PRACTICAL USE OF SOME KRYLOV SUBSPACE METHODS FOR
SOLVING INDEFINITE AND UNSYMMETRIC LINEAR SYSTEMS

Y. SAAD

Technical Report # 214
January 28, 1982

This work was supported in part by the U.S. Office of Naval Research under
grant N000014-76—-C-0279¢and in part by NSF Grant.

Abstract

The main purpose of this paper is to develop stable algorithms for
some Krylov subspace methods. Like for the SYMMLQ algorithm in
the symmetric case, our algorithms are based on stable
factorizations of the banded Hessenberg matrix representing the
projected part of the matrix A on the Krylov subspace. We show
how an algorithm similar to Paige and Saunders’ SYMMLQ can be
derived for unsymmetric problems and we will describe a more
economical algorithm based upon the LU factorization with partial
pivoting. In the particular case where A is symmetric indefinite
the new algorithm is theoretically equivalent to SYMMLQ but
slightly more economical. As a consequence, an advantage of the
new approach is that unsymmetric or symmetric indefinite or both
unsymmetric and indefinite systems of linear equations can be

handled by a unique algorithm,

1, Introduction

In the previous few years considerable attention has been devoted to

solving large sparse sets of equations of the form:
Ax=0b (1.1)

where A is an N x N real ﬁatrix, Recent work by Vinsome [13], Axelsson [1],
Elman Eisenstat and Schultz [3], Young and Jea [6] and Saad [11] concerns
Krylov subspace methods for the case where A is unsymmetric. A common feature
of all of these methods is that the approximate solution belongs to the affine

space X, + Km where the Km is the Krylov subspace

m—1
K, = span[ro,Aro,..,A rO]

and T, is the initial residual vector T, = b - Axo, Their principle is to
attempt to make the residual vector T orthogonal to some subspace, possibly
different from Km [11]. It is also possible to regard these processes as
realizations of Galerkin’s method on Kﬁ. The representation of the projected
part of A on Km is then in general a Hessenberg matrix instead of a

tridiagonal matrix as is the case when A is symmetric.

In [12] the Incomplete Orthogonalization Method (IOM), closely related to
the Galerkin process, has been proposed. It has the advantage of requiring
fewer core memory than its counterparts based on direct updating of the
solution at every step, but uses secondary storage. For IOM, the above

mentioned representation is a banded Hessemberg matrix.

In this paper we will develop an alternative version of the IOM, that
does not require secondary storage and which ,as IOM, has the advantage that

it can be successfully applied to positive definite systems as well to

'mildly’ indefinite systems (here positive definiteness relates to the
symmetric part (A+Ai)/2). The principle of our approach is very similar to
the one adopted by Paige and Saunders [8] which led to the successful SYMMLQ
algorithm for the symmet:ic indefinite problems. Let us recall that SYMMLQ was
based upon the stable LQ factorization of the representation of A in»Kh, which
is a tridiagonal matrix when A is symmetric. In our case we will have to
factor a banded Hessenberg matrix by resorting to the LU factorization with
partial pivoting. Note that such a factorization can also be applied to
tridiagonal matrices which means that, when the matrix A is symmetric, we
obtain an alternative of the SYMMLQ algorithm which in fact is more economical
than SYMMLQ . As a consequence the new algorithm has the attractive feature
that the same code can be used for any linear system regardless of symmetry or
definiteness. It should however be understood that when the matrix A has a
large unsymmetric part and a symmetric part which has the origin well inside
its spectrum, the Krylov subspace methods are not recommended. The Krylov
subspace methods are most effective in those cases where A is éither nearly

symmetric or has a nearly positive definite symmetric part or both.

In section 2 we will briefly recall the Incomplete Orthogonalization
Method. Section 3:describes an altermnative versidn of the same algorithm,
which will be called the Direct Incomplete Orthogonalizatidn Method (DIOM).
Then we will briefly indicate how similar techniques can be derived for Krylov
subspace methods other than the IOM, A few practical considerations and
heuristics will be presented in section 5 and some numerical experiments will

be reported in the last sectionm.

2. Krylov Subspace Methods

2.1; The Full Orthogonalization Method

In the basic full orthogonalization method (or Arnoldi’s method)
presented in [12], ome first constructs an orthonormal basis Vi=[v1,v2,...vm]
of’Km. An orthogonal projection method on Km is by definition a method which

obtains an approximate solution of the form
Xn = %0 + mem (2.1)

for which the residual = b—Axm is orthogonal to the subspace Km' This

Galerkin condition gives
V(b-Ax) = 0 (2.2)
m m *

and therefore

T -1.T
v, = IV AV] TV, (2.3)

The basis Vm is built from the following recurrence:

=Av, - (2.4)

h
j+1,j 4+1 j

Ve
-
<

i=1
where the coefficients hij’ i=1,.,j+1 are chosen such that the vector vj+1 is

orthogonal to all the previous vi's and ||vj+1||=1.

An important property is that the matrix Vi A Vm in 2.,3(is precisely the
m x m upper Hessenberg matrix whose nonzero elements hij are defined by the

algorithm, Furthermore the vector Vi T in 2.3 is equal to ||r0||e1.

Therefore the solution m of equation 2,3 (simplifies into

-1
v, = H~ (Bey) (2.5)

where we have denoted by B the scalar llroll for convenience.

An algorithm based upon the above considerations can be briefly described

as follows:

Algorithm 1.

1. Compute rj := b—AxO, take v1:=r0/(B:=|lro||) and choose an integer
m,

2. For j=1,2...m compute the vectors vj and the coefficientshi j by
2.4 ’

3. Compute the approximate solution X from equations 2.1 and 2.5.

This will be referred to as the full orthogonalization method .

2,2, The Incomplete Orthogonalization Method

A serious drawback of the above algorithm is that as j increases the
process becomes intolerably expensive and requires the storage of the the
whole set of previous vectors \f since these are used every step. A remedy to

this is to orthogonalize the current vector A v, against the k previous

J
vectors instead of all the previous vectors, We will assume throughout that1
k>2. The derived algorithm, has been proposed in [12], and is called the

Incomplete Orthogbnalization Method. The only difference with the above

1The method can also be defined for k=1, and corresponds to the method of

steepest descent in the symmetric positive definite case. We want to avoid
this trivial case.

