
A fast randomized algorithm for overdetermined linear
least-squares regression∗

Vladimir Rokhlin and Mark Tygert

Technical Report YALEU/DCS/TR-1403
April 28, 2008

Abstract

We introduce a randomized algorithm for overdetermined linear least-squares re-
gression. Given an arbitrary full-rank m× n matrix A with m ≥ n, any m× 1 vector
b, and any positive real number ε, the procedure computes an n × 1 vector x which
minimizes the spectral norm ‖A x− b‖ to relative precision ε. The algorithm typically
requires O

(
(log(n) + log(1/ε))m n + n3

)
floating-point operations. This cost is less

than the O(m n2) required by the classical schemes based on QR-decompositions or
bidiagonalization. We present several numerical examples illustrating the performance
of the algorithm.

1 Introduction

Least-squares fitting has permeated the sciences and engineering following its introduction
over two centuries ago (see, for example, [3] for a brief historical review). Linear least-
squares regression is fundamental in the analysis of data, such as that generated from biology,
econometrics, engineering, physics, and many other technical disciplines.

Perhaps the most commonly encountered formulation of linear least-squares regression
involves a full-rank m×n matrix A and an m×1 column vector b, with m ≥ n; the task is to
find an n× 1 column vector x such that the spectral norm ‖A x− b‖ is minimized. Classical
algorithms using QR-decompositions or bidiagonalization require

Cclassical = O(m n2) (1)

floating-point operations in order to compute x (see, for example, [3] or Chapter 5 in [5]).
The present paper introduces a randomized algorithm that, given any positive real number
ε, computes a vector x minimizing ‖A x − b‖ to relative precision ε, that is, the algorithm
produces a vector x such that

‖A x− b‖ − min
y∈Cn

‖A y − b‖ ≤ ε min
y∈Cn

‖A y − b‖. (2)

∗Partially supported by ONR Grant #N00014-07-1-0711, DARPA Grant #FA9550-07-1-0541, and NGA
Grant #HM1582-06-1-2039.

1



This algorithm typically requires

Crand = O
(
(log(n) + log(1/ε)) m n + n3

)
(3)

operations. When n is sufficiently large and m is much greater than n (that is, the regression
is highly overdetermined), then (3) is less than (1). Furthermore, in the numerical exper-
iments of Section 6, the algorithm of the present article runs substantially faster than the
standard methods based on QR-decompositions.

The method of the present article is an extension of the methods introduced in [7], [8],
and [4]. Their algorithms and ours have similar costs; however, for the computation of x
minimizing ‖A x− b‖ to relative precision ε, the earlier algorithms involve costs proportional
to 1/ε, whereas the algorithm of the present paper involves a cost proportional to log(1/ε)
(see (3) above).

The present article describes algorithms optimized for the case when the entries of A
and b are complex valued. Needless to say, real-valued versions of our schemes are similar.
This paper has the following structure: Section 2 sets the notation. Section 3 discusses a
randomized linear transformation which can be applied rapidly to arbitrary vectors. Section 4
provides the relevant mathematical apparatus. Section 5 describes the algorithm of the
present paper. Section 6 illustrates the performance of the algorithm via several numerical
examples. Section 7 draws conclusions and proposes directions for future work.

2 Notation

In this section, we set notational conventions employed throughout the present paper.
We denote an identity matrix by 1. We consider the entries of all matrices in this paper

to be complex valued. For any matrix A, we define A∗ to be the adjoint of A, and we define
the norm ‖A‖ of A to be the spectral (l2-operator) norm of A, that is, ‖A‖ is the greatest
singular value of A. We define the condition number of A to be the l2 condition number of
A, that is, the greatest singular value of A divided by the least singular value of A. If A has
at least as many rows as columns, then the condition number of A is given by the expression

κA =
√
‖A∗ A‖ ‖(A∗ A)−1‖. (4)

For any positive integers m and n with m ≥ n, and any m×n matrix A, we will be using
the singular value decomposition of A in the form

Am×n = Um×n Σn×n V ∗
n×n, (5)

where U is an m × n matrix whose columns are orthonormal, V is an n × n matrix whose
columns are orthonormal, and Σ is a diagonal n × n matrix whose entries are all nonnega-
tive. We abbreviate “singular value decomposition” to “SVD” and “independent, identically
distributed” to “i.i.d.”

