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Abstract

Consciousness is a process involving both a measuring device and an observer. A neural
net model that characterizes the neuron as the measuring device and the Hebbian synaptic
dynamics as the observer is used to characterize a basic form of experience at the
neuronal level. Methods of statistical mechanics are used to develop a token of this
experience that is the neural analog of the spin correlation in the physics of magnetism.
Renormalization group methodology is used to show how the phenomenon of experience
at the level of a single neuron ramifies to characterize experience at the level of
assemblies of neurons. Using that methodology we also develop the higher level token
and infer that this ramification process is the route to explaining our consciousness. The
possible role of the associated phase change phenomena in consciousness is discussed.
Key words: Renormalization group, consciousness, experience, measurement, neural
nets, Hebbian dynamics, neuronal assemblies, change of phase, observer, spin

1 Introduction

Who or what is experiencing the feeling that characterizes our consciousness? This
age old question expresses the intractability of the problem with which students of

consciousness have always been confronted®. All of the proposed solutions, among them
the homunculus or some other extra material reality have their well-known shortcomings’
(Chalmers (1996), Churchland (1988), Penrose (1994), Searle (1994), Stapp (1996)). &
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2 Early writing on consciousness is found in Aristotle.

3 Note that appeals to extra material reality are positioned in key places throughout science and are
typically not explicit. The many examples include (i) the Shroedinger wave function which, having no
existence in reality, can be neither measured nor observed, (i) unmediated action at a distance exemplified
by Newton’s law of gravity and also by the Coulomb law, (iii) any of the counter factual effects of quantum
mechanics, for example the non-locality of space/time (i.e., what Einstein termed ‘spooky action at 2
distance’) illustrated by both the double slit experiment and the interferometer experiment.




‘What we note here is that this experiencing is a form of a common process in both
nature and culture, namely an act of making a measurement. A measurement has two
aspects of interest for us. One is a device (the measuring instrument), and the second is
an observer of the activity of the device. We shall characterize neuronal activity as a
measurement process. The unconscious processing/transmission of signals by neuronal
circuitry embodies both the quantity to be measured (the signals) and the measuring
instrument (the neuron). It is the Hebbian dynamics that plays the role of the observer, as
we shall see. These dynamics specify the adjustments to be made to the neuron’s
synaptic weights, those adjustments reflecting correlation between (i.e., observation of)
the inputs and outputs of the measuring device. We shall take this Hebbian observer
aspect of the neuronal measurement process as a basic form of consciousness. Naturally
this basic level phenomenon of sensation bears only modest resemblance to what we
experience personally as consciousness. The latter arises out of the former by sequential
ramification of the measurement process produced by a finite hierarchy of assemblies of
large numbers of intercommunicating neuronal circuits. (This process is entirely
different from the homunculus style and its unbounded regress dilemma, as we shall see.)

The methodology we use is taken from statistical mechanics and the Renormalization
group theory. The techniques of statistical mechanics have already been extensively
applied to the study of neural nets (Amit, Gutfreund, Sampolinsky (1987), Hertz, Krogh,
Palmer (1991), Hopfield (1982), Mezard, Parisi, Virasoro (1987)). These impressive
applications dwell for the most part on the treatment of a static network (i.e., one with
fixed synaptic weights). Here we employ this approach and augment it with a statistical
mechanics-like consideration of the Hebbian dynamics for synaptic weight change that is
central to our objective.

