(x,:°) is the reduced mass flux required by the shear layer (SL), in which
v = Re /2 § (x, ¥), and di/dx > 0 to avoid exponential growth as y » == in SL, which

is governed by the pressure-free boundary layer equations

2

3u A du au
= =0+ =5
0+ 372

A =R S

with

u(x,®) =1, u(x,~=)=0, «(xgo) = 0.

Separation occurs at x =

Xgep*
the behavior

b -R(x) + Ax,PexpR' R)Y), § o+ -

(11-7.3b)

(I1-7.3¢c,d,e)

The exponential dependence mentioned arises from

(11-7.3f)

of the SL solution, where the amplitude A is algebraic in §. As a result the eddy

E, 0 <y < S(x), has the development

-1/2

¥ = Re V(x,y) +...+ K(x,y)exp[Rel/2§(x;§)]+...

where

Real(g) < O

is required, but IR A are functions to be found, and the condition

g+ 0- as y -+ S(x)-

43

(11-7.4a)

(11-7.4Db)

(I1-7.4c)
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applies, to match with (II-7.3f). Substituting (II-7.4a) into the Navier-Stokes
equations we find the governing equation

- -2 2
-9 _ 3y 3}~ _(38 2g -
(“ 3 | 9% ay) g (ay) + (ax) (11-7.3a)

for the exponent function g, the right hand side being a viscous contribution,
whereas u, w satisfy Euler's inviscid equations

- em - - e g )
= _8% uwdu 3y du _ _ 3p we’y %W
Ty > Tox ~ ax ay ox * " ox? T ox amay © oy ° (11-7.5b)

or Vz ﬁ = TE(.\I:)° In addition, near the centerline a thin viscous extra region VE is
found necessary for the exponential terms (but not for any alsebraic terms). In VE,
y = Re-1/2 y* with y* of 0(1),

1/2

¥ = Re™ y*u_(x)+. .. +a¥(x, %) explRet P50 (x) 1. .. o, (1I-7.6a)

go(x) z g(x,0 +), Real (go) < 0 and ﬁo(x) z u(x,0) is the reduced centerline velocity.
In VE the Navier-Stokes equations reduce to the form

A* 33p%
u_(x) g (x) —* = - g,(x)p (x) + P (1I-7.6b)

*

for A* » where p,(x) 1s a local pressure force. Hence the solution satisfying the

symmetry condition A* = 32a /By = 0 at y = 0 is nontrivial in VE,
* % % * Po(X) & & e 1/2
= i - = - .6
A" = a; (x) sinh(y (x)y) uo(x)y > ¥ = (4580) (I1-7.6c)

%
the function al*(x) being fixed in principle by matching with E as y =+ =,

The behavior of SL;, E, VE as x + « downstream is as follows. In SL a momentum
integral of (II-7.3b-d) gives, for all x > Xsep

k(x) = ,{w u(u-l)d§ +1 (11-7.7)

sep
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where Igep is the integrated momentum deficit at separation, from (II-7.3e), and so
is negative usually. That suggests that as x + ® the Chapman form (f.) is attained
with a surprisingly high relative error of order x'l/z, such that

o~ e ) + £+ (x> ) (1I-7.8a)

From (II-7.3b-d), fj satisfies £1"'+ (f¢ £;" + f.' £1')/2 =0 and £’ (F=) = 0.
Hence

£1(n) = Dyf_(n) + Ey (1I-7.8b)

where Dj,E, are constants dependent upon starting conditions and an origin shift
in y. Consistency with (II-7.7) then yields the asymptote

E(x)mel/2,+ Igep 25 X > (I1-7.8¢)

and Ey = Igo,- The relative error in Kirchhoff's parabola (11-7.1) is also generally
of the same Eigh order, x’l/z, in that :

s (x)vbxt! 2+ s, as x> (11-7.9)

with s, # 0. This can be established either by analysis of the farfield in Kirchhoff's
free streamline solution or by reference to the exact solution for a broadside-on
flat plate for instance: see page 499 of Ref. 18.

The small corrections in (II-7.8c), (1I-7.9) control the downstream flow. Thus
in E, as x + » with 0 = y/xl/2 fixed, ¥ ~ - le/z o/b + c; o+ 0(1) from (II.7.5b),
(11-7.3a), with ¢ = (x sozlb - Isep/b) positive. So (I1-7.5a) requires the underlying
form

1/2

BN B (0) + X IR ()T IR (04 (11-7.10a)

for g, where ‘
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= k(o?-b%)/4b, Ey = B0,

0Q
o
|

- bBq 2 bec1B; c
gy = Kl + - ¢ + Bzoz + Eg ozlnc - i%g o*

(11-7.10b)

which satisfies (11-7.4b, c), provided By = -k s,/2b. Hence the centerline value
go(x) = g(x,0 +), required for VE, has the development

go(x) ~ - xb/4 + bBi/Kx 4.,.. as x =+ ®, (11-7.10¢)

That leaves the exponent function Y* defined in (II-7.6c¢) having the behavior
Y* v By x’l as x - =, so that essentially

A* « sinh(Byy*/x) (11-7.10d)

there. Further terms can be investigated for large positive x, including the

nature of E when y remains finite and the equatioms controlling the amplitude A

in (II1-7.4a). Also, as a check we notice that the exponential dependence in (II-7.4a)
becomes explk Rel/2 (y-b x1/2)/2 xl/zj from (II-7.10a, b) as y =+ b x1/2 in E, which
reproduces the Chapman decay in SL; see (II-7.3f) when (I1-7.8¢c) holds. The principal
concern, however, is that VE expands linearly « Re~1/2 x downstream (Fig. 11), from
(I1.7.10d), due to the factor Bj, i.e., to Sy, i.e., to the correction term in
(I1-7.9). Significant viscous effects therefore spread out faster than the xl/z9
Re~1/2 41/2 expansion rates of Kirchhoff's parabola and Chapman's SL and are bound

to affect the latter to some extent on a longer scale downstream. That scale is

x = 0 (Re), from comparison of the growth rates Re~1/2 x and x1/2.

