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Abstract

We introduce a new cryptographic primitive called the blind coupon
mechanism (BCM). In effect, the BCM is an authenticated bit com-
mitment scheme, which is AND-homomorphic. It has not been known
how to construct such commitments before. We show that the BCM
has natural and important applications. In particular, we use it to con-
struct a mechanism for transmitting alerts undetectably in a message-
passing system of n nodes. Our algorithms allow an alert to quickly
propagate to all nodes without its source or existence being detected by
an adversary, who controls all message traffic. Our proofs of security
are based on a new subgroup escape problem, which seems hard
on certain groups with bilinear pairings and on elliptic curves over the
ring Zn.
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1 Introduction

Motivation. As more computers become interconnected, chances increase
greatly that an attacker may attempt to compromise your system and net-
work resources. It has become common to defend the network by running
an Intrusion Detection System (IDS) on several of the network nodes, which
we call sentinels. These sentinel nodes continuously monitor their local
network traffic for suspicious activity. When a sentinel node detects an at-
tacker’s presence, it may want to alert all other network nodes to the threat.
However, issuing an alert out in the open may scare the attacker away too
soon and preclude the system administrator from gathering more informa-
tion about attacker’s rogue exploits. Instead, we would like to propagate
the alert without revealing the ids of the sentinel nodes or the fact that the
alert is being spread.

We consider a powerful (yet computationally bounded) attacker who
observes all message traffic and is capable of reading, replacing, and delaying
circulating messages. Our work provides a cryptographic mechanism that
allows an alert to spread through a population of processes at the full speed
of an epidemic, while remaining undetectable to the attacker. As the alert
percolates across the network, all nodes unwittingly come to possess the
signal, making it especially difficult to identify the originator even if the
secret key is compromised and the attacker can inspect the nodes’ final
states.

A New Tool: A Blind Coupon Mechanism. The core of our algo-
rithms is a new cryptographic primitive called a blind coupon mecha-
nism (BCM). The BCM is related, yet quite different, from the notion of
commitment. It consists of a set DSK of dummy coupons and a set SSK

of signal coupons (DSK ∩SSK = ∅). The owner of the secret key SK can
efficiently sample these sets and distinguish between their elements. We call
the set of dummy and signal coupons, DSK ∪SSK, the set of valid coupons.

The BCM comes equipped with a verification algorithm VPK(x) that
checks if x is indeed a valid coupon. There is also a probabilistic combining
algorithm CPK(x, y), that takes as input two valid coupons x, y and outputs
a new coupon which is, with high probability, a signal coupon if and only if
at least one of the inputs is a signal coupon. As suggested by the notation,
both algorithms can be computed by anyone who has access to the public
key PK of the blind coupon mechanism.

We regard the BCM secure if an observer who lacks the secret key SK (a)
cannot distinguish between dummy and signal coupons (indistinguishability);
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Figure 1: Abstract group structure used in our BCM construction.

(b) cannot engineer a new signal coupon unless he is given another sig-
nal coupon as input (unforgeability); and (c) cannot distinguish ran-
domly chosen coupons from coupons produced by the combining algorithm
(blinding).

Our Main Construction. Our BCM construction uses an abstract group
structure (U,G,D). Here, U is a finite set, G ⊆ U is a cyclic group, and
D is a subgroup of G. The elements of D will represent dummy coupons
and the elements of G \D will be signal coupons (see also Figure 1). The
combining operation will simply be a group operation. To make verification
possible, there will need to be an easy way to distinguish elements of G
(valid coupons) from elements of U \G (invalid coupons).

In order for the BCM to be secure, the following two problems must be
hard on this group structure:

– Subgroup Membership Problem: Given generators for G and D
and an element y ∈ G, decide whether y ∈ D or y ∈ G \D.

– Subgroup Escape Problem: Given a generator for D (but not G),
find an element of G \D.

The subgroup membership problem has appeared in many different forms
in the literature [CS02,GM84,NS98,OU98,Pai99,Gjø05,NBD01]. The sub-
group escape problem has not been studied before. To provide more confi-
dence in its validity, we later analyze it in the generic group model.

Notice that the task of distinguishing a signal coupon from a dummy
coupon (indistinguishability) and the task of forging a signal coupon (un-
forgeability) are essentially the subgroup membership and subgroup escape
problems. The challenge thus becomes to find a concrete group structure
(U,G,D) for which the subgroup membership and the subgroup escape prob-
lems are hard.
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We provide two instantiations of the group structure: one using groups
with bilinear pairings, and one using elliptic curves over composite moduli.

Why is a BCM Useful? The BCM can potentially be useful in various
applications. If signal coupons are used to encode a “1” and dummy coupons
a “0”, then a BCM can be viewed as an OR-homomorphic bit commitment
scheme. The BCM is indeed hiding because dummy and signal coupons
appear the same to an outside observer. It is also binding because the
sets of dummy and signal coupons are disjoint. In addition, the BCM’s
verification function ensures the commitment is authenticated. By switching
signal coupons to encode a “0” and dummy coupons to encode a “1”, we
get an AND-homomorphic bit commitment. As far as we know, it has
not been known how to construct such commitments before. The BCM
thus provides a missing link in protocol design. Using BCM together with
techniques of Brassard et al. [BCC88], we can obtain short non-interactive
proofs of circuit satisfiability, whose length is linear in the number of AND
gates in the circuit. Other potential uses include i-voting (voting over the
Internet) [CRS04].

Spreading Alerts with the BCM. Returning to our original motiva-
tion, we demonstrate how a BCM can be used to propagate alerts quickly
and quietly throughout the network. During the initial network setup, the
network administrator generates the BCM’s public and secret keys. He then
distributes signal coupons to sentinel nodes. All other nodes receive dummy
coupons. In our mechanism, nodes continuously transmit either dummy
or signal coupons with all nodes initially transmitting dummy coupons.
Sentinel nodes switch to sending signal coupons when they detect the at-
tacker’s presence. The BCM’s combining algorithm allows dummy and sig-
nal coupons to be combined so that a node can propagate signal coupons
without having to know that it has received any, and so that an attacker
(who can observe all message traffic) cannot detect where or when signals
are being transmitted within the stream of dummy messages.