6"

algorithm of full orthogonalization lies in the definition of Vj+1’ which now

becomes:

1 h]
V..q =7 [Av, - > h,.v.] (2.6)

1.5 9 amjeren M1

In the above summation j—k+1 is to be replaced by 1 whenever j<k-1, Here
the coefficients h, are chosen such as to make vj+1 of norm one and

i, j

orthogonal to the vectors Vis i=j—k+1,.;j , that is:

I 3 I
B = 1llAv, - > n,.v, (2.8)
j+1,j i=j-ic+1 ij'i

The new banded matrix which will still be denoted by Hm has the following

structure when for example m=9, k=4,

MM
MM M
M KM MM
MM MMM
M MM MM
MM MMM
M oM MMM
M oMM MM
MM oMM

(2.9)

==}
"

A simplistic version of the IOM algorithm can be described as follows

T¢

Algorithm 2

1. Compute r :=’b—Ax0, take v1:=r0/(B:=||ro||) and choose an integer
m‘

2. Compute V_ = [v sVpseess¥,] and H_ by using formulas 2.6 and 2.7
. m m
and 2.8, for j=1,..,.m.

3. Compute
-1
Y = B H ey (2.10)
and form the approximate solution
x 1= xg + Vv (2.11)

We will refer to the above algorithm as IOM(k) or simply IOM if there is
no ambiguity. It is clear that when the number of steps m does not exceed k,
the above algorithm is equivalent to the Full Orthogonalizatiom Method. For
this reason we will denote by IOM(«) the Full Orthogonalization Method, since
full orthogonalization corresponds to taking k larger than any step number m

in the above algorithm,

One pf the important details not made clear in the algorithm conceras the
choice of the number of steps m. If the algorithm were to be applied with an
arbitrarily chosen m, we will certainly have to restart the algorithm if the
accuracy provid;d is insufficient, In other words the above algorithm is
restarted with the initial vector replaced by the newly computed approximate
solution, and this is repeated until convergence. But it is also possible
that m is too large and that convergence would occur for some mo<m. This means
that we must be able to test for convergence anywhere between j=1 and j=m. In

fact all we need is a formula for estimating the residual norm of the

intermediate approximation xj without forming xj . Fortunately such a formula

exists and is given by (see e.g. [12])

T
le yml (2.12)

Mo -ax Il =n . le

As will be seen later, updating the estimate 2,12 requires oanly 2
multiplications per step provided that the factorization of Hj is updated at
each step (this fact will be shown in the next section). Since the final
factorization of Hh is needed for the solution of the m x m system involved in
2.10, it is not more costly to factor Hm by updating the factorixation at each
step, and hence the computation of the estimate 2.12 is virtually free. It
should be added that 2.12 gives a quite accurate approximation of the residual

norm in practice.

The above remarks suggest an efficient implementation of IOM which we
briefly outline here (Qee [12] for more details). First choose an initial
vector Xy, the parameter k and a maximum number of steps mmax, Compute Ty and
vlfr0/||r0||. Then for j=1,2.. , compute hi,j and Vi1 by 2.4. VWrite in
secondary storage every vector vj+1 thus generated, one by one.

Simultaneously update the LU factorization of Bj at each step j and the
estimate 2,12 of the residual. If at step j this residual norm estimate is

small enough, recall the v,'s from secondary storage one by one and form the

i

approximate solution x, by formulas 2.10 and 2.11. If j reaches mmax and the

j

residual norm is still unsatisfactory form X max and restart the algorithm.

We must emphasize that the central idea of the algorithm lies in the fact
that it is possible to update at each step the factorization Hj= Lj Uj with Lj
unitary lower triangular, Uj upper triangular. Even more interesting is the

fact the LU factorization with partial pivoting can also be updated at each

step together with the estimate 2.12 of the residual norm. These observations
have already been used in our earlier paper [12]. The algorithm given above

will be referred to as the indirect version of IOM as the approximate solution

X is not updated at every step. We now show how to derive a few direct

versions which are theoretically equivalent.

3¢ Incomplete Orthogonalization Method: direct yersioms.

In all of the algorithms proposed by Axelsson [1], Eisenstat, Elman and
Schultz [3], Young and Jea [6], the approximate solution x is updated at
every step in a Conjugate Gradient like algorithm. We show here that it is
also possible to write similar versions for the IOM algorithm, The algorithms
we are about to describe are based upon the updating at every step of the LU

factorization of the banded Hessenberg matrix Hm.

For the sake of clarity let us first present a version that does not use
partial pivoting. The more stable algorithm using partial pivoting will be the

object of subsection 3.2{

3.1, Derivation of the algorithm,

At each step m, the approximate solution x is given by the formula

-1
xm—xO+BV’n H™ e (3.1)

where ||ro|| has been replaced by B for convenience.
Let Hm be factored as

H =L TU (3.2)

where Lm is a m by m lower bidiagonal matrix with diagonal elements equal to

one, and Um is a banded upper triangular matrix with k diagonals. That is:

10

Bﬁ = Lh Uﬁ
l x x x x | | 1 |l | xxxx |
l x x xx x | | 12 1: [X X X X |
X XX X X		. 1: I 1 X X X X	
X X X X X		. . I 1 X X X X	
X X X X X I =1 . .	X X X X		
xxxxx		. . I 1 xxxx	
xxxx		. . I	xxx
xxx		R x x	
x x		1 1l	x
m
From 3(1 and 3.2(the solution x satisfies
-1 .-1
3, =%t VﬁUm Lh (p el%
Following Paige and Saunders [8] let us set
-1.

¥V =V U (3.3)

m m m

and

2z =BLTe | (3.4)

m m 1. *

We will demote by w, the i—th column of the N by m matrix Wm .