For any positive integer m, we define the discrete Fourier transform F (m) to be the
complex m×m matrix with the entries

(F (m))j,k =
1√
m

e−2πi(j−1)(k−1)/m (6)

2



for j, k = 1, 2, . . . , m − 1, m, where i =
√
−1 and e = exp(1); if the size m is clear from

the context, then we omit the superscript in F (m), denoting the discrete Fourier transform
by simply F .

3 Preliminaries

In this section, we discuss a subsampled randomized Fourier transform. [1], [4], [7], and [8]
introduced a similar transform for similar purposes.

For any positive integers l and m with l ≤ m, we define the l×m SRFT to be the l×m
random matrix

Tl×m = Gl×m Hm×m, (7)

where G and H are defined as follows.
In (7), G is the l ×m random matrix given by the formula

Gl×m = Sl×m Fm×m Dm×m, (8)

where S is the l×m matrix whose entries are all zeros, aside from a single 1 in column sj of
row j for j = 1, 2, . . . , l− 1, l, where s1, s2, . . . , sl−1, sl are i.i.d. integer random variables,
each distributed uniformly over {1, 2, . . . ,m − 1, m}; moreover, F is the m × m discrete
Fourier transform, and D is the diagonal m ×m matrix whose diagonal entries d1, d2, . . . ,
dm−1, dm are i.i.d. complex random variables, each distributed uniformly over the unit circle.
(In our numerical implementations, we drew s1, s2, . . . , sl−1, sl from {1, 2, . . . ,m − 1, m}
without replacement, instead of using i.i.d. draws.)

In (7), H is the m×m random matrix given by the formula

Hm×m = Θm×m Πm×m Zm×m Θ̃m×m Π̃m×m Z̃m×m, (9)

where Π and Π̃ are m × m permutation matrices chosen independently and uniformly at
random, and Z and Z̃ are diagonal m × m matrices whose diagonal entries ζ1, ζ2, . . . ,
ζm−1, ζm and ζ̃1, ζ̃2, . . . , ζ̃m−1, ζ̃m are i.i.d. complex random variables, each distributed
uniformly over the unit circle; furthermore, Θ and Θ̃ are the m×m matrices defined via the
formulae

Θm×m =


cos(θ1) sin(θ1) 0 0 0
− sin(θ1) cos(θ1) 0 0 0

0 0 1 0 0

0 0 0
. . . 0

0 0 0 0 1




1 0 0 0 0
0 cos(θ2) sin(θ2) 0 0
0 − sin(θ2) cos(θ2) 0 0
0 0 0 1 0

0 0 0 0
. . .

 · · ·

· · ·


. . . 0 0 0 0
0 1 0 0 0
0 0 cos(θm−2) sin(θm−2) 0
0 0 − sin(θm−2) cos(θm−2) 0
0 0 0 0 1




1 0 0 0 0

0
. . . 0 0 0

0 0 1 0 0
0 0 0 cos(θm−1) sin(θm−1)
0 0 0 − sin(θm−1) cos(θm−1)

 (10)

3



and (the same as (10), but with tildes)

Θ̃m×m =


cos(θ̃1) sin(θ̃1) 0 0 0

− sin(θ̃1) cos(θ̃1) 0 0 0
0 0 1 0 0

0 0 0
. . . 0

0 0 0 0 1




1 0 0 0 0

0 cos(θ̃2) sin(θ̃2) 0 0

0 − sin(θ̃2) cos(θ̃2) 0 0
0 0 0 1 0

0 0 0 0
. . .