In addition, the BCM’s verification algorithm defends against Byzantine
nodes [LSP82]: While Byzantine nodes can replay old dummy messages in-
stead of relaying signals, they cannot flood the network with invalid coupons,
thereby preventing an alert from spreading; at worst, they can only act like
crashed nodes.

We prove that if the underlying BCM is secure, then the attacker can-
not distinguish between executions where an alert was sent and executions
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where no alert was sent. The time to spread the alert to all nodes will be
determined by the communications model and alert propagation strategy.
At any point in time, the network administrator can sample the state of
some network node and check if it possesses a signal coupon.

Paper Organization. The rest of the paper is organized as follows. We
begin with a discussion of related work in Section 2. In Section 3, we formally
define the notion of a blind coupon mechanism and sketch an abstract group
structure, which will allow us to implement it. Then in Section 4, we provide
two concrete instantiations of this group structure using certain bilinear
groups and elliptic curves over the ring Zn. In Section 5, we show how
the BCM can be used to spread alerts quietly throughout a network. In
Section 6, we analyze the hardness of the subgroup escape problem in the
generic group model. Conclusions and open problems appear in Section 7.

2 Related Work

Our motivating example of spreading alerts is related to the problem of
anonymous communication. Below, we describe known mechanisms for
anonymous communication, and contrast their properties with what can
be obtained from the blind coupon mechanism. We then discuss literature
on elliptic curves over a ring, which are used in our constructions.

2.1 Anonymous Communication

Two basic tools for anonymous message transmission are DC-nets (“dining-
cryptographers” nets) [Cha88,GJ04] and mix-nets [Cha81]. These tools try
to conceal who the message sender and recipient are from an adversary that
can monitor all network traffic. While our algorithms likewise aim to hide
who the signal’s originators are, they are much less vulnerable to disruption
by an active adversary that can delay or alter messages, and they can also
hide the fact that a signal is being spread through the network.

DC-nets enable one participant to anonymously broadcast a message to
others by applying a dining cryptographers protocol. A disadvantage of
DC-nets for unstructured systems like peer-to-peer networks is that they
require substantial setup and key management, and are vulnerable to jam-
ming. In contrast, the initialization of our alert-spreading application in-
volves distributing only a public key used for verification to non-sentinel
nodes and requires only a single secret key shared between the sentinels
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and the receiver, jamming is prevented by the verification algorithm, and
outsiders can participate in the alert-spreading (although they cannot ini-
tiate an alert), which further helps disguise the true source. As the signal
percolates across the network, all nodes change to an alert state, further
confounding the identification of an alert’s primary source even if a secret
key becomes compromised.

The problem of hiding the communication pattern in the network was
first addressed by Chaum [Cha81], who introduced the concept of a mix,
which shuffles messages and routes them, thereby confusing traffic analy-
sis. This basic scheme was later extended in [SRG00, SGR98]. A further
refinement is a mix-net [Abe99,Jak99,Jak98], in which a message is routed
through multiple trusted mix nodes, which try to hide correlation between
incoming and outgoing messages. Our mechanism is more efficient and pro-
duces much stronger security while avoiding the need for trusted nodes;
however, we can only send very small messages.

Beimel and Dolev’s [BD01] proposed the concept of buses, which hide the
message’s route amidst dummy traffic. They assume a synchronous system
and a passive adversary. In contrast, we assume both an asynchronous
system and very powerful adversary, who in addition to monitoring the
network traffic controls the timing and content of delivered messages.

2.2 Elliptic Curves over a Ring

One of our BCM constructions is based on elliptic curves over the ring Zn,
where n = pq is a product of primes. Elliptic curves over Zn have been
studied for nearly twenty years and are used, inter alia, in Lenstra’s integer
factoring algorithm [HWL87] and the Goldwasser-Kilian primality testing
algorithm [GK99]. Other works [Dem93, KMOV92, OU98] exported some
factoring-based cryptosystems (RSA [RSA78], Rabin [Rab79]) to the ellip-
tic curve setting in hopes of avoiding some of the standard attacks. The
security of our BCM relies on a special feature of the group of points on
elliptic curves modulo a composite: It is difficult to find new elements of
the group except by using the group operation on previously known ele-
ments. This problem has been noted many times in the literature, but was
previously considered a nuisance rather than a cryptographic property. In
particular, Lenstra [HWL87] chose the curve and the point at the same time,
while Demytko [Dem93] used twists and x-coordinate only computations to
compute on the curve without y-coordinates. To the best of our knowledge,
this problem’s potential use in cryptographic constructions was first noted
in [Gjø04].
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2.3 Epidemic Algorithms

Our alert mechanism belongs to the class of epidemic algorithms (also called
gossip protocols) introduced in [DGH+87]. In these algorithms, each process
chooses to partner processes with which to communicate randomly. The
drawback of gossip protocols is the number of messages they send, which is
in principle unbounded if there is no way for the participants to detect when
all information has been fully distributed.

3 Blind Coupon Mechanism

The critical component of our algorithms that allows information to prop-
agate undetectably among the processes is a cryptographic primitive called
a blind coupon mechanism (BCM). In Section 3.1, we give a formal def-
inition of the BCM and its security properties. In Section 3.2, we describe
an abstract group structure that will allow us to construct the BCM.

3.1 Definitions

Definition 1 A blind coupon mechanism is a tuple of PPT algorithms
(G,V, C,D) in which:

– G(1k), the probabilistic key generation algorithm, outputs a pair of
public and secret keys (PK,SK) and two strings (d, s). The public key
defines a universe set UPK and a set of valid coupons GPK . The
secret key implicitly defines an associated set of dummy coupons

DSK and a set of signal coupons SSK.1 It is the case that d ∈ DSK

and s ∈ SSK , DSK ∩ SSK = ∅, and DSK ∪ SSK = GPK .

– VPK(y), the deterministic verification algorithm, takes as input a
coupon y and returns 1 if y is valid and 0 if it is invalid.