At least one adjustment of the solution dces occur first on a scale x = 0 (Rel/z),
we note, where X = Re~1/2 x is finite. There, in summary, VE expands to 0(l) thick-
ness in y and its solution has the development

Y= - KyRe'1/2/b + ...t Al(}‘\{,y)exp[—Rel/2 kb/4l+.... (II-7.1lla)

‘implied by (II-7.10c). The Navier-Stokes equations yield the backward heat equation
~-K 82~A1/8 X 9y = b 33 A1/8y3 for the amplitude 3A;/3y. The solution satisfying
symmetry at the centerline and the join with both E and VE as X »> 0 + and with E

as y > = is again nontrivial,

46



UTRC83-13

a ~2 5 - ~
a b ‘ 2
2 c2 €y Ky
Al = - expf_~< Z27) exp (KX
toan (kX) j; cosh ( X 4b% |9V - (1I-7.11b)

Here 52, 82 are constants. Therefore downstream, as X @, Ay remains 0(1) if y

is restricted to O(il/z) or less, but Aj increases exponentially for y of order X
and the linear growth of VE noted earlier is maintained then. So the length scaling
x A Re is implied still.

It can be established next that Kirchhoff's parabola (II-7.1) with simple
entraining motion underneath in E becomes unacceptable on the x = 0O(Re) scale. For
suppose (II-7.1) does continue to hold, with the motion in E then having

Vo= U, (%, Y) Haaas + Ay (X*, Y explRel/2 gy (X¥,Y)) 1+, (1I-7.12a)

dominated by the 0{1l) entrainment necessary for SL when x = Rex* with X* finite.
Here y = Rel/2 Y59, and 0 < Yy < bx*1/2 in E. From the Navier-Stokes equations we
obtain the governing equations

N2 .

3 Wy 3 - [3=2 :
(u2 AKx -B_X_*- F{z‘) 82 & (E ’ (I11-7.12b)

) 3y 3 382 382 dA9 . Buy 382

—F - —_— 22 4, 22 =2
(“2 ax* ~ ax* ayz)AZ 5, T U2 5x% 3y, T 9X* 2Y, 22

. (11-7.12c)
2
d 2

_ 2 38y 28y 2wy 38y, ,3[(§2) Ez+382,382A2}

X
x* 9 Y By 8X 3Y, | 3Y,  aY,  aY,2

for gy, Ag, omitting certain unimportant contributions, where ujp = awz/ayz. So
if the simple entraining solution holds for all X*,

wz = - KYz/b, ug = -K/b’ (11‘7-13)
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continuing the trend (II-7.2), then (II-7.12b) gives g, =« (02=b2)/4b to merge with
(I1-7.10a, b), where o = Yo x*-1/2, and (II-7.12c¢) reduces to

2v, 22 oy M2, L g 7.14
2 Y ax* 2% 9 (II-7.14a)
The general solution for Ay is
Ay = X*1/2 £, (19/5%), (1I-7.14b)

where the function f2 is to be found. Matching with VE, however, as VE spreads out
into E (Fig. 11), demands that

£5(E) = sinh(cyE) (11-7.15a)
from (II-7.11b). In contrast the match with SL requires
fa(8) = Bobz exp(-KEdz/Zb)/Ez, (I1-7.15b)

from (II-7.3f) where A ~ Bo *x‘]'/2 for large x, and the constant dy represents an origin
shift. The two forms (II-7.15a, b) for finite £ cannot be reconciled and so the
description assumed breaks down.

This breakdown on the O(Re) length scale may be taken as evidence that
Kirchhoff's parabola must be adjusted then, although other interpretations exist.
Further, since an ellipse y = Rel/2 p x*1/2 (l-X"‘/L)l/2 is the only other eddy
shape consistent with the initial parabola and maintaining enough uniform pressure,
the conclusion of an 0(Re) closure length LRe follows as in Refs. 1, 2, 14. These
references appeal instead to an overall momentum balance (as in Section II-5) to
suggest the closure length, whereas the breakdown above provides a perhaps firmer
local cause for the closure.

The elliptical shape is found to remove the contradiction of(II-7.15a, b). But
in turn it emphasizes another difficult feature. It points (at first sight - see
Section II-8 below) to the inviscid closure problem

2y = F(u) (II-7.16)
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within 0(1) distances of x = LRe. Here the vorticity F(y) is nonzero, because of
the incident, 0(1) thick, Chapman profile in SL. So (II-7.16) provokes the well-
known difficulty concerning a strong 0(1) thick jet being forced upstream, out of
the closure process, thus violating the slower flow assumption made for the
majority of the eddy upstream: see Fig. 11. The backward jet is unavoidable, to
preserve vorticity along the centerline, in the above account unless viscosity or
some other subtle mechanism comes into action. Similar difficulties were discussed
in previous sections for the widespread cascade. Proposals on this wake closure
difficulty for external flow are given in Section 8 below. Meanwhile, we turn to the
relation between widespread cascade flows and external flow, given the importance
of the O(Re) length scale in the latter.

In the relation between the widespread cascade and external flow
it is noted first that while the cascade spread H = HW/Hc is finite, as in Part I,
the body scale flow.and its exponential corrections are effectively as in (I1-7.3a) ~
(II-7.6c). The difference is that now S(») = Hy is finite (Part I), instead of
(II-7+1) holding. Properties of the exponential terms then are summarized inRef. 17 and
Appendix D (a novel aspect there is that the exponent function g becomes complex,
inducing oscillatory behavior). As the cascade spread becomes wide, for a fixed body
size (H -+ 0), however, the parabola (II-7.1) emerges as a first downstream asymptote,
encountered for 1 << x << H., before the bound § + S(=) reasserts itself as x becomes
O(Hc). Also Hy = O(Hcl/z) because of (II-7.1). The solution for the eddy shape S
during this adjustment is found to be

2 2 -
S = EEE cos‘l-{e""b x/ 88y } (11-7.17)
m

for large x v sz ~ H,, matching with (II-7.1) for small x/HW2 but giving § - Hy for
large x/sz. Here 0 < cos™l < w/2, while the constant b _is 0(l) generally, equal to
0.50 for the circular cylinder. Let us write Hy = by Hcl for large H., where by is
of 0(1) in general. Then H = by Hc'l/2 + 0, and so the widespread cascade first upsets
the Kirchhoff parabola (II-7.1) downstream only when x is increased to 0 (H-2), from
(11-7.17).

