A Linear Time Algorithm
for

Deciding Subject Security

R. J. Lipton and L. Snyder

Research Report #72

June 1976

This work was supported in part by the Office of Naval Research
grant N0O0014-75-C-0752 and in part by NSF grant DCR74-24193.

I. Introduction

The theoretical analysis of systems for protecting the security
of information should be of interest to the practitioner as well as the
theoretician. The practitioner must convince users that the integrity of
their programs and files are maintained, i.e. he must convince them that the
operating system and its mechanisms will correctly protect these programs
and files. Vague or informal arguments are unacceptable since they are
often wrong. Indeed the folklore is replete with stories of "secure"
systems being compromised in a matter of hours.

A primary reason for the abundance of these incidents is that even
a small set of apparently simple protection primitives can often lead to
complex systems that can be exploited, and therefore compromised,\by some
adversary. But it is precisely this fact, simple primitives with complex
behavior, that lures the theoretician. Our purpose here is to present a
concrete example of a protection system and then to completely analyze its
behavior.

Our motivatioﬂ for doing this analysis is twofold. The protection
system that we will study is not one we invented, rather it is one that has
been defined, discussed, and studied by those in operating systems (Denning
and Graham [2], Cohen [1], Jones [4]). This point is most important, for
the space of possible protection systemé is exceedingly rich and it is
trivial to think up arbitrary systems to study. We are not interested in
arbitrary systems, but in systems that have practical application.

The above motivation is necessary but not sufficient for us to

establish that these questions should interest the theoretician. Our
second reason for studying these problems is that in a natural way they can
be viewed as "generalizations of transitive closure." Roughly these

protection questions can be modeled as:

Given: A directed labeled'graph G and a set of rewriting rules R.

Détermine: Whether or not there is a‘sequehce of graphs Gl’ G2, ceey

Gn such that G = Gl’ Gn has property X, and Gi+1 follows

from G, by some rule in R.

Here property X encodes that there is a protection violation in Gn' Our
goal then is to show that it is impossible to reach such a Gn’ i.e. that |

a protection violation is impossible.

Property X is frequently stated as
X: there is an edge from vertex‘p to q with label a.

For these properties our protection questions do indeed look very much
like transitive closure questions. Indeed if the rules R only allowed the
addition of edges, then these problems woqld be easily solved by known
methods. They are not so simple. The rules of interest to those in
protection, and the particular rules we will study, allow new vertices to
be added. This simple change Qf allowing graphs to "grow new vertices"
make these problems challenging. Indeed the particular one we will study
is no longer even obviously decidable.

Let us now make the above concrete by introducing the‘particular

protection system we will study. We consider directed graphs whose arcs

are labeled with an r or a w or a c. While we will manipulate these graphs

as formal objects it is helpful to keep in mind the following informal
semantics: A vertex corresponds to a "user", r = "read", w = "write",

¢ = "call". If there is a directed arc from x to y wifh label r (respectively
w,c), then x can read y (respectively write, call). For example, in the

graph

X ‘can writey, x can read z, but y cannot write z since this edge is missing.

More formally, a protection graph is a finite, directed graph with each

arc labeled by a nonempty subset of {r,w,c}. We interpret the case where
an edge is labeled with other than a single element to mean that multiple

‘M"rights" are allowed.

This protection model, called the take and grant system, is now

completed by presenting five rewriting rules.

1. Take: Let x, y, and z be three distinct vertices in a protection
graph and let there be an arc from x to y with label ¥y such that
r € Yy and an arc from y to z with some label o < {r,w,c}. Then
the take rule allows one to add the arc from x to z with label o
yielding a new graph G'. Intuitively x takes the ability to do

o to z from y. We will represent* this rule by

*Here and in later giagrams we abuse notation by writing an explicit right as
as arc label (x 0—0O y) to mean the arc label contains that right (i.e.,
X oYs0 Yy such that r € y).