– z ← CPK(x, y), the probabilistic combining algorithm, takes as in-
put two valid coupons x, y ∈ GPK and produces a new coupon z. The
output z is a signal coupon (with overwhelming probability) whenever
one or more of the inputs is a signal coupon, otherwise it is a dummy
coupon (see Figure 2).

1Note that membership in SSK and DSK should not be efficiently decidable when given
only PK (unlike membership in GPK). However, we require that membership is always
efficiently decidable when given SK.
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x y C(x, y)

DSK DSK DSK

DSK SSK SSK

SSK DSK SSK

SSK SSK SSK

Figure 2: Properties of the combining algorithm.

– DSK(y), the deterministic decoding algorithm, takes as input a valid
coupon y ∈ GPK . It returns 0 if y is a dummy coupon and 1 if y is a
signal coupon.

The BCM may be established either by an external trusted party or
jointly by the application participants, running the distributed key gener-
ation protocol (e.g., one could use a variant of [ACS02]). In this paper,
we assume a trusted dealer (the network administrator) who runs the key
generation algorithm and distributes signal coupons to the supervisor algo-
rithms of sentinel nodes at the start of the system execution. In a typical
algorithm, the nodes will continuously exchange coupons with each other.
The combining algorithm CPK enables nodes to locally and efficiently com-
bine their coupons with coupons of other nodes. The verification function
VPK prevents the adversary from flooding the system with invalid coupons
and making it impossible for the signal to spread.

For this application, we require the BCM to have certain specific security
properties.

Definition 2 We say that a blind coupon mechanism (G,V, C,D) is secure

if it satisfies the following requirements:

1. Indistinguishability: Given a valid coupon y, the adversary cannot
tell whether it is a signal or a dummy coupon with probability better
than 1/2. Formally, for any PPT algorithm A,

∣

∣

∣

∣

∣

∣

∣

Pr






b = b′

(PK,SK, d, s) ← G(1k);

x0
$
← DSK ;x1

$
← SSK ;

b
$
← {0, 1}; b′ ← A(1k, PK, d, xb)






−

1

2

∣

∣

∣

∣

∣

∣

∣

≤ negl(k)

2. Unforgeability: The adversary is unlikely to fabricate a signal coupon
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without the use of another signal coupon as input2. Formally, for any
PPT algorithm A,

Pr

[

y ∈ SSK
(PK,SK, d, s) ← G(1k);

y ← A
(

1k, PK, d
)

]

≤ negl(k)

3. Blinding: The combination CPK(x, y) of two valid coupons x, y looks
like a random valid coupon. Formally, fix some pair of keys (PK,SK)
outputted by G(1k). Let UD be a uniform distribution on DSK and
let US be a uniform distribution on SSK . Then, for all valid coupons
x, y ∈ GPK ,

{

Dist(CPK(x, y), UD) = negl(k) if x, y ∈ DSK ,
Dist(CPK(x, y), US) = negl(k) otherwise.

(Here, Dist(A,B)
def
= 1

2

∑

x |Pr[A = x] − Pr[B = x]| is the statistical
distance between a pair of random variables A,B.)

To build the reader’s intuition, we describe a straw-man construction of
a BCM. Suppose we are given any semantically secure encryption scheme
E(·) and a set-homomorphic signature scheme SIG(·) by Johnson et al.
[JMSW02]. This signature scheme allows anyone possessing sets x, y ⊆ Zp

and their signatures SIG(x),SIG(y) to compute SIG(x ∪ y) and SIG(w)
for any w ⊆ x. We represent dummy coupons by a random-length vec-
tor of encrypted zeroes; e.g., x = (E(0), . . . , E(0)). The signal coupons are
represented by a vector of encryptions that contains at least one encryp-
tion of a non-zero element; e.g., y = (E(0), . . . , E(0), E(1)). To prevent
the adversary from forging coupons, the coupons are signed with the set-
homomorphic signature. The combining operation is simply the set union:
CPK

(

(x,SIG(x)), (y,SIG(y))
)

=
(

x ∪ y,SIG(x ∪ y)
)

. The drawback of this
construction is immediate: as coupons are combined and passed around the
network, they quickly grow very large. Constructing a BCM with no ex-
pansion of coupons is more challenging. We describe such a construction
next.

3.2 Abstract Group Structure

We sketch the abstract group structure that will allow us to implement a
secure and efficient BCM. Concrete instantiations of this group structure
are provided in Section 4.

2The adversary, however, can easily generate polynomially many dummy coupons by
using CPK(·, ·) with the initial dummy coupon d that he receives.
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Let Γ = {Γk} be a family of sets of tuples (U,G,D, d, s), where U is a
finite set, and G is a subset of U . G also has a group structure: it is a cyclic
group generated by s. D is a subgroup of G generated by d, such that the
factor group G/D has prime order |G|/|D|. The orders of D and G/D are
bounded by 2k; moreover, |G|/|U | ≤ negl(k) and |D|/|G| ≤ negl(k).

Let G′ be a PPT algorithm that on input of 1k samples from Γk according
to some distribution. We consider Γk to be a probability space with this
distribution.

We assume there exists an efficient, deterministic algorithm for distin-
guishing elements of G from elements of U \ G, and an efficient algorithm
for computing the group operation in G.

– The key generation algorithm G(1k) runs G′ to sample (U,G,D, d, s)
from Γk, and outputs the public key PK = (U,G, d, k), the secret key
SK = |D|, as well as d and s.

The elements of D will represent dummy coupons, the elements of
G \D will represent signal coupons, and the elements of U \G will be
invalid coupons (see Figure 1).

– The verification algorithm VPK(y) checks that the coupon y is in
G.

– The combining algorithm CPK(x, y) is simply the group operation
combined with randomization. For input x, y ∈ G, sample r0, r1 and r2

uniformly at random from {0, 1, . . . , 22k−1}, and output r0d+r1x+r2y.

– Because |D| · y = 0 if and only if y ∈ D, the decoding algorithm
DSK checks if |D| · y = 0.

The indistinguishability and unforgeability properties of the BCM will
depend on the hardness assumptions described below.