Comparison with the x Vv Re external closure scale indicated above therefore
re-emphasizes the stage H ~v Re-1/2 or H. ~ Re as in Part I. On the other hand,
the viscous closure for the cascade wake always yields the scaled closure length
Xreat&* i.e., the unscaled closure length from Part 1 is x ...+t = Re He” Xreatt =
Re by o4 Xreatte S0 if Xpeart Vv HR, say, for the widespread cascade (H + 0)
studied in Sections II-2-5, then Xreatt bl4 Re HR~4., Three subcases arise,
therefore, which can be summarized as follows. First, if n = 4, Xreatt Stays at
0 (Re) when H + 0, i.e., as (in a more physical interpretation) the cascade spacing
'HC is increased for fixed Re; and when H then falls through the stage O(Re'l/z)
there is a continuous adjustment from (II-7.17) to the elliptical shape above
as in Refs. 1, 14. Second, if n < 4, X,eatt increases beyond 0(Re) when H falls,
at least until the stage H Re~1/2 when the closure first affects matters and
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reduces X, o a¢t back to O(Re). Third, if n > 4, Xreatt Pecomes shorter than O(Re)
as H is decreased, and indeed X,o,t{ enters the adjustment zone of (II-7.17) when
B falls to O(Re‘l/(n'z)) or H, is increased to Re2/ (n-2)

So, whatever the value of n, the above arguments imply that Kirchhoff's solution
for external flow does emerge from the widespread cascade solution.
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II-8. NON-ENTRAINING SHEAR LAYERS

Encouraged by the final remark of Section II-7, we seek an alternative account
for wake closure consistent with Kirchhoff's (body scale) flow but avoiding the
central difficulty of backward jets noted after (II-7.16). Again, previous comments
suggest that viscous forces must play a key role, if the objection (II-7.16)ff is
to be placated, and that algebraic behavior and nonuniqueness within the shear
layer can occur. We pursue these themes below.

Section II-4 (A2) anticipated that algebraic behavior can be achieved in the
lower reaches of a detached shear layer near the start of a separated wake, while
Section II-5 showed the same can occur at the other extreme, just before wake
closure. This raises the issue of whether such algebraic dependence can persist
in-between, for virtually all the shear layer's length, in the widespread cascade
or the external flow in particular although the application is quite wider. In
whatever context the shear layer is governed by (II-2.2b-d) or (II-7.3b-d),
involving essentially the same pressure-free viscous boundary layer equations as
in the wake closure of Section II-5. Algebraic velocity decay for any x does
turn out to be possible, as (say) y> -« in (II~7.3b-d), in the form @ N - bllyl-Y,

u " o~by y[y]’Y‘l with y+l positive for decay. The governing equation (II-7.3b) then
requires the expansion .

-~

v -bl[§["’ +o...4 E(x)[ﬂ“l Foveey Y=, (11-8.1a)

however, with b, being constant and

1

E = -(y+l) (y+2) (x-2)/v (11I-8.1b)

where £ is an arbitrary constant. So the restriction -1 <y < 1 applies to
(II-8.1a) as well as y ¥ 0 to suppress any constant of addition to Y. Otherwise,
if vy 2 1 1s assumed, (II-8.la) is replaced by

v =6x=2) 3] #.L, §o . (11-8.1c)

The leading term in (II-8.1c) gives an exact solution of the boundary layer
equations, incidentally, while (II-8.la) verifies that for the widespread cascade
the downstream form (II-4.15b-f) in III merges satisfactorily into the shear
layer I on a longer length scale. The two allowable forms, (II-8.la) (with
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0 < ]Yl < 1) and (II-8.lc), present an alternative to the classical expomential
decay (see (II-7.3f)) usually taken by shear layers.but, unlike the latter,
(1I-8.1a) do not require any direct entrainment of fluid from below the shear
layer. This is another encouraging point, for classical entrainment tends to
ruin most previous models (Refs. 1,2,13-15) of grossly separated motion.

The non-entraining shear layer can also start satisfactorily (Fig. 12), for
example by taking over from an incoming, entraining, Chapman form holding as
x+0 + (as required in (II-2.2d) for example), in the followingAmanner. The
relgtively thin 0(x1/2) Chapman form requires the entrainment y = -x X , say
at y = 0 -. Beneath this, therefore, a thicker subzone is induced where {§t is
0(dy(x)) say, d; >> %«1/2 ig unknown and the solution has the displaced form
of a power law

R (-.<1§ + dl(x))-r A (11-8.2a)

where I', k;(>0) are constants, dy(x) > 0, and ; < 0. Here the inviscid form
(II-8.2a) is consistent with the pressure-free equations as x+* 0 + provided
dy << x T=1), or (r+1)/T(r-1) > 0. But entrainment at y = 0 = requires

---|<d]_'r = -lelz, so that

d.(x) = x—llzr°

1 (I1-8.2b)

Hence (II-8.2a, b) apply for T > 1. Consequently yet another subzone is provoked,
as viscous forces enter play where y falls to -0 (x'l/(r'l)) and ¢ - 0(xr/(r’l))
from (1I-8.2a), say

v = /=1 o5/ (-1 (II-8.2c)

G(E) +...., with £ = y/

and £ is finite and negative. Then G satisfies the viscous Falkner-Skan type
equation (II-5.2a) with K= - T x -1 now, and

G v~k Kl-r (—E)-r as §£~>0 - (11-8.24)

to join with (II-8.2a). The required solution of (I1-5.2a), (I11-8.24) has the
property (Ref. 17)

G v -6 (-E;)-1 as £+ - = (11-8.2e)
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consistent with (II-5.2a), while (II-5.3a) still hold provided the middle
integration range there runs from positive €1 to & rather than 0 to &,
leaving negative vorticity

