Yale University
Department of Computer Science

Improved Bounds on Coherence and Checkability

Richard Beigel Joan Feigenbaum
Yale University AT&T Bell Laboratories

YALEU/DCS/TR-819
September 11, 1990

Improved Bounds on Coherence and Checkability

Richard Beigel* Joan Feigenbaum?

Abstract

Sets for which membership at one point can be deduced efficiently from membership
at other points are fundamental in many areas of theoretical computer science. Yao [20]
recently defined coherence in order to capture this property. He noted that incoherent
sets are not checkable in the sense of Blum and Kannan [6]. They are also not uniformly-
random self-reducible in the sense of, e.g., [1, 3, 11, 19]. The goal of this work is to
obtain bounds on the complexity of sets with these three important properties.

Yao [20] took a step toward this goal by showing that there is an incoherent set in
DSPACE(2"1°“"). In this paper, we improve Yao’s result as follows, thus obtaining
the best negative result on checking to date.

Theorem: There is a set in DSPACE(n1°8"*) that is incoherent (and hence neither
checkable nor uniformly-random self-reducible).

Since all sets in BPP are coherent, our space bound cannot be improved without
separating BPP from PSPACE. In fact, our construction yields incoherent sets that
are “just above BPP,” in a sense that we will specify. We define a strong notion of
incoherence as well and construct sets in DSPACE(n!°8" ") that are strongly incoherent.

The open questions in [20] include whether there is a “natural” complexity-theoretic
assumption that implies the existence of incoherent sets in the polynomial hierarchy.

We provide the following answer to Yao’s question.

Theorem: If NEEEXPTIME ¢ BPEEEXPTIME, then there is a set in NP that is
incoherent (and hence neither checkable nor uniformly-random self-reducible).

Note that this is the first condition known to imply the existence of uncheckable
sets in PSPACE; thus it partially answers an open question of Blum and Kannan (6].
Theorem: If S is complete for any of the classes P, I?, or AP, i > 0, then S is
coherent. In particular, all NP-complete sets are coherent.

Note that it is unknown whether NP-complete sets are checkable.

*Dept. of Computer Science, P.O. Box 2158, Yale Station, New Haven, CT 06520-2158 USA,
beigel-richard@cs.yale.edu. Supported by in part by NSF grants CCR-8808948 and CCR-8958528.
TAT&T Bell Laboratories, Room 2C473, Murray Hill, NJ 07974 USA, jf@research.att.com.

1 Introduction

Suppose that A is a set and that x is a string for which we would like to test membership
in A. Is there a polynomial-time algorithm that, given z and an oracle for A, can determine
whether z is in A without asking the oracle “is z in A?”? That is, can membership of z
in A be computed efficiently given knowledge of whether certain other strings are in A? If
so, then A is said to be a coherent set. Examples of coherent sets include SAT, QBF, and
QRES (the set of quadratic-residues modulo composites). The goal of this work is to study
the properties of coherent sets and their relationship to other central notions in complexity.

Coherence was defined recently by Yao [20]. The definition in [20] is motivated by previ-
ous work on uniformly-random self-reducibility (cf. [1, 3, 11, 19]) and on efficient program-
checking (cf. Blum and Kannan [6]). Uniformly-random self-reducible sets are interesting
because their membership problems are as hard on average as they are in the worst case;
this property is used extensively in arguments for the security of cryptographic protocols.
From a complexity-theoretic point of view, checkability provides an interesting new perspec-
tive on the (presumed) difference between computing a value and verifying the result of a
computation. Traditionally, this issue is represented by the (presumed) gap between P and
NPNcoNP. If one allows randomness and interaction to be used in the verification procedure,
then the issue is represented by the (presumed) gap between BPP and “checkable sets” —
the latter gap is more dramatic, because EXPTIME-complete sets are checkable (cf. [4]).

Unfortunately, neither the uniformly-random self-reducible sets nor the checkable sets
have been fully characterized. Coherence captures a simple, essential property of these sets
and thus provides a method for progress toward such a characterization.

Yao [20] took a step toward this characterization by showing that there is a set in

DSPACE(T‘M'") that is incoherent.! In this paper, we improve Yao’s result by showing
that there are incoherent sets “just above PSPACE;” this provides the best negative result
on checking to date.