 · · ·

· · ·


. . . 0 0 0 0
0 1 0 0 0

0 0 cos(θ̃m−2) sin(θ̃m−2) 0

0 0 − sin(θ̃m−2) cos(θ̃m−2) 0
0 0 0 0 1




1 0 0 0 0

0
. . . 0 0 0

0 0 1 0 0

0 0 0 cos(θ̃m−1) sin(θ̃m−1)

0 0 0 − sin(θ̃m−1) cos(θ̃m−1)

 , (11)

where θ1, θ2, . . . , θm−2, θm−1, θ̃1, θ̃2, . . . , θ̃m−2, θ̃m−1 are i.i.d. real random variables drawn
uniformly from [0, 2π]. We observe that Θ, Θ̃, Π, Π̃, Z, and Z̃ are all unitary, and so H is
also unitary.

We call the transform T an “SRFT” for lack of a better term.

Remark 3.1 The earlier works [6] and [9] omitted the matrix H in the definition (7) of the
SRFT. Numerical experiments indicate that including H improves the performance of the
algorithm of the present paper on sparse matrices.

The following lemma is similar to the subspace Johnson-Lindenstrauss lemma (Corollary
11) of [8], and is proven (in a slightly different form) as Lemma 4.4 of [9]. The lemma
provides a highly probable upper bound on the condition number of the product of the l×m
matrix G defined in (8) and an independent m×n matrix U whose columns are orthonormal,
assuming that l is less than m and is sufficiently greater than n2.

Lemma 3.2 Suppose that α and β are real numbers greater than 1, and l, m, and n are
positive integers, such that

m > l ≥
(

α + 1

α− 1

)2

β n2. (12)

Suppose further that G is the l ×m random matrix defined in (8). Suppose in addition that
U is an m × n random matrix whose columns are orthonormal, and that U is independent
of G.

Then, the condition number of G U is at most
√

α with probability at least 1− 1
β
.

The following corollary of Lemma 3.2 follows immediately from the fact that the random
matrix H defined in (9) is unitary and independent of the random matrix G defined in (8).
The corollary provides a highly probable upper bound on the condition number of the l×m
SRFT (defined in (7)) applied to an m × n matrix U whose columns are orthonormal,
assuming that l is less than m and is sufficiently greater than n2.

4



Corollary 3.3 Suppose that α and β are real numbers greater than 1, and l, m, and n are
positive integers, such that (12) holds. Suppose further that T is the l × m SRFT defined
in (7). Suppose in addition that U is an m× n matrix whose columns are orthonormal.

Then, the condition number of T U is at most
√

α with probability at least 1− 1
β
.

The following lemma states that, if A is an m × n matrix, b is an m × 1 vector, and T
is the l×m SRFT defined in (7), then, with high probability, an n× 1 vector z minimizing
‖T Az−T b‖ also minimizes ‖A z− b‖ to within a reasonably small factor. Whereas solving
A z ≈ b in the least-squares sense involves m simultaneous linear equations, solving T Az ≈
T b involves just l simultaneous equations. This lemma is modeled after similar results in [4],
[7], and [8], and is proven (in a slightly different form) as Lemma 4.8 of [9].

Lemma 3.4 Suppose that α and β are real numbers greater than 1, and l, m, and n are
positive integers, such that

m > l ≥
(

α + 1

α− 1

)2

β (n + 1)2. (13)

Suppose further that T is the l ×m SRFT defined in (7). Suppose in addition that A is an
m×n matrix, and b is an m× 1 vector. Suppose finally that z is an n× 1 vector minimizing
the quantity

‖T Az − T b‖. (14)

Then,
‖A z − b‖ ≤

√
α min

y∈Cn
‖A y − b‖. (15)

4 Mathematical apparatus

In this section, we prove a theorem which (in conjunction with Corollary 3.3) guarantees
that the algorithm of the present paper is fast.

In the proof of Theorem 4.2 below, we will need the following technical lemma.

