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Abstract

Consider a mobile robot building representations of its environment. Un-
less it lives exclusively in a research lab, it will have goals other than explo-
ration. Hence, such a robot must be able to learn about its environment
as it goes about its business, interleaving small bits of exploration with
specifically goal-directed behavior. Most automatic map building systems,
however, require that the mapper be able to take over whenever it wants,
disregarding the robot’s other goals. This problem is solved by using a
passive mapper, which builds a map by observing the robot’s actions and
their effects. We can achieve this by explicitly considering and correcting
mapping errors. We investigate here the use of ezploration scripts, simple
exploration strategies which are easily interleaved with other behavior, to
improve passive robotic mapping. We have developed several such scripts,
with purposes ranging from disambiguating robot position, to reducing
positional uncertainty, to exploring the world more thoroughly. We have
empirically evaluated the use of exploration scripts via simulation.




1 Introduction

Consider a honey bee. To efficiently accomplish its goal of finding the right kind
of flowers to feed the hive, it builds a map of its environment [9]. At times,
exploration, rather that direct goal-seeking behavior, would help to elucidate the
structure of the environment—for example, discovering the extent of a particular
field may provide for better navigational robustness. However, the bee must
balance the utility of exploration against the need for satisfying its higher goals,
and so explore only intermittently, if at all. Consider now an office courier, just
assigned to a new building. She hasn’t the leisure to walk about the building
for a few days to learn its layout—she has deliveries to do. Thus, she must
learn on the job. But if her delivery schedule allows a few minutes here and
there, she can explore a little, possibly discovering new and efficient ways to
perform her job. Finally, consider a mobile robot building representations of its
environment. Unless it lives exclusively in a research lab, it will have goals other
than exploration. Furthermore, even given an initial ‘exploration phase’, learning
will be required continuously in a changing environment. Hence, such a robot
must be able to learn about its environment as it goes, interleaving small bits
of exploration with specifically goal-directed behavior. We investigate here the
use of simple exploration strategies, easily interleavable with other behavior, to
improve robotic mapping,.

1.1 Passive map-learning

This approach, of intermittent, opportunistic, exploration requires the overall
map-learning strategy be a passive one. That is, the map-learning system cannot
always require the ability to direct the robot to do its job. In systems where the
map system must control the robot’s behavior (active mappers), it is difficult, if
not impossible, to accomplish goal-oriented tasks and map at the same time. Most
useful map-learners to date have been active. For example, the system of Kuipers
and Byun [11] needs to be able to get the robot to a recognizable landmark
place every so often, to confirm its location. More extreme are the methods
described by Basye et al.[3] which set out exploration algorithms that must be
followed precisely for accurate mapping. One main difficulty of map-learning is
that decisions about the structure of the world must continually be made based
on uncertain information. Using active control of the robot can often ameliorate,
or even in some circumstances eliminate, this problem. However, as noted, purely
active mapping does not coexist well with the pursuit of other robot goals. Passive
mapping helps here, but the problem of uncertain information remains. We
have developed a passive map-learning framework (described in [7, 8]) which
deals with this problem by (a) having a map representation which is usable even
with errors, and (b) incrementally discovering inconsistencies introduced by bad




mapping decisions and correcting the map.

Despite the fact that passive mapping with error-correction can be done, it can
also be quite inefficient. There are two reasons for this. First, since the robot’s
movements are not determined by considerations of mapping, important parts
of the environment may remain unexamined for long periods of time. More
fundamentally, since mapping errors may persist for some time before they are
noticed and corrected, construction of a correct map can be delayed. Matters can
be improved by allowing the mapper control over the robot’s behavior. If this
control can be exercised intermittently when not interfering with the robot’s other
goals, the problems of purely active mapping can be avoided. Thus, we propose
here to use ezploration scripts, simple high-level robot programs, to improve
mapping. Such scripts are relatively context independent, and so can be applied
whenever the robot decides that its high-level goals can be put off for a short
time. Since the underlying passive mapping system makes no assumptions about
the actions the robot takes, even ‘bad’ scripts cannot cause much trouble.

