Research Publication GMR-2297

THE DEFINITION MECHANISM FOR STANDARD PL/I

Michael Marcotty*
Computer Science Department
Research Laboratories
General Motors Corporation
Warren, Michigan 48090

Frederick G. Sayward*#*
Department of Computer Science
Yale University
New Haven, Conneticut 06520

Part of this work was done while the author was at the University
of Massachusetts, Amherst.

*% Part of this work was done while the author was at Brown Univer-

sity, Providence, R. I. wunder the sponsorship of NSF Grant

GJ-28074 and part at Yale University wunder ONR Grant
N00014~75~C-0752.

December 1976

Submitted for publication in

IEEE Transactions on Software Engineering

Abstract

The mechanism used to define the programming language PL/I in the
" recently adopted American National Standard is presented. This
method provides a rigorous though semi-formal specification of the
language. It uses the model of translation of programs into an
abstract form to define the context-free and context-sensitive
syntax. The semantics are defined by the interpretation of the
abstract form of the program on a hypothetical machine. The method
and metalanguage are presented along with several small examples to
illustrate the definition technique's features. The complete
definition process is shown by the definition of a small example
language.

ii

TABLE OF CONTENTS

PAGE
I. INTRODUCTION 1
1.1 Prelude 1
1.2 A short History of BASIS/1 3
1.3 Prerequisites 5
II. THE DEFINITION METHOD 5
2.1 The Abstract Machine 6
2.2 The Definition Process 7
ITII. THE ABSTRACT MACHINE'S DATA 10
3.1 Tree Terminology 10
3.2 The Machine State ' 11
3.3 The Metabrackets , 12
3.4 The Definition of Trees 13
3.5 Unique-names and Designators » 17
IV. THE ABSTRACT MACHINE OPERATIONS 18
4.1 The Execution of Operations 19
4,2 Operation Format 20
4.3 Variables : ' 22
4.4 Tree manipulation Instructions 22
4.5 Control Instructions 26
4.6 Validity Checking : 29
4,7 Dynamic Macro 30
V. INFORMAL DESCRIPTION OF SAL , 31
5.1 Variables 31
5.2 Assignment Statements and Expressions 32
5.3 Conditional Statements 32
5.4 Labels 32
5.5 Input and Output 33
5.6 The Return Statement 33
VI. THE RUNNING EXAMPLE ' ' 33
VII. INITIALIZATION OF THE ABSTRACT MACHINE 34
7.1 State of the Abstract Machine During Translation 35
7.2 Machine Initialization : 35
7.3 The Define-program Operation © 36
7.4 The Running Example 36
VIII. THE CONCRETE SYNTAX 37
8.1 The Low-level Syntax 37
8.2 The High-level Syntax 38
IX. THE TRANSLATOR (PARSE PHASE) 39
9.1 The Operations 40

9.2 Application to the Running Example 41

XQ

XI.

11.
11.
11.
11.

XII.

XIII.

13.
13.
13.
13.
13.
13.
13.
13,

XIV.

XV.

THE ABSTRACT SYNTAX

THE TRANSLATOR (CONSTRUCTOR PHASE)

1 Expanding the Concrete Tree

2 Analyzing Declarations

3 Building the Abstract Tree

4 Application to the Running Example

THE MACHINE-STATE SYNTAX

THE INTERPRETER

1 Initialization

2 Statement Interpretation Control

3 Interpretation of Statements

4 Expression Evaluation

5 Storage Manipulation

6 Storage Reference

7 Abnormal Termination

8 Application to the Running Example

POSTLUDE

REFERENCES

1ii

46

50
50
51
52
58

61

62
62
63
64
66
67
67
68
68

75

76

1. INTRODUCTION

1.1 Prelude

It is all very well for Humpty Dumpty to say "When I use a word,
it means just what I choose it to mean' but unless the audience has access
to his dictionary, understanding is very difficult. We rely heavily on the
meaning of words being constant. For example, when we buy a bottle of
aspirins, we count on the effect of the tablets being essentially the same,

no matter who made them, advertisement claims notwithstanding.

In the United States, the U. S. Pharmacopia assures the user that
the drugs it lists are of standard composition. Although this is defined
primarily for the pharmacist and is written in a precise technical language,

it is consulted by many sophisticated users who understand its terminology.

The standards for programming languages form an analogous set of
definitions. Their existence assures the user that a program written in a
standard language caﬁ be moved from one implementation to another. However,
the definitions are directed prinéipally at the implementor and not the user.
Sophisticated users and text-book authors, for example, will alsp want to read
the formal definition of the language to get the final word on the minutiae
of the language. The definition is not a tutorial document but must provide a
complete and unambiguous specification of the language and this requires a
considerable amount of formalism. In general, this formalism has been absent
in the past, resulting in disparities between different implementations of the

"same'" standard language.

Recently, a definition of the programming language PL/I prepared
by a Joint Project sponsored by the European Computer Manufacturers'
Association (ECMA) and the American National Standards Institute (ANSI) has
been adopted as a standard by ANSI. This language is defined in "BASIS/1"
[E2] using a semi-formal definition method. Although languages such as |
BASIC [L3], ALGOL 68 [W4], and indeed PL/I itself [A2, A3, L4, L5] have been
defined formally, this is the first time in a standard that both the syntax
and semantics of a programming language have been defined with such a
degree of rigor.

The purpose of this paper is to present an introduction to the
definition method of BASIS/1 by using it to define a small artificial
language, SAL, chosen to illustrate the salient features of the technique.
The small size of SAL, helped by many examples, permits an overall view
of the method unimpeded by a mass of detail. As a further simplification,
we have only described those parts of the BASIS/1 formalism required for
the specification of SAL. However, we indicate where metalinguistic extensions
are needed in defining a language like PL/I. The merits and demerits of
the formalism are not discuésed.

The paper is organized as follows: section 1 is an overview and
discusses the PL/I standardization project in general, sections 2 through
4 define the metalanguage of BASIS/1l, sections 5 and 6 provide a transition
point with an informal discussion of SAL, and sectiomns 7 through 13 give a

formal definition of SAL using the metalanguage.

1.2 A Short History of BASIS/1

In 1969 the Joint Project for PL/I standardization was launched by
ECMA and ANSI. The standard was developed through a process of successive
refinements of the working doctiment, BASIS/1, with new versions published
about every six months. As a starting point, IBM gave the project their
1969 March PL/I Language Specifications modified to exclude some items
thought to be unsuitable for standardization. These PL/I specifications
were written in English and the Project soon realized that a more formal
style would be necessary to obtain the required precision in the definition

[B6].

The IBM Vienna Research Laboratories had by that time published a
completely formal definition of a version of PL/I [A2, A3, L4, L5] in
what is now known as the Vienna Definition Language [L3, W3]. This
definition was based on the notion that interpretive exécution of a
program on an abstract machine constitutes a semantic description of the
program. Originated by McCarthy [M1, M2], Landin [L1, 12], and Elgot [El],
this concept was first followed up by IBM Vienna. In the early stages
there was also a parallel effort at the IBM Hursley Laboratories in England
by Beech et. al. [A4, B2, B3, B4], Qho favored a semi-formal definition
of PL/I using a machine-state that more closely resembled actual

implementations.

Despte the perceived need for a rigorous definition, the Project
felt that the strict formalism of the Vienna method would hinder the
acceptance of the future standard. It was therefore decided to base the
definition on the Hursley approach and retain the English language flavor.

The language they developed to define PL/I, the BASIS/1 metalanguage, was

a semi-formal programming language with defined phrases that express the
operations used in the definition allied to a completely formal specification
of the metalanguage's operands. Although adopted by the whole project,

the bulk of the work was carried out by a relatively small subcommittee [B7].

In accordance with ANSI standardization procedures, beginning on Mareh
28, 1976, BASIS/1 was made available to the world-wide computer community
for public comment. The result was twofold: first, several small technical
errors were detected and second, modifications to the proposed PL/I were
incorporated. For example, the standardization committee had decided to
exclude the % INCLUDE feature from standard PL/I on the grounds that its
inclusion would make unfair requirements on an‘implementor's operating
system. Public outcry from structured programming enthusiasts, however,

led to the incorporation of the 7% INCLUDE statement into standard PL/I.

BASIS/1 was accepted by the ANSI subcommittee on standardizing PL/I
and on August 9, 1976, ANST made this decision official. This has the
following implication: if any U.S. government agency wishes to establish
a standard regarding PL/I, the BASIS/1 standard must be used. For example,
if the U.S. Army wishes to buy only computers with standard PL/I compilers,

then those compilers must conform with BASIS/1 [s1].

The current activity of the standardization committee is to develope
subsets of PL/I that are suitable for standardization. This task had been
started during the preparation of the full standard but was postponed for
lack of effort. Standard subsets were also requested during the public
comment period. A standard realtime programming sublanguage is being

developed and other types of sublanguages are under consideration.

1.3 Prerequisites

To @derstand BASIS/1 requires same acquaintance with the general rnotion of
formal syntax and operational semantics as well as a familiarity with some
existing version of PL/I. Here, we assume some technical background in formal
syntax and semantics although a knowledge of PL/I is not essentiai. The reader
is referred to [B5] for a general survey of the structure of PL/I, to [Al] for

an introduction to formal syntax, and to [W2] for operational semantics.

2. THE DEFINITION METHOD

In 1962 Garwick[G1] proposed that the best way to provide a conplete
definition of a programming language was a particular implementation on a
specific machine. This method of definition is obviously unsatisfactory for
a machine independent language, nevertheless, it is frequently used in practice.
It is not unknown for an implementor to "correct" a discrepancy between a

compiler and its manual by changing the manual!

The definition method of BASIS/1 escapes from the inevitable interaction
with host hardware and operating system by making use of a hypothetical
machine devold of any connection with specific real hardware. The definition
is thus operational in nature, i.e. the meaning of a construct of the:language
is specified by the changes its execution causes in the state of the machine.
These changes are described algorithmically in the definition, not because
the algorithm must be followed precisely by an implementation but because
it is a systematic way of achieving a complete definition of a complex
language, thus ablé to answer unforseen questions. Implementations are
free to use other algorithms and to take advantage of particular hardware

features to provide the syntax and semantics specified by the definition.

Using the operatiomal technique, BASIS/1 has specified every detail of PL/I
in one of three ways:
- The exact specification is supplied in BASIS/1.
- 'The detail is specified as "implementation defined" in BASIS/1.
For example, the maximum value for numbers is left for the
implementor to define.
- The detail is specified explicitly as being "undefingd". For
example, the sequence in which subscripts are evaluated is undefined.
This means that the implementor is free to choose the sequence but
does not need to specify it to the user.
The essential point is that there are no gaps in the definition where nothing

is specified at all.

BASIS/1 describes what an implementation must do to conform with the
standard. As indicated above, an implementation is given great flexibility
and may also choose to extend the language. The basic measure of conformity

[
is that the implementation must provide all the linguistic features defined
in BASIS/1 and that implementation defined extensions must not effect progfams

not using such extensions. Note that contormity is not that a given program

with given input data must producc the same output data on all implementations.

2.1 The Abstract Machine

Although abstract, the hypothetical machine used in the definition has
a considerable resemblance to the architecture of the real machine. The

abstract machine is shown schematically in Figure 1.

MACHINE OPERATIONS
(described by a set of algorithms)

~

MEMORY
(changing machine-state tree)

machine-state

CAARACTER-LISTS e
REPRESENTING PT&CGRAMSJ._._.

| —
INPUT DATA :i::>
—_—

.. J/

_— > OUTPUT DATA

Figure 1, The Abstract Machine

The machine has a set of operations defined by algorithms that make
use of a small set of standard basic instructions. Thus the algorithms

are analogous to the microcode of a real computer.

The machine also has a memory whose contents can be changed by the
machine operations. 1In this memory are stored the information used to
control the execution of machine operations, a representation of the program
being define&, and the values of the program's variables and datasets during
its interpretation. The abstract machine's memory is thus the equivalent
of both a real computer's main store and its microcode working store,
together with on-line auxiliary storage. At any point in the definition
process, all the information in the memory is represented by a single tree

that defines the "machine-state."

2.2 The Definition Process

PL/T is defined by specifying the set of legal states of the abstract

machine and by defining algorithms for the machine operations. ' These
operations are linked together into a single algorithm whose behavior
specifies the meaning of any PL/I construct. For clarity of presentation,
the algorithm is viewed as two separate processes: a translator which
consists of parser and constructor phases, and an interpreter. Figure 2

shows a schematic representation of the definition algorithm.

' ABSTRACT
CHARACTER 5| PARSER | CONCRETE __ 5CONSTRUCTOR
LIST PA PROGRAM PROGRAM
INTERPRETER |y OUTPUT
L - — PILES
TRANSLATOR %?ggg-——-

Figure 2. The Definition Process

The first step is to read in a list of characters representing the
program to be defined. An attempt is made to parse this character-list
according to the syntax of the written language. We use "attempt" here
because, throughout the definition, checks are made that the program
being defined is valid by the rules of the language. If the program
fails any one of these tests it is rejected and the definition process
stops at that point, leaving the meaning of the illegal program undefined.

Only a valid program has a defined meaning.

Parsing the program transforms it character-list representation into
a tree structure, the "concrete program,'" stored in memory. The next step

i8 to construct from this concrete program an internal form suitable for

interpretation, the "abstract program." The translator's parsing and

construction phases have many analogies with the phases of a compiler
that build the internal form of a program prior to the code generation
stage. The resuit is an abstract form of the original program where all
the syntactic devices required in the written form of the program have
been deleted and only those parts that are concerﬂed with its meaning
remain. During this translation phase, further validity checks are

made on the program. For example, there is a check that no illegal

combinations of data-types are present in expressions.

The final step in the definition process is the interpretation of
the abstract program. During this phase, the abstract machine behaves
very much like a real computer executing a program. For instance, part
of the machine-stare contains the values of the program's variables, while
another part keeps tract of the currént statement being executed. In
addition, the abstract machine reads and writes datasets. Tﬁe meaning of
the program is defined by the sequence of machine states generated as

the program is interpreted.

The existence and relationships of the machine-state, the three
forms of the program, and the datasets, as used in the definition process,

are illustrated in Figure 3, an expansion of Figure 2.