Lemma 4.1 Suppose that l, m, and n are positive integers such that m ≥ l ≥ n. Suppose
further that A is an m× n matrix, and that the SVD of A is

Am×n = Um×n Σn×n V ∗
n×n, (16)

where U is an m × n matrix whose columns are orthonormal, V is an n × n matrix whose
columns are orthonormal, and Σ is a diagonal n×n matrix whose entries are all nonnegative.
Suppose in addition that T is an l×m matrix, and that the SVD of the l× n matrix T U is

Tl×m Um×n = Ũl×n Σ̃n×n Ṽ ∗
n×n. (17)

Then, there exist an n×n matrix P , and an l×n matrix Q whose columns are orthonor-
mal, such that

Tl×m Am×n = Ql×n Pn×n. (18)

5



Furthermore, if P is any n × n matrix, and Q is any l × n matrix whose columns are
orthonormal, such that P and Q satisfy (18), then

Pn×n = (Ql×n)∗ Ũl×n Σ̃n×n Ṽ ∗
n×n Σn×n V ∗

n×n; (19)

if, in addition, the matrices A and T U both have full rank (rank n), then there exists a
unitary n× n matrix W such that

Ũl×n = Ql×n Wn×n. (20)

Proof. An example of matrices P and Q satisfying (18) such that the columns of Q are
orthonormal is P = Σ̃ Ṽ ∗ Σ V ∗ and Q = Ũ .

We now assume that P is any n × n matrix, and Q is any l × n matrix whose columns
are orthonormal, such that P and Q satisfy (18). Combining (18), (16), and (17) yields

Ql×n Pn×n = Ũl×n Σ̃n×n Ṽ ∗
n×n Σn×n V ∗

n×n. (21)

Combining (21) and the fact that the columns of Q are orthonormal (so that Q∗ Q = 1)
yields (19).

For the remainder of the proof, we assume that the matrices A and T U both have full
rank. To establish (20), we demonstrate that the column spans of Q and Ũ are the same. It
then follows from the fact that the columns of Q are an orthonormal basis for this column
span, as are the columns of Ũ , that there exists a unitary n × n matrix W satisfying (20).
We now complete the proof by showing that

column span of Ql×n = column span of Ũl×n. (22)

Obviously, it follows from (21) that

column span of Ql×n Pn×n = column span of Ũl×n Σ̃n×n Ṽ ∗
n×n Σn×n V ∗

n×n; (23)

we will simplify both sides of (23), in order to obtain (22).
It follows from the fact that A and T U both have full rank that the matrices Σ and Σ̃ in

the SVDs (16) and (17) are nonsingular, and so (as the unitary matrices V and Ṽ are also
nonsingular)

column span of Ũl×n Σ̃n×n Ṽ ∗
n×n Σn×n V ∗

n×n = column span of Ũl×n. (24)

Combining (23), (24), and the fact that the column span of Ũ is n-dimensional (after all,
the n columns of Ũ are orthonormal) yields that the column span of Q P is n-dimensional.
Combining this fact, the fact that the column span of Q P is a subspace of the column span
of Q, and the fact that the column span of Q is n-dimensional (after all, the n columns of
Q are orthonormal) yields

column span of Ql×n Pn×n = column span of Ql×n. (25)

Combining (23), (24), and (25) yields (22). 2

The following theorem states that, given an m × n matrix A, the condition number of
a certain preconditioned version of A corresponding to an l × m matrix T is equal to the
condition number of T U , where U is an m × n matrix of orthonormal left singular vectors
of A.

6



Theorem 4.2 Suppose that l, m, and n are positive integers such that m ≥ l ≥ n. Suppose
further that A is a full-rank m× n matrix, and that the SVD of A is

Am×n = Um×n Σn×n V ∗
n×n. (26)

Suppose in addition that T is an l ×m matrix such that the l × n matrix T U has full rank.
Then, there exist an n×n matrix P , and an l×n matrix Q whose columns are orthonor-

mal, such that
Tl×m Am×n = Ql×n Pn×n. (27)

Furthermore, if P is any n × n matrix, and Q is any l × n matrix whose columns are
orthonormal, such that P and Q satisfy (27), then the condition numbers of A P−1 and T U
are equal.