Theorem: There is a set in DSPACE(n!°¢" ") that is incoherent (and hence neither checkable
nor uniformly-random self-reducible).

Since all sets in BPP are coherent, our space bound cannot be improved without separat-
ing BPP from PSPACE. Our technique can also be used to show that there are incoherent sets
“just above BPP” in the following sense: If #(n) is superpolynomial and time-constructible,
and B is BPP-hard, then there is an incoherent set in DTIME(¢(n))B. A different technique
constructs sets in DSPACE(n'°8’") that are strongly incoherent (defined in Section 2).

Several open questions about incoherence are stated in [20], including whether there is
a “natural” complexity-theoretic assumption that implies the existence of incoherent sets in
the polynomial hierarchy.

Let NEEEXPTIME denote the union, over all polynomials p, of NTIME(2), and
define BPEEEXPTIME similarly. We provide the following answer to Yao’s question.

22?(")

!Both in Yao’s result and in ours, the exponent log" n can be replaced by any reasonable function of n
that approaches co with n.

Theorem: If NEEEXPTIME ¢ BPEEEXPTIME, then there is a set in NP that is inco-
herent (and hence neither checkable nor uniformly-random self-reducible).

Note that this is the first condition known to imply the existence of sets in PSPACE that
do not have program checkers. Blum and Kannan [6] defined the class function-restricted IP
(frIP) and showed that frTP N co-frIP contains exactly the sets with program checkers. They
posed the question of whether frIP is the same as IP. Our theorem implies that IP is not
contained in frIP N co-frIP if NEEEXPTIME ¢ BPEEEXPTIME. Conversely, frIP Z IP if
PSPACE # EXPTIME (cf. [4, 16, 18]).

Of course, characterization of the coherent sets requires positive results as well. We prove
the following theorem toward that end.

Theorem: If S is complete for any of the classes £, IIZ, or A?, i > 0, then S is coherent.
In particular, all NP-complete sets are coherent.

Note that it remains open whether NP-complete sets (and, more generally, the complete
sets at all levels of the polynomial hierarchy) have program checkers. It is known that
PSPACE-complete sets and EXPTIME-complete sets are checkable and thus coherent (cf. [4,
16, 18]).

In Section 2 below, we specify the definitions and notation that we will use, and we recall
some necessary results from the literature. Section 3 contains precise statements and proofs
of our results. Open problems can be found in Section 4.

Most of the results in this paper first appeared in our Technical Memorandum [5].

2 Preliminaries

Throughout this paper, we consider languages that are contained in {0,1}*. Our notation
for most complexity classes is that of Hopcroft and Ullman [14]. As stated in Section

1, we use NEEEXPTIME to denote the union, over all polynomials p, of NTIME(Zzzm)).
BPEEEXPTIME denotes the corresponding bounded-probabilistic time class. The following
definition of coherence is equivalent to Yao’s.

An ezaminer M is an oracle Turing Machine that, on input z, is not permitted to
query whether z belongs to the oracle set. A set A is coherent if there exists a bounded-
error probabilistic polynomial-time (BPP) examiner using oracle A that recognizes A. A
is deterministically coherent if there exists a deterministic polynomial-time examiner using
oracle A that recognizes A. A is weakly coherent if there exists a P/poly examiner (also
called a weak examiner) using oracle A that recognizes A. If A is not weakly coherent then
A is called strongly incoherent. Recall that BPP/poly = P/poly, because randomness can
be incorporated into nonuniform advice using standard techniques (cf. [2]). Similarly, weak
probabilistic polynomial-time examiners are equivalent to weak deterministic polynomial-
time examiners; in particular every BPP examiner is a P/poly examiner, and so every
coherent set is weakly coherent.

Next we recall the definition of checkability given by Blum and Kannan [6]. A set Ais

checkable if there is a probabilistic, polynomial-time oracle machine C (called the checker)
with the following properties. Let C(O, z) denote the random variable computed by C with
oracle O on input z. For all z, C(A,z) = correct, with probability at least 3/4. For all B
and all z such that x4(z) # xB(z), C(B,z) = faulty with probability at least 3/4. (Note
that C(B,z) can be anything if B # A but xa(z) = xs(z).) If the oracle machine C is
deterministic, then checking is equivalent to self-helping (cf. Schoning [17] and Ko [15]).