MACHINE-STATE ' MACHINE-STATE FACHINE-STATE MACNINE-STA TR
| ! |
ABSTRACT CONCRETE ABSTRACT ‘
c
A':gllumf gxmgm YACHINE PROGRAM) MACHINE ABSTRACT ﬂg . ABSTRACT

4 A PROGRAM PrOG svrror
Lttt . EA EXFCUTTON RETRE;ENTATION EXECUTION REPHESENTATION urnz.;mﬂon rizs

INPORMATION REPRESENTATION INFORMATION INPOKYATION

Figure 3. The Expanded Definition Process

10

3. The Abstract Machine's Data

All the data in the abstract machine are in the form of a tree.
In this section we define some general tree terminology and then use

these definitions to describe the tree-like data of the abstract machine.

3.1 Tree Termindlogy

In defining tree terminology, we refer to the examplé tree in

Figure 4.

Tigure 4. An exanple tree structure

Each of the points marked with a circled reference number ig a node

of the tree. Nodes (::) , <E{> s o e e s (::) are subnodes or components

11

of node @ . Nodes and @ are immediate subnodes of and are

immediately contained by node <::) . A node's immediate subnodes are

ordered from left-to-right and the meaning of the terms "first", "last",
"leftmost", "rightmost", and "follows" are applied intuitively. Some nodes,
for example, @ and @ , do not have any subnodes. These are the

terminal nodes of the tree.

Node @ is the root node of the tree. Each of the other nodes are subtree

nodes forming four immediate subtrees. Nodes @, @, @, and @ are the

root nodes of these subtrees and themselves contain subtrees, and so on. Same

subtrees are degenerate in that they oonsist of only one node, the root node.

A reference to the root node of a tree is a reference to the whole tree unless

otherwise stated.

Each node has a type associated with it. In Figure 3, for example, these

are "A", "B", . . . , "J". Inone tree there may be several distinct nodes of

the same type, for example nodes @ and are both of type "D".

Although not qsed in defining SAL, BASIS/1 uses additional tree
terminology to aid in defining PL/1's procedure calls, argument lists,

and data structures.

3.2. The Machine State

The machine-state is a tree structure that campletely represents the
state of the abstract machine at all stages in the definition process. There
are, of course, rules by which the tree is constructed just as there are rules
by which valid sentences of a language can be constructed. These are the
rules which comprise the syntax of the language. S‘ir:.ilarly, we can refer to

the rules for constructing the machine-state tree as the machine-state syntax.

These rules specify the types of nodes that may be connected together in

the tree.

12

Although there is just one tree throughout the definition, there are
two distinguishable subtrees of the machine-state that play major roles.
Hence, for convenience only, we isolate these subtrees and describe them

by three quasi-separate syntaxes.

During the translation from the character-list form of the program
to its abstract form, the concrete program is a subtree of the machine-
state. The syntax of the concrete program is defined by a separate set

of rules comprising the concrete syntax. The terminal nodes of the concrete

program are the characters of the written form of the program. Thus the
concrete-syntax defines the character-list representation of the set of

syntactically valid programs.

The abstract program is another separate subtree of the machine-state.
It is the end product of the translator and it is constructed in accordance

with the abstract-syntax. The terminal nodes of the abstract program are

not characters of the language being defined; rather, they are abstract

entities used for program interpretation.

3.3 The Metabrackets -

The three syntaxes are defined in Backus-Naur Form, BNF [B1], with a
few extensions as described in Section 3.4. To help distinguish the type
names used in the three syntaxes, characteristic metabrackets are used as

part of the name:

SYNTAX METABRACKETS EXAMPLE
Concrete K) 4 fprogram}
Abstract < > <{program>

Machine-state < > <operation>

13

The concrete syntax has the symbols and keywords of the programming
language as its terminal symbols. The other two syntaxes denote
terminal symbols by underlining the type name. For example, <fixed> and

<undefined» are respective terminal symbols of the abstract and machine-

state syntaxes.

3.4. 'The Definition of Trees

The rules of syntax are expressed as production rules in slightly

extended BENF. For example, consider the BNF production:

fexpressionp ::= {expression-two}

| fexpression} + {expression-two}

This production specifies that an fexpression} node may either have a
single subnode, an fexpression-two}, or it may have three subnodes, an

fexpression} followed by a "+" followed by an fexpression-twob.

The synbols "::=", and "|" are metasymbols; they are not part ofvthe
language being defined, but part ofr the definition mechanism. In addition
to these metasynbols of BNF, the synt;_ax rules in BASIS/1 also use "[", "]",
"{", and"}". These extra metasymbols are used as follows:

15 "I" and "]" enclose an optional syntactis expression. The production

rule for {expression* given above can be written equivalently as rule

HL16 in the concrete syntax of SAL:

HL16 fexpression} ::= [f{expression} +] fexpression-two}

2. "{" apd "}" enclose a syntactic expression, generally a set of

options from which one must be chosen. For example, also from the

14

concrete syntax of SAL:
HL15 {logical-expressionp ::= tidentifier} ,
| fexpressiont {= | ¥} fexpressionp

This production states that a flogical-expression} either has a single

tidentifierp immediate ocomponent or it has three immediate camponents,

two fexpressionp nodes separated by either an "=" or a "#" character.
Although not needed to define SAL, BASIS/1 uses an additional "permutation"
metasymbol to reduce the number of BNF productions needed to express ﬁhe
fact that PL/I's myriad of data attributes may be listed in any order in

data declaration statements.

1f we add the following productions to HL15 and HL16:

HL17 fexpression-twop ::= [kexpression-two} *] fexpression-one}
HL18 fexpression-one} - ::= {primitive—expression}

| - fexpression-one}

| (fKexpression})
HL19 {primitive—expression} ::= fidentifier}

| fconstant}

we can draw an example fram the set of trees of which fexpression} is the

root node.
{expre?sionP
{expn{s_sion} + {expr&ss:ion-two}
{expressi'on-wo} fexpression-onep
fexpression-one} fprimi tive-expressionp
fprimi tive-expression} fconstant}

fidentifier?

15

Because this tree does not have all its terminal nodes, it is called a

Er_t_g‘ 1 tree.

An alternative to this graphic representation of trees is

their description by "enumeration". The enumerated tree form of the above

partial tree is:

fexpressionp:
fexpression}:
fexpression-two}:
fexpression-oneb:
fprimi tive-expressionp:
fidentifier};;;;
+
Kexpression—-twop:
fexpression-onep: |
fprimitive~expressiond: %
fconstantp. |

The rules for describing trees by enumeration are:

1. the type of root node is listed. Optionally, this is followed

by a colon and a listing of
2. the immediate components of the root node. Each of these

components may itself be an enumerated tree.

An enumerated tree is terminated by

3. a semicolon. A string of semicolons at the end of an enumerated

tree may be replaced by a period.

16

If a particular node of an enumerated tree is to be referenced specifically,
the type name of the node can be followed by a cama and a local name for
the node. Thus, in the partial tree:
fexpressionp:
{expression}:
fexpression-two}:
fexpressiomoneb;;
+
fexpression-two}, rx:
fexpression-one}.

the name rx can be used to refer to the second {expression-two} node.

For clarity, enumerated trees are generally shown in an indented
form. However, the notation does not depend on this for unambiguous

representations of a tree.

Frequent use is made of sequences of one or more nodes of the same type.
For example, in the abstract program the statements of ‘the oconcrete program
are represented by a sequence of <executable-unit> subtrees. These are
collected together as immediate coméonents of an <executable-unit-1ist> node.
This notaticn is used wherever lists are required in the <machine-state>.
Similarly, in the concrete program, there is frequent use of nodes of the
same type separated by coma nodes. These are collected together as immediate

subnodes of a —camalist node. The f.ormv of the enumerated tree for a

{dec]aration—cmma] istd is:

kdeclaration-commal is th: {declaration-camalis th: {decl arationTconn\a1 istb:
fdeclaration. fdeclaration} :dec1 aration}
1994 s
¥declaration. fdeclaration}
1 9% 4
fdeclaration?.

and so on. The metabrackets around the commas are used to avoid conflict

with the notation of the enumerated tree.

17

3.5. Unique-names and Designators

Each node of the <machine-state» has a unique-name implicitly associated
with it. During the definition process each node, as it is created, is given
a unique-name that is different fram the unique—names_ of all previously created
nodes, whether or not these nodes still exist. These unique-names can be

visualized as the circled reference numbers on the nodes in Figure 4.

Some nodes are of type <designator®. A designator node contains a copy
of the unique-name of some other node and thus points to that node. Although
designator nodes can point to any type of node, generally, for clarity, they
point to one type of node only and have a type name that contains "-designator"
as a suffix. For exanple, a <declaration-designator> is a node that only
points to <declaration> nodes. In the abstract program a <variable-reference>
contains a <declaration-designator> that points to the <declaration> for the

variable being referenced. Figure 5 shows the way that this takes place in the

<program>. -
<program>

(deElaration-Hst) coxecutable-unit-1ist)
<executable~unit>
P < nt-state

<declaration) assignment-statement?

<identifiery <variable-description> <variable-reference> <expressiony
Ldeclaration-deosignatory>

L /)

Figure 5. A fragment of an abstract program with a 'designator

Designators and trees are such that it is possible to reference the nodes

that contain a designated node as well as the camponents of the designated node.

18

M trees are said to be equal if they differ only in the unique-names
of their nodes. A copy of a tree is constructed by creating a tree equal
to the given tree and then changing any designators in the newly created tree
that point to nodes in the given tree to point to the carresponding nodes

in the new tree.

4. THE ABSTRACT MACHINE OPERATIONS

The operations of the abstract machine are specified by algorithms expressed
in English prose. Although this makes the definition somewhat less formal,
each algorithm is presented in a étandard formét and is written using precisely
defined keywords and phrases, in effect a kind of programing language. A
machine operation algorithm has many characteristics of a program; it has
local variables that designate nodes on the «machine-states, it can
create‘temporary trees, and there are basic instructions for manipulating
trees and doing arithmetic. Operations may invoke one another, possibly
recursiﬁely, passing arguments and returning values. Internally, the

control schemata are the usual sequential, conditional, and iterative

forms.

In defining SAL we will use all of the abstract machine instructions

that are used in BASIS/1 to define PL/I.

19

4.1 The Execution of Operations

At any time during the abstract machine's execution, there is one
"active'" operation, i.e., the one that the abstract machine is currently
executing. The <operation» tree describing it is the rightmost element
of an <operation-list> in the <machine-state>, as described in the next
paragraph. FEach <operation> has a subtree containing a list of designators
pointing to its parameters, local variables with their current values,
locally constructed trees, and an indication of where in its algorithm it
is currently executing (i.e., a location counter). The invocation of an
operation causes its <operation> tree to be added to the right-hand end of
the <operation-list» and it thus becomes the active operation.\ When the
operation terminates, it and ény temporary trees it has created are>
deleted from the list and the operation that invoked it once again
- becomes the active operation, resuming at the point of suspension. In
BASIS/1, the exact structure of an <operation» is left unformalized and
unspecified since it is assumed that the workings of the operation can

be understood without lower level of detail.

The <machine-state» at the start of the definition process has a <control-
state®» component with an <operation-11519 containing a single operation
named "define-program”. This operation invokes other operations that build
the oconcrete program, translate it into the abstract program and then start
its interpretation. At this point, the situation is similar to that of an
operating system that has loaded a problem program and is starting its
execution. Oontrol is passed to the prablem program, often with a change of
hardware location-counter. In the abstract machine a <program-control?
component of the <machine-state» is created containing a second <operatiom-list®

and, while it exists, its rightmost element is the active operation. The

20

operation at the right-hand end of the <operation-list> in the <control-state®
is put into a state of suspended animation until the <program-control®» and
its <operation-list> are deleted from the <machine-state». That happens

when the interpretation of the abstract program terminates.

4,2, Operation Format

The following example is an operation of the abstract machine which
defines SAL. It is not expected that the reader will fully understand
the operation at this point. It is presented here to illustrate the

structural features common to all operations.

Operation: create-assignment-statement(cas)

where: cas is an Kassigrment-statement}p
result: an <assigrment-statement>

Step 1. Let id and cx be respectively the immediately contained fidentifier}
and fexpresion} of cas.
Step 2. Perfomm find-abstract-declaration(id) to obtain a <aeclaration-
designator>, dd. ;
Step 3. Perform create-expression(cx) to obtain an <expression>, ax.
Step 4.
Case 4.1. ax immediately contains a <variable-reference>, vr.
The <attribute> contained by the <declaration> designated by
dd must equal the <attribute> contained by the <declaration>
designated by the <declaratiom-designator> of vr.
Case 4.2. ax immediately contains a <constant>, c.
If ¢ contains an <integer-value» then the <declaration>
designated by dd must contain <fixed>, otherwise it must
contain <bit>.
Case 4.3. (Otherwise).
The <declaration> designated by dd must contain <fixed>.
Step 5. Return an
<assigrment-statement>:
<variable-reference>:
ad;
ax.

The written description of the operation consists of a heading and a

body. The heading always contains the word "Operat.ion" and the underlined

21

operation name. The remainder of the heading depends on the details of the
operation, whether it has parameters, and whether it returns a value. The
operation create-assigrment-statement has a single parameter with the local
name "cas". A parameter is a designator pointing at a node in the <machine-
state», possibly in the caller's local storage. Parameters are thus

passed by reference and it is possible to change the value of the tree

designated by the parameter.

The types of the nodes designated by the parameters are specified in ‘the
where-clause. In some operations there may be several alternative types for a
parameter, the particular one actually designated varying from inwvocation to
invocation. In our example, the parameter cas designates an {assigrment;
statement} node and thus, the whole tree of which it is the root node. An
operation may return a camplete tree, in which case the type of its root node
will be specified in the result-clause of the heading. The create-assignment-
statement operation returns a camplete tree with an <assignr_nent—statenent>

root node.