The key observation here is that we pass from the (m1)-dimensional

vector z to the m—dimensional vector z by just appending one component §ﬁ

m1

which is equal to §ﬁ=_1m§m—1‘ In other words we have:

I
-
z = | ™1 (3.5)
I
|
e |

11

It is then clear that x can be updated at every step through the formula:

+ & w ' (3.6)

X = X
m m

m m—1

where the last element &m of the vector z, satisfies the recurrence

§n’l = "'].m gm—l » m=2’30.o (3.7’

starting with &, = p=llr.ll. Recall that we denote by 1 the element in
1 0 m

position m,m1 of the matrix Lm'

The vectors w can in turn be updated quite simply since we have from

their definition 3.3

m-1
w =[v - 2 u, w, l/u (3.8)
m i=mk+1 im"1 i

Our first direct version of IOM(k) can therefore be summarized as
follows:
Algorithm 3

1. Start. Choose an initial vector x_, and compute r0=b—Ax0.

0

2. Iterate. for m=1,2,.,.until convergence do:

— Compute him,i=m~k+1,..m+1, and v

o 1 by formulas 2,6, 2.7% and

— Update the LU factorization of Hm' i.e. obtain the last column
of Um and the last row of Lm. Then compute §m from 3(7¢

— Compute
m-1
w =Iv. - > u, w.,l/u
m jem-k+q WM 1T mm
- compute
*m = *m-1 + §m i

12

We have intentionally skipped some of the details concerning in
particular the way the LU factorization of Hm is updated. An important remark
here is that the formula 2.12 can be efficiently used, because the last

element of v, is precisely ém/“mm’ hence
o-Ax Il =n ., ol /o] (3.9)
which requires only 2 operations at each step.

The cost per step of the above algorithm is approximately (3k+2)N
additions/multiplications plus one matrix by vector multiplication and we need
(2k+1) vectors of storage (these are: X k-1 vectors wj, k vectors vj, prlus
an extra vector for Avm). Note that the division by L. in 3.8 can be avoided

by simply using the vectors wi=u, .w. in place of the wj 's and by keeping

j iy’

track of the scaling factors ujj'

The above algorithm breaks down whenever L. vanishes. In fact even if
L does not vanish it is not recommended to use the above algorithm as it is
based upon the unstable LU factorization of Hm and can result in an instable

algorithm for solving Ax=b. This brings up the use of partial pivoting,

3.2, Using the LU factorization with partial pivoting,

Instead of the straightforward factorization 3(2 we now introduce the

following LU factorization with partial pivoting of the matrix Hm

Hm = PZEZPSES.... PmEm U (3.10)

where each Pj is an elementary permutation matrix, and Ej is an elementary

transformation([141) having the structure:

13«

(j-1)st column

The elementary permutation matrix Pj+1 is the one used to permute the

rows j and j+1 if needed, i.e. if the element h is larger in absolute

jtl,j

value than the element u,.,, The matrix Um is again a banded upper triangular

Ji

matrix this time with k+1 diagonals instead of k due to the permutationmns.

As before the approximation z is defined by 3:(1. Letting again

W =v Ul (3.11)
m m m

we get
x = x, + Wﬁ z,

where z is now defined as

-1
2 = By Py B qPpgeee-By By (Bey)

Note that the vectors wj can be updated in the same way as before by use

of 3(8, except that the summation is now form m—k to m-1.

We claim that there are formulas similar to 3.6, 3.7'for updating the

vectors zm. This is because we have

14

2 = EL1P 3 | (3.12)

zZ 4 (3.13)

——————

0

|
|
|
= =zm—1
|
|

Equations 3.12 and 3.13(show that there are two cases, depending on
whether interchange has or has not been perfofmed at previous step:

1. Either the rows m—1 and m have not been permuted. In this case the
vector z is defined as before by 3(5 and 3.7‘.

2. Or there has been a permutation of rows (m—-1) and m, in which case:

)

(3.14)

. 0 .
ém—l

I
I
I
z = |
I
I
I

where §m—1 is the last element of Zo1°

Practically, the use of the above observations is particularly simple.
If interchange has not been performed at step m-1, then the approximate
solution X is updated from x 188 before by formulas 3.6'and 3.7% If on the
other hand rows m—1 and m have been permuted then the expression 3(14 of z
shows that the only difference with the previous case is that the
approximation . is now defined by xm=xm_2+§m_1wm. In other words X1 could
be redefined as equal to X 9 and the scalar §m as equal to §ﬁ_1. This means

that when a permutation occurs, all we have to do is skip the application of

15

the updating formulas 3.6, 3.7' at the next step. In a practical

implementation we must look ahead at the current step m and check whether

permutation will or will not be necessary in the next step m+l. This is

fortunately possible because the element hm+1 m is available at the m—th step
»

as well as the element L since the factorization is updated at each step.

Typically the updating of the factorization of Hm at the m—th step can be
performed as follows. First, using the k+1 previous pivots lm—k’ 1m—k+i"'1m

tranform the column {him}. into the column {u. }. In order for this

i=1,m im’ i=1,m"*

to be possible we must save these k+1 pivots. Note that the m—th column of Hﬁ

(resp. Uﬁ) has at most k (resp. k+1) nonzero elements. Second compare the

element u__ thus obtained with h to determine if interchange is needed.
mm m+l,m
If Iumm|<hm+1,m permute the elements hm+1,m and - and compute the mnext pivot

1 . Clearly the matrices H , E , U, need not be saved. All we need is the
m+l’ m’ m’ m

k+1 previous pivots lj’ the logical information perm(j) j=mk,..m, defined as
perm(j)=true if rows j and j+1 are permuted, and the k+l nonzero elements of
the m—th column of Hm, which is transformed into the m—th column of Um' This
constitutes little storage as k is in general small (typically k<10). VWe

describe below the Direct Imcomplete Orthogonalization Method (DIOM(k))

algorithm derived from the above suggestions .

16’

Algorithm 4 : DIOM(k)

1. Start, Pick an initial vector X, define r0:=b~Ax0.
2, Iterate, For m=1,2,.,.until convergence do

— Compute v and the mth column of H by formulas 2.6'2.7¢and
2.8. m+l "
—~ Update the LU factorization with partial pivoting of H , i.e.

find the m—th column of Um and the pivotal information to be
used in the next step.

— Compute
m-1 »
woi=[lv - . > u oW,]/umm (3.15)
i=m—-k

- If perm(mt+l)=false then compute:

p :=Bm+1l§ /uml

if [{ € stop
— else define:

§m = §m—l

x =X

In the above algorithm Pm represents the estimate 2.12 of the residual
norm, Thus the process is stopped when this estimate is smaller than the

tolerance ¢.

Once again DIOM(») refers to the case of full orthogonalization, that is

to the case where the summations in 2,6'and 3.15 start from 1.