Finally, we repeat the definition of uniformly-random self-reducibility given by Feigen-
baum, Kannan, and Nisan [11].2 Earlier definitions appear in, for example, [1, 3, 19]. The
close connection between random-self-reducibility and program checking has been demon-
strated by Blum, Luby, and Rubinfeld [7, 8].

A set A is k(n)-uniformly-random self-reducible (abbreviated k-ursr) if, for all n, there
are polynomial-time computable functions ¢, o, .. ., Ok(n) With the following properties (here
r is an element of {0,1}™, where m is bounded by a polynomial in n):

e For all z
xa(z) = ¢(z,7r,xa(01(2,7)), - .., X4(Ok(n)(,7))),
for at least 3/4 of all r € {0,1}™.

e For all n and all z € {0,1}", if r is chosen uniformly from {0,1}™, then oi(z,r) is
uniform over {0,1}", for all 1 < i < k(n). (In general, o;(z,r) and oj(z,r), for 7 # j,
are dependent.)

The class poly-URSR consists of all sets that are k-ursr for any polynomial k. Intuitively,
A is uniformly-random self-reducible if membership of one instance can be deduced efficiently
from membership at correlated, uniformly random instances of the same length.

A tally set is a subset of 0*. A superpolynomial function t(n) : N = N is one for which
n°/t(n) approaches 0 as n grows, for all positive constants c¢. A very fast growing function
s(n) : N — N is one for which s(n + 1) > p(s(n)), for all polynomials p and all sufficiently
large n. For example, the function

n2
s(n) = 2?

is very fast growing. A function s is called well-behaved if s(z) is computable in time linear
in the length of s(z), Range(s) is decidable in linear time, and s~! is computable in linear
time on Range(s), where we use the standard binary string representation for integers. A

very sparse tally set is a subset of {0 : n € N}, where s(n) is very fast growing and
well-behaved.

2In [11], these reductions are simply called “random-self-reductions.” We use the qualification “uniformly-
random” for the following reason. In the reductions studied in [11] and here, each random instance o;(z, r)
1s uniformly distributed over {0,1}". Feigenbaum and Fortnow [10] have studied a more general notion
of random-self-reducibility in which this is not the case; the unqualified term “random-self-reducible” is
more appropriately used for the more general class of sets studied in [10]. Coherence is not implied by
random-self-reducibility as defined in [10], but it is implied by uniformly-random self-reducibility.

A length-decreasing, probabilistic (resp. deterministic) self-reduction for A is a BPP
(resp. P) oracle machine N with the following properties. With oracle A, the set accepted
by N is A. On input z, N only queries the oracle about strings of length strictly less than
|z.

Fact 2.1 If a tally set has a length-decreasing, probabilistic polynomial-time self-reduction,
then it is in BPP.

By “standard padding techniques,” we mean, for example, those used by Book [9] in his
study of tally sets. By “standard diagonalization techniques,” we mean, for example, those
used to prove the classical space- and time-hierarchy theorems (cf. [14, Chapter 12]).

Finally, note the following elementary relationships among the notions of coherence,
uniformly-random self-reducibility, and checkability.

Fact 2.2 All sets in poly-URSR are coherent.

Proof: Let A be k-ursr. Using standard amplification techniques, we can reduce to 2"
the probability that the function ¢ outputs a wrong answer. An examiner for A can simply
choose r, query the A-oracle to obtain ay = x4(o1(z,7)), ..., ax = xa(ok(z,r)), and output
¢(z,r,a1,...,ar). This examiner only fails if ¢ fails or at least one of the o;(z,r)’s is equal
to z. By definition of k-ursr, this probability is at most (k(n)+1)/2", which suffices to show
that A is coherent. |

Fact 2.3 There are coherent sets that are not in poly-URSR.