G" <0 for all £ <O, (II1-8.2f)

in line wiEh (II-8.2d,e), since I' > 1. We note that, since dy is large and ;
negative, ¢ is small in (I1I-8.2a), as it is in (II-8.2c), meaning that all the
motion in the algebraic subzones below the Chapman layer comes to rest as x»0 +
as required. Moreover, for small positive x reversed flow is forced to occur,
from (I1~-8.2a-€), so that the algebraic shear layer immediately becomes subject
to the influence of the conditions further downstream. This seems a desirable
feature in the flow. The emergent behavior (I11-8.2e) for small x is the analogue
of, and continues into, the case (II-8.1c) for finite positive x, provided the
origin 2 in (II-8.1lc) is zero. : :

The above indicates that the solution of the characteristic shear layer
problem posed in (II-2.2b-d) is not unique, then. The further aspects below
reinforce that conclusion. ‘

First, another successful start at x = 0 + is pbssible for the non—entréining
shear layer when the decay condition (II-8.la) holds instead of (II-8.lc), or when

%2 in (II-8.1lc) is nonzero. In these cases (II-8.2a-f), beneath the incident
Chapman form, are replaced by a simpler consistent description in which

@ + @o I§ - dz(x)/le as x + 0 + , (11-8.3a)

Here y, is an arbitrary profile, except that @o (;) TS (-Kz ;)A as ; -+ 0 -, with
constants k9, A > 0, and the displacement effect dz(x) is small such that

2 A
d,(x) = </ (II-8.3b)
for the entrainment condition. Also, the behavior

50(§) N bl(-g')-Y as y > - (11-8.3c)

must hold with y £ 1 and b; then identifies either with the coefficient by in
(II-8.1a) at finite positive x, for y < 1, or with 6 ¢ in (II-8.1l¢) for v = 1,
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The restriction y £ 1 avoids the setting up of a thicker zone where (II-8.2c¢c)
would apply and would lead instead to (II-8.2e).

Thus both the algebraic decay forms (II-8.la, c) can be initiated self-
consistently (with & zero or nonzero in (II-8.1lc)), branching away from the
incoming, exponentially decaying, Chapman form at x = 0.+. The algebraic
start can be from rest - see (II-8.2a-é) - if (II-8.1lc) holds with & zero, but
otherwise a nonzero initial profile (II-8.3a) is required (Fig. 12), below
the Chapman layer. Both the starts (II-8.2a-e), (II-8.3a-c), however, are
consistent with the earlier scaled inviscid properties of Section II-4 (a2)
depending on the value of vy there. Again, all the shear layer analysis is
subject to an unknown origin shift in §, due to Prandtl's transformation,
which adds arbitrariness to the solution, while reversed flow in:the non-
entraining shear layer can readily-be present depending inter—alia on the
signs of the unknown constants by, &; e.g., it occurs simply if x > £ in
(1I-8.1c), since u v -6 (x-2)y~2 then.

Second, the non-entraining shear layer can terminate in a physically
sensible fashion after a finite distance x = Xj; it cannot continue for all
positive x, we believe. The termination can involve a singularity as x -+ x; =
in which the shear layer splits into two main zones, 1, 3, each of 0(1) thickness
in § and with 0(1l) welocities u, separated by a thickening viscous zone 2 of
width O(xz-x)'m in y where the shear layer fluid is coming to rest (see Fig. 12).
Here m > 0 and zone 2 has

~

¥ ~ const. + (xz—x)m+l G(g), £ = ;/(xz-x).m. (11-8.4a)

So G satisfies (II-5.2a) again, but with x = ~(w+l)/m < - 1 and -G''' replaces
G'''. The range of £ is finite here, however, with minus the growth (II-5.4a)
being achieved as § + g, -, a similar growth occurring as £ + =g, +, all
subject again to an origin shift, and the symmetry condition (II-5.2b) can
effectively hold in-between. So (II-5.3a) now shows that

G'' <0 for 0 <g<gy, G'"'" >0 for-¢,<¢<0. (11-8.4Db)

Centered around § = + go zone 1 occurs with an arbitrary shifted profile

Vv Iy - Bk, s L, x> x,m, (11-8.4c)

consistent with the governing equations and satisfying
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- m+l)
- ~ - R
Y1, v comst. - C (-y) as y > - (11-8.44)

< >

() =1 (I1-8.4e)

to match minus the growth (II-5.4a) from zone 2 and to comply with the outer
uniform stream. Likewise, centered around £ = —50 is zone 3 in which

~m

IB > @12 [;’ + & (x2 -x) ], x- Xy"s (1I-8.41)

and the profile 120 is arbitrary apart from the two matching constraints

mt+l

¥, (y) ~v const. + Cl y B .asy+w=, (11-8.48)

~ ~ -~ -~

vy, )~ by -7 as y + - . | (I11-8.4h)

The latter follows from (II-8.la) for 0 < [y| < 1 but from (II-8.1c) with by
denoting 6(£-x2) for y=1 and xy # %.

Alternatively the shear layer can finish in a regular form as x + x; - [the
conditions (II-8.4e,h) are then satisfied by a single arbitrary profile] or,
if xp = £, a multi-structure akin to that of (11-8.2a-é) can be set up. The
precise form taken as x + x; - depends on the subsequent wake closure propertles
and on the flow beneath the shear layer.