17¢

The amount of work is approximately the same as that of algorithm 3¢
Indeed when a permutation takes place we save one vector update of the form
3.6,i.e, we save N additions/multiplications. But then the permutation
introduces an extra nonzero element in the triangular matrix Um+k’ which means
an extra N additions/multiplications when updating the vectors LAY at step
m+k, and this compensates exactly the savings made at the curreant step.
Concerning the storage we need one more vector of storage as the sum defining
v is now from mk to k-1, i.e. we need a total of 2k+2 vectors of storage,

instead of 2k+1 in Algorithm 3

One might question the need of using algorithm 4 instead of algorithm 3¢
in some cases. In particulaf'is pivoting a necessity at all if the original
matrix A has a positive definite symmetric part? Our numerical experiments
show that interchange will indeed occur even in those cases. The fact that
some pivots are quite small even when A is almost positive definite suggests
that it is in general better to use the more stable version of Algorithm 4,

instead of Algorithm 3§ in spite of the extra vector of storage involved.

3.3, Using the stable QR factorization,

In the SYMMLQ algorithm described by Paige and Saunders in [8] one uses
the LQ factorization Hmeth. A similar algorithm using the stable QR
factorization can also be developed for the incomplete orthogonalization

method. Consider the orthogonal QR factorization:

B =QU (3.16)

where Um is, as in subsection 3(1, an mxm upper triangular matrix and Qm is an

unitary orthogonal matrix, i.e. Q:Qm=1 . A remark which is essential is that

18
since Hm is banded upper Hessenberg, Uh will be banded upper triangular,

The reason why we prefer a QR factorization to the LQ factorization is
that the implementation with QR is quite simple and resembles that of
algorithm 4. The only difference is that instead of the elementary matrices

Ej we now use elementary rotations Fj of the form:

{——— row j

]
I
.
(3"

where cj = cos(Oj), sj=sin(9j) . We will show next that Qm is the

product of m—1 such rotation matrices, more precisely

Qm = F2F3...Fm (3.17)

Letting as previously

-1

Wd=VhUm (3.18)
-1 T

z, = Qm (Bel?— Qm(Belg (3.19)

we observe that the approximate solution x is again defined by

= %0 + Wﬁ zZ, (3.20)

and that since Um is upper banded triangular, the updating of the vectors

is essentially the same as in the previous algorithms,

Y3
Next we would like to show hoﬁ to update the factorization 3(16 and the

vector zm at every step.

19

Suppose that at a given step we have the factorization 3(16'and let us
assume that one more step is performed in the sequence giving the vi's, such

that we now have the (m+l)st column of Hﬁ+ available. We want to compute the

1

next orthogonal matrix Qm+ or according to 3(17' the next rotation Fm+1’ and

1

the next last column of Uﬁ+ Let us denote by ﬁj the (m+1)x(m+l) matrix

1.
obtained by completing the jxj matrix Qj by adding zeroes in all nondiagonal

positions and ones in the diagonal positions. We will define in the same way

the matrix Fj'

Then we have

.. . : 0 |
: . . 0 : 0 |
U : x|
T. m '
QH . |l o A (3.21)
| wo:ox |
I'..C".I...'l..: D‘I'
l o o o .:a |
where we have denoted for convenience by ﬁm+1 and e 1 the elements
hm+1,m and hm+1,m+1 respectively. The elements of the last column of the

above matrix are obtained by multiplying the last column of Hﬁ+1 by the
successive rotations F?, j=2,3,..m. In order to cancel the element Bm+1 in
position (m+l,m) it is clear that we need to premultiply the above matrix by

the plane rotation F$+ with ¢ and s defined by

1 m+1 m+1
_ 2 . 2.1/2
€41 = Pmm /s(umm+ Bm 1 (3.22)

_ 2 . .2 .1/2
Sm+l Bm+1 /‘(umm+ Bm+1)

which finally determines the next plane rotation . Note that the last
column of Um+1 is now completely available by premultiplying the last column

of the matrix 3.21 by the rotation F$+1 Since the elements h are zeroes

i,m+1

20

for i=1,2,..j-k, only the k previous plane rotations are needed. The upper
triangﬁlar matrix Um+1 will have k+1 diagonals as the premultiplication by the

plane rotations will introduce an extra diagonal.

Consider now the vector Z 41 which we would like to update from Z . This

is possible because

Zne1l = Fmi1 zj'

where

| |
| |
_ | |
2= 2 |
| |
1
lo |

Hence
| |
| |
| [
zm+1 = :zm—1=
g |
le . 1

where

gm = ®m+1 §m

§m+1 = Smi1 §m

In the above §j denotes the last elememt of zj. Hence the approximate

solution may be updated form the equation

m—1 + gm Y + §m+1wm+1

21

Such an updating formula is however not the most economical. The reason
for this is that, exactly as in subsection 3(3, at the m—th step we have all
the information for obtaining the next plane rotation, In our algorithm we
should therefore look ahead at step m and get the rotation Fm+1' In this
manner we have not only z, but also the element Em in position m of Z 41"
Since this will not be changed by the subsequent rotations, we see that an
updating formula passing from X to X 41 can be obtained. Only at the the

final step do we have to use a slightly different formula, Notice that similar

arguments have been used in [8].

.An algorithm based on the above developments can easily be implemented
but we believe that it is needlessly more expensive and complicated than the .
version DIOM(k) of algorithm 4. In effect each step now requires N more
operations than its equivalent DIOM(k). This would not have been a high price
to pay if it results in a substantial improvement. Such is not the case
however as a number of numerical experiments show (see subsection 6.1). We
think that the reason for this is that the main source of errors is not in the
factorization of Hﬁ and the formation of the solution as defined by 3(1, but

mainly in the construction of the vectors v Solving a banded Hessenberg

j.
system, by Gaussian elimination with partial pivoting is sufficiently stable
in general. However there might exist particularly difficult cases where the
more stable QR factorization has a better performance and although we prefer

algorithm 4 in general, the technique outlined in this subsection should not

be completely discarded.

3,4, Properties of the Incomplete orthogonalization method,

In this subsection we wish to show a number of properties of algorithm 4

22

assuming exact arithmetic. We would like first to establish a sufficient
condition under which algorithm 4 does not break down. Similar sufficient
conditions for the symmetric Lanczos algortihm are expressed in terms of the

minimal polynomial of the initial vector v, (or ro). We will call minimal

1
polynomial of a vector v with respect to the matrix A the polynomial P, of

smallest degree s such that ps(A)v=0 (cf. [141).

Proposition 3.1: JIf the minimal polynomial of vy is of degree not less than

e ——— L etma ¥ eac—— — . e D . e e S—e———

j» then at least j steps of algorithm 4 are feasible.

