
The Ulam sequence is defined as a1 = 1, a2 = 2 and an being the smallest integer that can be written as the
sum of two distinct earlier elements in a unique way. This gives

1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, . . .

Virtually nothing is known about the behavior of the sequence and it is described as ’quite erratic’ and seems
to ’not follow any recognizable pattern’. Consecutive differences do not seem to be periodic and can be large,
e.g. a18858−a18857 = 315. The purpose of this short note is to report the following empirical discovery: there
seems to exist a real α ∼ 2.57145 . . . such that

{αan : n ∈ N} is not uniformly distributed mod 2π.

The distribution function of αan mod 2π seems to be supported on an interval of length ∼ 3 and has a
curious shape. Indeed, for the first 10.000 elements of Ulam’s sequence, we have

cos (2.57145 an) < 0 for all an /∈ {2, 3, 47, 69} .
All of this indicates that Ulam’s sequence has a lot more rigidity than hithereto assumed.
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A HIDDEN SIGNAL IN THE ULAM SEQUENCE

STEFAN STEINERBERGER

Abstract. The Ulam sequence is defined as a1 = 1, a2 = 2 and an being the smallest integer

that can be written as the sum of two distinct earlier elements in a unique way. This gives

1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, . . .

Virtually nothing is known about the behavior of the sequence and it is described as ’quite erratic’
and seems to ’not follow any recognizable pattern’. Consecutive differences do not seem to be

periodic and can be large, e.g. a18858 − a18857 = 315. The purpose of this short note is to report

the following empirical discovery: there seems to exist a real α ∼ 2.57145 . . . such that

{αan : n ∈ N} is not uniformly distributed mod 2π.

The distribution function of αan mod 2π seems to be supported on an interval of length ∼ 3 and
has a curious shape. Indeed, for the first 10.000 elements of Ulam’s sequence, we have

cos (2.57145 an) < 0 for all an /∈ {2, 3, 47, 69} .
All of this indicates that Ulam’s sequence has a lot more rigidity than hithereto assumed.

1. Introduction

Stanislaw Ulam introduced his sequence, nowadays called the Ulam sequence,

1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, 72, 77, 82, 87, 97 . . . . . .

in a 1964 survey [12] on unsolved problems. The construction is given by a1 = 1, a2 = 2 and then
iteratively by choosing an as the smallest integer that can be written as the sum of two distinct
earlier elements in a unique way. Ulam writes

One can consider a rule for growth of patterns – in one dimension it would be merely
a rule for obtaining successive integers. [...] In both cases simple questions that come
to mind about the properties of a sequence of integers thus obtained are notoriously
hard to answer. (Ulam, 1964)

He asks in the Preface of [13] whether it is possible to determine the asymptotic density of the
sequence (this problem is sometimes incorrectly attributed to Recaman [8]). While empirically the
density seems to be close to 7.4%, it is not even known whether it is bigger than 0.

Indeed, it seems that hardly anything is known at all: Section C4 of Guy’s Unsolved Problems in
Number Theory [6] contains an observation due to Burr and Zeitlin that an+1 ≤ an+an−1 < 2an and
that therefore every integer can be written as a sum of Ulam numbers. Different initial values a1, a2
can give rise to more structured sequences [2, 4, 7]: for some of them the sequence of consecutive
differences an+1 − an is eventually periodic. It seems that this is not the case for Ulam’s sequence:
Knuth [9] remarks that a4953 − a4952 = 262 and a18858 − a18857 = 315. In general, Ulam’s sequence
’does not appear to follow any recognizable pattern’ [3] and is ’quite erratic’ [11].

We describe the (accidental) discovery of some very surprising structure. While using Fourier
series with Ulam numbers as frequencies, we noticed a persisting signal in the noise: indeed, dilating
the sequence by a factor α ∼ 2.57145 . . . and considering the sequence (αan mod 2π) gives rise to a
very regular distribution function. One surprising implication is

cos (2.57145 an) < 0 for the first 10.000 Ulam numbers except 2, 3, 47, 69.
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The dilation factor α seems to be a universal constant (of which we were able to compute the first
four digits); it seems likely that cos (αan) < 0 holds for all but these four Ulam numbers.