The Renormalization group technique (as originally applied to magnetic spin
phenomena) uses the hierarchy of coarsening into blocks of spins of a ground model,
more or less, existentially to produce so-called non-analyticities. The latter, occurring at
the fixed-points of the Renormalization group transformation, characterize phase
transitions of the ground model, as is well known (Goldenfeld (1992)). Here we give
attention to the coarsening into circuits of neuronal assemblies to be the vehicle of
ramification of the Hebbian dynamics from its synaptic/neuronal level to the neuronal
assembly level. This ramification technique is the route from primitive levels of

- sensation arising at the synaptic level toward the forms of experience familiar to us as
consciousness. '

In Section 2 we introduce the neural net model and characterize its operation as a
measurement process and as a primitive form of awareness at the synaptic/neuronal level.
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In Section 3 we review the statistical mechanics methodology applied to the neural net in
the presence of noise. In Section 4 we extend that application to characterize Hebbian
dynamics as an observer process, and develop a token of consciousness (which turns out
to be the neural net analog of the magnetic spin correlation function). In Section 5 we
review the use of Renormalization group methodology for Ising block spins, and we
reinterpret it as a way to ramify the primitive form of awareness to higher levels of
neuronal organization. Speculations on the role of the associated phase changes in
consciousness are made. In Section 6 we extend use of the Renormalization technique to
a fully general hierarchy of neuronal assemblies. There results both an equation that
specifies the fixed points which characterize phase changes as well as an expression for
what we call feeling at the assembly level. Concluding we suggest why it is plausible that
the token of our actual consciousness has the structure of this last expression.

2 Neuronal Dynamics as a Measurement Process

2.1 Network of McCulloch-Pitts Neurons

The information flow in a network of N McCulloch-Pitts neurons is described by the
following input/output dynamics. ’

N
@.1) SV =sgn(Q,w,S;(0)+h),i=1,... N,
j=1

where

22) ) 1,x20
. sgn(x) =
° -1,x<0.
Here S, is the output of neuron i. The synaptic connections from each of the N neurons
to neuron i are characterized by the vector of synaptic weights w; = (Wypseeor Wiy )- _
Xy
h* represents the exogenous input to neuron i. For convenience here and hereafter we

omit the specification of index ranges when meaning is clear.

2.2 Hebbian dynamics

Information (e.g., 2 memory) is taken to be encoded (associatively) in the neural net
by means of its synaptic weights. As the neurons conduct information processing
according to (2.1), the synaptic weights change according to Hebbian dynamics. Namely,




23) %}‘(2 = H($1),5,(t- 1),

where A is the so-called Hebb function. Hebb’s proposal may be expressed by saying
that ' is to have the sign of the correlation of its two arguments. A specification
(among many other possibilities) of " which achieves this is made in Section 4.1.

2.3 The measurement/observation process

~ Using Figure 2.1, we characterize the pair of interrelated dynamical systems (2.1) -
(2.3) as a measurement/observation process.

h,-“‘ (exogenous input)

Si()

measuring instrument

S,(t)

value of the measurement

(neuronal output)
. observer of the measurement

;  (the Hebbian dynamics)

Su(t) ‘ 4
wi(t) E
input data s » > v,
<
-» //
S(t+1) )

token of the observation
(change in synaptic weight)

‘ Fig. 2.1: The two neural net dynamical systems showing the token of observation

The input data is the vector S(r) = (S,(?),...,Sy(¢)). The measuring instrument is the

5%
neuron. The value of the measurement is the neuronal output S;(¢)specified by (2.1).
The observer of the measurement* is the process that generates the Hebbian dynamics
specified by (2.3).

41t is interesting to note that the act of measurement in quantum mechanics (associated with the collapse of
the wave function) is caused by the consciousness of a human observer when the latter notes the value of

, the measurement produced by some instrument (this according to Von Neumann (1995). See also Wigner

' (1961).) The picture here has some similarity to this point of view in the sense that the synaptic weights
and the process characterized by the Hebbian dynamics are an aspect of the observer observing himself.




Discretizing the time, we describe the Hebbian observation process in terms of the
incremental change Aw; in synaptic weight.

(24)  Aw, =H (S(n),S;(n-1))

2.4 The token of awareness

We introduce the following terminology.

Aw; given in (2.4) represents the degree to which the j—th input

synapse is aware of the measurement as a result of the observer process.