The body of an operation consists of either a sequence of Steps or a set
of mutually exclusive Cases, nubercd scquentially. Each Step or Case can
itself contain a nested sequence of Steps or a set of Cases. If so, the
numbering in the i'th Step or Case will be sequential from i.1. This nested
s£mcture continues to arbitrary depth. The Steps of an operation are executed
sequentially except when modified by a control instruction. Each Case is
preceded by a predicate whose truth value determines whether the body of the
Case is to be executed. There must always be one and only one Case whose
predicate is true when any set of Cases is executed. For brévity, the predicate

of the last Case may be "(Otherwise)" which is true if and only if all the

22

other Cases are false. This abbreviation is only used where it saves wntlng

out a lengthy negation of all the previous predicates.

4.3, Variables

In the body of the operation, local variables are used to désignate parts

of the ¢machine-state», locally constructed trees, and parameters.
_They may also be used to contain integer values. These lécal variables
are given names consisting of a few alphanumeric characters, usually of
mnemonic significanée. By convention, these names are distinct from
English words to avoid confusion with the text. Local variables may
be subscripted. For example, nt[i] is an element of a vector of local

variables nt, the value of the variable i determining a particular

element.

Both local variables and locally constructed trees exist only for
as long as the operaﬁion is on an <operatioﬁ—list>. As soon as the
entry is deleted from the list, the local variables and trees cease to
exist. However, a local tree may be returned as a value of an operation,

in which case, it is copied to. form a tree local to the caller.

4.4. Tree manipulation instructions

The let instruction makes a local variable designate an existing tree or
a newly created tree. For example, in the operation create-assigrment-statement:

Step 1. ILet id and cx be respectively the immediately contained
fidentifier} and fexpression} of cas.

The variable cas is a parameter of the operation and designates an fassigrment-

statement} node in the concrete nrogram. This node is defined by the Concrete

23

Syntax rule:
HL11. {assiqrm\ent-s{:atarent} ::= fidentifierp = ({expression}

This let instruction creates two local variables, id and cx, which respectively

designate the fidentifier} and fexpression} immediate components of the node
designated by cas. Both thesc trees existed before the let instruction was
executed. In the following let instruction:

Let dso be

<output-dataset>:
<dataset>:

<alpha>
- <anega?.
a tree is constructed and the local variable dso is made to designate it.

Another way to construct a tree is by ocopying trees designated by local variables.

For example:
let ids be
<input-dataset>:
ds
<4current-position®:
dg;;

Here, a tree with root node of tyme <input-dataset® is constructed and
one of its immediate components is a copy of the tree designated by the
local variable ds. Similarl.y, the new constructed tree contains a copy
of the tree designated by the @ local variable da. The variable ids

designates the entire newly constructed tree.

There is an implicit form of the let instruction in which the name
of a local variable is listed following some description of a root node

and a comma. For example, in the predicate of the case:

Case 1.1.2. cx immediately contains a {:constént*, cn. Tf the
predicate is true then the local variable cn is made to designate the

{;constant# node. This form of the let instruction can also be used in

24

enumerated trees.
The let instruction is also used to introduce a vector of local variables.

For example:

Let nt[i], i = 1,...,n be the ordered list of nodes which are the
immediate camponents of the fdelimiter} and fnon—-delimiter} nodes of t.

sets a vector of n designators nt. References to elements of this vector will

be subscripted with a local variable containing an integer value.

The replace instruction is used to substitute a specific tree for a

tree designated by a local variable. For examnle:
Replace the <basic-value® desiqnated by bvd by a copy of bv.

’I"ne replacement takes place at the node designated bv the local variable

and the unique name of the original node becomes the unique name of the

root of the replacement.

The append instruction attaches a tree as the rightmost element of a list.

By definition, there are no empty list nodes in the <machine-state». To avoid

special cases, the append instruction will construct the -list node if it

is appending an element to a nomr-existant list. For example:

Append an
<executable-unit>:

id

axs;
to the <executable-unit-list> of the <program>, .

Here, the append instruction causes a tree consisting of an <executabl e-unit>
with two immediate cawponents to be built and then added as the rightmost
component of the <executable-unit-list> immediately contained by the abstract

program. ‘The first time this instruction is executed, the <executable-unit-list>

node will have tn be created and connected to the <program> node.

25

The action of the remaining tree manipulation instructions, unlike those
described so far, depends on the syntax of the trees being manipulated.
The attach instruction constructs a tree hy joining a specific tree to a
designated node. To make the 1ink, the instruction may create the minimm

nutber of intervening nodes required by the syntax rules for the tree.

Far example, the tree for a fdeclaration} is defined by the rules:

;= tidentifiert |fattributeb]

HLS. fdeclaration}

HL6. fattribute} ::= FIXED | BIT

Suppose the local variable d designates a fdeclaration} that does not contain

an fattribute} and thus can be represented as:

fdeclarationy <= d

fidentifier}

Then. the result of executing the instruction
Attach FIXFD to d.

is to make the tree designated by d look like:

tdeclarationd <= d
b .
f{identifier} fattribute}
FIXFED

The delete instruction causes a designated tree to be deleted from its
containing tree. If the deleted tree was a mandatory component of its
‘immdiatdy containing node, then this node is also deleted aqd the process is
repeated until a legal tree is obtained. A1l deleted nodes are discarded and

cease to exist. For example, part of the <machine-state» is defined by the

26

rules:

M5. <interpretation-state> ::= [4program-state>] <datasets>
M6. 4program-state®» ::= <progran-control> <allocated-storage>
Fxecution of the instruction

Delete the <progran-control? from the <machine-state>.

removes the <program-control>. But, since it is a required companent of <program-
state>», the <program-state> node and its components are also deleted from the
<machine-state». The <program-state?> 1S only an optional node of the

<interpretation-state> and therefore the deletions stop at this point.

4.5. Control Instructions

The execution sequence of an operation's steps follows the order
in which they are written unless one of the control instructions is
executed. In the normal sequential flow of control, once the last
step of an operation has been executed the operation is terminated and
deleted from the <operation-list>, thus returning control to the operation

that invoked 1it.

Of the control instructions, the go to instruction is the simplest. Its
oxecution transfers control to a step in the active operation. For examle:

o to Step 1.

Control can be rcturned explicitly from an operation to the calling operation

either by cxecuting a terminate instruction or by executing a return instruction.

The terminate instruction is written:

Terminate this operation.

27

The return instruction not only returns control to the invoking operation
but also passes back a value. If the returned value is a local tree belonging
to the operation, the tree is copied to become a local tree of the calling
operation. Tor example:

Return
<logical-expression>:

<variable~-reference>:
dd.

sends the specified tree back to the caller where it will be designated by

a local variable.

Control is passed to another operation by invoking it with the perfom
instruction. For example, the instruction:

Perform create?logical -expression(cle) to obtain a <logical-
expression>, alx.

causes the create-logical-expression operation to be invoked. The local
variable cle strictly designates a tree and this designator is passed as

an argument. An <operation> for create-logical-expression becomes the
active operation. During this activation, the designator value Seing
passed as an argument is given a local name and is treated like a local
variable. The "obtain" part of the perform instruction is optional.

Where applied, it describes the typé of value to be returned and specifies
a local variable, in this case alx, to designate this returned value.

When control is returned to the calling operation, execution resumes

immediately following the perform instruction.

In some circumstances, usually after a program execution error, it
i3 an implementation decision whether an operation is to be performed.

In these cases, the phrase "optionally perform" is used. For example,

28

in the instruction

"If the magnitude of ir exceeds an implementation-defined maximum,
then let ir be an <integer-value» with an implementation-defined

value and optionally perform abnormal-termination."

if the computed value ir has a maximum greater than the implementation's
maximum allowable value, the impleméntation has the option of continuing

or terminating the program's execution.

The for ecach instruction svecifies that a sequence of instructiors is to
be executed once with each member of a set of objects. Tor examle:

For each <variable-reference>, vr, of the <variabhle~-reference~1ist>
of st, taken in left-to-right order, perform Steps 1.1 through 1.4.

Here, the perform instruction is used to cause the execution of a self-contained
group of substeps similarly to the way that it is used to cause the execution

of a complete operation. The Steps 1.1 through 1.4 will be executed once for
each elament of the <variable-reference-list>. Each time they are executed, the
Jocal variabie vr will designate the <variable-reference> currently being |
operated on. Unless an ordering is specified, as it is in this example, the

order in which the elements of the list are chosen for processing is arbitrary.

The if instruction, although strictly speaking not a contro! instruction
since it does not change the order of execution of Steps, does have some effect
on the execution of the insiructions in the Step. The if instruction

specifies that in the case that the stated condition is true, the instruction

29

list that follows the then is to be executed. For example:
If the rightmost immediate camponent of ul does not contain
{return-statement} then append
funitp:
texecutable—unitb:
Y¥exccutable-single-statement}:
freturm-statcment}d:
RETURN
£:%.
to ul.
Optionally, the if instruction can contain an otherwise part, in which case
the instructions that follow it are executed only if the stated condition is

false. Thus, for example, in the instruction:

If cd contains FIXED then attach <fixed> to ad, otherwise attach
<bit> to ad. ‘

if the condition "the node designated by od contains FIXED" is true, then
the node <fixed> will be attached to the node designated by ad. If the
condition is false, <bit> will be attacied. As in BASIS/1, we have no

conflict with the scope of an otherwise part since there are no nested

uses of the if instruction.

4.6 Validity Checking

In both the translator and the interpreter validity tests are
frequently applied to the program. - These are specified by the must and

the must not instructions. For example:

The <declaration> designated by dd must contain <fixed>.

or:
The <basic-value> designated by bvd must not contain <undefined».

In either case, if the condition is not satisfied the original source program

is in error and its meaning is undefined. The abstract machine stops in an

undefined state at this point. 71his is analagous to the situation in a real

30

machine for some types of program error.

4.7 Dynamic Macfo

In both translator and interpreter operations it often happens
that one of a set of very similar cases is chosen depending on the

type of node being considered. This could, for example, be written as:

Step 2.
Case 2.1. cxs is an fif-statementp.
Perform create—if-statement(cxs) to obtain an <1f-statenent),
Case 2.2. cxs is an fassignment-statementp.
Perform creatc-assigrment-statement(cxs) to obtain an
<assignment-statement>, axs.

.

Case 2.6. cxs is a {write-statement}.
Perform create-write-statament(cxs) to obtain a write-
statement>, axs.

To avoid this rather lengthy case enumeration, a so-called "dynamic

3

macro" instruction is used and the above step is written as follows:

Step 2. Perform create-xxx—statement (cxs) to obtain an
$xxx-statement>, axs, where ¥xxx-statement?} is
the type of cxs.

Thus the use of "xxx'" is analogous to the character string matching

and substitution commonly used in macro assembler languages.

31

5. INFORMAL DESCRIPTION OF SAL

A definition of SAL, a very small language of no practical value, will
be used to demonstrate the BASIS/1 method of language definition. The
following is an example of a program written in SAL:

DECLARE I FIXED,
J,
B BIT;
I=2;
TOP: RIEAD INTO(A, B);
IFA £1
THEN J = T,
FLST J = A ¥ I;
WRITE FROM(J) ;
I =1+ 3;
IF R
THIEN GO TO TOP;
RETURM ;
IND;

Won

A program in SAL is a list of statements terminated by an end-statement.
Apart from the end-statement, there are assigrment, conditional, declaration,
go-to, read, return, and write statements. Like PL/I, there are no reserved
words in the language. The distinction between keywords and identifiers is

made solely on cantext.

5.1. Variables

Variables may be declarcd in a non-executable declare statement that can
~occur anywhere in the program. One of the two attributes, FIXED or BIT, may be
given to a variable. Fixed variables take positive or negative integer

values and bit variables take values 0 or 1, meaning false or true respectively.

If a variable is not declared, an implicit declaration for it is cons tructed.

In the above exarple, therc is no declaration for the variable A and it will

be implicitly declared. If a variable is not given an attribute in a declaration,
like J in the written declaration and A in the constructed declaration, it will

receive the attribute FIXFD by default. Thus both A and J will be FIXED variables.

32

5.2. Assignment Statements and Expressicns

The execution of an assignment statement causes the evaluation of an
e xXpression, producing either a fixed or bit value. This value is then assigned -
to the variable referenced on the left-hand side of thé equals symbol. The
type of the value must match the attribute of the variable to which it is
assigned, i.e., there is no type conversion. An expression may be a constant,
as in I = 2;, a reference to a variable, as in J = I;, a prefix expression,
an infix expression, as in J = A * I;, or a parenthesized expression. The
prefix and infix expressions are restricted to operands that have integer
values. The prefix expression uses the negation operation and the infix
expression offers a choice of addition and multiplication. These operatjbns
have the normal precedence and parentheses may be used to change it in the
usual way. In the event of overflow, the effect is implementation defined. It
is an implementation decision whether the program is abnormally terminated or
an implementation—-defined value is produced. Canstants can be either decimal

representations of integers or bit values represented by "OB" and "1B".

5.3 Conditional Statements

The oconditional statement is of a conventional IF-THEN-optional-ELSE

form. The then and else parts may only be single statements and may not be
another conditional. The logical expression may be either a reference to a

bit variable or a comparison between the integer values of two expressions.

Both the equals and not-equals comparisons are available.

5.4. Labels

Any executable statement, except the then and the else parts of a

conditional statement may have a label. In the exawple, TOP: is a statement

"~ label. The go-to statement causes. control to be transferred unconditionally to

the named statement.

33

5.5. Input and Output
The input and output statements interact with a pair of files. The

input file, cénsisting of a list of integer and bit values, is read
sequentially by the read-statement. In executing a read-statement
values from the input file are assigned to the variables in the read-
statement's list, in left-to-right order. The type of the value read
must match the type of the variable to which it is assigned. It is an
error leading to abnormal termination for a program to read beyond

the end of the input file. The output file is initially empty and the

write-statement appends integer and bit values to it.

5.6, The Return Statement

Execution of the return-statement causes mormal termination of the

program. If there is no return statement immediately before the end-stdteﬁent,

one is assumed.

6. The Running Example

Having described the BASIS/1 definition mechanism and informally
described SAL, the latter part of this paper will present a formal
definition of SAL in terms of the mechanism. To illustrate the workings
of the definitional process and the trees that are constructed by the

Translator and Interpreter, we make use of an example SAL program, the

so-called "running example." The running example is:

DECLARE Y BIT,
Z;

READ INTO (Y, 2);

IF Y THEN X = 2*Z2 + 1;

» EISE X = 0;

WRITE FROM (X);

END;

34

Hence, the rest of the paper will comsist of the following parts:

(1) 1Initialization of the Abstract Machine.