2. Grant:

3. Create:

4. Ccall:

Let x, y and z be distinct vertices in a protection graph G and
let there be an arc from x to y with label y such that w e v
and an érq from x to z with label Yy c {r,ﬁ,cé. Then-th% grant
rule allows one to add an arc from y to z with label o yielding
a new graph G'. Intuitively x grants y the ability to do o to

z. In our representation grant is given by:

X W Yy z X w Y o z
a o

Let x be any vertex in a protection graph, then create‘a;lows
one to add a new vertex N and an arc from x to N with label .
{r,w,c} yiélding a new graph G'. Intuitively x creates a new

user that it can read, write and call. In our representation

oW
M
=

Let x, v and z be distinct vertices in a protection graph G and
let o c {r,w,c} be an arc from z to y and y an arc from x to z

such that ¢ € y. Then the call rule allows one to add a new

vertex N, an arc from N to y with label o, and an arc from N

to z with label r yielding a new graph G'. Intuitively x is
calling a program z and passing parameters y. The N "process"
is created to effect the call: N can read thé program z and can

0. the parameters. In our representation

y O . o z =>

5. Remove: Let x and y be distinct vertices in a protection graph G with
an arc from x to y with label o. Then the remove rule allows
one to remove the arc from x to y yielding a new graph G'.

Intuitively x removes its rights to y. In our representation »

The remove rule is defined mainly for completeness, since protectic¥™
systems tend to have such a rule. Moreover, we expect to study propertie<=
of protection systems other then protection violations which will use remc> N =
in a crucial way. But, for the present, remove.may be ignored.

The operation of applying one of the rules to a protection graph G
yielding a new protection graph G' is writen G I~ G'. As usual G I—*- G!'
denotes the reflexive, transitive closure.

An important technical point is this system is monotone in the sen = <

that if a rule can be applied, then adding arcs cannot change this. This
property is crucial later.

Now that we have seen the rules, let us look at their behavior. We
will start with a simple question: in the graph

X oz

is it possible for vy to r z? The answer is obviously no since there is no

r arc from y to z. But we are really asking: is there a sequence of rule

applications that leads to a grabh with an r arc from y to z? More generally,

say p can o q if there is a séries of.rules that leads to a graph with an

arc from p to gq. Then to state our question more precisely, we ask: is it
true that y can r z? Clearly, without create, the answer is no since none
of the operations take, grant or call can apply. The following sequence of

applicatons of the rules* shows that by using create the answer is yes:

X r Z l X Y z
oO——0
Yy creates
r r
BV
Y y N

*
In the diagrams, dashed lines are used only as a visual aid to set off
the added arcs of the current operation.

‘x takes

%& grants

\y takes

This example demonstrates the kind of clean graph-type problems we will be
studying. Our main theorem is state in the next section. This theorem
presents a complete answer to the question: is is true that p can q?
Indeed this theorem leads easily to a linear time algorithm for answering

the question.

A final word about how this theorem contributes to our understanding

of protection. Each user of a protection system needs to know:

what information of mine can be accessed by others;

what information of others can be accessed by me?

The question is vague is general, but here it is rendered in the simple
question: is it true that p can o q?

The types of protection models studied here have received considerable
attention recently. Our approach is related closely to the interesting work of
Harrison, Ruzzo, and Ullman [3]. They show that what can be called the
"uniform safety problgm" is undecidable. Interpreted as a graph model,
their result says that given an arbitrary set of rules (similar in spirit
to take, grant, etc.) and an initial graph, it is undecidable whether or
not there will ever be an arc from p to q with label o. This is a uniform
Problem in the sense that the rules are arbitrary. Even when the rules
have to satisfy certain additional constraints the results of [3] and the
results of Lipton and-Snyder [5] show that protection is impractically
complex.

Our view here is that since the uniform protection problem is so
difficult and since operating systems usually require only one fixed set
of protection rules, then the nonuniform problem should be studied. As
stated before we chose the take and grant system by studying thé érotection

literature.

II. Basic Results

Our objective is to show that there are two simple conditions that
are necessary and sufficient to determine if vertex p can a vertex gq. Let
G be a protection graph and o € {r,w,c}. Call p and g connected if there
exists a path between p and g independent of the directionality or labels

of the arcs. Define the predicates:

Condition 1: p and q are connected in G.
Condition 2: there exists a vertex x in G and an arc form x to g with

label o such that

o = r implies {r,c} n B # @, or
o = w implies w € B, or
o = ¢ implies c € B.