1.2 Diktiometric representation

A few words are now in order regarding types of environmental representa-
tion. Previous approaches to environmental representation can be roughly di-
vided into two sorts—geometric and topological. The geometric approach (eg.,
[4, 5, 20, 19, 13]) attempts to build a more-or-less detailed geometric descrip-
tion of the environment from perceptual data. This has the intuitive advantage
of having a reasonably well-defined relation to the real world. However, there
is, as yet, no truly satisfactory representation of uncertain geometry; and it is
unclear whether the volumes of information that one could potentially gather
about the shape of the world are really useful. The topological approach, pio-
neered by Kuipers [10], has gained wide currency of late. The world is represented
as a graph of places, with arcs representing actions which take the robot from
one place to another. Diktiometric! representation is a generalization of this,
which also explicitly represents geometric relations between places. By thus phe-
nomenologically representing the robot’s potential interactions with the world,
the representation directly supports navigational planning. Furthermore, learn-
ing diktiometric representations is eased by the ability of the mapper to just
record the robot’s actions and their results [8, 14].

1The term ‘diktiometric’ is from the Greek §ikTvov, meaning ‘network’ and pérporv meaning
‘measurement’. Diktiometric representations represent the world as a network of places with
positions. The term ‘topological’ as used by Kuipers, though nearly accurate, has too many
other unrelated meanings.




2 Modelling the robot and its world

Following Kuipers and Byun [11], we assume that the robot has a repertoire
of actions that take it to the nearest ‘distinctive’ place, often passing through
fairly large swatches of territory. For example, there might be an action ‘Go
to door’ that takes the robot to a doorway in its vicinity (eg., see [18]). Such
actions use fizations, visual markers for places of particular types (a kind of
effective designator, see [15]). The robot will generally attempt to get a fixation
by looking for a place of a particular type in its vicinity; if a fixation is gotten,
it will then be tracked as the robot approaches the destination (as in, eg., [17]).
If no fixation can be found, the action reports that outcome, and does nothing.
If there is more than one fixation, we assume the robot winds up at one of them
arbitrarily. Actions may occasionally arrive at the wrong kind of place as well,
due to errors in visual interpretation.

For a map representation, we adopt a diktiometric representation that represents
both the connectivity of the path graph and its shape — the relative locations of
the places. Thus, a map includes a graph with nodes representing places and arcs
labelled with actions, as well as geometric reltions between places. Each node
also has a record of what the place looks like.

Similar to McDermott and Davis [16], the shape of the path graph is given by
places’ relative positions. We assume odometry can provide, after each move, a set
of points guaranteed to contain the robot’s actual relative motion. Thus, position
estimates are represented by sets of possible positions, relative to local reference
frames. We approximate uncertainty sets as intervals in IR? and use interval
arithmetic for matching and updating (see [1, 2]). The use of local reference
frames ensures that relative uncertainty remains locally bounded.

All doors look like doors, but the view is not the same from all doors, and this
fact enables the robot to tell one door from another. A view of the world may be
thought of as a vector of measurements. These may denote physical properties of
the environment such as its shape, or purely visual properties like segmentation.
A set of views is stored for each place, representing the possible variations in
what the world looks like from that place.

3 The Passive Mapper

The mapper, first of all, must have an idea of where the robot is. Due to un-
certainty in odometry and perception, the robot’s place in the map can be am-
biguous. Hence, the system maintains a set of tracks, alternative estimates of
the robot’s current state with respect to the map. Mapping proceeds as follows.
After an action is performed, bringing the robot to a new place, all tracks are
updated to reflect odometric and sensory readings. Then, some of a number of
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different operations are performed on each tracks, each one corresponding to a
decision about the state of the robot, the track, and the world. Some operations
correspond to decisions about the correctness of the map and adjust it accord-
ingly. Possible operations are proposed, then the system decides which operations
are best to perform. The operations chosen then update the map by adjusting
place descriptions and adding new place nodes and action links. Each track is
then updated to reflect the robot’s new state of knowledge. These operations
are described briefly below; a more detailed discussion can be found in [7]. The
way in which the operators serve to achieve robust, error-correcting mapping is
important when designing exploration scripts to help with mapping.