Proof: To prove this property consider the polynomial defined by the

recurrence
i=j
h P:4(2) = zp.(2) - 2 h..p.(2) (3.23)
j+1,575+1 j jmjoxer 1 E

starting with pl(z)= 1.

Denote by ;j+1 the polynomial on the right hand side of 3(23. This is a
polynomial of degree j such that hi+1,i=llpi+1(A)v1||' i=1,2.. If at step j

we had h =0, this would mean that ;j+1(A)v1=0 . Since ; is of degree

j+1,j j+1

j» and assuming the minimal polynomial of \£] is of degree larger than j, we

conclude that hj+1,j

does not break down at step j because firstly the next vector Vj+1 can be

cannot be equal to zero. This means that the algorithm

computed, and secondly since max{ hj+1 j , | I} is nonzero, the factorization

L
JJ
of Hj does not breakdown and hence the vector wj+1 can be computed.

Q.E.D.

It is important to note that in the case where h

m+1,m=° and umm#O then

the algorithm produces the exact solution at step m, This observation can be

regarded as a consequence of equation 2,12, and is often referred to as a

23«
'happy breakdown’. We do not know under what circumstances this may happen.

Next we would like to prove some orthogonality relations characterizing
the residual vectors rj and the directions wj produced by the algorithm, In
the symmetric case it is known that the residual of the approximate solution -
produced by the Conjugate Gradient algorithm is orthogonal to all the previous
residuals and that the directions wj, are conjugate with respect to A, i,e.
(ij,wi)=0 if i#j. The situation is not as simple in the unsymmetric case.
For the residual vectors, it was shown in [11] that at each step j the

residual rj is orthogonal the the previous k residuals, This fact is a simple

consequence of the following lemma:

Lemma 3.2: The residual vectors T produced by m steps of either algorithm 3

or algorithm 4 satisfy the relation

r =-h

m m+1,m emym Vit (3.24)

where Vm is defined by 2.10.

Proof: The lemma is a consequence of the following important relation

derived from the definition of the vectors vj:

Avm = vﬁHm + h'm+1,mvm+1 °n (3.25)

where V= [Vl.vz....vm]. The residual r is such that
rm=b_Axm=b - A[xo * Vﬁym] =T~ AVﬁYm
= Bv, - [V H +h T
B Bv1 mm m+1,mvm+1 em Y

The result 3125 follows form the fact that Hmym = Bel..

Q.E.D.

24

The lemma asserts that the residual vectors are equal to the v,'s apart

i

from a multiplicative constant, Since the coefficients hi . are chosen such

]

that (vm+1,vi)=0 i=m-k+1,..m, it follows from 3(24 that ([12]) :

Proposition 3.3: The residual vectors produced by algorithm 3 or 4 satisfy the

orthogonality relation:
(r_,r.) =0 i=mk,mk+1,..m1
m’i

In other words the current residual is orthogonal to the previous k

residuals. Note that the above lemma also proves the result 2.12,

An important consequence of the above proposition is that when A is
symmetric then the algorithm DIOM(2) is theoretically equivalent to the
conjugate gradient method (A positive definite) or the SYMMLQ algorithm (A
symmetric indefinite), for which it is known that the residuals satisfy the
same property. In the symmetric case it is unnecessary to take k)2, because
all of the algorithms DIOM(k) with k)2 are equivalent to DIOM(2) (See [11]).
The matrix Hﬁ, is then tridiagonal symmetric and the process of building the

vi's is nothing but the usual symmetric Lanczos process.

Concerning the directions w,, it is natural to ask whether a conjugacy

i
relation similar to that of the conjugate gradient method holds, Consider
first the case of full orthogonalization. For the remainder of this

subsection we will assume that no pivoting is performed throughout the

process, i.e we assume algorithm 3(is used instead of algorithm 4.

25

(=¥

Proposition 3.4: For the direct version of the Full Orthogonalization Metho

I

(DIOM(~)), with no pivoting, the following semi-conjugacy relation is

satisfied by the vectors w.e

(ij , wi) =0 for i<c<j, j=1,2...

Proof: Multiplying equation 3(25 on the right by U;l gives:

T
AV, = Valn * (hm+1,m/nmm) m+1 ®m (3.26)
. . . T . _

Multiplying the above equation by Wm on the left ,and letting "—hm+1,m/“mm’ we
obtain

T _ T T -T,, T T

WhAWm = Uﬁ [Vth] Lm + Um vam+1em
The last term in the above equation is a null vector because Vel is

orthogonal to all previous vectors (Full Orthogonalization). Also because of
the orthogonality of the vi's, the m x m matrix [vivm] is the identity.

Finally we get

WAW = UL
m m m m

which is a lower triangular matrix. This completes the proof,

Q.E.D.

From the above proof it is easy to see that the proposition does not
extend to the case of Incomplete Orthogonalization., A somehow weaker result

is, however, proved below.

Proposition 3.5: The following orthogonality relations hold for DIOM(k) with

no pivoting:

26
(ij, vi) =0 for j-k+1<i{j , j=2.3,..
Proof: Let us start with equation 3(26, which is still valid, and

multiply both sides on the left by Vi to get

T T T
Vo A Wm = me Lm + uV'lnvm+1em (3.27)

With p defined in the proof of the previous proposition. Careful matrix

interpretation of equation 3(27¢shows that Vi A Wm has the following stucture:

VT AW =
m m
T T T
\/ Vﬁ Lm Vﬁvm+1em
1 2 ... 111		0 x
1 x .l x1		0o x
.0 x.l1 X . 0		. x
x . x		X . I+l o . x
Il .x o . I X .		. 0]
l . .x .. 11 o x.		o
... x 111 1	I o ol	
Hence		
1 x ...		
x1 b4 A		
T | x. 0 x .|
wav = Ix x.0 =x |
l.x0 x. x|
l. = «x. |
l. . . x x 11

The upper part of the above matrix has zero elements in positiom i,j
whenever j—k+1<i<j (Post multiplication of V':;Vm by Lm introduces an extra
diagonal) . The proof is complete.