Definition 3 The subgroup membership problem for Γ asks: given a
tuple (U,G,D, d, s) from Γ and y ∈ G, decide whether y ∈ D or y ∈ G \D.

The subgroup membership problem is hard if for any PPT algorithm A,
∣

∣

∣
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∣

∣

∣

∣

Pr









b′ = b

(U,G,D, d, s)
$
← Γk;

y0
$
← D; y1

$
← G \D;

b
$
← {0, 1}; b′ ← A(U,G,D, d, s, yb)









−
1

2

∣

∣

∣

∣

∣

∣

∣

∣

≤ negl(k).3

3Henceforth, we assume that groups we operate on have some concise description, which
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Various subgroup membership problems have been extensively studied
in the literature, and examples include the Decision Diffie-Hellman prob-
lem [CS02], the quadratic residue problem [GM84], among others [NS98,
OU98,Pai99]. Our constructions however are more related to the problems
described in [Gjø05,NBD01].

Definition 4 The subgroup escape problem for Γ asks: given U , G, D
and the generator d for D from the tuple (U,G,D, d, s) from Γ, find an
element y ∈ G \D.

The subgroup escape problem is hard if for any PPT algorithm A,

Pr

[

y ∈ G \D (U,G,D, d, s)
$
← Γk;

y ← A(U,G,D, d)

]

≤ negl(k).

The subgroup escape problem has to our knowledge not appeared in the
literature before. It is clear that unless |G|/|U | is negligible, finding elements
of G \D cannot be hard. We show in Section 6 that if |G|/|U | is negligible,
the subgroup escape problem is provably hard in the generic model.

We also note that the problem of generating a signal coupon from poly-
nomially many dummy coupons is essentially the subgroup escape problem.

Theorem 5 Let Γ be as above. If the subgroup membership problem and
the subgroup escape problem for Γ are hard, then the corresponding BCM is
secure.

Proof: Fix k and (U,G,D, d, s) sampled from Γk.
We prove the blinding property first, and start with the ideal case: For

input x, y ∈ G, sample r0 uniformly from {0, 1, . . . , |D| − 1}, and r1 and r2

uniformly from {0, 1, . . . , |G/D| − 1}, and output r0g + r1x + r2y.
If x, y ∈ D, the product is uniformly distributed in D, since r0g is.
If x 6∈ D, then the residue class r1x + D is uniformly distributed in

G/D. Since r0g is uniformly distributed in D, the product is uniformly
distributed in G. The uniform distribution on G is |D|/|G|-close to the
uniform distribution on G \D. The same argument holds for r2y.

Finally we note that we do not need to know |D| or |G/D|. Since we
know that |D| and |G/D| are less than 2k, sampling r0, r1, r2 uniformly from
the set {0, . . . , 22k− 1} will produce an output distribution that is 2−k-close
to ideal, which proves the bound for blinding

can be passed as an argument to our algorithms. We also assume that group elements can
be uniquely encoded as bit strings.
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Next, we prove the indistinguishability property, so let A be an adver-
sary against indistinguishability. We have a subgroup membership problem
instance (U,G,D, d, s) and y ∈ G. We construct the public key PK =
(U,G, d, k), and give A as input PK, d and y.

If A answers 1, we conclude that y ∈ G\D, otherwise y ∈ D. Whenever
A is correct, we will be correct, so A must have negligible advantage.

Finally, we deal with forging. Let A be an adversary against unforge-
ability. We have a subgroup escape problem instance U , G and D, and a
generator d for D. Again we construct the public key PK = (U,G, d, k),
and give A as input PK and d.

Our output is simply A’s output. Whenever A succeeds, we will succeed,
so A must have negligible success probability.

4 Constructing the BCM

We now give two instantiations of the abstract group structure (U,G,D)
described in the previous section. First, we review some basic facts about
elliptic curves over composite moduli in Section 4.1. Then, in Section 4.2, we
describe our BCM construction that utilizes these curves. In Section 4.3, we
describe an alternative BCM construction on elliptic curves equipped with
bilinear pairings. These constructions can be used to undetectably transmit
a one-shot signal throughout the network. In Section 4.4, we describe how
the BCM’s bandwidth can be further expanded.

4.1 Preliminaries

Let n be an integer greater than 1 and not divisible by 2 or 3. We first
introduce projective coordinates over Zn. Consider the set Ū of triples
(x, y, z) ∈ Z3

n satisfying gcd(x, y, z, n) = 1. Let ∼ be the equivalence relation
on Ū defined by (x, y, z) ∼ (x′, y′, z′) iff there exists λ ∈ Z∗

n such that
(x, y, z) = (λx′, λy′, λz′). Let U be the set of equivalence classes in Ū . We
denote the equivalence class of (x, y, z) as (x : y : z).

An elliptic curve over Zn is defined by the equation

E : Y 2Z ≡ X3 + aXZ2 + bZ3 (mod n),

where a, b are integers satisfying gcd(4a2−27b3, n) = 1. The set of points on
E/Zn is the set of equivalence classes (x : y : z) ∈ U satisfying y2z ≡ x3 +
axz2 +bz3 (mod n), and is denoted by E(Zn). Note that if n is prime, these
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definitions correspond to the usual definitions for projective coordinates over
prime fields.

Let p and q be primes, and let n = pq. Let Ep : Y 2Z = X3 + apXZ2 +
bpZ

3 and Eq : Y 2Z = X3 + aqXZ2 + bqZ
3 be elliptic curves defined over Fp

and Fq, respectively. We can use the Chinese remainder theorem to find a
and b yielding an elliptic curve E : Y 2Z = X3 + aXZ2 + bZ3 over Zn such
that the reduction of E modulo p gives Ep and likewise for q.

It can also be shown that the Chinese remainder theorem gives a set
isomorphism

E(Zn)
∼
−→ Ep(Fp)× Eq(Fq)

inducing a group operation on E(Zn). For almost all points in E(Zn), the
usual group operation formulae for the finite field case will compute the
induced group operation. When they fail, the attempted operation gives
a factorization of the composite modulus n. Unless Ep(Fp) or Eq(Fq) has
smooth or easily guessable order, this will happen only with negligible prob-
ability (see [Gal02] for more details).