(2) Definition of the parser operations for SAL.

(3) Parsing the running example to produce the concrete program.
(4) Definition of the constructor operations for SAL.

(5) Construction of the running example's abstract program.

(6) Definition of the interpreter operations for SAL.

(7) Interpretation of the running example.

The definitions of the three syntaxes for SAL will be interspersed in

appropriate places.

7. INITIALIZATION OF THE ABSTRACT MACHINE

In this section we describe the initialization of the abstract machine
which takes place at the beginning of the definition process. First we give
the syntaic rules which define the <machine-state» during the translation
of the character string representation of the SAL program into its abstract
program equivalent. We then give the alaorithms that control the definition

process.

35

7.1. State of the Abstract Machine During Translation

Ml. <machine-state> ::= <program> <control-state>

[<translation-state> | <interpretation-state>)
M2, <control-state>» ::= <operation-1ist>
M3. <translation-state> ::= [fprogram}]
M4, <operation> ::=

The exact structure of <operation® is left unformalized and unspecified.

During translation, the “4ach ine-State® contains a 4translation-state>»

camponent.

The translation phase consistS$ first of reading and parsing the source
program to form the fprogram} component of the 4translation-state>. The

fprogramp is then translated into its abstract form which is attached to the

<program> component of the <machine-state>.

7.2 Machine Initialization

To begin the definition process the abstract machine is given the following
initial <machine-state> trece
<machine-state>:

<program>
<control-state?:

<operation-list>:
<operation® for define-program ;;
4translation-state>.
At this point, since the <operation» for define-program is the rightmost
operation of the <operation-1ist», define-program becomes the active operation

and the abstract machine starts to execute it.

36

7.3. The Define-program Operation

This is the top-level algorithm that controls the whole definition
process.

Operation: define-program

Step 1. Perform translation-parse-phase.
Step 2. Perform translation-construction-phase.
Step 3. Perform interpretation-phase.

The translation-parse-phase operation reads and parses the source program,
the translation-construction-phase operation translates the concrete program

into its abstract form, and the interpretation-phase operation interprets

the abstract program.

7.4. The Running Fxample

The execution of Step 1 in the define-program operation changes the
<machine-state» tree to that shown in Figure 6. At this point, translation-

parse-phase is the active operation.

<nachine-state»

o osor A e (rmOm A Saveiwmy o T@es e e s —

<program> <oontrol-state» <translation-state>»

<operation-list?

<operation? <oneration®
for for
define-program translation-parse-phase

Figure 6. <machine-state®» on executing Step 1 of
define-program.

37

8. TIE OMNCRETE SY'TAX

The concrete syntax of SAL specifies the written form of the language
and also the concrete tree. The concrete syntax is divided into two parts, a
Jor-level syntax and a high-level syntax. Tie lov~level syntax classifies
sequences of characters fram the written form of the nrogram, the "text", into
non-delimi ters (which are words and constants) separated by delimiters, The
high=level syntax defines the way that a program is built fram de'limi.teré and
non-delimiters. The separation of the concrete syntax into two parts is done
to facilitate the context-sensitive removal of blanks and the separation of
words into identifiers and keywords. Because SAL does not have reserved
words, keywords must be distinguished from identifiers purely on the basis

of context.

8.1 The Low—-level Syntax

Syntax for text

LL1. ftexty ::= [fdelimiter-listd] ¥delimiter-pair-1istp
LL2. fdelimiter-pair} ::= {non-delimiter} fdelimiter-1list}
L3. fkdelimitery ::= + | * | =1 =11 1)1, ;118

Note: "B" denotes a blank.

LL4. fnon-delimiterp ::= <{identifier}
[<

constant}

Syntax for identifiers and constants

= {letter}
| fidentifierp ({fletterd; | fdigitd)

1L5. f{identifier} ::
LL6. fletterp ::= A|IBICIDIE|IFIGIHIIIJIKILIMIN
| olPlOIRIS|ITIUIVIWIXI|Y]| 2

LL7. {digit;}::=0|1|2|3|4|SI6|7|8I9

38

LL8. fconstantp ::= § fixed—constant}p
| f{bit-constant}

LL9. f(fixed-constantp ::= fdigit-1ist}

1110. {bit-constant} ::= {0 | 1}B

Syntax for characters

The input to the definition process is a fcharacter-1ist}. There are 47
characters in the SAL character set. Each character of the {character—list}
that represents the program being defined belongs to one of three groups:
digits, letters, and delimiters.
tdigitd

| fletterd | g
| %delimiter}

LL1l. fcharacterp ::

8.2. The High-level Syntax

~The goal of the high-level syntax is to classify sequences of delimiters

and non-delimiters into units which correspond to SAL statements.

Syntax for program

HL1. f{programp ::= funit-list} fend-statement}

declare-statement}

HL2. funitdp ::= ¢
| fexecutable—unit}

HL3. {end-statementd ::= IND ;

syntax for declarations

HL4. f{declare-statcment} ::= DECLARE fdeclaration-commalist} ;
HL5. {declarationp ::= f{identifier} [tattribute}]

FIXisD

HL6. fattributep ::=
| BIT

Syntax for exccutable-units

HL7. fexecutable-unitdp ::= [{statement-nane}]
{¢if-statementp | fexecutable-single-statement}}

39

HL8. {statement-name} ::= fidentifier} :
HL9. {if-statement} ::= IF {logical-expressionp

THEN {executable-single-statement}
[ELSE fexecutable-single~statement}]

Syntax for single-statements

Kassignment-statement}
¥goto-statement}

HL10. f{executable-single-statement} ::=
|
| fread-statement}
|
I

freturn-statement} :
fwrite-statement} N

HL1l. fassigmment-statement} ::= fidentifier}, K = {expression ;
HL12. f{goto-statement} ::= GOTO f{identifier} ;

HL13. {read-statement} ::= READ INTO (f{identifier-commalist}) ;.
HL14. {return-statementp ::= RETURN ;

HL15. f{write-statement} ::= WRITE FROM (f{identifier-commalist}) ;

Syntax for expressions

HL16. {1ogica1-expression* ::= fidentifier}

| fexpressiont {= | %} {expression}
HL17. fexpressionp ::= [{express;on} +] fexpression-two}

HL18. {expression-twop ::= [Kexpression-two} *] {expression-one}
fprimi tive-expressionp

- {expression-one}
(fexpression})

HL19. fexpression-one} ::

HL20. f{primitive-expression ::= {identifier}
| foconstant}

9, THE TRANSLATOR (PARSE PHASE)

The function of the parse phase of the translator is to take the character
list representation of the SAL program and generate a corresponding concrete
program. The parsing is performed in two stages corresponding to the two

levels of the concrete syntax.

40

9.1 The Operations

Operation: translation-parse-phase

Obtain from a source outside this definition a sequence of characters
constructed in the form of a fcharacter-listp, cl.

Step 2. Perform parse(cl) to cbtain a fprogramp, cp.

Step 3. Attach cp to the <translation-state>.

Step 1.

Operation: = parse(cl)
where: cl is a fcharacter-list}

resul t: a fprogram?

Step 1. Perform low-level-parse(cl) to obtain a f{text}, .
Step 2. Perform high-level-parse (+x) to obtain a {programp, cp.

Step 3. Return cp.

Operation: low-level-parse(cl)

where: cl is a fcharacter-list}

result: a ftext}d

There must exist one and only one tree, tx, with respect to the Tow=-
level syntax for ftext}, such that the terminal nodes of tx, taken
in left-to-right order, form a ¥character-list} equal to cl.

Step 2. Return tx.

Step 1.

A keyword is an f{identifier} which maps into a type specified in the high-level
syntax by explicit spelling without any metabrackets.

The following is a production for a type that is used solely in the following
operation and is thus specified here rather than in the concrete syntax:

fdelimiter-or-non—-delimiter} ::= {delimiter}
| {non-delimiter?}

Operation: high-level-parse (tx)

where: tx is a Ktextd

result: a {programp

Let t be a {delimiter—-or-non-delimiter-1ist} which contains a copy
of the fdelimiter$ and fnon-delimiter$ components of tx in exactly

the same order.

Step 1.

41

Step 2. Delete from t anv fdelimiter} containing a "B". This must ot cause
t to be deleted.
Step 3. Let nt[i], i = 1,...,n be the ordered list of nodes which are the
immediate components of the fdelimiter$ and fnon-delimiter} nodes of t,
Step 4. There must exist one and only one tree, ht which is a camplete tree
with respect to the high-level syntax for {program} such that ht
ocontains terminal nodes nht[i] i=1,...n and there is a one-to-one
correspondence between nt[l] and nht[i] as specified by Cases 4.1
through 4.3.
Case 4.1. nht[i] is a keyword.
The node nt[i] must be an {identifier} containing the same
terminals as the characters appearing in nht[i].
Case 4.2. nht[i] is an fidentifier} ar fconstant}. ,
The nodes nt[i] and nht[i] must be of the same type. Replace
nht[i] by nt[i].
Case 4.3. nht[i] is a non-bracketed type other than a keyword.
nt[i] and nht[i] must be equal.
Step 5. Return ht.

9.2 Application to the Running Example | ‘

The Parse Phase of the Translator is illustrated, first by taking part
of the character representation of the Running Example through the low-level
parse and then showing the build up of the entire program. Figure 7 shows
the situation at Step 1 of translation-parse-phase. The section of the
fcharacter-1ist}, c1 that corresponds to:

IF Y THEN X = 2*Z + 1;
is shown with each character classified as a fletter}, fdigitp, or fdel imi ter}

according to the syntax for characters LL11.

f{character-listd

- - T
kC[) tfl‘) ff:‘) 7(!) FCP ECH §CP KCH P KCP 0P {CP KCP t?) fCF {CH KCP K?) fCch £C} CC) {C}
| {
h")n:)m{'l) uls)vl) fr.} I;)n'} r/l\) ﬂlkclﬂt&f/l»trl)hle\)tr')tf){?)ii»{}»f/l‘)
| |
ir)'ayh'rnﬁnnxvsyizﬁzﬁ+)s1;

{C} represents fcharacterd, (.} represents fletter}, (D} represents fdigit},
and {4} represents fdelimiterd.

A broken connecting line indicates the omission of one ar more nades.

Figure 7. Part of the {character-list} representation of the
Running Example.

The result of applying the operation low-level-parse to this fcharacter-

42

list} is to obtain the {text} tree which consists of a fdelimiter-pair-
list} as shown in Figure 8 The section of {text} that is shown there
corresponds to the same section of the fcharacter-list} that was shown

in Figure 7.

The operation high~level-parse constructs a {delimiter-or-non-
delimiter-1ist} that matches the fdelimiter} and fnan-delimiter} components
of the {textp. The section of the {delimiter-or-non-delimiter-list} that
is derived from the part of ftext} shown in Figure 8 is shown in Figure Ja.

In order to save space, the trees for fidentifier} and fconstant} are
represented by their root and terminal nodes only. The next step is to
remove the blanks fram the {delimiter-or-non-delimiter-list}. The result of
this is shown in Figure 9b. The correspondence between elements of the vector

nt of Step 3 and nodes of the {delimiter-or-non-delimiter-listp is also shown.

The high-level-parse continues with the construction of a tree according
to the high-level syntax. Step 4 constructs this tree with a fprogramp root
node, designated by the local variable ht. Its terminal nodes are either
{identifierp, or Kconstant} nodes or else delimiters. These terminal nodes
must match in left-to-right order the nodes of the fdelimiter-or-non-delimiter-
listp. Figure 10shows the section of the {program} tree ht that corresponds
to the section of the {delimiter-or-non-delimiter-list} of Figure 9b. The
elements of the vector nht of Step 4 that designate nodes in the figure are

also shown.

It is at this point that the distinction is made between keywords and
program identifiers and the specific details for each (identifier} and

foonstant} are filled in. This results in the {program} tree section shown

43

9|dwex3j buiuuny ay3} jo uoljejuasaudaa 43xn} aul Jo j4ed °8 aanbi4

T 4
| |
ﬁ«m_vﬁvu . 316104
| | |
{$3ISTI-3 161D} z {3sT|-310TP}
| | |
¢ {IUPISUCO-POXTIY H + a §I17301% » {3UR3 SUCO-PIXTI}
_ _ _ _ | . _
FEC S dE o) {Iueasucoy ﬁsa.,__ﬁﬁ faﬁmﬂm& ﬁ.nn..r.__ﬂﬁ {TOTITIUTY 433 T (% s sy
| |
ﬁﬂ~L§~8M taugm%&o& ﬁmﬁaawg..ﬁ _

4I7ed-T3 T3 4TTec-93 TurT{ 23

_. : Auuuvﬁ_ﬂevﬁau {3IST(=ToI TSP} ¢ To3 Twr | 9p-uauy

-— - - 1) 1 tﬁa..mu%u_:mﬁ
M
_
H {153391%
| |
a tuwumn {TOT;TAURDTY u_
X N *Hﬂ_uwﬁ {IOT3TIUSPTY x z (e Ly
| I _
.~n A {10391} % hﬁmuwﬂ ¢T3 TRUPTY 2 (3L q P v_wﬁ f.ddﬂ—..dﬂd
_ |] _ I
Cdﬁ.,mn_mﬂ tmuﬂwa (E 2] A.;duﬁ_ﬁm& {®TITIUSPTY ﬁuuu_rﬁmﬂ {PIITIUET 4T3 TIT 1903 {PTIRWRTS ﬁB?A 1=t {IOTITRUETTS
‘ _ _ _ |
ﬁmﬁludmﬁ&—mﬂ ﬁﬂuén"mv.co..a ﬁmZL.m_an_mE {ITBTLT[OP-UOU} {3IST{~TS3TWI{SPF ¢TI0 LT | op-uosy ﬁw:l,.ﬂdh_mﬂ *Hﬁaa_ﬁm?.cn.u
r|—|L rln_.l_ [|
t..ﬂﬂ-.ﬂumuﬁ,mﬂ wh&:ﬁwaﬁpﬁu | .ﬁnﬂﬁ..u?,:m o