Informally, these conditions will state that p can o q if and only if there
is an undirected path between p and q (condition 1) and some vertex X a's
q (condition 2).

The first step. is to demonstrate the necessity of conditions (1) and

(2).

Lemma 1: Let G be a protection graph with vertices p and q and let o be

a label. Then p can o g is true implies conditions (1) and (2) hold.

Proof: If p can o q in G then (1) and (2) are satisfied, so suppose p
cannot o q in G and Gl""’Gn is a sequence such that p can o q in Gn' If

(1) is not satisfied in Gi then it is not satisfied in Gi+l since no rule

10

application connects vertices not already connected. If (2) is not satisfied
in G, let Gi be the first graph satisfying (2) and Gi—l — Gi' If p is take
or grant, -the choice of Gi is violated. Create cannot place‘an incoeming

arc to q, so p must be call. . But regardless of what & is, p = call violates

our choice of G, - g

To simplify matters later and to clear up an apparent anomaly in

3

condition (2), we next show that if a user is allowed to call another user

then he is allowed to read him as well. It is this fact that allows us

to write {r,c} n B # # in condition (2) rather than just r e B.

. , . r,c
Lemma 2: In a protection graph G, x o0 y implies x 0—1=0 vy.

Proof: Apply the following rules:

% C l X c :y
‘y X create

}

r,w,c

‘x call

|N grant

2

Ix take

We next prove a key lemma that shows that the directdonality: and
labels along a connected path are unimportant. Call vertices p and g of

a protection graph directly connected if there is an arc between them

independent of the directionality.

Lemma 3: Let p, q and x be distinct vertices in a protection gfaph, let
there be an arc from x to q with label o and let p and x be directly

connected. Then p and o g.

Proof: By monotonicity, there are only six distinct cases.

7 r o2 & so—% 3%
Case 1: p O "2 *0 g D take b % q

11

Case 2:

Case 37

a A 0,
g % >0 F——————— O >0
P X 4 P create P ?ﬁ X k.
ir,w,c
N
| Po_w X o . .a
|p grant]
Y
/
r,w,c
T / r,w,c
-~
N
| P w X o q
P o, W \o
ngrant ~
/
r
r,w,c Wi !
o’
7
N S ———
o
I P W o o ..q
lp take ?
r,w
r,w,c e
o
N
c o
o +O >0
b % q

By lemma 2 this can be written as

and we can appeal to case 1.

12

13

r X g ' X
Case 4: p O¢ —0 —0 F—______ Poe— X o od
! P create ?
|
r,w,c|
I
N
'
. x '
e o2
x take !
[
r,w,c /
/ r,w,c
"
’ N
X X
: W o
Case 5: p O« o— ol | px——o0—2 g
[x grant . A
~. L
\\s,.r’-
w_ X q @
Case 6: p O« O >0 q

By lemma 2 this can be written as

14

C
Y, O >O q

and we can apply case 4. [J

We now use lemma 3 to prove three additional lemmas to be used in

the basis of our later induction.

Lemma 4: Let p, q and x be distinct vertices in a protection graph such
that p is directly connected to q and there is an arc from x to q with label

Y such that {r,c} n y # §. Then p can r q.

Proof: By lemma 2 we can assume that Y = r. Then we apply the following

rules:

r X | Py E, r X
d create -

o]
¢
o

k_______ P, 2L r p's
x take ?

15

-
X grants

By lemma 3 we can realize

q
1 or X
/
|/ r,wc
] W, C
\
\
N
q
o T x
rilrwc
r,w,cC
-~
N
~
" r x
r,wc
r,w,C

Lemma 5: Let p, q and x be distinct vertices in a protection graph such

that p is directly connected to g and there is an arc from x to q with label

Y such that w ¢ Y. Then p can w (.