4.2 BCM on Elliptic Curves Modulo Composites

Let p, q, ℓ1, ℓ2, ℓ3 be primes, and suppose we have elliptic curves Ep/Fp and
Eq/Fq such that #Ep(Fp) = ℓ1ℓ2 and #Eq(Fq) = ℓ3. Curves of this form
can be found using complex multiplication techniques [BSS99,LZ94].

With n = pq, we can find E/Zn such that #E(Zn) = ℓ1ℓ2ℓ3. Let U be
the projective plane modulo n, let G be E(Zn), and let D be the subgroup
of order ℓ1ℓ3. The public key is PK = (G,D, n), while the secret key is
SK = (p, q, l1, l2, l3).

4

Verification Function For any equivalence class (x : y : z) in U , it
is easy to decide if (x : y : z) is in E(Zn) or not, simply by checking if
y2z ≡ x3 + axz2 + bz3 (mod n).

Subgroup Membership Problem For the curve Ep(Fp), distinguishing
the elements of prime order from the elements of composite order seems to
be hard, unless it is possible to factor the group order [Gjø05].

Counting the number of points on an elliptic curve defined over a compos-
ite number is equivalent to factoring the number [HWL87,KK98]. Therefore,
the group order Ep(Fp) is hidden.

4To describe groups G and D, we publish the elliptic curve equation and the generator
for D. This gives away enough information to perform group operations in G, check
membership in G, and generate new elements in D (but not in G).
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When the group order is hidden, it cannot be factored. It therefore seems
reasonable that the subgroup of E(Zn) of order ℓ1ℓ3 is hard to distinguish
from the rest of the points on the curve, as long as the integer n is hard to
factor.

Subgroup Escape Problem Anyone capable of finding a random point
on the curve will with overwhelming probability be able to find a point
outside the subgroup D.

Finding a random point on an elliptic curve over a field is easy: Choose
a random x-coordinate and solve the resulting quadratic equation. It has
rational solutions with probability close to 1/2.

This does not work for elliptic curves over the ring Zn, since solving
square roots modulo n is equivalent to factoring n. One could instead try
to choose a y-coordinate and solve for the x-coordinate, but solving cubic
equations in Zn seems no easier than finding square roots.

One could try to find x and y simultaneously, but there does not seem
to be any obvious strategy. This is in contrast to quadratic curves, where
Pollard [SP87] gave an algorithm to find solutions of a quadratic equation
modulo a composite (which broke the Ong-Schnorr-Shamir signature system
[OSS84]). These techniques do not seem to apply to the elliptic curve case.

Finding a lift of the curve over the integers does not seem promising.
While torsion points are fairly easy to find, they will not exist if the curve
E/Zn does not have points of order less than or equal to 12. If we allow
E/Zn to have points of small order that are easily found, we can simply
include them in the subgroup D.

Finding rational non-torsion points on curves defined over Q is certainly
non-trivial, and seems impossibly hard unless the point on the lifted curve
has small height [Sil99]. There does not seem to be any obvious way to find
a lift with rational points of small height (even though they certainly exist).

What if we already know a set of points on the curve? If we are given
P1, P2, P3 ∈ E(Zn), we can find, unless the points are collinear, a quadratic
curve

C : Y Z = αX2 + βXZ + γZ2

defined over Zn that passes through P1, P2, P3. We can find the fourth
intersection point P4 by deriving a fourth-degree polynomial in X for which
we know three zeros.

To show that we could easily derive this point using the group operation,
we consider the situation over the finite fields, where E and C have at most
six points of intersection. Both intersect (0 : 1 : 0), and since the line
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Z = 0 is a tangent to both curves in (0 : 1 : 0), their intersection number in
(0 : 1 : 0) is greater than 1. This means that E and C intersect in exactly
five points, P1, P2, P3, P4 and (0 : 1 : 0).

The divisor of C is (P1)+(P2)+(P3)+(P4)+2((0 : 1 : 0)). Let C ′ : Z2 = 0
with divisor 6((0 : 1 : 0)). Since the divisor of the function f(X,Y,Z) =
(Y Z−αX2−βXZ− γZ2)/(Z2) satisfies div(f) = div(C)−div(C ′) = 0, we
see that (P1) + (P2) + (P3) + (P4)− 4((0 : 1 : 0)) = 0, which means that

P1 + P2 + P3 + P4 = (0 : 1 : 0)

The fourth point is therefore the inverse sum of the three known points.
If points of the curve only yield new points via the group operation, and

it seems hard to otherwise find points on E(Zn), it is reasonable to assume
that E(Zn) and its subgroup, as described in the previous section, yield a
hard subgroup escape problem.

4.3 BCM on Groups With Bilinear Pairings

Let p, ℓ1, ℓ2, and ℓ3 be primes such that p + 1 = 6ℓ1ℓ2ℓ3, and p = 2
(mod 3). Here, l1, l2, l3 must be distinct and larger than 3. The elliptic
curve E : Y 2 = X3 + 1 defined over Fp is supersingular and has order
p + 1. Because F∗

p2 has order p2 − 1 = (p + 1)(p − 1), there is a modified

Weil pairing ê : E(Fp)×E(Fp)→ F∗
p2. This pairing is known to be bilinear:

ê(aP, bQ) = ê(P,Q)ab for all P,Q ∈ E(Fp) and a, b ∈ Zp. It can be computed
as described in [BF01].

Let U = E(Fp), and let G and D be the subgroups of E(Fp) of order ℓ1ℓ2

and ℓ1, respectively. We also let P be a point in E(Fp) of order 6ℓ1ℓ2ℓ3, and
let R be a point of order 6ℓ3 in E(Fp), say R = ℓ1ℓ2P . The public key is
PK = (G,D, p,R) and the secret key is SK = (l1, l2, l3). The pairing ê allow
us to describe G in the public key without giving away secret information.