Q(E.DQ

4. Application to other Krylov subspace methods.

As indicated in [11], many algorithms using Krylov subspaces can be

described with equations similar to those of IOM. A sequence of vectors v

j’

27¢

representing the residuals rescaled as in lemma 3:2, is generated by requiring
some orthogonality conditions. Then the solution is obtained by the equations
2.10 and 2.11. The only difference between the various methods resides in the

orthogonality conditions forced upon the residual vectors r,, or equivalently

3
the vj's. An interesting question is whether the algorithms decribed earlier
can also be adapted to other Krylov subspace methods. The main reason why
such versions are sought is that when the matrix A does not have a positive
definite part, then the regular versions face the risk of breakdown and

instability, because they implicitly solve an upper Hessenberg system with the

potentially unstable Gaussian elimination with no pivoting,

The use of pivoting will be very helpful in particular for the Lanczos
algorithm, considered next, as the original direct version called the
Biconjugate Gradient algorithm faces serious risks of instability and

breakdown (see [11]).

4,1, The Lanczos Biorthogonalization Algorithm

For the following discussion we recall the essential of the Lanczos

algorithm for solving a linear system of the form Ax=b. See [4, 7¢ 11].

28

Algorithm 5 : Lanczos

1. Choose an initial vector x, and compute r,=b—Ax,. Define
0 0 0
v1:=u1:=ro{(6:=||ro||).

2, For j=1,2..m do:

~

Vie1 T Avj - ajvj—ijj_1 (4.1)
2 1= A?u - a,u,~8.u (4.2)
j+1 Jj iy ii *
with a,:=(Av,,u,)
J J J
_ ~ ~ 1/2 . . ~ ~
8j+1 1= l(vj+1,uj+1)| , Bj+1 1= s1gn[(vj+1,uj+1)] 8j+1 (4.3)
Vil T Vier/8541 0 Byar T uj+1/Bj+1 (4.4)
3. Form the approximate solution
x i=x+Voy, (4.5)
in which as before V= [vl’VZ"'vm] and
y_ = H l(Be,) (4.6)
m m 1° .
where Hm is the tridiagonal matrix defined by
| a B |
1 2

| |

H 82 oy . H
B o= | . . . | (4.7)

} . - - '

. . B_ |

I . - m I

|) a |

m m

A direct version of this algorithm exists and was due to Lanczos himself,

The algorithm was neglected for a long time because it faces serious stability

29
problems, see [4], [11].

The similarity of part 3:of this algorithm with part 3 (of algorithm 2
indicates that a direct version which uses the LU factorization with partial
pivoting can easily be formulated. The development of the new algorithm is
identical with the one for DIOM(k) described in section 3, and we will omit
the details. This does not, however, overcome all of difficulties associated
with this algorithm, because the process of building the sequence {vi}i=1.2..
faces itself risks of breakdown. The problem of building the Lanczos vectors
in the unsymmetric case was addressed by Parlett and Taylor [10] who suggest
an alternative‘algorithm which takes care of the breakdowns associated with
the construction of the sequence Vi Thus a combination of Parlett and
Taylors' Look ahead Lanczos [10] process for constructing the Lanczos vectors

v. and our technique of obtaining the approximation x as implemented in

3

algorithm 4, constitute a more reliable version of algorithm 5.

4,2, Krylov subspace methods based on conjugate residuals,

Similar considerations hold for the ORTHOMIN(k), GCR methods(see [13],

[3]). However let us start with an important remark. Baéed on the
orthogonality properties, we may say that the methods considered in [3] are in
a way generalizations of the (symmetric) minimal residual method [8], or
conjugate residual method [2] while DIOM(k) generalizes the conjugate gradient
method., One might therefore think that a generalization of the corresponding
MINRES algorithm of Paige and Saunders [8] to the unsymmetric case, is
straightforward . A more carefull analysis seems to show tﬁat, unfortunately,
such is not the case. This comes mainly form the fact that the vectors v, are

not orthogonal,

30

However one can certainly generate a direct version as suggested earlier
by imposing on the vi's the orthogonality condition known to be satisfied by
the residual vectors of the original algorithm, In our case we would like the
residual vectors to be A-conjugate [3], which means that the vi's should

satisfy:
(Avjyvi) = 0 i=1,2’ e e j-l (4-8)

The above sequence of vectors would lead to the Generalized Conjugate Residual

Method, or ORTHOMIN [3].

Again the computation of the system of vectors stisfying 4.7 becomes
uneconomical as j increases, and a natural idea is to replace such a condition
by an incomplete orthogonality condition. Note that the incomplete version of
the algorithm thus obtained is no longer equivalent to the truncated version

" ORTHOMIN(k) of ORTHOMIN.

Computing the sequence of vectors Vi by the recurrence 4.7% or by its
truncated form faces as in the Lanczos algorithm, risks of breakdown because
we are attempting to orthogonalize a sequence of vectors with respect to an
indefinite inmer product, i.e. we can have (Av,v)=0 fpr v#0 . It is obvious
that a process similar to the one suggested by Parlett and Taylor can be
applied to the sequence of vi's because in both cases we implicitely deal with
the same problem of constructing a sequence of orthogonal polynomials with
respect to some indefinite inner product. Seev[11, 5]. The combination of
such a process and the technique using partial pivoting for forming the
approximate solution of algorithm 4, can again be combined to yield an

algorithm having the advantage of being more robust for indefinite systems.

31

5, Practical Considerations.

5.1. General comments.

As mentioned in the introduction, one attractive feature of DIOM(k), is
its ability to deal efficiently with symmetric indefinite systems and
unsymmetric systems, A comparison with SYMMLQ, would indeed show that DIOM(2)
requires the same storage as SYMMLQ, while computationally each step of
DIOM(2) requires 7N additions/multiplications against 9N for SYMMLQ. Note
that according to the comments following algorithm 4, each step of DIOM(k)
would cost (3k+2)N, which for k=2 gives 8N operations instead of the TN
clgimed. However because of the symmetry of the problem, we save one inner

B

product in the formation of vj+1 which explains the result.

Note that other methods also exist which are less expensive than SYMMLAQ.
For example Chandra's SYMMBK version [2] based upon the use of 2x2 pivots in
the LU factorization of Hm also requires 7N adds/multiply’s. However these

versions do not deal with unsymmetric problems.

From the point of view of the difficulty in the numerical solution of
large linear systems we may consider that there are four classes problems:
1. A is symmetric positive definite
2. A is symmetric indefinite.
3(A is unsymmetric with a positive definite symmetric part.

4, A is unsymmetric with a non positive definite part,

For the first class of problems, there are many methods that can

effectively be used, e.g. the conjugate gradient method.