Although Aw; is only a roken of the awareness which itself is the entire process

represented by the Hebbian dynamics (2.4), we shall for convenience sometimes refer to
it as the awareness itself’.

3 Neuronal Dynamics (Measurement) in the Presence of Noise

In the presence of noise, the neuronal output (2.1) becomes stochastic. This is
modeled by the following stochastic output rule®.

1

(31) PI(S, =i1)=m

Here 8=1/T, where T is a (pseudo-) temperature, a parameter controlling the noise
level. Let A, denote the total input to neuron i.

(2) k=Y wS;+ k"
i

5 In a previous work (Miranker (2000)), a quantity related to this concept of awareness was called an atom
of awareness, and it was viewed as a non-reducible property of matter. Here we avoid such a stand and
allow that this awareness concept might very well be a reducible phenomenon. In the end, of course, the
fundamental laws of physics in terms of which the Hebbian dynamics might be expressed are themselves
non-reducible. Compare footnote 3. '

6 The illustrative material in this section is adapted from the discussion of the Hopfield model of a neural
net in Herz, Krogh, Palmer (1991) chap. 2.




The exogenous input /to neuron i may be viewed as coming from another neural

network, perhaps that of a sense organ.

Now suppose that the neural net has been used to store a set of p so-called
fundamental memories.

(3 3) é}l = (51 s ),ﬂ = 1,...,'p.

This means that such a neural net when cued by an mput close enough to 7™ =& will
produce S, = & as a steady state output. This may be accomplished by spemfying the
synaptic weights as follows (Haykin (1999) Chap. 2).

- 1< -
(3.4) w‘.j=ﬁ2g e

“:
3.1 Mean field approximation

Let us take a so-called mean field approximation. That is, we replace I by its expected
value (%), where in particular, using (3.2), we have

(3.5)  (B)= D wS)+h".

Now using (3.1), we find that

(S,) =(+)Pr{S,=1}+(-1)Pr{S, =1}
(3.6) = tanh B(h, ).

Combining (3.5) and (3.6) gives

GB.7)  (S,)=tanh(BY,w,(S;)+ Br™).
j

Combining this in turn with (3.4) gives

(3.8) (S,)=tanh(— 25“5“(5 )+ Br).




Let us suppose that the exogenous input is proportional to one of the stored patterns.

(3.9) k™ =hE,

where 7 is a constant. (One way to view this is to suppose that the exogenous signal,_
coming from a sense organ, closely resembles an earlier such recorded signal, in
particular, the fundamental memory &, say.) This motivates the hypothesis that (S)) is
itself proportional to the same stored pattern. In particular, we suppose that

(3.10) (S)y=m&,
for some constant m. Inserting (3.9) and (3.10) into (3.8) gives

(3.11) mé&’' = tanh(—%Zé{‘E}‘mf}' + PhE).
B :

Next assume that N is large compared to p, so we may neglect the cross-talk term in
(3.11), which then becomes

(3.12) mé&! = tanh[B(m+h)E']
Since &’ = %1, we may write (3.12) as
(3.13) m = tanh B(m +h).

If £ =1, we say that the output §; =1 of neuron i is correct, and the output S, =-11is
incorrect. If & =—1, we say that th\e output S, =—1 is correct, and the output §; =11s
incorrect. Then by definition
&
(s) _ Prfs =1}-Pr{s =-1} ‘
E =1 +1 '

{1

(3.14)

Then combining (3.14) with (3.10), we conclude that

(3.15) —m—;-l=Pr{output S, is correct}.

Then the expected number of correct outputs of the neural net (the expected number of




bits in the fundamental memory & which are recalled correctly) in response to an
arbitrary cue is

(3.16) (N_,...)= %N(l +m).