Proof: We apply the following rules:

Q Q

£
»

X
Po o+—2—0 I—— Fo
X create

a}
£
Q

Z O ——=——=0

16

‘ Po EL w X
'Ix grant Y\

\ 1,w,C

\\ r,w,C

\\
~36

/// N
I Py &L W X\
|x grant q |

Wy C r,w, c,’

’
’
e

N

By lemma 3 we can realize

Lemma 6: Let p, q and x be distinct vertices in a protection graph such
that p is directly connected to g and there is an arc from x to g with label

¥ such that ¢ € y. Then p can ¢ q.

17

Proof: Apply the following rules:

q q
Po— o0& X ’—— Po oS x
X create

X r,w,c

‘ Py d e o x
X call T

i

|

|

I

1

l-—— Po
X grant

By lemma 3 we can realize

By a second application of lemma 3 we get

18

Theorem: Let p and q be distinct vertices in a protection graph and o a

label. Conditions (1) and (2) are necessary and sufficient to imply p can

o q.

Proof: Lemma 1 demonstrates necessity so we proceed by induction to show

sufficiency. Let p = X rX = q be the vertices on a connected

n-1'""""*1%0
path.
(Basis) For n = 1, there are two possibilities. The x guaranteed by condition

(2) either coincides with x, = p in which case the sufficiency is immediately

1
true or else x and x, are distinct. By lemmas 4, 5 and 6, p can o (.
(Induction) Suppose the theorem is true for n 2 1 and p = x and x is

n+l n+1l

19

directly connected to X . By hypothesis X can a q, and by lemma 3 this

implies X .1 can o q. 0

+1

Corollary 1: There is an algorithm for deciding if P can o q that operates

in linear time in the size of the protection graph.
Proof: To verify condition (1) apply Tarjan [6]. Verifying condition (2)

requires no more time than scanning the in arcs to vertex q. -

An obvious consequence of the constructions of this section is that it is

simple to acquire the right to a given object if it can be acquired.

Corollary 2: 1If p can o q then there is an algorithm to add an arc from p

to g with label o that is linear in the length of the path between p and q.

20

III. Discussion

The consequence of our main theorem is that we can precisely state

the protection policy for this take-grant system.

Policy: If p can read (write) (call) q then any user in the connected
component containing p and g can attain the right to read

(write) - (read and call) q.

This policy may appear to be more undiscriminating than one might have
expected. A primary reason for this is that our take-grant system treats
all elements of the system the same where as most protection moaels [3]
recognize two different entities: subjects and objects. If we dichotomize
the vertices of our model into subject and object sets and require (as is
usually the case) that only subjects can initiate the application of our
rules, * then the system becomes much more difficult to analyze. Such an
analysis is not yet complete, but preliminary indications are that there
exists protection graphs satisfying conditions (1) and (2) for subject
vertices p and g such fhat p can o q is false.

In addition to completing the subject/object analysis, there are
other problems to be studied. For example, the take-grant system discussed
here is only representative of existing protection schemes. Others have
been proposed in the literature and they should be studied since they may

provide more powerful security policies. One could also consider modifications

*

The restriction that only subjects can initiate protection rules is
enforced by requiring the x vertex in our rule definitions to be a
subject and all other vertices may be either subjects or objects.

to our rules to make the take-grant system more discriminating among

connected users. Other rights, such as ownership, could be added to the

model.

21

References

E. Cohen.
Ph.D. Thesis (in progress), Carnegie-Mellon University,

P. J. Denning and G. S. Graham.
Protection principles and practice.
AFIPS Conference Proceedings 40:417-429, 1972.

M. A. Harrison, W. L. Ruzzo, and J. D. Ullman.
On protection in operating systems.
Proceedings of the 5th annual SIGOPS Conference, 1975.

A. XK. Jones.
Protection in programmed systems.
Ph.D. Thesis, Carnegie-Mellon University, 1973.

R. J. Lipton and L. Snyder.
Synchronization and security.
In preparation, 1976.

R. E. Tarjan.
Depth first search and linear graph algorithms.
SIAM J. Computing 1:146-160, 1972.

1976.

22