Verification Function We claim that for any point Q ∈ E(Fp), Q ∈ G
if and only if ê(Q,R) is equal to 1. If Q ∈ G, then Q has order ℓ1ℓ2 and for
some integer s, Q = 6sℓ3P . Then

ê(Q,R) = ê(6sℓ3P, ℓ1ℓ2P ) = ê(P,P )6sℓ1ℓ2ℓ3 = 1.

So the point R and the pairing ê allows us to determine if points are in G
or in U \G.
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Subgroup Membership Problem Distinguishing the subgroup D (the
points of order ℓ1) from G (the points of order ℓ1ℓ2) can easily be done if
the integer ℓ1ℓ2ℓ3 can be factored. In general, factoring seems to be the best
way to distinguish the various subgroups of E(Fp).

Because we do not reveal any points of order ℓ2 or ℓ2ℓ3, it seems impossi-
ble to use the pairing to distinguish the subgroup D in this way. (Theorem 1
of [Gjø05] assumes free sampling of any subgroup, which is why it and the
pairing cannot be used to distinguish the subgroups of E(Fp).) It therefore
seems reasonable to assume that the subgroup membership problem for G
and D is hard, which will provide indistinguishability.

Subgroup Escape Problem For a general cyclic group of order ℓ1ℓ2ℓ3,
it is easy to find elements of order ℓ1ℓ2 if ℓ3 is known. Unless ℓ3 is known,
it is hard to find elements of order ℓ1ℓ2, and knowing elements of order ℓ1

does not help.
For our concrete situation, factoring the integer ℓ1ℓ2ℓ3 into primes seems

to be the best method for solving the problem. If the primes ℓ1, ℓ2 and
ℓ3 are chosen carefully to make the product ℓ1ℓ2ℓ3 hard to factor, it seems
reasonable to assume that the subgroup escape problem for U , G and D is
hard.

4.4 Extending the BCM’s Bandwidth

The blind coupon mechanism allows to undetectably transmit a single bit.
Although this is sufficient for our network alert application, sometimes we
may want to transmit longer messages.

Trivial Construction. By using multiple blind coupon schemes over
different moduli in parallel, we can transmit longer messages. Each m-bit
message x = x1 . . . xm is represented by a vector of coupons 〈c1, . . . , c2m〉,
where each ci is drawn from a different scheme. Each processor applies
his algorithm in parallel to each of the entries in the vector, verifying each
coupon independently and applying the appropriate combining operation to
each ci.

A complication is that an adversary given a vector of coupons might
choose to propagate only some of the ci, while replacing others with dummy
coupons. We can enable the receiver to detect when it has received a com-
plete message by representing each bit xi by two coupons: c2i−1 (for xi = 0)
and c2i (for xi = 1). A signal coupon in either position tells the receiver
both the value of the bit and that the receiver has successfully received it.
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Alas, we must construct and run Ω(m) blind coupon schemes in parallel
to transmit m bits.

Better Construction. Some additional improvements in efficiency are
possible. As before, our group structure is (U,G,D). Suppose our cyclic
group G has order n0p1 · · · pm, where pi are distinct primes. Let D be the
subgroup of G of order n0.

An m-bit message x = x1 . . . xm is encoded by a coupon y ∈ G, whose
order is divisible by

∏

i :xi=1 pi. For all i, we can find an element gi ∈ G
of order n0pi. We can thus let y = gr1x1

1 · · · grmxm

m for random r1, . . . , rm ∈
{0, 1, . . . , 22k − 1}.

When we combine two coupons y1 and y2, it is possible that the order
of their combination CPK(y1, y2) is less than the l.c.m. of their respective
orders. However, if the primes pi are sufficiently large, this is unlikely to
happen.

In Section 4.2, n0 is a product of two moderately large primes, while
the other primes can be around 280. For the construction from Section 4.3,
n0 is prime, but every prime must be fairly large to counter elliptic curve
factorization.

This technique allows us to transmit messages of quite restricted band-
width. It remains an open problem whether some other tools can be used
to achieve higher capacity without a linear blow-up in message size.

5 Spreading Alerts with the BCM

In this section, we show how the BCM can be used to spread an alert quietly
and quickly throughout a network. We begin with a definition of the problem
in Sections 5.1, and then present results on the security and performance of
the mechanism in Sections 5.2 and 5.3.

To summarize these results briefly, we consider a very general message-
passing model in which each node Pi has a “split brain,” consisting of an
update algorithm Ui that is responsible for transmitting and combining
coupons, and a supervisor algorithm Si that may insert a signal coupon
into the system at some point. The nodes carry out these operations under
the control of a PPT attackerA that can observe all the external operations
of the nodes and may deliver any message to any node at any time, including
messages of its own invention.

We show first that, assuming the BCM is secure, the attacker can neither
detect nor forge alerts despite its total control over message traffic. This
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result holds no matter what update algorithm is used by each node; indeed,
it holds even if the update half of each node colludes actively with the
adversary. We then give examples of some simple strategies for spreading
an alert quickly through the network with some mild constraints on the
attacker’s behavior.

5.1 Our Model

We now describe the model for our algorithms.

5.1.1 Basic Setting

We adopt a very general message-passing communications model, permitting
an active adversary both control over the timing of delivery of messages
between nodes and the ability to read, replace, and redirect messages at
will. At the same time, we structure our model of a node to enforce the
requirement that the node’s visible behavior (e.g., its choices of what other
nodes to communicate with) is not affected by the type of coupons it is
transmitting.

5.1.2 Processes

We assume that we have a collection of n nodes P1, P2, . . . , Pn. Processes
have “split brains”: for each node Pi an update algorithm Ui handles
communication with other nodes, while a supervisor algorithm Si chooses
when or if to send a signal coupon. This split enforces the requirement that
the communication pattern does not depend on which type of coupon a node
is sending.