In Figure 3.1 we plot m = m(h) versus T given by (3.13) for different values of /1.

m
A

T

Fig. 3.1: A plot of m(h,T) demonstrating phase change in the retrieval process

For h =0, we see a change of phase-like effect in Figure 3.1. Namely for T greater
than a critical temperature, 7, =1, we have m = 0, so that the expected number of correct
bits in the retrieved memory is N/2,i.e., arandom result. As T falls below 7, and
approaches zero, there is a rapid rise of m to N, i.e., to full correctness of the expected
number of correctly retrieved bits. For any temperature T > 0, the expected number of

correctly retrieved bits increases with the strength £ of the exogenous input and
approaches N (full correctness) as i — oo,

4 Hebbian Dynamics (Observation Process) in the Presence of Noise

4.1 Expected value of observation

%

A simple form for 7 (x,y) that characterizes the correlation properties of synaptic %
weight development enunciated by Hebb, is the product form, namely

@) H(xy)=r(x—-(x))y-(¥))
where K is a constant. We may take x =1 without loss of generality, by means of a

change of time scale in (2.3). Now combining (4.1) with (2.4) and taking expected
values, we find that




@2) (dw,)=(85)- (S)S;)-

So the expected value of awareness (literally, the token of observation) is proportional to
the neural output correlation function. (In the case of modeling magnetic spins, the right
member of (4.2) is referred to as the spin correlation function.)

The terminology introduced in Section 2.2 (concerning awareness of the neural

processing by a synapse, that processing and that awareness interpreted as a measurement
process) motivates the following definition.

Definition. We say that during a step of neural processing, the ij — th synapse
experiences a sensation Oy, where '

(43) o, =(Aw).

We stress that while the members of (4.3) are tokens of awareness, awareness is properly
a property characterizing the behavior of the ij —th synapse (indeed the entire Hebbian
dynamics process) as an observer of the neuronal measurement process.

4.2 Neural dynamics as a communication process, mirroring

Let

1
622) L.=—) 0,
( ) i NEJ‘J Y

and let

6.23) § =3—25,.
N7

2

In the case of modeling magnetic spins, sig(§) is referred to as the block spin. Using
4.2) - (4.5), we find

L = Dlss)-sxs)]

(4.6) ;
=(85,) = (SXS.)-

We make the following stochastic independence hypothesis.




@.7) (SS,)=S5¢(S,).
With this (4.6) becomes
(4.8) Ii = (:S'_ - <§>)<S; )

Conibining this with (3.10), we find

Thus I; is proportional to m, the expected value of neuronal output (S,). We call this a
mirroring of the expected value of the neuronal output by ..

4.3 Mutual information

Since many different patterns of input synaptic activity can correspond to each one of
the two neuronal output values, S, = £1, all we can expect to tell about the neuronal input

pattern from the value of the output is the average (counting signature) of the inputs. The
mirroring expressed by (4.9) tells us this. So I, is the mutual information’ of neuronal
input/output dynamics (subject to noise) interpreted as a step in a communication process
(an information transmission process). Note that since we employ spin-valued variables,
the mutual information here is a signed quantity. This can be avoided by replacing I, by

(I1+1)/2 (i.e., by going to binary valued variables). (Compare Miranker (2000)).
4.4 Neuronal feeling, the observer

Since I, is an appropriate signed average of the sensations o of the input synapses:of

neuron I, it is a token of sensation of the entire neuron, which we shall refer to as the
feeling of the neuron. (We stress once more the need to differentiate between a quality
and its token.) Notice from (4.9) that neuronal feeling (which is the mutual information
of the neuronal measurement process) may be attractive or repulsive.

7 Recall that the mutual information is the uncertainty about an input that is resolved by knowledge of the
output.

10




Indeed this feeling I, is expressed in terms of the (externally/third person) measurable
but unconscious neuronal output activity (cf. (4.9) f), that activity encoding the neural
information being processed. So in this sense neuronal feeling is a non observable
reflection of that information redounding directly from the so-called observer aspect of
the measurement process which is neural dynamics (cf. Figure 2.1), in particular
redounding directly from the Hebbian synaptic dynamics.