T -

43IST | =ITec~ 1T} TWT | 3D}

$3%ny

44

*SyUR|Q 4O [PAOWSJ 43}ye ©g 34nbLy
UL UMOYS 43ST|-TSFTUIT me..:eluouumpdﬁpmg 3yl 40 UOL3D3S 3yl °*G6 3u4nbL4

-Sepou 9IQW IO O FO UCTSSTUD S SI3edTpuT auT| HUTIOdUUCO U0 Y

-{aueysucoy sjuesaadax ¢3suo} pue 1¢19T3TAUEpTy Suesaadal {pT}

* {zon TuIT (Sp-ucuy SIUSSIIdRT {puy ¢ {TIITUM | SP-UCU-IO-TITUIT |3P} s3uUesa1daI {pucpy

[se]au [veJau [ee]u [ez]au {1e]au foz]au [61]3¢ [81]3u {L1]3u f91]3u [sT]u
1 Z 4 X X
I I | |
| 1 _ [}
1 | |
: {3Iswy P13 n_. {Iswy = GJ %a 4ot
| 1] | |
ﬁ_ﬁ {ouy Am_u _ G—a 4903 {put ﬁa‘u Jv 6& ﬁ_n 4ouy
%ﬁ_.a ¢pucey %;,n_é A.JQE {pu T $puop} ﬁn»ﬂ G‘.MS A Gcﬂﬂ Gcﬂa *Eﬂ—i
{357 |- T3 TUIT | Sp-UCI~TO-123 TT |30
*3|dwex3 buiuuny 3y3 40
uoL3 PIUaS3UdaL ¢IAST|-TSITUT |SP-UOU-IO-TIS3TWT |30} 83Ul 40 JJBd *pgaanbL4
T Z 4 b S I
| | | { i i 1
| | | \ I | : |
T _ | _ | 1] . n , | _ _ _
ﬁ_a Ju Q‘u Amﬂ ;mﬂ G_; ﬁmﬂ_u G_a ﬁm_u Eﬂ Awﬂ ﬁa‘a Eﬂ 8“: ﬁﬂ 9_~ E_u 6—;
Gﬁ_ﬁ »En_ﬂ %CM_S *Eh_é A_EA_Q %cﬂﬁ AEA_UE. %cﬂu %cn_é %;ﬂﬂ Gcﬂms AJH Aux_ﬁ ﬁn_é ~Jn¥ 883 za% F
. T _—

43ST | ~T93 TUIT | Sp-UCI-TO-T53 TuTT | P}

45

_ *qg 9J4nbL4 uL umoys
{3ST | -T53 TWIT | SP-UOU-TO-ISFTWT | 3P} 39y S3aydjew 3 eyl 3843 quexbaxdy ay3 Jjo jued a3yl 0T a4nbLj

[sz]uu [v2]yu [ezhyu [zz)aqu [tz]3uu [oz3uu [6TT3uu [81]3uu [LT1]Ryu [91]3wu [sT]aw

LU VR N T N T N R VW N
! {3ueysucoy + FESIFlis 35} * {3unsucoy = {TIRUEPTY NEHL 4T9TITIUSPTY s
A:o.ﬂmmw.u&nm._lm>ﬁguau
{quorssazdxs-anTy Turtady {suo-ucTssaxdxay
{UOTSSOIhE-aATI TWT.Id Y Amconcoﬂ__wmwax& Aoﬁncoﬂ_m%ﬁ&au
{auo-uotssaidxoy . {om-uorssaxdxey
{omy Luo..n_wmmyuauﬁu 4uot mm_ﬂnax.m»
{uotssaadxay

[

{Iususyeys-jusuubissey

{Iusnes-o| buts-o | qeanoaxoy JuoTssaIdxe- | eoTho| 3

I]
I

fuREREIS-3T3

43 TUn -5 | qEInoexe}

mmy

{Fusus EIs—puTy , 4IsT|-aTuny

L |

46

in Figure 11 This is done by the three cases of Step 4. Case 4.1 applies
where an eleament of nht designates a keyword. For example nht[15] designates the
keyword IF and nt[15] designates an fidentifierp containing IF. Case 4.2

applies where elements of nht designate fidentifier} and foonstant} nodes.

For example, nht[18] designates an tidentifier} and nht[20] designates a
fconstant}. For these nodes, the fprogram} tree is completed by copying

the details fram the {:delimiter-or-mn-delimiter-list}, in these two cases,
copying the sybtrees of the nodes d&signafed by nt[18] and nt[20] respectively.
Case 4.3 ensures a match between delimiters, for example nht[22] and nt[22]

poth designate an asterisk.

!

The f{programp tree shown in Figure 11 is a section of the complete concrete
program of the running example. Once it has been constructed, the fprogram}

tree is attached to the <translation-state» as indicated in Figure 12.

10. ‘THE ABSTRACT SYNTAX

The abstract syntax deliberately bears a strong resemblance to the
corresponding parts of the concrete syntax. The relationship between these
parts is intended to be intuitively obvious. The main difference is that
those parts of the concrete syntax whose only function is in the written form

of the program have been anitted in the abstract syntax.

Syntax for programs

Al. <program> ::= [<declaration-1ist>] [<executable-unit-1ist>]

Syntax for declarations

A2. <declaration> ::= <identifier> <attribute>

A3. <attribute> ::= <fixed> | <bit>

47

°qg 34nbL4 UL UMOYS ¢3ST|-I] TWT | SpP-UoU

~I0-T93 TWIT 9P} 3yl jo jued ay3 buirydjew 3343 quexboxdy pajajdwod jo uol3}dag *I1 94nbi4

T
ﬁ«__ﬁ
.
1 Q8713 16TPY
ﬁn_ma H ﬁaﬂﬂnm.@aa
| | |
{38713 167PY 1333214 {3uesucoy
_
Lells-) Eon_agﬂ 4IoT3ITIUSPTY {uorssaadxo-oaTy Twyady
ﬁ:ﬁ_ce“ Esm&uea_.mﬁ?ﬁ& 4auo-uoTSs saxdxay
Em.mwnxm_.&ﬁéﬁ& ﬁﬁo&oﬂ__wmﬂ&n& . Bﬁ&oﬂ__mw&e@
_
{auo-uotssaxdxay hoﬁncoa._mmunx.& X
|
AQDLBﬂ_m soadxey 3 *co.ﬂu&u&ﬂu AJuw L A
.P ESM_ﬂt&ﬁ] M *bﬂ_ﬁﬁun tﬂuhma
ﬁ:ﬂBEmn_ucmEEmm& ﬁmuﬂ_qﬁn
aucsﬂm&ﬁJ_ﬁbﬁﬁgu ZN_E. As.mmmuhmx__wlﬂ..nmoz
T ﬁcwﬁnwu S-3T%)
Hrun-s ,ﬂwsaeﬂ
t aa = ,._d&
L7 e
HusunRIs-pusy 435T 13 Tuny

I

quebazdy

48

*9(dwex3 buiuuny 3yj 404 3343 quexboxdy |erjaed e HULULRIUOD €SREIS-UTUORD- BY)

7T 24nb}4

ey g ciel

fHuasn s uauubrssey JHuaseys-quanbrssey}
3gﬁm&—wﬂmb—nﬂ§u mm_um fHuausyeys-2| uts=a| qeanoaxs} vmwa. *cﬂm@%_mlpﬂoﬂmo (5 .m_H
ﬁcﬂ_wuﬂ*um -IT} _N ﬁmm M
{({IST(PUO-IBTITRUSCTY) WA dLTEM ¢ (43IST|emoo-ISTITIUSPTY) OINI J¥d 423T3IT3UIPTY {aanqrnie} {ISTITIUSPTY
L [1 (I | T | SR “ { J
»ucwﬁuumuﬁ TImy Felic iz l-st-Fre -chs) {uOoT3RIE | DD} ! {Juor3ere |o9p}
~ | w |
43U Py s-o | buTs—o| qesnoexa} {IuauEq e3s -9 BuTs-s| qeanoaxey H {3 ST | BumpO-UoTIeIR | O9p}
_ _ | 1 T |
HTun-s _.A_ﬁuamvﬂu {3 TUN-9 | qe3noaxa} {HTUn-e E_musomoﬂu {3IUSUEq E} S-aXe |O3p}
: €. c§ ﬁﬂ.._csu ﬁa,._hﬁ ﬁﬂwﬁa a md:u
Unﬁﬁumﬁmnmﬁmv ﬁm..:.mqﬂ.c:u
|
quexboady
A.muBm.:o—ﬂﬂmuBuuv tﬁﬁmlwoﬁcoov Aﬁmnm_,o..av

49

Syntax for executable-units

A4, <executable-unit> ::= [<statement-name>]
{<if-statement> | <single-statement>)

A5. <statement-name> ::= <identifier>

Syntax for if-statements

N6. <if-statement> ::= <logical-expression> <then—unit> [<else-unit>]
A7. <then—unit> ::= <single-statoment>

A8, <else-unit> ::= <single-statement>

Syntax for single-statements

A9. <single-statement> ::= <assignment-statement>
| <goto~-statement>

| <read-statement>

| <return-statement>

I

<wriite-statement>

Al0. <assignment-statement> ::= <variable-reference> <expression>

All. <goto-statement> ::= <executable-unit-designator>
| <identifier> A

Al2. <read-statement> ::= <variable-reference-list>

Al3. <write-statement> ::= <variable-reference-list>

Syntax for expressions

Al4. <logical-expression> ::= <expression> ({<eq> | <ne>} <expression>
| <variable-reference>
Al5. <expression> ::= <variable-reference>
| <constant>
| <infix-expression>
I

<prefix-expression>
Al6. <infix-expression> ::= <expression> {<add> | <mltiply>} <expression>

Al7, <prefix-expression> ::= <dminus> <expression>

Syntax for references

Al8. <variable-reference> ::= <declaration-designator>

Al9. <identifier> ::=
¢identifier> is defined as a fsymbol-listd corresponding to the sequence of

characters in {identifierb.

Syntax for constants

A20. <constant> ::= <integer-value?
| <bit-value>

An <integer-value> is a <machine-state® type, defined in Section 12, rule M13,
that contains a single element of the set of integers. A <bit-value> is

defined in rule M12 and contains one of the values <true> or <false>.

11. THE TRANSLATOR (CONSTRUCTION PHASE)

The portion of the definition algorithm described in this section first
expands the concrete tree by applving the defaults and then constructs the abstract
program component of the <machine-state». During the construction, checks

are made for context dependent errors.

Operation: transia tion-constructionrphase

Step 1. Perform comp leto-concre te-progran.,

Step 2. Perform val idato—oonerete—deciarations.

Step 3. Perform croate-prograi.

Step 4. Dbelete the <transl ation-state>» from the <machine-state?.

11.1 Expanding the Concrete Tree

The operations of this section add components to the fprogram} corresponding

to implicit declarations, attribute defaults and the terminal return statement.

51

Operation: complete-concrete-program

Step 1. Perfom impl icit-declaration.
Step 2. Perfom attribute-default.
Step 3. Let ul be the funit-1ist} of the fprogramp. If the right-most
{executable-unit$ component of ul does not immediately contain
fexecutabl e-single-statement}:
fretum-statement};
then append to ul
funit}:
fexecutable-unitp:
texecutable-single-statement}:
{return-statement}
RETURN

{:b.

0y

Operation: impl icit-declaration

Step 1. Let ul be the funit-list} of the fprogramp.
Step 2. For each fidentifier}, id, contained in an fexecutable-unit} of ul,
perform Step 2.1. o
Step 2.1. If id is not contaired in a {statement-name} or {goto-statement}
and if there is mo fdeclare-statement} that contains id then '
attach to ul
{declare-statementb:
DECLARE
{declaration-ocamalisth:
fdeclaration}:
id i3

£:b.

Operation: attribute—defaults

Step 1. Let ul be the funit-1ist} of the {program} .
Step 2. For each fdeclarationp, d contained in ul, perform Step 2.1.
Step 2.1. If d does not contain an {attribute} then attach
FIXTD to d.

11.2 Analyzing Declarations

Te operation in this section chocks that no identitier is declared more:
than once.

Operation: validate—concre te—declarations

Step 1. The {programp must not contain two or more fdeclaration} nodes
whose fidentificrp components are equal.

Step 2. The fprogramp must not oontain a fdeclaration} that has an
fidentifier} that is equal to an fidentifier} contained in a
fstatement-nameb.

h2

11.3 Building the Abstract Tree

The operations of this section construct and attach to the abstract
<program> an abstract <executable-unit> or <declaration-unit> corresponding
to each <unit>. Declarations are translated before executable-units to
facilitate the building of designator nodes. Since a <goto—statemént> may
contain a forward reference, the final operation is to resolve the statement-
name references in the <goto-statement> and replace them by <executable-unit-

designator>s.

Operation: create—program

Step 1. Let vl be the funit-1isty contained in the ¥programp.

Step 2. For each tdeclarationd, <, contained in ul, perform create-
abstract-declaration(d) .

Step 3. For each { executable —wiitd, cu, contained in ul, taken in left-
to~right order, perform construct-abstract-statement(e u) .

Step 4. Perform complete~gotos.

Operations .or declain

(RS SN

Operation: creato-anair. Wi e

arationfcd)

whores b s o Boleciaro Lionp

Step 1. Tet cid be the £l ntifiork of ol. Perform create-identifier(cd) to
obtain an <identifier>, id.
Step 2. [f ol contains PIKED then et atr 1 <fixed>, otherwise let atr be <bit>.
Step 3. Append a . - -
<declavation>:
id
<attributed:
atr.
to the <nrogramn’.,

53

Operations for executable units

Operation: oonstruct-abstract-statement(ce)

where: ce is an {executable-unit}p

Step 1. If ce immediately contains an fexecutable-single-statement}, ess,
then let cxs be the immediate camponent of ess, otherwise let cxs
be the immediately contained fif-statement} of ce.

Step 2. Perform create-xoc-statement (cxs) to obtain an <xxx-statement>, axs,

. where cxs is an foo-statementb.
Step 3. Let eu be an <executabie-unit>. Attach axs to eu.
Step 4. If ce contains a {statement-name} then perform Steps 4.1 and 4.2.
Step 4.1. Let cid be the fidentifier} immediately contained by the
fstatement-name} of ce. Perform create-identifier (cid)
to obtain an <identifier>, id.
Step 4.2. Attach id to eu. '
Step 5. Append eu to the <program>.