It seems that a commun way of dealing with the second class is the SYMMLQ

32

or MINRES algorithm. The third class can be treated by several efficient

methods including ORTHOMIN(k), IOM(k), DIOM(k), Chebyshev iteratiom, etc..

The fourth class of problems is more difficult. Our DIOM(k) can be
applied, especially in those cases where the unsymmetric part (ArA?)/Z is
small, compared with the symmetric part. When this is not the case we observe
that in order for the process to converge, the parameter k must be quite large
thus rendering the method uﬁeconomical. The process may diverge or be very

slow if k is too small.

These observations suggest that tﬁe Krylov subspace methods may not be
suitable for indefinite unsymmetric systems with large unsymmetric parts, or
such that the origin is well inside threir spectra. In fact since k must be
large (e.g. k>9) it might well be preferrable to solve the normal equations

using e.g. the conjugate gradient method.

5.2¢ Heuristics

In order to enhance the efficiency of a code based upon IOM(k) or
DIOM(k), a number of heuristics are needed. The most important of them are

described below.

Dynamic choice of the parameter k, In an efficient implementation of

IOM(E), or DIOM(k), we must include a process which chooses automatically the
parameter k., Indeed, the user does not in general have any idea of a
reasonable choice for k. The possibility of choosing k in a dynamical way, is
based on the fact that k can be reduced during the algorithm without changing
the orthogonality relation of proposition 3.5 Note however that k cannot be

reincreased. What this means is that we can start the algorithm with some

33

large k (in our code k starts with the value 9) and then reduce it
progressively according to some criterion. The criterion that we use is
related to the fact that when the matrix is almost symmetric (or skew
symmetric) then the elements hi,j of the j—th column of Hﬁ. with i{j—2 are
small, and can therefore be neglected. This suggests that at a given step j we
should reduce k by as much as there are small elements hij where i is between

j—2 and j-k+1, Specifically we redefine k from

{ P e S
k := k — max {p s.t. > In,.. | <tol,. 2 h..l 1}
new i i=j—k+1 ij 1: —jk+1 ij

where tol1 is some tolerance parameter (In our code toll,was set to 1,e-03.).

The formula above should be modified such as not to yield k less than 2.

With this empirical formula , symmetry or near—symmetry is easily
detected, and as a consequence the computatiohal work may be significantly

reduced.

Restarting. In IOM(k), the version using secondary storage, it is a
necessity to restart the algorithm, because of storage. It is also often more
effective to include a restarting strategy even for the direct version
DIOM(k)., Such a strategy would restart the algorithm whenever the convergence
becomes unsatisfactory. More preciselly the following heuristics have been

found to be effective
If (pj/pj_p) > tol, then restart

where p is some fixed integer (e.g. 5’as in our code), and tol2 is some
positive tolerance parameter. The above criterion for restarting has the
following interpretation: restart if the residual norms do not decrease by a

sufficient amount in p steps. For IOM(k) we can restart with the vector i o

34

which has a smaller residual, but this cannot be done for DIOM(k) unless we
save the vector xj—p‘ The restarting strategy was found to be quite effective

for some difficult cases (see subsection 6.3) but does not change much when

convergence is fast enough,

Preconditioning, The efficiency of Incomplete orthogonalization methods
can be improved by using préconditioning techniques. One difficulty however is
that most of the known preconditionings assume (directly or indirectly) that
(A+A?)/2 is positive definite. A very simple remedy is to add oI to the
original matrix, where a is a scalar such that B=A+al is positive definite,
and use as preconditioning the preconditioning associated with B. This can be
effective in case a is not too large, but will not improve the convergence

otherwise as our experiments show.

6. Numerical Experiments,

All the numerical experiments have been performed on a DEC-20 computer.
Single precision (unit round off ;3.76—09) is used in the first experiment

while double precision (unit roundoff = 1.e-19) is used elsewhere.

6.1, Symmetric Indefinite Problems.

We begin with an experiment comparing SYMMLQ the conjugate Gradient
method and DIOM(2) on a symmetric indefinite problem. We choose to take an
eiample from [8], in which the matrix A iS of the form A=B21uI , where B is
the tridiagonal matrix with typical nonzero row elements (-1,2,-1) and p= V3.
Note that p is not an eigenvalue of A, and that it is not near either
extremity of the spectrum . In order to demonstrate the fact that IOM(2) and

SYMMLQ have a similar behavior on this example, we use single precision

35

arithﬁetic. The problem solved is Ax=b, where b = Ae, e=(1,1,1,...1)T. The
initial vector is a random vector, the same for the three methods DIOM(2),
SYMMLQ, CG. Figure 6-1 compares the behaviours of the three methods for the
steps m=38,39...65. The first 37:steps yield almost identical residual norms

for the three algorithms and have not been reproduced.

The figure shows that both SYMMLQ and DIOM(2) are superior to the regular
conjugate gradient method, but SYMMLQ is not superior to DIOM(2). In fact
DIOM(2) is slightly better on this example but the difference is not
significant. More significant is the difference obtained when a less efficient
way of generating the Lanczos vectors vi's is utilized. Indeed in our first
experiments with the above example we found DIOM(2) significantly more
efficient than SYMMLQ, A careful analysis showed that the reason for this
superiority was Aue to the fact that the original code of SYMMLQ was not using
the best formula for generating the Lanczos vectors. Indeed as mentioned in

[9], it is more efficient to gemerate the Lanczos vectors by the recurrence
= Av, - B.v,
4 i~ Py
a.:= (q,v,)
i

i=q-a, V.,
q:= q iVj

v 1= q/(Bj+1:=||q||)

j+1

rather than

RESIDUAL NORMS

36’

DIGM(2) SYMMLG AND C.G.

5.0E+01
5.0E+00
5.0E~01
5.0E-02

5. 0E"'03

5.0E-04 ¢

5- OE"'OS

50 OE"OS

3 | 1 | 1 | 1

5.0E-07
38.

45.00 52.00
NUMBER BF STEPS

= DIBM(2)
+ SYMMLG
3 CG

Figure 6-1: Comparison of DIOM(2), SYMMLQ, CG on a symmetric

indefinite problem, of dimension 50

37¢

vj+1::= q/QBj+1:=||q||)

Remarks

1. The plot in figure 6+1 reports the numerical results corresponding
to the first (best) of the above formulations for both SYMMLQ and
DIOM(2).

2., Similar observations are made when double precision is used.