Proof. Lemma 4.1 guarantees the existence of matrices P and Q satisfying (27) such that
the columns of Q are orthonormal.

For the remainder of the proof, we assume that P is an n× n matrix, and Q is an l × n
matrix whose columns are orthonormal, such that P and Q satisfy (27). Combining (19),
(20), and the fact that the columns of Q are orthonormal (so that Q∗ Q = 1) yields

Pn×n = Wn×n Σ̃n×n Ṽ ∗
n×n Σn×n V ∗

n×n, (28)

where W is the matrix from (20), and Σ̃ and Ṽ are the matrices from the SVD (17). Com-
bining (26), (28), and the fact that V , Ṽ , and W are unitary yields

Am×n P−1
n×n = Um×n Ṽn×n Σ̃−1

n×n W ∗
n×n. (29)

Combining (29), the fact that Ṽ and W are unitary, the fact that the columns of U are
orthonormal (so that U∗ U = 1), and the fact that Σ̃ is diagonal yields

‖(Am×n P−1
n×n)∗ (Am×n P−1

n×n)‖ = ‖Σ̃−1
n×n‖2 (30)

and ∥∥∥(
(Am×n P−1

n×n)∗ (Am×n P−1
n×n)

)−1
∥∥∥ = ‖Σ̃n×n‖2. (31)

Combining (4), (30), (31), and the SVD (17) yields the present theorem. 2

5 The algorithm

In this section, we describe the algorithm of the present paper, giving details about its
implementation and computational costs.

7



5.1 Description of the algorithm

Suppose that m and n are positive integers with m ≥ n, A is a full-rank m×n matrix, and b
is an m× 1 column vector. In this subsection, we describe a procedure for the computation
of an n× 1 column vector x such that ‖A x− b‖ is minimized to arbitrarily high precision.

Rather than directly calculating the vector x minimizing ‖A x− b‖, we will first calculate
the vector y minimizing ‖C y − b‖, where C = A P−1 and y = P x, with an appropriate
choice of an n × n matrix P ; the matrix P is known as a preconditioning matrix. With an
appropriate choice of P , the condition number of C is reasonably small, and so an iterative
solver such as the conjugate gradient method will require only a few iterations in order to
obtain y minimizing ‖C y− b‖ to high precision. Once we have calculated y, we obtain x via
the formula x = P−1 y.

To construct the preconditioning matrix P , we compute Y = T A, where T is the l ×m
SRFT defined in (7), with m ≥ l ≥ n. We then form a pivoted QR-decomposition of Y ,
computing an l × n matrix Q whose columns are orthonormal, an upper-triangular n × n
matrix R, and an n × n permutation matrix Π, such that Y = Q R Π. We use the product
P = R Π as the preconditioning matrix. Fortuitously, since this matrix P is the product of
an upper-triangular matrix and a permutation matrix, we can apply P−1 or (P−1)∗ to any
arbitrary vector rapidly, without calculating the entries of P−1 explicitly.

The condition number of C = A P−1 is reasonably small with very high probability
whenever l is sufficiently greater than n, due to Theorem 4.2 and Corollary 3.3; moreover,
numerical experiments in Section 6 suggest that the condition number of C is practically
always less than 3 or so when l = 4n. Therefore, when l is sufficiently greater than n, the
conjugate gradient method requires only a few iterations in order to compute y minimizing
‖C y− b‖ to high precision; furthermore, the conjugate gradient method requires only appli-
cations of A, A∗, P−1, and (P−1)∗ to vectors, and all of these matrices are readily available
for application to vectors. Once we have calculated y, we obtain x minimizing ‖A x− b‖ via
the formula x = P−1 y.