Underneath the shear layer a broader zone of slower motion is produced whose
character is controlled by whichever of (II-8.la, c) applies. In either case
however the small pressure force almost certainly reasserts its influence,
yielding governing equations of the form

24
udu -
hakited _!.au =-p'(x) + Al-i—— (11-8.5a)

et
L]
@ e
“-‘.ll'EI

and the matching condition, from (II-8.la, c),

25



UTRC83-13

LY -iz (g - ;)-Y as ; -> g(x) - " (11I-8.5b)

Here, for (II-8.1la), A EO (inviscid properties, A 9 E bl (constant) and

0 < |y| <1), whereas for (II-8.lc) Ay = 1 (viscous properties, X, = 6(x-2) and

vy =1). Also, ¥ = 3(x) gives the reduced position of the non-entraining shear

" layer. At the initial station x = 0 +, or at the terminal one x - x5 -, the
solution of (II-8.5a, b) can start either from an arbitrary velocity profile u
(this is approprlate to Section II-4 (a2) for the widespread cascade for instance,
where u, y y above stand for U, ¥, Y, respectively, and the X-scaling is

x » (2 Y+§)/(Y+1)x) or from a s1m11ar1ty form. For the latter, if A; = 1 and

X + Xp- say, we have v (xz-x)l G(E), £ = y/(xz-x) , 80 that (II-5.2a) holds
but with K= (1-M)/M and -G'"' replacing G'''. Here [K[ < 1 and the i~range is
finite, 0 s £ < £,, implying that 8§(x) ~ E9 (xp-x)™ if, as we assume here, the
symmetry condition is achieved directly in this broader zone, i.e. (II-5.2b) also
applies. We would expect M > 0, for the onset of closure (§ + 0), and M > 1/2,
for the scaled velocity u to increase then. Hence =1 < K < 1. Solutions of-
(II-5.2a, b) then exist (Ref. 17) and yield the required property

G~ -6 (£, - ol as o £y (1I-8.5¢)

which satisfies (II-8.5b). Solutions are also possible if the preésure p remains
influential as x » x5 -; see Ref. 17 and Appendix E.

In summary, it seems clear that the motion within and beneath the non~entraining
shear layer can remain self-consistent, from its start to its termimal form. So
the main difficulty remaining is to account self-consistently for the wake
closure, near or beyond x = Xq. The correct account there is not so clear yet.

It is tempting to appeal first to (II-7.16), or its counterpart azw/ayz = F(y)
for thin layers, and conclude that a finite fraction (where y < 0) of the shear
layer should be reversed and turned upstream during closure (Fig. 12), due to
local inviscid and pressure action. Certainly the splitting in (II-8.4a-h) seems
to herald this and the strong backward jet so produced would continue to entrain
no fluid, which is encouraging. Each of the conditions (II-8.lb, ¢), however,
requires a linear decrease of the velocity contribution 0(§‘2) whose continuity
around the eddy therefore cannot be reconciled readily with smooth inviscid
turning near closure at one end and with the slower flow or smooth turning
necessary back towards the body scale flow at the other end,

It is tempting, secondly, to imagine the lower part (II-8.4f-h) of the

terminating shear layer proceeding smoothly through x = x, with no significant
velocity or pressure change and coming out as a starting profile for the viscous
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closure studied in Section II-5. There, relatively near the centerline, the
requirement |K| > 1 leads to (II-5.4a), demanding in effect that (II-8.lc)
holds and % = x, is the closure length. That is all consistent so far, but
back at x = 0 +, the initial shear layer then has the form (II-8.3a-c), with
b; = 6 2, vy = 1, and requires an 0(1) velocity profile below the incident
Chapman form. The origins of such a lower 0(1) profile are hard to explain.

A third temptation is to postulate that a strong backward centerline jet
with edge decay different from the terminal shear layer's emerges from the
unified viscous closure of Section II-5 as X7 + 0 + there. Yet the difference
in decay rates then requires a similarity solution, i.e. (II-5.2a), to hold
between the jet and shear layer for small X7. This forces (II-5.4a) with
|K| > 1 which in turn implies that X9 = & for both the shear layer and the
jet. So again continuity of the velocity profile around the circuit of the
eddy appears likely.

Thus the x-dependence in (II-8.1b, c¢) poses certain global difficulties,
just as entrainment does in classical shear layers. However, a novel description
of the closure near and beyond x = X9 is possible now. Suppose that the
viscous splitting (II-8.4a-h) is followed by the inviscid process of (II-7.16)
locally again, but all the streamlines turned back there remain part of the
lower incident layer (II-8.4f<~h). This can happen in principle because of
the small velocities and reversed flow attainable at the édges of the lower layer,
in (II-8.4g, h): it cannot happen with classical shear layers because the latter
have at least one nonzero edge velocity with forward flow. (Consider (II-7.16)
and Bernouilli's law). So the non-entraining shear layer can "feed itself", in
a sense, via the closure process; see Fig. 12, Further downstream the viscous
closure of Section II-5 can then emerge also., There is no cleax objection to this
description and it appears self-consistent globally. The dominant velocities,
and the eddy center, of the recirculating flow are confined within the shear
layer itself, which is a strange feature perhaps but which we feel can be defended
simply by emphasizing that previous searches (Refs. 1,2,13-15) for straightforward
accounts have all failed.
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II-9. FURTHER COMMENTS

1. The first clear sign to come out of the widespread cascade analysis of Part I1I
is that viscous forces must play a significant role in massive wake closure.
Inviscid theory fails (Section II-2), because of the Bernouilli relation between
pressure and centerline velocity.

That means broadly that straightforward estimates (Refs. 1,2,13-15) of eddy
closure properties also fail since they point to predominantly inviscid theory.
Hence the explanation of massive wake closure must contain some initially unexpected
but realistic feature(s).

The allied proposals of Section II-5,8 concerning non-entraining shear layers
and viscous closure with algebraic decay seem to fall in line with the above two
paragraphs, as does the long eddy result of Section II-3,

2. That non-entraining shear layers can exist in principle, providing a switch
at any stage from exponential entraining to algebraic behavior, seems fairly
definite (Section II-8). Two aspects need further examination nonetheless.

First, at what stage, on what length scale, is the switch made (if at all)?
For external flow, Section II-7(a) suggests the x v Re scale, in keeping with
most experimental and computational evidence. For the wide-spread cascade there
is less certainty. Sections I1I-3 and 4 (a2) tend to emphasize lengths greater
than 0(H3) in X but in retrospect there appears no obvious reason to really
discount shorter scalings, despite the earlier estimates. Indeed, Section II-5
points to the scalings H4 and H2 (see near (II-5.6a~c)),Sections 1I-2, 4 imply
that the flow solution can no longer remain simple once X reaches 0(H3), while
the computations of Part I seem to give the H~ scaling, Against that, Section II-3
shows that the switch above may even be unnecessary for the cascade motion, in
which case the non-entraining shear layer can become relevant only later in
external bluff body motion, as described by Section II-7, or in other grossly
separated flows.