4.5 Influence of noise on feeling

Now let us recall from Figure 3.1, that m = m(h). Indeed in the absence of an
exogenous input (i.e., when h=0), we have m =0 for T 2T, and so according to (4.9),

there is no neuronal feeling in this case. On the other hand such feelings do return and
grow stronger even at higher temperatures with the strengthening of the exogenous input.
Should the input be removed, a generated feeling is preserved by the neuron only if the
temperature is below critical. So if the noise level is below critical, the neural net can

retain the feeling of a retrieved memory after the trigger for that retrieval has been
removed.

4.6 An analogy between feeling and magnetization

Except for the inclusion of the Hebbian dynamics, the neuronal modeling discussed
here is a well-known variant of the mean field analysis of the Ising model of
magnetization. Indeed the quantity. Sin (4.6) is the magnetization M of the system in the
corresponding Ising model. This analogy describes the feeling (defined here) associated
with the neurons in a net as corresponding to the magnetization surrounding the dipoles
composing a magnet. Thus our model suggests that consciousness is a field of feeling
associated with a neural net. In what sense, if any, this field might surround the net (as
the magnetic field surrounds the magnet), we can not yet say. Perhaps like the quantum
mechanical probability amplitude, it is a field without existence in reality, a field that can
be neither measured nor observed externally. %

4.7 Feeling and free energy

The energy function of the neural net is defined as

4.10) H{S}=-4 Y w;SS,— D KS,
ij i

Defining the trace operator Trs as

11




@11 Trs=), .., ,

S,=fl Sy=tl
we have for Z, the partition function of the net

(4 12) Z= Trsexp(zwu, ﬁEh“’S)

The free energy of the netis F=-TlogZ. We also have (Herz, Krogh, Palmer (1991)
p-277)

oF
13) (SS)y=-2"
and
@.14) (sy=-2.
oh;

Combining (4.13) and (4.14) with (4.6), the feeling of neuron i is given in terms of the
free energy as follows.

“.15 I___E(é’F JF [7’F)

ow, o™ o

This displays the sensitivity of feeling to changes both in 2 (let’s say to exogenous

stimulation) and in w; (let’s say to episodic development).
5 Renormalization and the Ramification of Feeling

Consider an assembly of B neurons, the i —th neuron in the assembly having feelf’ng
I, i=1,..,B. Is there a feeling associated with the assembly, one which arises as a
ramification of the B individual neuronal feelings? To illustrate how this comes about,
we shall again adapt from the statistical mechanics analysis of the Ising fnodel, this time
employing the Renormalization Group technique. The latter is a coarse graining
transformation endowing a block level magnetic structure to blocks of spins induced by
the original individual spin interactions. Here we shall translate this analysis in the
special case of magnetic spins with nearest neighbor interactions and uniform connection
coefficients to our neuronal context. This (the customary case treated in the analysis of

12




magnetic spins of the Ising model) allows us to exhibit the ramification of feelings that
we seek. Developments of greater generality are given in Section 6. It is essential to
note in the following developments that the characterization of feelings at increasingly
higher levels of ramification in no way encounters the infinite observer regress dilemma
of the homunculus concept. Our finite process has a tozally different point of view since
(among other reasons) its observer metaphysics are in place from the outset (Section 2.4).

Define a (virtual) output for a neuronal assembly by the majority rule®.
.
(5.1) S=sig).S.
i=1

We suppose that the neurons are regularly spaced in a d-dimensional (d =1,2,3) lattice
with lattice spacing a. We suppose that the cell assembly is a block with block spacing
taken to be a multiple la of the original lattice spacing, so that each assembly contains I
neurons. The total number of assemblies is NI™, where N is the total number of neurons.