We do not examine the behavior of the supervisor algorithm closely;
instead, we assume only that it supplies a sequence of coupons c1

i , c
2
i , . . .

to the update algorithm Ui. The supervisor algorithm Si of regular nodes
will intermittently supply a sequence of dummy coupons. Meanwhile, Si

of sentinel nodes will supply dummy coupons until it detects the intruder’s
presence, at which point it will switch to dispensing signal coupons. We
assume that the sequence does not depend on the execution of the rest of
the protocol. For convenience, we write ĉt

i for the indicator variable that
ct
i is a signal coupon; that is, we write ĉt

i = 0 if at step t of execution the
coupon supplied by the supervisor algorithm of node Pi is a dummy coupon
and ĉt

i = 1 if it is signal.
The inputs to update algorithm Ui at step t consist of (a) the sequence

of sets of messages received at steps 1 through t; (b) the sequence of sets
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of messages sent at steps 1 through t − 1; and (c) the coupon ct
i supplied

by Si at time t. The output of Ui is a set of messages to be sent at step t.
Each message is of the form (s, r,m, c) where s is the identity of the sender,
r is the intended recipient, m is an arbitrary string, and c is a coupon. To
simplify the model, we do not keep track of a separate process state, because
any such state can easily be recomputed from the message history.

The update algorithms have access to the public key PK of the blind
coupon mechanism. We assume that they can apply the verification algo-
rithm VPK and the combining algorithm CPK in computing outgoing mes-
sages. To spread alerts, a typical update algorithm will discard any coupons
from incoming messages or the supervisor algorithm that are rejected by
VPK , and forward to a carefully-chosen set of recipients coupons obtained
by combining all unrejected coupons so far in some order using CPK . It
may also use additional information in messages to manage spreading of
alerts, and this additional information may also depend on the values of the
coupons it has seen.

5.1.3 Attacker

The PPT attacker algorithm A controls the timing and content of delivered
messages. The input to the attacker is a partial execution, where the t-th
step of an execution is described by a tuple (it, Rt, St) where it is a node
identity, Rt is the set of messages received by Pit at that step, and St is
the set of messages sent by Pit at that step. The output of A is a choice of
which node Pit+1

executes the next step and what set of messages Rt+1 it
receives. The attacker also has access to the public key PK and can use the
verification and combining algorithms VPK and CPK as subroutines.

An execution is constructed by an interactive protocol which alternates
between the attacker choosing a node Pit+1

and a set of received messages
Rt+1 and the node’s update algorithm Ui computing a set of messages St+1

to send. Given particular public and secret keys, PK and SK, adversary A,
update algorithms Ui, and supervisor inputs ĉt

i for steps t = 1, . . . , T , there
exists a corresponding probability distribution Ξ(PK,SK,A, {Ui}, {ĉ

t
i}) on

executions.
Note that traditional classes of process faults are easily simulated by an

attacker defined in this way: a Byzantine node, for example, can be simu-
lated by replacing all of its outgoing messages in transit. The attacker also
has full power to violate any assumptions about synchrony, timely delivery,
or reliable message transmission that the algorithm makes. We will show
that such violations do not affect the security guarantees derived from the
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blind coupon mechanism; however, any performance guarantees on alert-
spreading will require imposing restrictions on the attacker’s behavior.

5.1.4 Problem

The problem is simple: at an opportune time, the sentinel nodes wish to
propagate an alert (signal coupons) to all other nodes. We want to prevent
the attacker (except with negligible probability) from (a) identifying the
presence or source of signal coupons; (b) causing the nodes to spread signal
coupons even though no supervisor algorithm supplied one; (c) preventing
the spread of signal coupons to potential recipients.

5.2 Security

Let us begin with the security properties we want our alert-spreading mech-
anism to have.

Definition 6 A set of update algorithms {Ui} is secure if, for any adver-
sary algorithm A, and any T = poly(k), we have:

1. Undetectability: Given two distributions on executions, one in which
no signal coupons are injected by supervisors and one in which some
are, the adversary cannot distinguish between them with probability
greater than 1/2. Formally, let ĉ0,t

i = 0 for all i, t and let ĉ1,t
i be

arbitrary. Then for any PPT algorithm D,
∣
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≤ negl(k).

2. Unforgeability: The adversary cannot cause any process to transmit
a signal coupon unless one is supplied by a supervisor. Formally, if
ĉt
i = 0 for all i, t, then there is no PPT algorithm A such that

Pr

[

∃(s, r,m, c) ∈ ξ ∧ (c ∈ SSK)

∣

∣

∣

∣

∣

(PK,SK, d, s) ← G(1k);

ξ
$
← Ξ

(

PK,SK,A, {Ui}, {ĉ
t
i}

)

;

]

≤ negl(k).

Security of the alert-spreading mechanism follows immediately from the
security of the underlying blind coupon mechanism. The essential idea be-
hind undetectability is that because neither the adversary nor the update
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algorithms can distinguish between dummy and signal coupons distributed
by the supervisor algorithms, there is no test that can detect their presence
or absence. For unforgeability, the inability of the adversary and update
algorithms to generate a signal coupon follows immediately from the un-
forgeability property of the BCM.

Theorem 7 An alert-spreading mechanism is secure if the underlying blind
coupon mechanism is secure.

Proof (sketch): We show first undetectability and then unforgeability.

Undetectability. Suppose that the alert-spreading mechanism does not
satisfy undetectability, i.e. that there exists a set of update algorithms
{Ui}, an adversary A, and pattern {ĉ1,t

i } of signal coupons that can be
distinguished from only dummy coupons by some PPT algorithm D with
non-negligible probability.

Let us use this fact to construct a PPT algorithm B that violates indis-
tinguishability. Let y be the coupon input to B. Then B will simulate
an execution ξ of the alert-spreading protocol by simulating the adver-
sary A and the appropriate update algorithm Ui at each step. The only
components of the protocol that B cannot simulate directly are the su-
pervisor algorithms Si, because B does not have access to signal coupons
provided to the supervisor algorithms of sentinel nodes. But here B lets
ct
i = C(d, d) when ĉ1,t

i = 0 and lets ct
i = C(y, y) when ĉ1,t

i = 1. By the
blinding property of the BCM, if y ∈ DSK , then all coupons ct

i will be sta-
tistically indistinguishable from uniformly random dummy coupons, giving
a distribution on executions that is itself statistically indistinguishable from

Ξ
(

PK,SK,A, {Ui}, {ĉ
0,t
i }

)

. If instead y ∈ SSK , then ct
i will be such that

the resulting distribution on executions will be statistically indistinguishable

from Ξ
(

PK,SK,A, {Ui}, {ĉ
1,t
i }

)

. It follows from the indistinguishability

property of the BCM that no PPT algorithm D can distinguish between
these two distributions with probability greater than 1/2 + negl(k).