Operation: create—if-statement (cif)

where: cif is an fif-statementp
result: an <if-statcment>

Step 1. let cle be the flogical-expressiond contained in cif. Perform
create-logical-expression(cle) to cbtain a <1 ogical-expression>,
alx.

Step 2. Let ess be the leftmost fexecutable-single-statement} contained in
cif. Iet cxs be the {xxx-statement} contained in ess. Perform
create-xxx—statement(cxs) to obtain an <xoe-statement>, axs.

Step 3. let aif be

<if-statement>:
alx
<then-unit>:
<single-statement>:
‘axs.

Step 4. If cif ocontains ELSE then perform Steps 4.1 and 4.2.

Step 4.1. Let ess be the rightmost {executable-single~-statement}
: oontained in cif. Iet cxs be the fsooc-statementd

oontained in ess. Perform create-xxx-statement (cxs)

to obtain an <xoot-statement>, axs. ’
Step 4.2. Attach an

<else-unit>:
<single-statement>:
axs;;
to aif.
Step 5. Return aif.

54

Operations for single statements

Operation: create-assignment-statement (cas)

where: cas is an fassignment-statement}
result: an <assignment-statement>

Step 1. Let id and cx be respectively the immediately contained fidentifier}
and fexpression} of cas. :
Step 2. Perfomm find-abstract—declaration(id) to obtain a <declaration-
designator>, dd.
Step 3. Perform create-expression(cx) to obtain an <expression>, ax.
Step 4.
Case 4.1. ax immediately contains a <variable-reference>, vr.
The <attributc>contained by the <declaration> designated by
ad must equal the <attribute> contained by the <declaration>
designated by the <declaration-designator> of vr.
Case 4.2. ax immediately contains a <constant>, c.
If ¢ contains an <integer-value> then the <declaration>
designated by dd must contain <fixed>, otherwise it must .
contain <bit>.
Case 4.3. (Otherwise).
The <declaration> designated by dd must contain <fixed>.
Step 5. Return an
<assignent-statement>:
<variable-reference>:
dad;

Operation: create-goto-statement.(cgs)

where: cgs is @ fgoto-statementd
result: a {goto-statoment>

Step 1. Let cid be the {identificerd contained in cgs and perform create-
identifier (cid) to obtain an <identifier>, id.
Step 2. Return a
<goto-statoment>:
id.

Operation: create-read-statement (crs)

where: crs is a fread-statementd
result: a <read-statement>

Step 1. let ars be a <read-statemento.
Step 2. Let idl be the fidentifier-camalistb of crs.
Step 3. For each fidentifier}, id, of idl, taken in left-to-right order,
perform Steps 3.1 and 3.2.
Step 3.1. Perform find-abstract—declaration(id) to obtain a
<{declaration—designator>, dd.
Step 3.2. Append <variable-reference>: dd; to ars.
Step 4. Return ars.

55

Operation: create-return-statement (crs)

where: crs is a {return-statement}

result: a <return-statement>

Step 1. Return a <return-statement>.

Operation: create-write-statement (cws)

where: cws is a {write-statement}

resul t: a <write-statement>

Step 1. Let aws be a <write-statement>.

Step 2. let idl be the fidentifier-commalist} of cws.

Step 3. For each fidentifier?, id, of idl, taken in left-to-right order,
perform Steps 3.1 and 3.2.

Step 3.1.

Step 3.2.

Perform find-abstract—declaration(id) to obtain a l
<declaration-designator>, dd.
Append <variable-reference>: dd; to aws.

Step 4. Return aws.

Operations for expressions

Operation: create-logical-expression (clx)

where: clx is a flogical-expression}

result: a <logical-expression>

Case 1. clx immediately contains an fidentifierp, id.

Step 1.1.

Step 1.2,

Perform find-abstract-declaration(id) to cbtain a <declaration-
designator>, dd. The <declaration> designated by dd must contain
<bhit>.
Return
<logical-expression>:
<variable-reference>:
ad.

Case 2. clx has three camponents, cxl, op, and cx2, in left to right order.

Step 2.1.

Step 2.2.
Step 2.3.

Perform create-operand(cxl) to obtain the <expression>, axl.
Perform create~operand(cx2) to obtain the <expression>, ax2.
If op is = then let aop be <eq>, otherwise let aop be <ne>.
Return - -
<logical-expression?:

ax1

aop

ax2.

56

Operation: create-expression(cx)

where: cx is an fexpression}, fexpressiom-two}, fexpression-oneb,
or {primitive~-expression}.

result: an <expression>.

Case 1. cx is an fexpressionp, fexpression-twod, or fexpressiomone} and cx
has only one camonent, cxcC. , ‘
Perform create-expression{cxc) to obtain an <expression>, ax. Return ax.
Case 2. cx is an fexpressionp, or fexpression-twop and has three components,
cxl, copn, and cx2, in left-to-right order.
Step 2.1. Perform create—operand (cx1) to obtain an <expression>, axl.
Perform create—operand(cx2) to obtain an <expression>, ax2.
Step 2.2. If copn is + then let aopn be <add> otherwise let aopn be <multiply>.
Step 2.3. Return an
<expression>:
axl
aopn
ax2. ’
Case 3. cx is an fexpression-one} with two components, copn and cxl, taken in left-
to~-right order.
Perform create- operand(cxl) to obtain an <expression>, ax. Return an
{expressiond:
<prefix—-expression>:
dminus>
ax.
Case 4. cx is an fexpressionone} with three camponents, cl, cx1l, and c2, thken in
left-to-right order. : ‘
Perform create-orerand(cxl) to obtain an <expression>, ax. Return ax.
Case 5. cx is a {primitive-expression} ani contains an {identifier}, id.
Perform find-abstract-declaration(id) to obtain a <declaration-designator>, dd.
Return an
<exnression>:
<variable~reference>:
dd.
Case 6. cx is a f{primitive-expressiond and contains a {constant}, c.

Perform creato-constant(c) to obtain a <oconstant>, ac. Return an
<expressiond:

e

Operation: create-operand(cx)

where: cx is an fexpression}, fexpression-two}, {expression-one},
or {primitive-expression}.

result: an <expression>

Step 1. If cx is a fprimitive-expression} then perform Step 1.1.

Step 1.1,
Case 1.1.1. cx immediately contains fidentifier}, id.

Perform find-abstract-declaration(id) to obtain a <declaration-
designator>, dd. The <declaration> designated by dd must

oontain <fixed>.

57

Case 1.1.2. cx immediately contains fconstant}, cn.
The fconstant}, cn must not contain fbit-donst}.
Step 2. Perfomm create-expression(cx) to obtain an <expression>, ar.
Return ar. :

Utility operations

Operation: create—identifier(cid)

where: cid is an fidentifier}
result: an <identifier>

Step 1. Return an <identifier> whose concrete representation is the same
as that of cid.

Operation: find-abstract-decl aration(cid)

where: cid is an fidentifierd
result: a <declaration-designator>

Step 1. Perform create-identifier (cid) to obtain an <identifier>, id.

Step 2. Let dl be the <declaration-list> contained in the <program>.

Step 3. Let dd be a <declaration-designator> for the <declaration
containing id.

Step 4. Return dd.

Operation: create-constant(cc)

where: cc is a fconstant}.
result: a <constant>

Case 1. cc immediately contains {bit-const}, bc.
If be contains 1B then let abv be <true», otherwise let abv be
<false». Return a
<oconstant>:
<bit-const>:
abv.
Case 2. cc immediately contains a {digit-list}, dl.
Iet iv be an <€integer-value? equal to the value obtained by interpreting
the fdigitbs of d1 in left-to-right order as a decimal integer.
‘Return a .
<constant>:
iv.

58

Operation for goto cleanup

Operation: oomplete~gotos

Step 1. Let eul be the <expcutable-unit-1ist> immediately contained in the
<programn>.
Step 2. There must not be two or more equal <statement-name> components of eul.
Step 3. Far each <{goto~statement>, g, contained in eul perform Steps 4.1
through 4.3.
Step 4.1. Let id be the <identifier> contained in g.
Step 4.2. There must exist in eul a <statement-name>, sn, which contains an
<identifier> equal to id. o
Step 4.3. Replace id by the <executable—unit-designator> that designates the
<executable-unit> containing sn.

11.4 Application to the Running Example

The first stage of this phase of the Translator is to complete the
concrete program by constructing a DECIARE statement for any variables that
were not declared in the original program. The variable X in the running
example was not declared and a declaration with no specified attribute is
constructed for it. The FIXED attribute is then included in lany DECLARE"
statement without an attribute spa’;ified. The FIXED attribute is therefore
added to the fdeclaration} for X just constructed and to the fdeclarationp
for 7 which had no attribute specified ir the source program. Finally, if
there is no final RETURN statement in the program, one is constructed and
appended to the funit-listb. The result of campleting the concrete program
for the Running Example is shown in Figure i3 as a partial f{programp tree.

This may be campared with the partial tree shown in Figui:e 12.

The second stage is the construction of the abstract program fraom the
concrete program. The <program> for the running example is shown in Figure 14.
This will form the <program> component of the <machine-state®» during the
interpretation phase of the definition. In Figure 14, unique-names are
represented as we haye done before by means of circled numbers. Designators

are shown by arrows pbinting to copies of unique-names.

59

*3|dwex3 buiuuny 3y} 4034 weaboud 8384du0d pa3a |dwo)

Z

X1

~ |

{T039(}

*€T a4nblL4

11g

X

[Ecant-1p1

{:OqITRY {TOTITIUCTY {ANAIOIRY {PTIRUTTY

.l||._'._rl_|.l_

Edmnn_uq,u

Aroﬂ?s 1503

! 43ST{PULIO-LOTHRIR Dy LI

L _ |
{IURII PR o =TT [ST}
LUy ey s-qubissey U e s-quaunbrssey
Leathe |
{3uAEISo TS D |TRTOOXR} ST {3IUSLDITIS-O |SUTS-O| GEINOSXDY NIHL {UOTSSaIcxs-{20T50|3 a «
L] “ 1 | i _
Uy els-IT} az1d 433398
H NINLIL ! ({3IST|BLOO-TSIITIUSDTY) HLLTWN ! qasTiemno-BrITueT) oo T3TITINNRY {IPIITIUITT
_I_L LI “ 1 | L1] L rI_IL
{URBITIS-UIG DT} 4IUDTI TS 503 Tamy Aun._.Uumuu s—gre1y »uoﬂm_u.m (ES)
| , | |
{Suasn ey s-2 | buts-o | qeanosxay {fuaumy eys-o | buts-a|qeanoaxay {Iua B3 S-0 | LUTS -8 | (B3 noexa} M[Auﬂ rm.rhnlnoq_u.:ﬁm S Je: .u_i..\r
| _ . _ |
43 TUN-0 |q3NoexXa} {3 TUN-3 |qe3N0oXT} HTn=s (qe3noxo} ‘ 4$3ITuN-oy nmw:bmxu» {3u0uany, .w..c\. =7
{ ! .
: aa B AShtes 43Ty Gy ey
_ _ F] i — 1]
i A {3IsTI=aTUN}

L

J

{ueaboxdy

60

*a|dwex3 buiuuny ay3 03 Huipuodsauuod ueaboad 3oedisqy "I a4anbL4

»© _N
<IO3RUBT SIP-UOTIBTR | DT> n _.n?!_u.wwﬂ utry
1 <30URIaFRI-3|GeTIRAY ﬁ:ﬁ_mr.oov
€y gl—udgﬁv Acoﬁvw&cxav Aﬂmﬂv AcoA.mw_ouGav
. j
] <IULIsUCcoy CUOTSLATUKO-XTIUT>

M RATOETIUTY CUOTS LT B P Acﬁ.ur.—, ey (U
_ \1@ _ | | 7
!

GueR M:.bov <Imeudt ﬂvﬂoﬁmh@ 1o9p> QUOTS SAXXD-XT jUT> CIURTUnT WQ,JLM.OJMB.. 1oop>
CUOTS 5Dy (IRDIP; AT -0 (R LTRAY uoTSSsaTULNE) (EOUTITIBI—| U TIRA) @
L I J L] \
QU3 TIs-3udiubissey CIUDDIMS-IUDUETSET, (ICG TIDTSOP-UOTIVIR (O30
GUATRPLS D | TS GUAFAELS=2 (TS << unoh.mou"..o_nm,.ﬁa.)v
ann _lumEV Au.q.h,..m..uhv <t ow.nm.ﬁr.._ul.rmonyu_v

]
QURDIEIS-IT>
)

(1 3 z
\O <3 TU-D |73 R0 /N.W \/\ \vﬂ@

< IR PUbTSOpP-LOTIBIR | D0D> ¢Icipult SOPUCTRRIR|T IS Auﬁmchnwm.mrcudoydrum@v

| “
(GOUDITIBI—3 | TRIIR/ 5 < OOUDID;BI-D | JeTIRA)

(SOURIBIAI-O |qeTTRA) i : > i

ST |-20UATO2-D | GRTTRA> ﬁ.ﬂ_,bu.buowuu&_,ﬂﬁme 2 A ¥

| | _

GEARESURTDD GUARRIS-N TN CRUE U35 =420y <PATI> [EC-EETIN G PECEETEN G A3
| _ _ _ | |

ITAE (PHRUPD HBIITDID BIUT

Grapre3s-o butsy (HROYTRIR (IPIZTIVDT> (H\BIGTIAR®

ﬁgﬂu_w&ﬁgmv ﬁc«ﬂnﬁﬁﬂopgug N _

QTM-3 [qEINODXI> @ 3 TUN-D | GEANOaXD> G T2 [({BANDOXI) %) (UOTREIEDD> \mJ (UCTZRIT (DX, \NJ CUCTLEIT (S0 ¢
; i 139 % 1 ~ 1
| : | | {
QST -3 M= | JFRN0%S> S ;Liai}.
; ; CIST{=2CTITIT(SLLD

| J

<maboady

61

12, THE MACHINB-STATE SYNTAX

This part of the <machine-state> syntax rules describes the <interpretation-
state>. The productions for <4machine-state® and <translation-state», rules M1l
through M4, were given in section 7.1

M5. <interpretation-state> ::= [<program-state»] <datasets>

Syntax for program-state

M6. <program-state® ::= <programcontrol®» <storage-state®
M7. <program-control» ::= <executable-unit-designator® <operation-list>»
!