2. The Observation

2.1. A Fourier series. We were originally motivated by the following: suppose the Ulam sequence
has a positive density, then by a classical theorem of Roth [10] it contains many 3-arithmetic pro-
gressions. We were interested in whether the existence of progressions would have any impact on
the structure of the sequence (because, if a · n+ b is in the sequence for n = 1, 2, 3, then either a or
2a is not). There is a well-known connection between randomness in sets and smallness of Fourier
coefficients and this motivated us to study

fN (x) = Re

N∑
n=1

eianx =

N∑
n=1

cos (anx).

Clearly, fN (0) = N . However, since the Ulam sequence is not periodic (at least for small N) and
seems to have positive density, one would expect a very large amount of cancellation outside of the
origin. Much to our surprise, we discovered that this is not the case.
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Figure 1. The function f50.
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Figure 2. The function f100.

We see that fN is indeed large around the 0 and small away from the origin with the clear
exception of two points: there is a clear signal in the noise; furthermore, the location of the signal
is independent of N and its strength is increasing linearly in N .

2.2. The hidden frequency. An explicit computation with N = 10.000 pinpoints the location of
the signal at

α ∼ 2.57145 . . .

and, by symmetry, at 2π − α. This signal acts as a hidden shift in frequency space: we can now
remove that shift in frequency by considering

SN =
{
αan − 2π

⌊αan
2π

⌋
: n ≤ N

}
instead.

Usually, for a generic non-periodic sequence (or even this very sequence with a different α), one
would expect the set to be asymptotically uniformly distributed mod 2π (for the simple reason that
there is no good reason why any structure should be present). Here, as it turns out, the situation is
very different. We clearly see two big centers of concentration; everything is strictly contained inside
the interval [1.4, 5.2] and after the first 69 elements of the sequence, everything is in the interval
[1.5, 4.7]. We do not know whether the discovery of this phenomenon will allow for some additional
insight into the structure of Ulam’s sequence or only add to its mystery – in any case, it clearly
indicates some underlying and very regular structure at work.
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Figure 3. Distribution of SN on [0, 2π] for N = 10.000.

2.3. Prior observations. We emphasize that there have been prior observations hinting at some
sort of regularity (see e.g. David Wilson’s remark in the The On-Line Encyclopedia of Integer
Sequences [9]). It is clear that even without a suitable dilation of the Ulam numbers, some form
of periodicity is still visible to the human eye – the truly surprising fact is that a suitable dilation
does not merely yield some form of quasi-periodicity but actually seems to give rise to a nontrivial
measure on T. The factor α is universal: if we dilate by any factor β such that α and β are linearly
independent over Q (which is generically the case and which one would expect for β = 1), then,
assuming there exists a smooth, nontrivial distribution function for (αan mod 2π), the ergodicity
of irrationals on T implies that the distribution function of (βan mod 2π) will tend towards the
uniform distribution.

2.4. Other initial values. There has been quite some work on the behavior of Ulam-type se-
quences with other initial values. It has first been observed by Queneau [7] that the initial values
(a1, a2) = (2, 5) give rise to sequence where an+1 − an is eventually periodic. Finch proved that
this is the case whenever only finitely many even numbers appear in the sequence and conjectured
that this is the case for (a1, a2) = (2, n) whenever n ≥ 5 is odd. Finch’s conjecture was proven by
Schmerl & Spiegel [11]. Subsequently, Cassaigne & Finch [1] proved that all sequences starting from
(a1, a2) = (4, n) with n ≡ 1 (mod 4) contain precisely three even integers and are thus eventually
periodic. The sequence (a1, a2) = (2, 3) as well as all sequences (a1, a2) = (1, n) with n ∈ N do not
exhibit such behavior and are being described ’erratic’ in the above literature.
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Figure 4. Distribution for ini-
tial value (a1, a2) = (1, 3).
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Figure 5. Distribution for the
initial values (a1, a2) = (2, 3).
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It seems that the underlying mechanism is indeed independent of the initial values. Using again
N = 10.000 elements, we found that the frequencies for the erratic sequences with (a1, a2) = (1, 3)
and (a1, a2) = (2, 3) are given by

α(1,3) ∼ 2.8335 and α(2,3) ∼ 1.1650

and removing that hidden frequeny in the same way as above gives rise to the following two distri-
butions, where the first one appears to be of the very same type as the distribution in the classical
case while the second one is very different.
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