Unforgeability. The proof of unforgeability is similar. Suppose that there
is some adversary and a set of update functions that between them can,
with non-negligible probability, generate a signal coupon given only dummy
coupons from the supervisor algorithms. Then a PPT algorithm B that
simulates an execution of this system and returns a coupon obtained by
combining all valid coupons sent during the execution forges a signal coupon

21



with non-negligible probability, contradicting the unforgeability property of
the BCM.

5.3 Performance

It is not enough that the attacker cannot detect or forge alerts: a mecha-
nism that used no messages at all could ensure that. In addition, we want
to make some guarantee that if an alert is injected into the system, it even-
tually spreads to all non-faulty nodes. To do so requires both specifying a
particular strategy for the nodes’ update algorithms and placing restrictions
on the attacker’s ability to discard messages. We give two simple examples
of how the blind coupon mechanism might be used in practice. More so-
phisticated models can also be used; the important thing is that security
is guaranteed as long as the spread of coupons is uncorrelated with their
contents.

A Synchronous Flooding Model. Consider a communication graph
with an edge from each node to each other node that it can communicate to.
Suppose that at step t, node Pi’s update algorithm (a) discards all invalid
incoming coupons; (b) combines any remaining coupons with its previous
sent coupons and ct

i; and (c) sends the result to all of its neighbors in the
communication graph. Suppose further that nodes are divided into faulty
and non-faulty nodes (by arbitrary choice of the attacker), and that every
message sent by a non-faulty node to another non-faulty node is delivered
intact by the attacker within at most one time unit. If the communication
graph after deletion of faulty nodes is strongly connected, every node re-
ceives a signal coupon in at most ∆ steps after a signal coupon is injected,
where ∆ is the diameter of the subgraph of non-faulty nodes.

A Simple Epidemic Model. In this model, the communication graph
is complete, and at each step a randomly-chosen node chooses a random
node to receive its coupon (which does so immediately). The behavior of a
node receiving a message is the same as in the synchronous case. Then the
number of interactions from the injection of the first signal coupon until all
nodes possess a signal coupon is easily seen to be O(n log n). Formally:

Theorem 8 Consider an execution ζ with n nodes of which b < n are
Byzantine, and suppose that some sentinel node begins sending a signal at
the first step. Let the schedule be determined by choosing pairs of nodes for
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each step uniformly at random. Then all non-faulty nodes update their state

to a signal coupon within expected O(n2 log n
n−b

) steps.

Proof: First observe that we can assume b < n− 1, or else the unique
non-faulty node possesses the alert at time 1.

Define a node as “alerted” if its state is a signal coupon, and let k be the
number of alerted nodes. If the next step pairs an alerted, non-faulty node
with a non-alerted, non-faulty node, which occurs with probability k(n−b−k)

n(n−1) ,
the number of alerted nodes rises to k+1. The expected time until this event
occurs is at most n(n−1)

k(n−b) < n2

k(n−b−k) . The expected time until all non-faulty
nodes are alerted is thus at most
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∑
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.

If b is any constant fraction of n, the bound becomes simply O(n log n).

6 Generic Security of the Subgroup Escape Prob-

lem

We prove that the subgroup escape problem is hard in the generic group
model [Sho97] when the representation set is much larger than the group.

Let G be a finite cyclic group and let U ⊆ {0, 1}∗ be a set such that
|U | ≥ |G|. In the generic group model, elements of G are encoded as unique
random strings. We define a random injective function σ : G → U , which
maps group elements to their string representations. Algorithms have access
to an oracle that on input of x± y returns σ(σ−1(x) ± σ−1(y)) when both
x, y ∈ σ(G) ⊆ U , and otherwise the special symbol ⊥. An algorithm can use
the oracle to decide whether x ∈ U is in σ(G) or not by sending the query
x + x to the oracle. If x 6∈ σ(G), the reply will be ⊥.
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Theorem 9 Let D be a subgroup of G ⊆ U . Let g be a generator of D.
Let A be a generic algorithm that solves the subgroup escape problem. If A
makes at most q queries to the group oracle, then

Pr
[

y ∈ G \D
∣

∣

∣ A(1k, σ(g)) = σ(y)
]

≤
q(|G| − |D|)

(|U | − q)
.

Proof: The algorithm can only get information about σ through the
group oracle. If the input to the oracle is two elements known to be in σ(D),
then the adversary learns a new element in σ(D).

To have any chance of finding an element of σ(G\D), the adversary must
use the group oracle to test elements that are not known to be in σ(D).

Suppose that after i queries, the adversary knows a elements in σ(D)
and b elements of U \ σ(G) (a + b ≤ i). For any z outside the set of tested
elements, the probability that z ∈ σ(G \D) is exactly (|G| − |D|)/(|U | − b)
(note that it is independent of a).

Therefore, the probability that the adversary discovers an element in
σ(G \ D) with i + 1 query is at most (|G| − |D|)/(|U | − i). For up to
q queries, the probability that at least one of the tested elements are in
σ(G \D) is at most

q
∑

i=1

|G| − |D|

|U | − i
≤ q ·

|G| − |D|

|U | − q
.

For a sufficiently large universe U , this probability is negligible.

7 Conclusion

We have defined and constructed a blind coupon mechanism, implementing
a specialized form of a signed, AND-homomorphic encryption. Our proofs
of security are based on the novel subgroup escape problem, which seems
hard on certain groups given the current state of knowledge. Our scheme
can be instantiated with elliptic curves over Zn of reasonable size which
makes our constructions practical. We have demonstrated that the BCM
has many natural applications. In particular, it can be used to spread an
alert undetectably in a variety of epidemic-like settings despite the existence
of Byzantine nodes and a powerful, active adversary.
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