This introduces the second aspect, namely that wake closure following a
non-entraining shear layer still seems to demand a substantial localized pressure
response (Section II-8). 1In external motion such a response is readily produced
by the blunt shape of the end of the eddy (Refs. 1,13 and Section II-7). By
contrast the widespread cascade tends to suppress the pressure response according
to both analysis (see Sections II-2, 4, 5) and calculation (Part I). The
objections may well be ill-founded, however, for the alternative account of
Section II-3 also induces a substantial pressure, while the upper portion of the
splitting in Section II-8, Eqs. (II-8.4c-e), could be responsible for the required
pressure rise locally.
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3. Further accurate numerical study, of the nonlinear problems posed by (1) the
Section II-3 proposal for a long eddy and branching solutions, (2) the viscous

wake closure of Section II-5, (3) the viscous reattachment onto a solid surface

(Section II-6), (4) the Section II-8 non-entraining shear layers of finite length,

and (5) the full cascade problem in Part I for smaller values of H, is desirable

and would add undoubted help to the arguments followed above for massive stall.
Otherwise, such arguments always stay very tentative due to the presence of
nonuniqueness, nonlinearity and recirculating motion. All of (1)-(5) set not
inconsiderable tasks but it is felt that the prospeets and insight into massive

stall properties provided by the widespread cascade problem are also not inconsiderable.

4. The connection (Section II-7) from the widespread cascade to external
bluff-body motion, although hindered by our not knowing for certain the power
governing the behavior Xeatt © HD as H+0 (see point 2 above), is fairly definite

on one important feature. The Kirchhoff solution with ifs parabolic growth down-
stream does take control of the body scale flow when the cascade spread i1 is large.

This holds whatever the value of n. The precise value of n then merely dictates
what happens on longer length scales downstream of Kirchhoff's parabola. Given
that, it would be very surprising if Kirchhoff's solution for the body scale were
affected at all significantly by further increase of the cascade spread as external
flow properties take over still more. ' .

The sole hesitation we feel in stating the above is slight and concerns the
possibility that the whole description of wake closure for the finite-spread
cascade in Part 1 breaks down at a finite value of H, allowing no limit form as
H~+0. That would alter the scene completely. The possibility seems remote but
it serves to stress the need for more computational study of the sensitive flow
properties arising at smaller values of H in Part I.

5. This work has concentrated mostly on symmetric wake closure with centerline
flow. A proposal on massive eddy closure, or reattachment, onto a solid surface
has also emerged (Section II-6), however, which is believed to merit further
attention. It suggests secondary separation as a possible consequence and finds
application in (e.g.) the separating flow past ramps, past bodies with trailing
splitter plates, and through wind tunnels, all of which have attracted much
theoretical and experimental interest in recent times. See also Ref. 17. Again,
nonsymmetric wake closure is of much practical and theoretical concern.
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APPENDIX A

A MECHANISM FOR UPSTREAM INFLUENCE

Consider an oncoming shear layer with virtually zero flow underneath, which

seems not unreasonable on the verge of reattachment. In terms of an 0(1)
thickness for convenience, the oncoming motion satisfies :

Vo= wo(y) n - i + o~1 eoy as y > -

o}
U=U(y) (Ve Vasy + e

+lasy>+e

shear layer

(a-1)

where the constants E, o > 0 due to entrainment upstream. Then upstream influence
can occur on a relatively short length scale A(<< 1) in X, with a two- or three-
tiered structure. 1In the first tier where y is 0(l), the oncoming form (A-1) suffers

merely a displacement effect, giving

vEy, (v AK), V=T (v +AK))

(A-2)

from the controlling boundary layer Eqs. (I-2.6a), where -A(X)is the displacement
locally, A(-») = 0 and X = AX. Because of the properties (A-1) the solution (A-2)
sets up a second lower tier, at a logarithmically large distance below the first

tier, in which

(v,U,P(X)) = [-k + A, AU, A2 PX)} + ...

(A-33)

and y = o-l in & + ;, where ; is 0(1). Substituting again into the boundary layer
equations, we have now the full nonlinear viscous governing equations holding,

- - I - 2=
- - dp
3y X 89X 2y axX 3y

with the matching conditions [from (A-1), (A-2)]:

- v + A(X -
U~ eo(y A()) as y + + «

U+ ﬁB(i) as ; > - ®
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T (~=,3) = 777 B(-=) = 0

(A-3e)
- - - 1=-2-

3y/aX (-m.y) -0, F(X) = - §'UB (X)
where UB(X) is the slip velocity induced beneath this second tier. A thlrd tier
may also arise, above the first tier, to connect the unknown pressure P inviscidly
with the displacement -A, but that is secondary to the basic feature which is the
behavior of the second tier dictated by Egs. (A-3b-e). For this admits upstream

influence, as X - -, in the form

y + o(eZGX)

“ 1

(

<t

(]

!
Q
>

r o+
a
(1]
+
(1]
Hhi

(A-4a)

i
L
o
~
~

where 6 is an unknown positive constant. From Eqs. (A-3b) with Eq. (A-4a), the
unknown function f(y) satisfies the linear ordinary differential equation

v oo Et - (F -0 E) =0 (A~4Db)

or, setting Z = 2 91/2 c-l exp (1/2 ¢ ;), Fzf'-o0 f, we obtain the Bessel equation

2
2
Z2 g—§-+ z %% -ZF=0 (Amd
dz c)
for F(Z). Hence,
F(2) = cl I (Z,) +C, KO(Z)_ (A-44)

where Cy, C, are constants and I,, K, are Bessel functions. However, I, grows too
fast « 2”1/2 exp (Z) as Z + « (y -+ w) to allow the match (A-3¢) to be achieved.