Proof: Standard diagonalization suffices to construct a tally set A that is not in PSPACE
and, a fortiori, not in BPP. Then

ADA={0z:2€ A}U{lz:z € A}

is deterministically coherent. However, if A @ A were in poly-URSR, then A would be
poly-URSR, and hence in BPP. |

Fact 2.4 (Yao [20]) All checkable sets are coherent.
Fact 2.5 There are coherent sets that are not checkable.
Proof: Let A be a set that is not recursively enumerable. As in Fact 2.3, A @ A is coherent

and non-r.e. The result of Fortnow, Rompel, and Sipser [12] that all checkable sets are in
NEXPTIME implies that A @ A is not checkable. |

Fact 2.6 There are sets in poly-URSR that are not checkable.

Proof: There are 1-ursr sets that are non-r.e. (refer to [1] for details). These sets are not
checkable, by [12]. 1

Thus the three notions, although related, are certainly not equivalent. F urthermore, the
NP-complete sets seem to distinguish them:

o All NP-complete sets are coherent.

e If any NP-complete set is uniformly-random self-reducible, then the polynomial hier-
archy collapses at the third level.

e It is unknown whether NP-complete sets are checkable.

The first of these statements is proved in the following section. The second is a special
case of [10, Theorem 3.1].

3 Results

In this section we construct an incoherent set in DSPACE(n!°¢" *). A similar argument shows
that NP contains an incoherent set unless NEEEXPTIME C BPEEEXPTIME. We also show
that a set that is complete for any level of the polynomial hierarchy is coherent. Finally,
building on a result of Yao [20], we construct a strongly incoherent set in DSPACE(nlos™ ™).
Unfortunately, the techniques we use for strongly incoherent sets do not seem to have any
bearing on NP.

3.1 Incoherent Tally Sets of Low Complexity
Lemma 3.1 If A is a very sparse tally set, and A is coherent, then A € BPP.

Proof: It suffices to show that the hypothesis implies that A has a length-decreasing,
probabilistic polynomial-time self-reduction. The conclusion then follows from Fact 2.1.

Because A is a very sparse tally set, there is, by definition, a very fast growing, well-
behaved function s(n) such that A C {0° : n € N}. Because A is coherent, there is a
BPP examiner M using oracle A that recognizes A. We use s and M to construct T, an
appropriate self-reduction for A.

On input z, the reduction r first rejects z if z ¢ 0* or |z| ¢ Range(s). If z € 0* and
|z| € Range(s), then r simulates M on input z. Let (¥1,---,Ym) be the sequence of strings
for which M, on input z, asks the oracle “is this string in A?” Because M is polynomial-time
bounded and s is very fast growing, each query y; such that lyi| > |z| is not in A, because its
size falls between two elements of Range(s). Because A4 is a tally set, each query y; such that
|y:] = |z| is not in A (by definition, the examiner M does not query the oracle about z, and
all other strings of length |z| are not in 0*). Thus r probabilistically reduces membership

of z in A to membership in A4 of a polynomial-length sequence of strings, each of which is
shorter than z. |}

We can now give our improvement of Yao’s construction.
Theorem 3.1 There is an incoherent set in DSPACE(nlo8™ "),

Proof: Because n — n!°¢ " is superpolynomial and space-constructible, standard diagonal-
ization techniques techniques suffice to construct a very sparse tally set A such that

A € DSPACE(n'*®"") — PSPACE C DSPACE(n'¢' ™) — BPP.

By Lemma 3.1, A is incoherent. |

A stronger result about incoherent sets just above PSPACE is given in Section 3.3 below.
Corollary 3.1 There is a set in DSPACE(n!°8" ") that is not checkable.

Corollary 3.2 There is a set in DSPACE(n!°¢" ") that is not in poly-URSR.

Corollary 3.2 is a direct improvement of Feigenbaum, Kannan, and Nisan’s construction
in [11] of a set in DSPACE(2") that is not in poly-URSR.
Lemma 3.1 can also be used to show that there are incoherent tally sets “just above

BPP.”