The argument proceeds in terms of fixed points of the Renormalization group
transformation. Then let 7° be the value of the temperature at such a fixed point, and let

T-T

5.2 7= T

(Recall that T is not a true temperature, but simply a parameter measuring the noise
level.) Suppose that the corresponding normalized temperature associated with the
assemblies has the form

(53) 7, =1,

where y, 20 istobe specified. Suppose further that the exogenous input for the s
assemblies has the form

(5.4) h =h™,

where y, 20 is to be specified. Let r denote the physical location in space of a neuron.
Then for the sensation (cf. (4.3)) we write

$ The illustrative material in this section is adapted from the discussion on Ising model spins in Goldenfeld
(1992) Chap. 9.
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assemblies has the form
(5.4 h=h",

where y, =0 is to be specified. Let r denote the physical location in space of a neuron.
Then for the sensation (cf. (4.3)) we write

8 The illustrative material in this section is adapted from the discussion on Ising model spins in Goldenfeld
(1992) Chap. 9.
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55) o0, =G(r-r}5h),

which exhibits the dependence of o;; on its arguments. Then for the sensation of an

assembly we have the following relation (Goldenfeld (1992) p. 270 ff.)).

(5.6) G(‘ ‘,Tl" B) = GG(lr—rLL,ﬁ)

where
(5.7) 6=/

In the case d=2, B=3 and a triangular lattice (! = /3), it is known that y, =1 and y, = ¥.

Then is this case we have 6 =3"® =1.15. This shows that the block or neuronal
assembly sensation is stronger by a factor of 1.15 approx. than the sensation at the
underlying neuronal level. Iterating the coarsening (ramification) process would
successively increase the value of the sensation. Indeed every 8/log,3 =5 iterations
would double the sensation magnitude.

5.1 Speculations on change of phase

The two dimensional Ising model with a triangular block coarsening and nearest neighbor
interaction with uniform connection strength to which we have just referred, while rich
enough to characterize an essential variety of magnetic phenomena, is an extreme
specialization among possible arrangements of neural assemblies. The narrowness of this
model is all the more exacerbated since we require Hebbian dynamics to be invoked to
alter the synaptic weights (the latter being generalizations of the magnetic spin
interactions.) While these defects are addressed in Section 6, let us first note that there
are a number of possible features which a Renormalization group study of a more i
realistic neural net model might reveal which could impact the issues of ramification o}'
synaptic/neuronal level feeling.

1. The fixed-point structure of the Renormalization group transformation in the more
general (neural net) case is likely to be richer than in the special case corresponding
to the Ising model treated here. This in turn will lead to a phase diagram for the
neural net that is more complex than in the special Ising model case. Itis those occult
phases of information of the neural net that we speculate characterize the features of
consciousness apparent to our experience. ’ N

14




2. The block structure (a virtual neural net of cell assemblies) is the fabric over which
the features of ramified feelings is supported. According to the Renormalization
group theory, these share the same critical point/phase space structure as the original
neurons. Thus the so-called occult phases are available to the ramified feelings.

6 The Renormalization of Neuronal Assemblies

Now we conduct a Renormalization group transformation for a neural assembly,
eliminating all of the restrictions of the model case treated in the previous Section 5.
That is, we shall allow arbitrary connections among neurons, both with respect to
synaptic (spatial) connectivity and synaptic weight. (This generalizes the restriction to
nearest neighbor interaction with uniform connection strength of the Ising model.) The
blocks become subassemblies of neurons within the original neural net, each block of
arbitrary size and spatial configuration. We shall derive an equation for the fixed-points
of the corresponding Renormalization transformation. We shall also derive expressions
for the subassembly feeling (the generalization of the block spin correlation function).
Hereafter we shall refer to the subassemblies of the original net simply as assemblies.