3(The residual norms in figure 6-1 are obtained for DIOM(2) by the
estimate 2.12 and for SYMMLQ by an equivalent estimate. Both
estimates have been checked to produce accurate result in the final
step. Note that after step 65, these estimates deteroriate slowly
as the maximum possible accuracy given the norm of A and the unit
roundoff is being reached, so the estimates become meaningless.

All this demohstrates the important fact mentioned earlier that the main

source of errors lies in the vi's rather than in the formation of the

approximate solution by formulas 2.10 and 2.11.

6.2. Unsymmetric problems with positive definite symmetric parts.

In this test we compare the direct version DIOM(k) with the indirect

version IOM(k) on the following model problem:

| |
| |
| |
with B = | . e . |
| |
| |
| |

i
o — — ——— — — —
.
.
L]
— — — — — — —

and dim(A) = N = 200, dim(B) = n = 10
t1=—1+8, t2=—178(

where & is some parameter. The above example originates from the
centered difference discretization of the operator —A + ¢d/dx, where c is a

~constant.

38

The performances of IOM(4) and DIOM(4) have been compared on the above
example with 8=0.5, b = Ae, e=(1.1....1)T. This test was performed in double
precision, For simplicity none of the heuristics has been used, i.e. the
algorithm is never restarted and k is constantly equal to 4, The process is
stopped as soon as the residual is less than 10—5. This has required 357

steps. As expected , the iterates produced by both algorithms are identical.

The run times on the DEC-20 are approximately as follows:
IOM(4) : 5.60 sec

DIOM(4) : 3.60 sec

1

Note that IOM(4) requires 5N vectors of storage while DIOM(4) requires
9N, Tt is interesting to decompose the runtimes for IOM(4), into I/O time and
computing time, The time for writing the vectors vi's into disk memory and
reading them back when forming the solution is about 2,50 sec, i.e. 47% .of the
overall CPU time. The I/O time can be further decomposed into 'write
time'=1.39sec and 'read time’=0.91sec, This distribution is obviously very
much machine dependent, and may change completely for other architechtures. It
may even happen that IOM becomes faster than DIOM in cases where the I/O time

can be masked by performing much of the computations and the I/0 in parallel.

6.3, Indefinite and unsymmetric problems

In this example we test DIOM(k) on the matrix B = (A—pI), where A is
defined as in the previous experiment, with 8 set again to 0.5 and where p is

chosen equal to 0.25 ., This is an indefinite and unsymmetric problem,

The right hand side is defined as previously, and the initial vector is

again a random vector with an initial residual norm of 19.08... The process

39

is stopped as soon as the residual norm is below 10—5. A straightforward
application of DIOM(4), with a fixed k, and no restarting converged in 89
steps. Then we have used as preconditionning matrix M the incomplete Choleski
factorization associated with the Laplace operator, i.e. the incomplete

15 is then solved

Choleski factorization of (A + A?)/z. The system Wliax =M
by a call to DIOM(2). This preconditioned DIOM produced a generalized
residual vector M_lrn of norm less than 10_5 in 31 steps, thus significantly
improving the previous performance. Note that surprisingly DIOM(k) with k>2
did not perform better than with k=2 since it took 41 steps for DIOM(3) to

converge and 48 steps for DIOM(4).

As p increases, the problem becomes more difficult to solve. When p=0.5
for example DIOM(k) either diverges (e.g., for k=2) or showed signs of very
slow convergence. Using the same preconditioning as above, IOM(7) converged in
125 steps. The restating strategy used was the one described in subsection 5.2
with tol2=1. The criterion for restarting was tested every p=5.steps and at
least 10 steps were taken at each‘iteration. With this strategy the process
was restarted at steps 20, 30, 70, and 110. Note that we took toll=0, which

means that k was constantly equal to 7.

When p becomes even larger, the above preconditoning does not improve the
convergence which can become very poor. It seems more appropriate to use the

conjugate gradient method applied to the normal equations in those cases.

[1]

[2]

[3]

[4]

[5]

6]

[71

[8]

[91]

[10]

[11]

[12]

[13]

[14]

40

REFERENCES
0. Axelsson, Conjugate gradient type methods for unsymmetric and
inconsistent systems of linear equations. Lin, Alg., and its Appl.
29:1-16, 1980. '
R. Chandra. Conjugate Gradient Methods for Partial Differential

Equations. Technical Report 129, Yale University, 1981, PhD Thesis.

S.C. Eisenstat, H.C. Elman and M.H. Schultz. Variational iterative
methods for nonsymmetric systems of 1linear equations, Technical
Report 209, Yale University, 1980.

R. Fletcher, Conjugate Gradient Methods for Indefinite Systems. In G,A.
Watson, Editor, Proceedings of the Dundee Biennal Conference on Numerical
Analysis 1974, Springer Verlag, 1975, pp. 73-89.

W.B. Gragg. Matrix interpretation and applications of continued fraction
algorithm., Rocky Mountain J. of Math. 4 #2:213-225, 1974.

D.M. Young and K.C. Jea. Generalized conjugate gradient acceleration of
nonsymmetrizable iterative methods. Lin. Alg. and its Appl, 34:159-194,
1980,

C. Lanczos. Solution of systems of linear equations by minimized
jtearations. J. of Res. NBS 49m:33-53, 1952.

C.C. Paige and M.A., Saunders. Solution of sparse indefinite systems of
linear equations . SIAM j. on Numer. Anal, 12:617-624, 1975,

B.N. Parlett. The Symmetric Eigenvalue Problem, Prentice Hall,
Englewood Cliffs, 1980.

B.N. Parlett and D, Taylor. A look ahead Lanczos algorithm for
unsymmetric matrices. Technical Report PAM-43, Center for Pure and
Applied Mathematics, 1981.

Y.Saad. The Lanczos biorthogonalization algorithm and other oblique
projection methods for solving large unsymmetric systems, Technical
Report UIUCDCS-R-80-1036, University of Illinois at Urbana Champaign,
1980.

Y. Saad. Krylov subspace methods for solving large unsymmetric linear
systems. Mathenatics of Computation 37¢105-126, 1981.

P.K.W. Vinsome. ORTHOMIN, an iterative method for solving sparse sets of
simultaneous linear equations. In Society of Petroleum Engineers of
AIME, Proceedings of the Fourth Symposium on Resevoir Simulation, 1976,
pp. 149-159.

J. H. Wilkinson, The Algebraic Eigenvalue Problem. Clarendon Press,
Oxford, 1965.