Theorem 3.2 If t(n) is superpolynomial and time-constructible, and B is BPP-hard, then
there is an incoherent set in DTIME(¢(n))B,

Proof: Because t(n) is superpolynomial and time-constructible, standard diagonalization
techniques suffice to construct a very sparse tally set in DTIME(t(r))? — PB, for any oracle

B. If B is BPP-hard, then this tally set must be incoherent. This follows directly from
Lemma 3.1 and the fact that BPP C PB. |

Corollary 3.3 There is an incoherent set in DTIME(nlos" 7)%5

Proof: The function n + n!°"" is superpolynomial and time-constructible, and complete
sets for X5 are BPP-hard. |

Corollary 3.4 There is a set in DTIME(n'8"™)%2 that is not checkable.
Corollary 3.5 There is a set in DTIME(n!°¢"*)®; that is not in poly-URSR.

Finally, we use Lemma 3.1 to derive a “structural hypothesis” that implies the existence
of incoherent tally sets in NP. This answers Yao’s question (a) (see [20, Section 6]).

Theorem 3.3 If NEEEXPTIME ¢ BPEEEXPTIME, then there is an incoherent set in
NP.

Proof: By Lemma 3.1, it suffices to show that the hypothesis implies that there is a very
sparse tally set in NP —BPP. Standard padding techniques suffice. We give the construction
for those unfamiliar with Book [9].
n2

First note that the hypothesis implies that there is a set in NTIME(2#") that is not
in BPEEEXPTIME. To see this, take a set S in NTIME(222n) — BPEEEXPTIME and let
S" = {z10kI"* ; £ € 5},

Throughout this proof, we use the symbol 1z, where z € {0,1}*, to denote both a string
and an integer written in binary.

n?
Let A be a set in NTIME(2?*) — BPEEEXPTIME, and consider the tally set
A'={0":z e A}.

Because the time needed to decide whether 0% is in A’ is exactly the time needed to decide
whether z is in A, and because |z| < log,(|0'?|), we have that

g2(log n)?

A’ € NTIME(2).

Now let
2'-“'2

s(1z) = 12107

and
A" = {Os(lz) :01:: € A'}

Note that s is very fast growing and well-behaved, and hence A" is a very sparse tally set.
Furthermore,

A" € NTIME(n) C NP.

So it remains to show that A” is not in BPP.
If A” were in BPTIME(n®), then A’ would be in

og n)2 og)24 clog
BPTIME((n +1+2% ")°) € BPTIME@2* ™™ "),

This would imply that A was in

n2 cn
BPTIME(2” " ™) C BPEEEXPTIME,

thus contradicting the hypothesis. ||

Corollary 3.6 If NEEEXPTIME ¢ BPEEEXPTIME, then there is a set in NP that is not
checkable.

As discussed in Section 1, our next corollary provides a partial answer to an open question
of Blum and Kannan [6].

Corollary 3.7 If NEEEXPTIME ¢ BPEEEXPTIME, then IP € frIP N co-frIP.

Corollary 3.8 If NEEEXPTIME ¢ BPEEEXPTIME, then there is a set in NP that is not
in poly-URSR.

3.2 NP-Complete Sets are Coherent
Theorem 3.4 If A is NP-complete, then A is deterministically coherent.

Proof: We use cook,(z) to denote Cook’s reduction from A to SAT (cf. [13, Chapter 2]); any
polynomial-time many-one reduction would work as well. We use the notation yo (resp. y1)
to denote the boolean formula obtained by replacing the first variable in boolean formula Y
with FALSE (resp. TRUE).

Let z be an element of {0,1}*, and let y = cook4(z). Thus

xEA(z)(yOESATVmESAT).

Because A is NP-complete, there is a polynomial-time computable function r such that, for
all z € {0,1}~,
2 € SAT <= r(z) € A.

Figure 1 contains a deterministic examiner M that accepts the set A when it uses oracle A.
The notation A(w) is used to denote the answer to the oracle query “is w in A?”

The recursive depth of M, on input (4, z), is at most |cook 4(z)|, because each call to
test-SAT passes a formula with one fewer variable than that passed in the previous call. The
recursive width is 1. Thus M is a deterministic, polynomial-time oracle TM that computes
membership in A with oracle A and never queries the oracle about membership of the original
input string. |

A related but more complicated technique yields the following.

Theorem 3.5 Let C be a complexity class that has a polynomial-time Turing complete set
that is length-decreasing, probabilistically (resp. deterministically) self-reducible. Let A be
polynomial-time Turing complete for C. Then A is coherent (resp. deterministically coher-
ent).