There is a natural choice for the starting vector of the conjugate gradient iterations.
Combining the fact that Y = T A with (15) yields that, with high probability, the n × 1
vector z minimizing ‖Y z − T b‖ also minimizes ‖A z − b‖ to within a factor of 3, provided l
is sufficiently greater than n (in practice, l = 4n is sufficient). Thus, z is a good choice for
the starting vector. Moreover, combining the facts that Y = Q P and that the columns of Q
are orthonormal yields that z = P−1 Q∗ T b, providing a convenient means of computing z.

In summary, if ε is any specified positive real number, we can compute an n× 1 column
vector x which minimizes ‖A x− b‖ to relative precision ε via the following five steps:

1. Compute Y = T A, where T is the l ×m SRFT defined in (7), with m ≥ l ≥ n. (See,
for example, Subsection 3.3 of [9] for details on applying the SRFT rapidly.)

2. Form a pivoted QR-decomposition of Y from Step 1, computing an l × n matrix Q
whose columns are orthonormal, an upper-triangular n × n matrix R, and an n × n
permutation matrix Π, such that Y = Q R Π. (See, for example, Chapter 5 in [5] for
details on computing such a pivoted QR-decomposition.)

3. Compute the n × 1 column vector z = P−1(Q∗(T b)), where T is the l × m SRFT
defined in (7), Q is the l× n matrix from Step 2 whose columns are orthonormal, and

8



P = R Π; R and Π are the upper-triangular and permutation matrices from Step 2.
(See, for example, Subsection 3.3 of [9] for details on applying the SRFT rapidly.)

4. Compute an n×1 column vector y which minimizes ‖A P−1 y− b‖ to relative precision
ε, via the preconditioned conjugate gradient iterations, where P = R Π is the precon-
ditioning matrix; R and Π are the upper-triangular and permutation matrices from
Step 2. Use z from Step 3 as the starting vector. (See, for example, Algorithm 7.4.3
in [3] for details on the preconditioned conjugate gradient iterations for linear least-
squares problems.)

5. Compute x = P−1 y, where y is the vector from Step 4, and again P = R Π; R and Π
are the upper-triangular and permutation matrices from Step 2.

5.2 Cost

In this subsection, we estimate the number of floating-point operations required by each step
of the algorithm of the preceding subsection.

We denote by κ the condition number of the preconditioned matrix A P−1. The five steps
of the algorithm incur the following costs:

1. Applying T to every column of A costs O(m n log(l)).

2. Computing the pivoted QR-decomposition of Y costs O(n2 l).

3. Applying T to b costs O(m log(l)). Applying Q∗ to T b costs O(n l). Applying P−1 =
Π−1 R−1 to Q∗ T b costs O(n2).

4. When l ≥ 4n2, (15) guarantees with high probability that the vector z has a residual
‖A z − b‖ that is no greater than 3 times the minimum possible. When started with
such a vector, the preconditioned conjugate gradient algorithm requires O(κ log(1/ε))
iterations in order to improve the relative precision of the residual to ε (see, for ex-
ample, formula 7.4.7 in [3]). Applying A and A∗ a total of O(κ log(1/ε)) times costs
O(m n κ log(1/ε)). Applying P−1 and (P−1)∗ a total of O(κ log(1/ε)) times costs
O(n2 κ log(1/ε)). These costs dominate the costs of the remaining computations in
the preconditioned conjugate gradient iterations.

5. Applying P−1 = Π−1 R−1 to y costs O(n2).

Summing up the costs in the five steps above, we see that the cost of the entire algorithm is

Ctheoretical = O
(
(log(l) + κ log(1/ε)) m n + n2 l

)
. (32)

The condition number κ of the preconditioned matrix A P−1 can be made arbitrarily close
to 1, by choosing l sufficiently large. According to Theorem 4.2 and Corollary 3.3, choosing
l ≥ 4n2 guarantees that κ is at most 3, with high probability.