M8. <storage-state» ::= <storage-directory» <allocated-storage>

M9, <storage-directory® ::= <storage-directory-entry-list»

M10. <storage-directory-entry® ::= <identifier> <basic-value-designator>

Syntax for allocated storage

Mll. <allocated-storage® ::= <basic-value-list>
M12. <basic-value> ::= <integer-value> | <bit-value> | <undefined®
M13. <integer-value>» ::=
The terminal component of an <integer-value> is a single element
from the set of integers.

Ml4, <bit-value> ::= <true> | <false>

Syntax for datascts

M15. <datasets?» ::= <input-dataset> <output-dataset>

Ml6. <input-dataset®» ::= <dataset» <current-position®
M17. <output-dataset» ::= <dataset>

M18. <dataset> ::= <alpha> [<dataset-value-list»] <amega>

M19. <current-position®» ::= <designator>

M20, <dataset-value®» ::= <integer-value> | <hit-value>

62

13. THE INTERPRETER

In this section, we describe the portion of the definition algorithm

that defines the meaning of the fprogram} by interpreting the corresponding

<program> constructed by the translator.

13.1 Initialization

First the data to be input is obtained and the <program-state® is

initialized.

Operation: interpretation-phase

Step 1. Let ds be a
<dataset>:
<alpha>»
<amega?.
Obtain, from a source outside this definition, information to be

used for input, constructed in the form of a <hasic-value-list>, bvil.
Step 3. IF bvl exists then attach vl to ds. Let dg be the <designator> that
designates the <alpha> of ds. Let dsi be
<input-dataset>:
ds
<current-position®:
dg.

Step 2.

Step 4. Perfomm interpret(dsi).

Operation: interpret (dsi)
where: dsi is an <input-dataset?>

Step 1. Let dso be
<output-dataset>:
<dataset>:
<alpha>»
“omega>
Step 2. Attach to the <machine-state®» the tree
<interpretation-state>:
<datasets>»:
dsi
dso.
Step 3. Perform activate-program.

63

Operation: activate-program

Step 1. Let eud be an <executable-unit-designator> that designates the
first element of the <executable-unit-list> of the <program>.
 Step 2. Attach to the <interpretation-state> the tree
<program-state>:
<program—control>:
eud;
<storage-state>:
<storage-directory?
<allocated-storage>.
Step 3. For each <declaration>, d, perform Steps 3.1 and 3.2. .
Step 3.1. Perfom allocate to obtain a <&basic-value-designator?», bvd.
Step 3.2. Let id be the <identifier> of d. Append
<storage-directory-entry>:
id
bvd.
to the <storage-directory? :
Step 4. Append an <operation> for advance-execution to the <program—-control?.

Note that the execution of Step 4 of this operation brings into existence the
<operation-1ist» of <program-control>». For as long as this list exists, the
rightmost <operation> is the active one and the execution of the rightmost
<operation» of the <operation-list> of <control -state> is suspended. It will
remain suspended until the <program-control?® is deleted by the execution of
either the execute-return-statement or abnormal-termination operation.

13.2 Statement Interpretation Control

These operations control the sequence of statement interpretation.

Operation: advance-execution

Step 1. Let eu the the <executable-unit> designated by the <executable-
unit-designator> of the <4program-state>.

Step 2. If eu immediately contains a <single-statement>, ss, then let
st be the immediate camponent of ss. Otherwise, let st be the
immediately contained <if-statement> of eu.

Step 3. Perform exccute—xxx(st) where "xx" is replaced by the sequence of
symbols forming the type of st.

Step 4. Go to Step 1.

Operation: normal-sequence

Step 1. lLet eul be the <exccutable-unit-1ist>. Let eu be the <executable-
unit> of eul that is designated by the <executable-unit-designator>,
eud, of the <program-state>.

Step 2. Let eud designate the <executabl e-unit> that immediately follows
eu in eul.

64

13.3 Interpretation of Statements

There is an operation for each statement type.

Operation: execute-if-statement (st)

where: st is an <if-statement>

Step 1. Let le be the <logical-expression> immediate component of st.
Perform evaluate-logical-expression(le) to obtain tv.
Step 2.
Case 2.1. tv is <true>.
Let ss be the <single-statement> component of the <then-unit>
of st.
Case 2.2. tv is <false>.
If st does nmot contain an <else-unit> then perform normal-
sequence and terminate this operation. Otherwise, let ss
pe the <single~statement> camponent of the <else-unit> of st.
Step 3. Perform execute—xxx (ss) where "xoo" is replaced by the sequence of

symbols forming the type of ss.

Operation: execute-assignment-statement (st)

where: st is an <assignment-statement>

Step 1. Let xp be the <expression> of st. Perform evaluate-expression (xp)

to obtain a <basic-value®, bv. _
Step 2. Let vr be the immediately contained <variable-reference> of st.

Perform assign(vr, hv).
Step 3. Perform normal-secuence.

Operation: execute—qo to~statement(st)

where: st is a <goto-statement>

Step 1. Replace the <executable-unit-designator> of the <program-state?>
by a copy of the <executable~unit—-designator> of st.

65

Operation: execute-read-statement(st)

where: st is a <read~staement>.

Step 1. For each <variable-reference>, vr, of the <variable-reference-1ist>
of st, taken in left-to-right order perform Steps 1.1 through 1.3.

Step 1.1. The <dataset-value-list», dvl, of the <input-dataset> must not
be empty. If the <current-position», cp, of the <input-dataset>
designates <al » then let @v be the first element of avil,
otherwise let be the element of dvl that immediately
follows the one designated by cp. This element must exist.
let cp designate dv.

Step 1.2. Let d be the <declaration> designated by the «declaration-
designator> of vr. If dv contains an <integer-value> then
d must contain <fixed>, otherwise d must contain <bit>.

Step 1.3. Perform assign(vr, bv).

Step 2. Perform normal-sequence.

H

Operation: execute-return—statement (st)

where: st is a <return—-statement>.

Step 1. Delete the <program-control®» fram the <machine-state?.
Note that this causes the rightmost <operation®» of the <operation-list® in

the <control-state® to became the active operation.

Operation: execute-write-statement(st)

where: st is a <write-statement>.

Step 1. For each <variable-reference>, vr, of the <variable-reference-list>
of st, taken in left-to-right order, perform Steps 1.1 through 1.4.

Step 1.1. Perform evaluate-variable-reference (vr) to obtain a
<basic-value~-designator?», bvd.

Step 1.2. Perform obtain-basic-value(bvd) to cbtain a <basic-value?,
bv. Let v be the immediate component of bv. Let dsv be
a <dataset-value?»: v.

Step 1.3. If the nuwber of elements in the <dataset-value~-list», dvl,
of the <output-dataset® is greater than same implementation—
defined nutber, then perform abnormal-termination.

Step 1.4 Append dsv to dvl.

Step 2. Perform nomal sequence.

66

13.4. Expression Evaluation

The following operations perform the evaluation of expressions and

references.

Operation: evaluate-logical-expression (e)

where: e is a <logical-expression>

resul t: <€true> or <false?

Case 1. e immediately contains a <variable-reference>, vr.
Perform evaluate-variable~reference(vr) to obtain a <basic-value- ‘
designator», bvd. Perform cbtain-basic-value (bvd) to obtaina. <basic-value>, bv.
Return the immediate component of bv.
Case 2. e immediately contains two <expression> camponents, el and e2,
Step 2.1. Perform eval uate-expression(el) to obtain a <basic-value?, bvl,
and evaluate-expression(e2) to obtain a <basic-value®, bv2.
Step 2.2.
Case 2.2.1. e immediately ocontains <eqg>.
If bvl = bv2 then return <true’, otherwise return <false>.
Case 2.2.2. e immediately contains <nedq>.

If bvl = bv2 then rcturn <false->,otherwisé return <€true>.

Operation: evaluate-expression (e)

where: e is a <fixed-expression>
result: b <basic-value>

Case 1. e immediately contains a <variable-reference>, vr.
perform evaluatc-variablo—reference (vr) to obtain a <pasic-value-designator¥,
hvd. Perform ohtain-hasic—value (bvd) to obtain a <basic-value>, bv. Return bv.
Case 2. e immediately contains a <constant>, c.
Let bv be a €bosic—value>: v where v is the immediate component of c.
Return hv.
Case 3. e immediatelv contains an <infix-expression>, ix.
Step 3.1. ILet el and ez be the two irmediately contained <exnression>
camonents of ix. Perform evaluate—expression(el) to obtain
the <basic-value>, vl and evaluate-exoression(e2) to abtain
the <basic-valuc?», hvZ.
Step 3.2. If ix immediately contains <add> then let ir be the <integer-
value» whose valie is the sum of the two <integer-value
camonents of vl and bv2. Otherwise let ir be the <integer-
value> whose valve is the product of the two <integer-value>
components of bvl and w2,
Step 3.3. If the magnitude of ir exceeds an implementation-defined
maximun, then let ir be an €inteqer-value? with an implementation
defined value and optionally perform abrnormal-termination.
Step 3.4 Return <hasic-value>: ir.

67

Case 4. e immediately contains a <prefix-expression>, px.
Ster 4.1. Let el be the <expression> immediately contained by px.

Perform evaluate-expression(el) to obtain a <pasic-value>», bv.

Step 4.2. let ir be the <integer-value> whose value is -iv, where iv is
tha <integer-value®> immediately oontained by hv.

Step 4.3. If the magnitude of ir exceeds an implementation defined maximum
then let ir be an implementation-defined value and ontional ly
perform abnormal-termination. ’

Step 4.4 Return <basic-value>: ir.

13.5 Storage Manipulation

These two operations are the only operations that directly change the

state of <allocated-storage>.

Operation: allocate
result: a <basic-value-designator?
Step 1. Let bv be a <basic-value>: <undefined».

Step 2. Append bv to the <basic-value-1ist> of <allocated-storage>.
Step 3. Let bvd be a <basic-value-designator® that designates bv. Return bvd.

Operation: assign(vr, bv)

where: vr is a <variable-reference>
bv is a <basic-value>

Step 1. Perform eval uate-variable~reference(vr) to obtain a <basic-value-

designator», bvd.
Step 2. Replace the <basic-value> designated by bvd with a copy of bv.

13.6. Storage Reference

Operation: evaluate-variable-reference (vr)

where: vr is a <variable-reference>

result: a <basic-value-designator?.

Step 1. Let d be the <declaration> designated by the immediately contained
<declaration-designator> of vr.

Step 2. Let id be the <identifier> of d. Let bvd be a copy of the <basic-
value-designator® component of the <storage-directory-entry> that
contains an <identifier> equal to id.

Step 3. Return bvd.

68

Operation: abtain-basic-value (bvd)

where: bvd is a <basic-value-designator>
result: a <basic-value>

Step 1. The <basic-value> designated by bvd must not contain <undefined».
Step 2. Return a copy of the <basic-value®» designated by bvd.

13.7. Abnommal Termination

Operation: abnormal-termination

Step 1. Perform an implementation-defined action.
Step 2. Delete the <program——control» fram the “machine-state>».

The implementation-defined action permits the implementation to give some
indication to the programmer of the reason why the program is being abnormal ly
terminated. This operation also causes, by the deletion of the <program—
control®, the rightmost <operatiomn> of the <operation-list> in the <control-

state» to become the active operation again.

13. 8 Application to the Running Example

To continue with our running example, we will suppose that the input
file contains two values, the <bit-value>: <true?> and the <integer-value®: 9.
Figure 15 shows the <machine-state® just before the operation activate-program
is perfarmed. The <current-positiom® of the <input-dataset> designates the

<alpha> marker at the start of the file and the <output-dataset> is empty.

After the operation activate-program has been cawpleted, the <interpretation—
state> is as shown in Fiqure ! 6 The <allocated-storage® contains three
<basic-value>» camwponents, ecach initialized to <€undefined», for the three
variables, X, Y, and 2. The <4storage-directary® contains entries designating

these values. The <executable-unit-designator® has been set to designate

69

*3|dwex3 butuuny 3y3 m:._wmgagmuc.p 03 J4o0lud 3sSnf €anE@rs-SuTU>RUR Y]l °¢T aunbl 4

6 «<nny

N eA-TbUT> Nea-3Tp

N@ Qggluwmﬁ Q pgnn_«m.wﬂmmvo

&hany «edie> 4 tﬂﬂwﬂwmvv A.muobv QsTL-en eaesTIEny LB @
ouwm__mumvv ﬁoﬁqmoa_bcmhduv ﬁwm_ﬁmvv
QIsTEpIndinoy €2SPIRp-3nduTy
i ~ |
€}I5ITP> weaboxd-a3ear3oe Jaadasut osmd-vonwiazdI=ur we3borc-3UrTIp
_ 103 03 I03 03
€IOTIR IO aco..ﬁmuwnﬁv €UOTIBIAO €T eIdo>
1 I l N
QST|-UoTIRIX0Y €1 bl
_ cupxbhardy

[T S-UOT3IEIAIAISIUTH €T3V S~- | OTIUCOY _

_

€QEIS-VUT L Peud

70

€P3UT JIpUNYy

. *3|dwex3 butuuny 3yj u} juswaleys
gvy3y 9yl buirjsaduasjut 03 Jotdd 3SNf €S3eys-uorieraxdrsauty 3yl 91 a4nb 4

® <In3el>
7o

. M o MBMO_.V
7o 7 7° 7

eub' e J3T FTIUIPT,
€OUTIpUY €A IPUNY Agﬂam«mmomg_.guoﬂg Anuauwucmﬂ«v Eﬂﬁﬂﬁoduspn?owmmnv Auu.mwM_ucﬂu.wv «xR «ﬂv.mﬂ: A-OTSED < m_u

— — _ A3Us-A10309. _anumm.ﬁumv eLfnyue-A10q 021 TP-2beIm sy Lnue-A103 50 ITp-2be 13 5>
Aﬂ_pgmb«mmnv@ €njenorsen ° Ams..gmoavdnv@ d ” i
asT| ..N:_mw.iu..nmm@ Qst _.lmUcoLLOun_voH.G..mwmuoumv
Awmmgm%wuwuo.. Le» AbBuoH.ﬁJ.o.omuoumv
U0 T3 NOHO=SOURADR
103
«onexadoy 9
6 Aﬂﬁv.l_l ﬁm,.z.ucomﬂanwagv ouﬂﬂ.&wﬂvbm_rdlmﬁﬂg
anea-ehimury eniea3 T yms-abeImsy A.—DUEL..MHERV
® | o | : _
7 e@njeraesmens enpeasssawy (5)
&tom, &l emusisey P> @sti-onje-josems A..mmmﬂmv ®
T | |
ﬁumﬂuvv ibﬁ«mn.m.bg ﬁ@mm.umvv
ﬁuﬂomv..u&uav bwmﬂwvb&:u
€53STITP> A.Bﬂm..%uuo&v

_

ns-wnRRAdIRUT

71

the first statement in the <program> (shown in Figure 14). The <program-
control® contains an <operation®» for advance-execution and this is now the

active operation.