Proof: Let K be a polynomial-time Turing complete set for C, and let rxx be a length-
decreasing self-reduction for K. Let rax (resp. Tk a) be a polynomial-time Turing reduction
from A to K (resp. from K to A). An examiner for A proceeds as follows.

M starts by simulating rax on input z. Whenever it reaches a point at which it must
know whether, say, y is in K, it starts to simulate rx 4 on input y. Recall that M has access
to an A-oracle. Thus, if rx4 can decide whether y is in K without asking whether z is in

9

M(A,<z)

If z = r(TRUE), then return(TRUE);
If z = r(FALSE), then return(FALSE);
Y — cook4(z);
If r(y) # z, then return(A(r(y)))

Else return(test-SAT(y, z));

}

test-SAT(y,z) /* apply self-reduction to y */

If y = TRUE, then return(TRUE);

If y = FALSE, then return(FALSE);

If r(yo) = z, then return(test-SAT (yo, z))
Else by — A(r(y0));

If r(y1) = z, then return(test-SAT(yy, z))
Else b; — A(r(y1));

Return(bo V b,);

Figure 1: A deterministic examiner M that accepts A with oracle set A.

A, then the examiner M has made progress and can proceed with the simulation of r4x on
input z. Otherwise, M can try both possible values for xa(z). If the value obtained for
Xk (y) is the same in both cases, then M knows that this answer for Xk(y) is correct and
once again proceeds with the simulation of r4x on input z.

The only other possibilities are z € A > y€ Korz € A y € K, and thus it suffices
for M to determine xx(y). In this case, M aborts the simulation of rak. Instead, it applies
rkk to y. Once again, M has made progress, because all subsequent values yx(y’) that it
tries to determine satisfy |y/| < |y|. |

Corollary 3.9 If A is polynomial-time Turing complete for any class ¥, II, A?, i > 0,
then A is deterministically coherent.

Note that Theorem 3.5 also implies the coherence of PSPACE-complete sets. However,
as explained in Section 1, this already follows from the fact that those sets are checkable

(cf. [18)).
3.3 Strongly Incoherent Sets

The incoherent set given by Theorem 3.1 is a tally set; thus it is in P/poly and is weakly
coherent. In this section, we give an alternative construction of an incoherent set just above

PSPACE that does not have this drawback.

10

First, we recall a combinatorial result due to Yao [20]. Consider the following game
between two players called P, and P,, with parameters N, m, and ¢.

1. Player P, chooses a sequence of N bits, by,...,by.

2. Player P; inspects by, ...,by and stores m bits of information, which we call her pad
p. Player P, may not remember anything else about b, ..., by.

3. Player P, chooses ¢ between 1 and N and asks P, for the value of b;.

4. Player P, refers to her pad p and inspects b; for ¢ values of j other than :. Player
P, then answers P;’s question. (Player’s P, strategy may be adaptive, but must be
deterministic.)

Player P, wins if she answers correctly. We say that player P,’s strategy is a winning strategy
for N,m,t if she wins no matter how P; plays.

Fact 3.1 (Yao [20]) Player P; has a winning strategy if and only if (t+1)m>N.
Player P,’s pad corresponds to advice in the proof below.

Theorem 3.6 There is a strongly incoherent set in DSPACE(n!°8™ "),

Proof: Let m(n) = t(n) = ln%hg' n J —1. Note that m() and ¢() dominate every polynomial

on all but finitely many points. Let M. denote the e™ oracle Turing machine, running in
time ¢(n), and let p(n) be an advice string of length m(n). If A is weakly coherent, then
there exist e and p such that M., using oracle A and advice p, decides z € A correctly for
all but finitely many z, without actually querying the oracle about z.

Let N(n) = lnbg' ”J Then (¢(n) + 1)m(n) < N(n). Let (-,-) denote a pairing function
on the natural numbers. We construct a strongly incoherent A C {0,1}* by the following
initial segment argument.

Stage —1: Let A= 0. Let n = 3.

Stage (e,¢): Let n = max(n,t(n)) + 1. Let X be the set containing the first N(n) strings
of length n. Find a subset A, of X such that for every advice string p of length m(n),
there exists € X such that on input z with advice p and oracle AU A4,

e M. queries z, or
o M. accepts z and z ¢ A, or
o M. rejects z and z € A,,.