9



Remark 5.1 Currently, our estimates require that l be at least 4n2 in order to ensure with
high probability that κ is at most 3 and that the residual ‖A z−b‖ is no greater than 3 times
the minimum possible. However, our numerical experiments indicate that it is not necessary
for l to be as large as 4n2 (though it is sufficient). Indeed, in all of our tests, choosing l = 4n
produced a condition number κ less than 3 and a residual ‖A z− b‖ no greater than 3 times
the minimum possible residual. With l = 4n and κ ≤ 3, the cost (32) becomes

Ctypical = O
(
(log(n) + log(1/ε)) m n + n3

)
. (33)

6 Numerical results

In this section, we describe the results of several numerical tests of the algorithm of the
present paper.

We use the algorithm to compute an n×1 vector x minimizing ‖A x−b‖ to high precision,
where b is an m× 1 vector, and A is the m× n matrix defined via the formula

Am×n = Um×n Σn×n V ∗
n×n; (34)

in all experiments reported below, U is obtained by applying the Gram-Schmidt process to
the columns of an m× n matrix whose entries are i.i.d. centered complex Gaussian random
variables, V is obtained by applying the Gram-Schmidt process to the columns of an n× n
matrix whose entries are i.i.d. centered complex Gaussian random variables, and Σ is a
diagonal n× n matrix, with the diagonal entries

Σk,k = 10−6(k−1)/(n−1) (35)

for k = 1, 2, . . . , n− 1, n. Clearly, the condition number κA of A is

κA = Σ1,1/Σn,n = 106. (36)

The m× 1 unit vector b is defined via the formula

b = 10−3 w + A x, (37)

where w is a random m × 1 unit vector orthogonal to the column span of A, and A x is a
vector from the column span of A such that ‖b‖ = 1.

We implemented the algorithm in Fortran 77 in double-precision arithmetic, and used the
Lahey/Fujitsu Express v6.2 compiler. We used one core of a 1.86 GHz Intel Centrino Core
Duo microprocessor with 1 GB of RAM. For the direct computations, we used the classical
algorithm for pivoted QR-decompositions based on plane (Householder) reflections (see, for
example, Chapter 5 in [5]).

Table 1 displays timing results with m = 32768 for various values of n; Table 2 displays
the corresponding errors. Table 3 displays timing results with n = 256 for various values of
m; Table 4 displays the corresponding errors.

The headings of the tables are as follows:

• m is the number of rows in the matrix A, as well as the length of the vector b, in
‖A x− b‖.

10



• n is the number of columns in the matrix A, as well as the length of the vector x, in
‖A x− b‖.

• l is the number of rows in the matrix T used in Steps 1 and 3 of the procedure of
Subsection 5.1.

• tdirect is the time in seconds required by the classical algorithm.

• trand is the time in seconds required by the algorithm of the present paper.

• tdirect/trand is the factor by which the algorithm of the present paper is faster than the
classical algorithm.

• κ is the condition number of A P−1, the preconditioned version of the matrix A.

• i is the number of iterations required by the preconditioned conjugate gradient method
to yield the requested precision εrel of .5E–14 or better in Table 2, and .5E–10 or better
in Table 4.

• εrel is defined via the formula

εrel =
δ − δmin

κA · δmin

, (38)

where κA is the condition number of A given in (36), δ = ‖A x− b‖ (x is the solution
vector produced by the randomized algorithm), and

δmin = min
y∈Cn

‖A y − b‖ = 10−3. (39)

Remark 6.1 Standard perturbation theory shows that εrel is the appropriately normalized
measure of the precision produced by the algorithm; see, for example, formula 1.4.27 in [3].

The values for εrel and i reported in the tables are the worst (maximum) values encoun-
tered during 10 independent randomized trials of the algorithm, as applied to the same
matrix A. The values for trand reported in the tables are the average values over 10 inde-
pendent randomized trials. None of the quantities reported in the tables varied significantly
over repeated randomized trials.

The following observations can be made from the examples reported here, and from our
more extensive experiments:

1. When m = 32768 and n = 512, the randomized algorithm runs over 5 times faster than
the classical algorithm based on plane (Householder) reflections, even at full double
precision.