Fol lowing the execution of the first statement of the <program>, the
READ statement, the <interpretation-state> is as shown in Figure 17. The
<allocated-storage> has changed so that the <basic-value» camponents for the
variables Y and Z now contain the values read from the <input-dataset>. The
<basic-value>» for X is unchanged, it is still <undefined. The <current-
positiom of the <input-dataset> now designates the value just read fram it

and the <executab1e-unit—desi§nabor> has been advanced to the next statemént.

Figure 18 shows the <interpretation-state® fol lowing the execution of the
IF statement. The <basic-value> for the variable X has now received the
<integer-value» 19 because the <them-unit> was executed since the <basic-value?
for Y contained <true». The <executable-uni t-designator® has been advanced

to designate the WRITE statement.

Execution of the WRITE statement causes a copy of the <integer-value>
for the variable X to be appended to the <4output-dataset>. Since the
<output-dataset> was empty, a <dataset-value-1ist> was constructed by the
append instruction. The <output-dataset> is as shown in Figure 19. At this
point, the <executabl e-unit-designator® designates the RETURN statement .

constructed by the Translator. Execution of this statement causes the

program to terminate.

72

*3 dwex3 butuuny 9yl ui Nauwp3eys

41 9y3 burjaadaajui 03 4aotad 3snf €xneys-uotyeraadrsqury 3yl LT aanbi4

P

6 &nny . . @ Auun_.wpv . ° Auuuu_o..v . @ AJo—v
‘m:_.!r.h_gﬁv g—nh&ﬁv <PSUT JOpUNy g!ﬁ«ﬂvmﬂ:ig Auﬂﬁwcm@wv ag%eg (IDIITIUPH Ausﬂb«uvmﬁ LRA-DTSEQD A“«Lﬂﬂcﬂu«v

_ _ _ ~ _ _

A=DTS X eknus-£30359] Tp-obe 1035y Anus-L1xn 0 ITp-0beInSH Ahuucwl\hbu.ﬂuuﬁnwmmuﬂmv

eneaotse) @ e OteD O .apg._.o.mmwnv @ A “
«Qst Tg»_n.)luammqv &St p.-\rﬂccv\hou..-vob?bbaﬁuv

Abmagml.r_uuouo_ Le» %Buouﬂdﬂbmkbmv :

U0 TANOIXO=-IOURADR
103
o TRIRIXY

\..@

6 Am:ﬂv ﬁﬂplcc_ﬂng tBﬂB«ﬁvlm_ﬁioﬁﬂg
. N RA-ISENUTY N{BAITD RWNs-oteim sy Apoﬁcouhnuwwunv
® | o_ | _ _
\ eneagosmepy— @nieasssnves (3)
&b, &die 03 euST Sy Aﬁv Aum.:.gpn?_ummﬂmvv A.Mwu_.lm.v @
. _ _
ﬁuﬂm‘uuvv gwmo.abg Auomm_uﬂvv
ﬁaﬂuﬂﬂusﬁg ﬁomﬁLq?a:Eu
ﬁﬁmﬁmvv «xns-ueibady

73

*3|dwex3 Huiuuny 3yj ui jusuwRIeLIS
JLI¥M 2y3 burisuadasjui 03 aotad 3snf exnws-uoreyaxdrsqury 3yl 81 a4nb L4

|.| , . m - uuaMo ﬁBMoC
.m 3 ,_d \@Jc \o_ \@_

B> IO VUETEP-5N | PA-OTERD (BIITHOT €30 P E0p-00 RA-TT SR> <WBTITUPD
1 —

€ ea-Tobxnuy €01 eAITD €0 [RA-TEUTY 0!5!..3.8.—&30?.0«3 Auu.mumu:
_ . _ _ | | I
Anua-Ax3593T IO S: Lnue-K1m 091 Tp-2feIn sy Lnua-L103 50 ITP-2fR IS
enenorsE> ® enenoTSD ® «n EroTEND 0) Aabmm > :

i
Aum..Zlﬂ:_glu«mﬂv «st puah:ckhoﬁ_vouﬂvnobnuﬂmv

_ ekamooaTp-obeamsy

©feI035-303000] | BY
_ 1
U0 TANOTWD-TRIRADR
203
€0 T3 RI300Y @
6 Aﬂﬁ—uv .) . »om..:-co_ﬁmg ounuﬂﬁmumbwﬁfm—nﬂg
- | eA-RENUTy eaneA} TD EATs-oteimey 20550.._rhng
® |_o_.l _
\ €N [RA-IISTIEDS @N(BA-3IERITD> @
&Em, W exubien @Dy @sTI-nieaEw Aﬂm_lmv ®
— | _ |
bunﬂ_ Py gunn_ubﬁuuﬁv ﬁomﬂumvv
ﬁoﬂoﬁ.vuﬁﬂzv ﬁomﬂqwbﬂwa
Aﬂam_ﬂmvv «xwsueibaxdy

€ s-uotivyardrxqury

74

- *g|dwex3 Bupuuny 8y3 up JudwIeIS
NYNL3Y 8y3 bupjaaduasiul 03 dopad 3snf eyms-uoneaadnqury> 3yl 61 a4nb 4

<IX33

6 &y 61 ‘ : <x3330> ® «T3> ®
7° 7 7o 70 7]

Aﬁ:gL_.mBﬁv ‘gpahlﬁnv Agrgju_avﬂﬁv Bﬂm«mﬂv._.&:.gmmnv Audw_ucmn..o gggqgﬁmzﬁs Aud..C..nLucqu Eﬂ&uﬂ?—g%?b«.,wﬂv Aud..ﬂ..ﬂu

~ _ _ ~ _ _
2 ©Anua-A103003 T e A ua-/103 001 Tp-ofRIm Sy A.\rﬁ:o;\houuaﬁv&nlgmv
aneaorseD @ € eaoTsTD ° o |eroTse @ A—.aro am sy _ i

: |
A.um..:..ﬂ:—glo..nmﬂv € ST | -Anuo=~/10300ITp-ObeIx Sy

_ &A1 ooITp-abexol sy

Aemanuumnﬁwudoo_._.ﬂv _
U0 TINDIUD-IOURADR
203
€O eI \@

61 6 A.uaulnw.v ’ ﬁm..znccmﬂﬂv ouﬂucmwﬂvbmgﬁﬁguv
Aﬂ.—glu_ovﬂuﬁv Agﬁgvuﬂmmu:ﬂv €N A3 T Aﬁﬂmlmmwmuﬂwv A.DHS,‘U—,EV
ﬁzg.umdﬂ%v \« ® Q,E.mesmd@ enerssmens (5)

A.ﬂnJ,hV g-aﬂ,—ﬂfwomﬂnvv AMW—JI.V Qsm_._mﬁavv Aﬂwmv bmﬁ.gpm?womﬂﬂ\.v P TsY @
ﬁomm_umvv gwmowbg ﬁomﬂ_.ﬁvv '
ﬁoﬂuﬂusﬁav ﬁwnﬂi.mvbaa
3Lﬂ§ ﬁs..ung

eanswnwnaxdin

75

14. Postlude

This definition of the trivial langﬁage SAL has used the definition
technique of BASIS/1l; however, we have only introduced those terms and
concepts that weré required for specifying this small language. The
reader who is using this as an introduction to BASIS/1 will find that,
because of the much greater complexity of PL/I, some additional constructs
have been needed for its definition. Nevertheless, the mechanism used here
is essentially the same as that used BASIS/1 and a reading of the first
chapter of BASIS/1 will serve to introduce the additional features of

the metalanguage.

The BASIS/1 metalanguage is sufficiently powerful to give formal
definitions for any sequential programming language, such as ALGOL 60,
SNOBOL, LISP, or COBOL. However, since tasking is not considered in
the BASIS/1 version of PL/I, the method in its current state is not suitable
for defining non-deterministic or parallel programming languages such as

ALGOL 68.

We would like to thank David Beech, John Kelly, Henry Ledgard, and’

Peter Wegner for their helpful comments on previous drafts of this paper.

15,

76

REFERENCES

[a1]
[a2]
[a3]
(4]

[B1]

[B2]
(B3]
[B4j
[B5]
[B6]

[B7]

[E1]
[E2]
[61]
[L1]

[L2]

[L3]

aho, A. and Ullman, J. The Theory of Parsing, Translation and iling,
vol. 1 & 2. Prentice-Hall, InC., Englewood Cliffs, N. J. 1973.

Alber, K., Oliva, P., and Urschler, H., Concrete Syntax of pL/1I, IBM
Laboratory Vienna, Technical Report TR 25,084 (June 1968).

Alber, K., and Oliva, P., Translation of PL/I into Abstract Text, IBM
Laboratory Vienna, mechnical Report TR 35,086 (June 1968).

Allen, C.D., Beech, D., Nicholls, J.E., and Rowe, R., An Abstract In%reter
of PL/I, Technical Note TN3004, IBM United Kingdom Laboratories Ltd, .
Backus, J.W., "The Syntax and Semantics of the Proposed International

Algebraic Language of the Zurich ACM-GAMM Conference", Proc. International
Conf. on Information Processing, UNESQO (1959) , ppl25-132.

Beech, D., Rowe, R., larmer, R.A., and Nicholls, J.E., Concrete %tax of
PL/I, Technical Note TN3001, IBM United Kingdom Laboratories ’ .

Beech, D., Nicholls, J.E., and Rowe, R., A PL/I Translator, Technical Note
T™N3003, IBM United Kingdom Laboratories L&d, 1966.

Beech, D., Rowe, R., Larner, R.A., and Nicholls, J.E., Abstract Syntax of
PL/I, Technical Note TN3002, IBM United Kingdam Laboratories, 1966.

Beech, D., "A Structural View of PL/I", Camputing Surveys 2, 1 (March 1970)
pp33-64.

Beech, D., and Marootty, M., "Unfurling the PL/I Standard", SIGPLAN
Notices 8, No. 10 (Oct 1973), ppl2-43.

Beech, D., "On the pDefinitional Method of Standard PL/I", In Conference
Records on the Principles of Programming Languagjes, Boston, Oct. 1973, pr87-94.

Elgot, C.C., and Robinson, A., "Random-access stored-program machines,
an approach to programming languages", Journal of the AM 11, No. 4,
(1964) , pp365-399.

Furopean Camputer Manufacturers® Association and Arerican National
Standards Institute, PL/I BASIS/1-12 published as BSR X3.53, American
National Standards Camu ttee Y3, Washington D.C. 1975.

Garwick, J.V., "The defini tion of programming languages by their

compilers", In: Steel, T.B., Jr., Ed., Formal e Description
Languages for Camputer Programmirg, North-Ho! l% %l. Co., Amsterdam,
1966, ppi39-147.

Landip, p.J., "Correspondence between Algol 60 and Church's Lambda-
Notation, Part I", Cammun. of the ACM 8, No. 2, (1965) pp89-101.

Landin, P.J., "Correspondence between Al1gol 60 and Church's Lambda-
Notation, Part IT", Commun. Of the NCM 8, No. 3, (1965), pp158-165.

Lee, J.A.N., Cawputer Semantics, Van Nostrand reinhold o., Ter Yer's, 1972

77

[L4] Lucas, P., Laber, K., Bandat, K., Bekic, H., Oliva, P., walk, K., and
zeisel, G., Informal Introduction to the Abstract %ntax and Inte;gretation
of pL/I, IBM ratory vienna, Technica Report . June .
[L5] Lucas, P., Lauver, P., amd Stigleitner, H., Method and Notation for the
@rma1 Definition of Programming %%ges, TEM Taboratory vienna,
Technical Report TR 25. June .
[M1] Mccarthy, J., "A formal description of a subset of ALQOL", In: Steel, T.B., Jr.,

Ed., Fommal Language Description Languages for Computer Programming,
North-Holland Publ. Co., Fmsterdam, 1966, ppl-12.

[M2] Mccarthy, J.. vTovards a Mathematical Science of Camputation”, In:
Proc. IFIP Cong. 1962, North-Holland Publ. Co., Amsterdam, 1963.

[s1] Steel, T.B., "Srandards for Computers and Information Processing",
in Alt & I{l_lbinoff, Eds., Advances in Computers Vol. 8, Academic Press,
New York, 1967, ppl03-152.

[wi] Walk, K., Alber, K., ‘pandat, K., Bekic, H., Chroust, G., Kudielka, V.,
Oliva, P., and Zeisel, G., Abstract Syntax for Interpre
1BM Laboratory Vienna, Technical Report TR 35,082 (June 1968).

[w2] Wegner, P., "Opérationa] Semantics of Programming Languages", Prcc. AM

Conf. on Proving Assertions about Programs, SIGPIAN Notices 7, 1
(Jan. 1972), ppl28-141.

[w3] wegner, P., "mhe Vienna Definition Language", Computing Surveys 4, 1
(March 1972), pp5-63

[wa4] van Wijngaarden, A., (ed), et al. "Report on the Algorithmic Language
ALOOL 68", Numerische Mathematik 14, 2 (1969), pp79-218.

	tr1-75.pdf
	75.pdf