6.1 Derivation of the fixed-point equation

To begin consider the net of McCulloch-Pitts neurons introduced in Section 2 and its

associated energy function (4.10). Divide the net into an arbitrary collection of neuronal
assemblies. Let ‘

6.1) o,={5.5,...}
be the set of outputs of the neurons in assembly I. Let

6.2) S =sig{S/+8;+..}

LR

be the virtual output of assembly I. (This is the analog of the block spin in the Ising
model.) Let H’{S,} be the energy of the collection of assemblies. Then the collection
partition function is

63) Z="= 2 Hseend

where we have written the net’s energy function H {S } asH {S,,cr ,} We proceed to
estimate H’{S,} and begin with the case A** =0. Write




(64) H=H,+V,

where H, corresponds to the intra-assembly energy and V corresponds to the inter-

assembly energy. Then

H, = z/ Z{w,,S,S i
(6'5) "}EI I ol
=) SW'S.

“N

and

V=Y D wSsS,
(6.6) ;ﬁ?%w

1#J

Here S’ =(S/,S;,...) is a vector composed of the elements of the set o,. W" denotes the

matrix of those synaptic weights connecting neuron j in assembly J to a neuron i in

assembly 1. Note also that we have simplified the notation and written (here and

hereafter) that i € I signifies that i runs over the neuronal indices in the assembly 1.
Now for any function A(S,), let us define

Zeﬁo{shﬁl}A(Sl’ c,)
©7) (AGS)), =1

Hy{S,,
eo{l"l}

{o:i}
With this notation, we may rewrite (6.3) as

Bt = (oY Ho(S;,04)
68) e"Uh=(e") Ye ,
{o1}
Now let W, denote the collection of synaptic weights within assembly I. Then usiri?
(6.5) we may write the partition function of assembly [ as follows.

6.9 Z,(W,)=exp ZW..S.' s!

[/t B
i,jel

If M is the total number of assemblies, then

16




M
(6.10) {E}e”"”"“} =11zm).
oy 1=1

Then from (6.8) and (6.10), we have

©611) € =(e") T]ZW).
I

Then

6.12) H'{S,} =Y logZ(W,)+log(e") .

Let us now employ the cumulant expansion
613) log(e"), =(V), +1[(v?), - ()i]+ 0V*).
Then using (6.6), we have

(6.14) (V)= (S'W"s’)..

1]

Since H,, does not itself couple different assemblies and is an average over outputs, the
expression in (6.14) factorizes. Then

6.15) (V), =2 (8"),W*(s’),-

I1#J

Using (6.5), (6.7) and (6.9), we have

Y, s'whs! |
1 s

1

&%

where we have written Z,(W,) as Z,(W"). Since S,S, =1,VI, we may rewrite (6.15) as

6.16) (V) =Y. 8,[S/(s"),W"(s"),S,]S-

I1#J

The fixed-point equation of the Renormalization group theory is obtained by equating
w;;, the coefficient of the interaction §,S; in the energy of the original network (cf.

17




(4.10)) to the corresponding coefficient of the assembly level interaction S,S; here. The

latter is the bracketed éxpression in (6.17). Thus the equation we seek is

(6.18) w, =S,(S") WY(S') S, VI JicLjeli#].

The averages (S’ )0 and (S’ )0 here are given by (6.16). Note that (6.18) is a system of

simultaneous equations with one equation for every synaptic weight in the neural net.

6.2 Derivation of feeling at the assembly level
Employing the assembly level analogs of (4.13) and (6.3), we have

(S:S,) =—-%——logZ

(6.19) W’
= -a—WTH'{SI}

Then using (6.11), we obtain
— a 14
(6.20) (S,S,) == T Zlog Z,(W,)+log(e"), |

Since Z,(W,) = Z,(W"), the first term in the bracket in (6.20) vanishes upon

differentiation. Then employing the cumulant expansion (6.13) to its leading term and
using (6.15), (6.20) becomes
621) (8,8,)=((S"),.(5’),).

Then referring to (4.2) and (4.3), we find the following expression for the assembly level
feeling.

g

(6.24) o, =((8"),(8"),) (S XS,)-

Since the Renormalization process is formally repeatable, the token of our actual
consciousness should have this same form.
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