So C; = 0. In addition we require A to be O (eZGX) this is either from the
linearity of the inviscid pressure-displacement law or from the requirement of
negligible displacement, A= 0, which often holds on short length scales like the
present. So [§| << e% as y + + », and from Eq. (A~4d) we have the solution

Y
i3 =c, & f K (2) e %7 ay (A-be)
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- 1
Finally, as y > - », Z > 0, and KO(Z) A - 1n Z, so that f'(-=) = E'CZ. Hence,

1 6X 1 2 26X
UB(X) v c2 e , P(X) n - 8}c2_ e (A-4f)

where C2 remains arbitrary.
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APPENDIX B

FURTHER UPSTREAM INFLUENCE

Appendix A described upstream influence arising in a forward-moving shear layer
with zero flow underneath, but such shear layers can also set up a small reversed
motion underneath because of their entrainment. This Appendix considers the extra
effects of that small reversed motion. The main effect found below is the produc-
tion of transverse waves. These stem from the local velocity and stream—function
profiles of the form

-1/2 AL

u = Re -k

1)
for =» < y < = (B-1)

-1/2 |1 VY

=1
Y = =x + Re (Y kly) - Re ~ vx

with ki a positive constant, k being the positive entrainment constant and vy

being the corresponding positive index for exponential decay in the shear layer,
thus giving exponential growth in the subregion where (B-1) holds, below the shear
layer. The Re scaling in (B~1) indicates the smallness of the velocities involved,
although similar analysis in the cascade problem shows that (B-1) occurs for small X
instead there without an Re scaling.

The local form (B-1) is an exact solution of the Navier-Stokes or the boundary
layer equations, interestingly enough, related to the asymptotic suction solutlon.
A nonllnear dlsturbance to (B-1) then, takes place if (Y,u,p) = (-« + Re~ -1/2 Vs )
Re"'l/2 u, Re™ p) within the x = Re x scale where y is 0(1), so that w,u,p are
controlled by the boundary laver equations. Matching requires u v expl(yy) as
y + ® and u » -k, as y » -=, where kjk,' = -p' for k, nonuniform.

It would be interesting to tackle the nonlinear version above since it admits
upstream influence, as does that in Appendix A. In the present case the upstream
influence starts from a small deviation « exp (Bx) about the exact solution
(B~1). This yields the linearized equation

ooy B o (e - k) B Frevye pgf=a (B-2)

for the stream function perturbatlon, with a being a pressure constant. Notice that
the normal velocity v « ~ aw/ax plays a part here, contributing the term in f

in Appendix A: (B-2) is an extension of (A-4b) in fact incorporating the flow
reversal due_to kl in (B-l) The silut§on of (B~2) may be found from the substitu-
tions h = Q'1 (f" - v f') Q=2%y exp (vyy/2), which reduce (B-2) to the
Bessel equation
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2- - [/ : 3
Qz-‘l—%+0%+(-“-§-—1)—oz h=0 (8-3)
dQ Ay '

for h(Q) in 0 < Q < =, where we have normalized kl to be unity.

The solutions of (B-3) are the Bessel functions Iv(Q), Kv(Q) where v2 =1 -
4 8 y’g Assuming first that v2 2 0 we may discount the I, function as in Appendix A
and construct the form of f(y) by integration much like that in (A-4e). The solu-
‘tion decays exponentially as y + ~= (Q - 0+), as required, and so upstream influence
is admissible, with 8 = 72/4. In contrast, if v° < 0, so that v = iv with v real
and B > 72/4, then although I,, is ruled out again by the behavior as y + « the
solution for ﬁ(Q) is oscillatory « cos [G In Q) as Q - 0+. Hence we obtain waves
« cos (vyy/2) as y + =-w, Upstream influence is still admissible with these trans-
verse waves provided the now significant motion set up beneath this subregion can
accommodate the waves. Appendix C below suggests that accommodation is possible.
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APPENDIX C

SIGNIFICANT VISCOUS INFLUENCE IN LARGE~-SCALE REVERSED FLOW

Throughout Part 2 the necessity of viscous action during wake closure is
emphasized (e.g., see Section 2 of Part 2), even though for the wide~spread cascade
viscous forces seem largely negligible at first sight: again see Section 2. 8o
the question arises of how viscous action may come into play in a predominantly
inviscid motion containing significant reversed flow. Effectively this amounts to
considering the boundary layer equations for a large-scale flow, in the form

2
_d  du _dpau_ _dp, 1 2u )
U %y * Yax T ex oy ax " Re 2 (c-1)

where Re >> 1 but x, V, ¥, u, p are generally 0(l) rather than scaled in the
typical boundary layer fashiom.

At first sight the viscous contribution in (C-1) should be disregarded, there-
fore, but that then points to the backward jet inconsistency referred to in Section
7 of Part 2 if wake closure is to be described. However, in view of the short-
scale oscillatory responses from viscous effects found in Appendices B and D, there .
is an alternative account in which viscosity matters more, as follows. Suppose the
solution throughout depends on both the general 0(l) scale in y and on the tradi-
tional shorter scale Y « Re1 y locally. Then a multiple-scales treatment is called
for, with

3 1/2 3. 3
S > ReT U g'(Y) 3§

+ e -
3y Y 9y (€-2)

where g(y) is generally of 0(1). The emphasized role of the viscous derivative

3/9Y here allows a viscous perturbation of small amplitude in ¢ to produce a sizeable
response in u and a large response in the vorticity u/dy. Thus if a basic yY-pro-
file is disturbed linearly in the form

'w = wB(y) + Renl/2 wo (x,y,Y) + ... (c-3)
then (C-2) gives, with ug = wB',
} o, e
-1
S N U R b Sl b (c-4)
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1/2

and the disturbance in u is nonlinear. Further, du/dy is dominated by Re (g' (y))
azwo/aYz. So if we_set up + g'3y,/3Y = ' aw /3Y then (C-1) yields the full boundary
layer equation for Vos in terms of x,Y,

%Y W %% o
(o] - o] - o] o] = () (C—S)
9Y 9x3Y | ax 3Y2 aY3

with y-dependence remaining passive,-and the range of interest is -= < Y < = because
of the short scale involved. The pressure gradient has no effect here.
T