2. As observed in Remark 5.1, our choice l = 4n seems to ensure that the condition
number κ of the preconditioned matrix is at most 3. More generally, κ seems to be
less than a function of the ratio l/n.

3. The algorithm of the present paper attains high precision at reasonably low cost.

11



7 Conclusions and generalizations

This article provides a fast algorithm for overdetermined linear least-squares regression. If
the matrices A and A∗ from the regression involving ‖A x − b‖ can be applied sufficiently
rapidly to arbitrary vectors, then the algorithm of the present paper can be accelerated
further. Moreover, the methods developed here for overdetermined regression extend to
underdetermined regression.

The theoretical bounds in Lemma 3.2, Corollary 3.3, and Lemma 3.4 should be considered
preliminary. Our numerical experiments indicate that the algorithm of the present article
performs better than our estimates guarantee. Furthermore, there is nothing magical about
the subsampled randomized Fourier transform defined in (7). In our experience, several other
similar transforms appear to work at least as well, and we are investigating these alternatives
(see, for example, [2]).

Acknowledgements

We would like to thank Franco Woolfe for helpful discussions.

12



Table 1:

m n l tdirect trand tdirect/trand

32768 64 256 .14E+01 .13E+01 1.1
32768 128 512 .55E+01 .27E+01 2.0
32768 256 1024 .22E+02 .59E+01 3.7
32768 512 2048 .89E+02 .15E+02 5.7

Table 2:

m n l κ i εrel

32768 64 256 2.7 14 .120E–15
32768 128 512 2.9 14 .132E–15
32768 256 1024 2.9 14 .429E–15
32768 512 2048 2.9 13 .115E–14

Table 3:

m n l tdirect trand tdirect/trand

2048 256 1024 .12E+01 .71E+00 1.6
4096 256 1024 .25E+01 .94E+00 2.6
8192 256 1024 .51E+01 .14E+01 3.5
16384 256 1024 .10E+02 .26E+01 4.1
32768 256 1024 .22E+02 .50E+01 4.4
65536 256 1024 .49E+02 .11E+02 4.4

Table 4:

m n l κ i εrel

2048 256 1024 2.2 4 .326E–10
4096 256 1024 2.6 5 .364E–10
8192 256 1024 2.7 6 .160E–10
16384 256 1024 2.8 7 .599E–11
32768 256 1024 2.9 8 .502E–11
65536 256 1024 2.9 8 .177E–11

13



References

[1] N. Ailon and B. Chazelle, Approximate nearest neighbors and the fast Johnson-Lin-
denstrauss transform, SIAM J. Comput., (2007). To appear.

[2] N. Ailon and E. Liberty, Fast dimension reduction using Rademacher series on dual
BCH codes, Tech. Rep. 1385, Yale University Department of Computer Science, July
2007.

[3] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, 1996.

[4] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlós, Faster
least squares approximation, Tech. Rep. 0710.1435, arXiv, October 2007. Available at
http://arxiv.org/.

[5] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University
Press, Baltimore, Maryland, third ed., 1996.

[6] E. Liberty, F. Woolfe, P.-G. Martinsson, V. Rokhlin, and M. Tygert,
Randomized algorithms for the low-rank approximation of matrices, Proc. Natl. Acad.
Sci. USA, 104 (2007), pp. 20167–20172.

[7] T. Sarlós, Improved approximation algorithms for large matrices via random projec-
tions, in Proceedings of FOCS 2006, the 47th Annual IEEE Symposium on Foundations
of Computer Science, October 2006.

[8] , Improved approximation algorithms for large matrices via random projections, re-
vised, extended long form. Manuscript in preparation for publication, currently available
at http://www.ilab.sztaki.hu/∼stamas/publications/rp-long.pdf, 2006.

[9] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert, A fast randomized algorithm
for the approximation of matrices, Appl. Comput. Harmon. Anal., (2007). To appear.

14