If such a set A, exists at every stage, then clearly the construction guarantees that A4 differs

infinitely often from every weakly coherent language, so A is strongly incoherent. But if

Apn did not exist then player P, would have a winning strategy in Yao’s game above with

parameters N(n),¢(n),m(n). Finally we note that the set A, can be found by exhaustive
search using space N(n) + t(n) + m(n) = O(nhg‘n), so A€ DSPACE(an'"). I

In fact, the language A constructed above is in (DTIME(n!o8" *))%2,

11

4 Open Problems

Open questions include:

(1) Are NP-Complete sets checkable?

(2) Is there a natural structural hypothesis that implies that there are strongly incoherent
sets in the polynomial hierarchy?

Refer to Feigenbaum and Fortnow [10] for open questions about random-self-reducibility.

5 Acknowledgements

We are very grateful to Andy Yao for his suggestion that we look at coherence and the
polynomial hierarchy. We also thank Eric Allender, Debby Joseph, Jeremy Kahn, Yishay
Mansour, Dana Randall, and Peter Shor for helpful discussions.

References

[1] M. Abadi, J. Feigenbaum, and J. Kilian. On Hiding Information from an Oracle, J. Com-
put. System Sci. 39 (1989), 21-50.

[2] L. Adleman. Two Theorems on Random Polynomial Time, Proc. of the 19th FOCS (1978),
IEEE, 75-83.

[3] D. Angluin and D. Lichtenstein. Provable Security of Cryptosystems: A Survey,
YALEU/DCS/TR-288, 1983.

[4] L. Babai, L. Fortnow, and C. Lund. Nondeterministic Exponential Time has Two-Prover
Interactive Protocols, Proc. of the 31st FOCS (1990), IEEE.

[5] R. Beigel and J. Feigenbaum. On the Complexity of Coherent Sets, AT&T Bell Laboratories
Technical Memorandum, February 19, 1990.

[6] M. Blum and S. Kannan. Designing Programs that Check Their Work, Proc. of the 21st STOC
(1989), ACM, 86-97.

[7] M. Blum, M. Luby, and R. Rubinfeld. Self-Testing/Correcting with Applications to Numerical
Problems, Proc. of the 22nd STOC (1990), ACM, 73-83.

(8] M. Blum, M. Luby, and R. Rubinfeld. Program Result Checking Against Adaptive Programs
and in Cryptographic Settings, Proc. of the DIMACS Workshop on Distributed Computing
and Cryptography (1989), AMS.

[9] R. Book. Tally Languages and Complexity Classes, Inf. and Control 26 (1974), 186-193.

12

[10] J. Feigenbaum and L. Fortnow. On the Random-Self-Reducibility of Complete Sets, University
of Chicago Technical Report 90-22, Computer Science Department, August 20, 1990.

[11] J. Feigenbaum, S. Kannan, and N. Nisan. Lower Bounds on Random-Self-Reducibility, Proc. of
the 5th Structures (1990), IEEE, 100-109.

[12] L. Fortnow, J. Rompel, and M. Sipser. On the Power of Multiprover Interactive Protocols,
Proc. of the 3rd Structures (1988), IEEE, 156-161.

[13] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness, Freeman, San Francisco, 1979.

[14] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Computation,
Addison-Wesley, Reading, 1979.

[15] K. Ko. On Helping by Robust Oracle Machines, Theor. Comput. Sci. 52 (1987), 15-36.

[16] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic Methods for Interactive Proof
Systems, Proc. of the 31st FOCS (1990), IEEE.

[17] U. Schoning. Robust Algorithms: A Different Approach to Oracles, Theor. Comput. Sci. 40
(1985), 57-66.

[18] A. Shamir. IP = PSPACE, Proc. of the 31st FOCS (1990), IEEE.

[19] M. Tompa and H. Woll. Random Self-Reducibility and Zero-Knowledge Interactive Proofs of
Possession of Information, Proc. of the 28th FOCS (1987), IEEE, 472-482.

[20] A. C. Yao. Coherent Functions and Program Checkers, Proc. of the 22nd STOC (1990), ACM,
84-94.

13