Upstream where v1scous effects decay w + 0 and so we require g 2 =1 up, from
the y-dependence in wo, and wo + %y, Hence the upstream profile for wo (x,y,Yi/2
is simply a uniform stream. The stream is forw?rd if ug > o, since then g' =
but is reversed where ug < o giving g' = (-u ) . In consequence, wherever reversed
flow (ug < o) is present upstream wave-like yiscous behavicr occurs transversely with

- ox 1/2
wo vo- Y+ a e sin(o Y + bo)’ (C~6)

from (C~5) as x -+ ==, where ¢ > o, a,, bo are constants. The waves span the entire
reversed flow zone ug < o. They become a nonlinear influence as x becomes finite
and offer an alternative to the earlier inviscid description. Again, wherever there
is forward flow upstream, ug > 0, the transverse viscous response is exponential
with

1/2,

- : - %y
by v Y + ey X e (c-7)

if Y > o, where ¢, is a constant.

Thus viscous effects can exert a significant influence even in a large-scale
separated flow, and despite the largeness of Re in (C~1l) the flow properties need
not be mainly inviscid. A backward jet can then be avoided, in particular, if wake
closure takes place. Higher order terms overall still require study but the sus-
tained waves in (C-6) tie in with those of Appendices B and D, while the transition
between (C-6) and (C-7) is achieved by means of internal layers near where ug = o.
A continued study of the multiple scales effects here should be interesting.
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APPENDIX D

EXPONENTIAL BEHAVIOR IN REVERSED MOTIONS

Here, for definiteness, the reversed flow occurring far downstream on the body
scale (Part 2 - Section 7), i.e., near the start of the viscous closure process
(Part 2 - Sections 2-4), is considered for the cascade of finite spread H. Non-
uniqueness corresponding to the influence of conditions further downstream has been
‘noted already in Part 1 for algebraically higher order terms, but the situation
is aggravated by the more sensitive exponentially small corrections present as

follows.

The simplest starting form holding below the Chapman_layer, for small X, has

. the reversed flow given by the inviscid solution ¥ % -« x1/2 vy 5 (1-1)~ for

0 <Y < H, from (2.12a) of Part 2. Exponential viscous dependence then enters the
reckoning through the decay in the lower reaches of the Chapman layer, which requires
the underlying expression

Lo /2y
o L2

+,..+Aa)em>((l) + e (D-1)

for o <Y < H. Here, the functions A(Y), g(¥). and constant m > o are unknown. but
real (g) < ¢ for decay as X = o+. The boundary layer equations than give m = 1/2 and
require g to satisfy the nonlinear form

13
2
g+Yg'=g", (D-2)

where we omit certain finite multiplying factors from the equation, for convenience,
and need g(l) = o to match with the Chapman layer. In standard form the solution of
the differential equation (D-2) can be written parametrically

g = 92 - Yo where 3Y = 2¢ + ¢ 1/ (D-3)
for Y < 1 now. This keeps g real and negative but only for 1 > Y > 2'-1/3 As
Y -+ 2""1/3 Y, from above, an 1rregular1ty arises since there g(Y ) = =2 '8/3

g'(o) = 27 -4/3° are finite, but g" = (Y-Y )7 /2 from (D-3). Hence g becomes

complex in Y < Y,. The smoothing out for the 3/2 irregglarity in gat ¥ =Y, i,
plus the removal of the irregularity found to occur in A(Y) there, can be shown
to be achieved by Airy functions in a subzone of width Xl near Y = Y¥,. These
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introduce a degree of arbitrariness into the solution for g in Y < Y, but Real (g)
remains negative as required. This is seen perhaps most readily from the cubic
equation for g(Y), obtainable fortunately in this case, from (D-3),

16 g - 24 Y22 + (97" - 12v) g+ (¥3 - 1) = 0. (D-4)

For (D~4) can be used to show that g cannot become pure imaginary in 0 < Y < 1, so
that Real (g) must remain negative. Also, at the centerline (Y - 0+) g acquires
one of the complex roots of g3 = 1/16 and so again keeps Real (g) < O.

As a result, exponential-oscillatory behavior is present in the reversed motion
near the start of the wake closure process, the oscillations being of small amplitude
but very high frequency transversely. Similar oscillations are found to be
induced with the other starting forms of Section 2 in Part 1, with the start of the
long eddy in Section 3, Part 2 and with the downstream form of Section 7 to which
(D~1)-(D-4) are equivalent. Ref. 17 covers the application of Section 6, Part 2.
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APPENDIX E

VISCOUS WAKE CLOSURE WITH PRESSURE FORCING

An analytical example occurs if the non-entraining shear layer of Section 8,
Part 2 approaches closure linearly, § Ex(xg9 - X) as x » X9 = with the constant
€9 positive. The eddy flow beneath acquires a similarity_form then, coEresponding
to K = 0 in Section 5, Part 2, so that the eddy velocity u is 0(xy - x) and in-
.creasing. The local similarity equation is

12 )
G'" =G "= (E-1)
o
from (5.2a), including a sign change, since x is increasing here, and a pressure
gradient « m,. The range of concern is 0 fg< €9. If there is no reversed center-
line jet (5.2b) apply, although symmetry conditions can also be supported within
0 < & < gy if a jet is present. We take (5.2b) here. Integration of (E-1) then
gives the implicit solution

h .
1/2
| et @
1/2 .2 2 1/2 3/.
p b)Y (@ 4+ hoh o+ b+ 3m)
o

for h(£> z G'(g), where h, = h(o) is unknown. Equation (E-2) satisfies the symmetry
condition (5.2b) but also yields h + » as £ » 52 -, where

Wi

(

-2
and h ~ 6 (52—5) as £ >~ £5 ~. This reproduces the required behavior (8.5¢), on
integration for G(£), verifying that (8.5c¢c) is attainable with or without a pressure
gradient acting. Further examples are noted in Ref. 17.

)1/2 £ = f dh (E-3)
2 (h~h )l/2 (h2 +h h + h2 + 3% )1/2
(o] (o] (o] (o]

h
o
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