First off, there are several basic operations always needed for mapping. A track
matches a place when their position estimates match and the the track’s view
matches the place’s view set. If the map is correct and complete, the results of
all actions taken will be expected. Hence, the system should then confirm the
expected transition, and put the track at the expected place. If a matching place
exists, but there is no corresponding action link, the destination is confirmed
and an action link is added. In both of these cases, the operation suggests a new
position estimate for the track and matched place. Finally, if there is no matching
place node, a place node (and action link) is created. Other operations relate to
error detection and correction, and are discussed below.

3.1 Error correction

Since ours is a passive mapper, with the mapping process independent of the
control of the robot, to detect and correct errors we must identify the causes and
effects of different mapping errors. Then it becomes possible to detect, diagnose,
and correct these errors after the fact. The approach we have taken is to store a
small amount of extra information in the map such that errors can be detected
and corrected for, without knowing the precise cause of the error. The types
of errors possible and mechanisms to correct them are described below. These
operations are only applied when the usual operations above cannot be.

One type of geometric error is when a place’s position estimate (an interval)
fails to contain its true position. This is caused by updating the place’s position
estimate by an incorrect match. This is detected and corrected by allowing a track
to match a place’s position estimate approximately, and expanding the estimated
position interval to be more likely consistent (though uncertain). Another kind
of geometric error occurs when a track is diverted by an incorrect match. This
can occur even when the map is correct, if an incorrect match appears more
plausible than a correct one. The robot’s position estimate is then erroneous,
and if left uncorrected can lead to erroneous map construction. This is dealt
with by allowing a track to match with a place nearby, resetting the track’s
position to the place’s position.




Another category of errors are those caused by transient errors during mapping.
The robot may incorrectly decide it is at a place of some type when it is not, or
that it can get from one place to another via a particular action. This may be
due to perceptual errors or transient environmental conditions (such as a person
walking by). This can be corrected by noticing when a place or action link is
encountered far less often than it is expected. It is then assumed to be transient
and is removed from the map. Such transient elision is also effective in adjusting
the map to changing environments.

Since a place can appear different at different visits, the map may eventually
contain two place nodes both representing a single place. However, if the system
can decide that the two nodes represent places with the same position and links
to the rest of the world, then the nodes should be merged. This is done by
approximately matching the local graph structure by observing the robot behavior
in the vicinity of the two places. The new place is a composite of the two merged.

The dual of representing one place by multiple nodes is representing multiple
places by one node. Excessive odometric error may cause two nearby places
to appear as one; two place nodes may also be merged erroneously. In any
case, this situation will cause inconsistency to creep into the place node. This
can engender corruption elsewhere in the map as well. Moreover, unnecessary
ambiguity is introduced to the map, making navigation harder and less reliable.
This situation is diagnosed when it appears that position estimates for a place
come from multiple sources (details are given in [7]). When this occurs, the
system splits the offending place node into two, copying all views and action
links. Transient elision, as above, prunes the view and action link sets to reflect
the real structure of the new places.

4 Exploration Scripts for Mapping

The essential idea of using exploration scripts to improve mapping is that they
can be performed whenever a high-level decision process determines that other
goals can be put off for a short while. This implies, first of all, that these scripts
must apply in general circumstances, as the mapper has no control over when
they will be called upon. Secondly, the scripts must be fairly limited in duration,
so that they can do their business of improving mapping and then let the robot
get back to its high-level goals. Scripts have two components, an application test
which determines if the script is relevant, and a (loop-less) procedure which is -
executed if the script is applied. Scripts use the mapper’s data structures, in
particular the set of current tracks and the map itself.

Recall the motivations for using scripts to improve passive mapping. One is
that a robot will not naturally explore the world efficiently, since its actions are
determined by other considerations. The other is that mapper-directed activity




may improve the reliability of mapping decisions and reduce the introduction of
errors into the map. We have developed and tested some heuristic exploration
scripts to thus aid mapping; they are described below.

4.1 Exploration scripts

We have investigated a number of exploration scripts. Some seek to reduce posi-
tional uncertainty. Others attempt to find new places and action links. Scripts
are also used to reduce ambiguity in the map or in the robot’s position estimate.
Some probe map places which seem likely to not really exist. Keep in mind that
all these scripts do is direct the behavior of the robot; they direct the attention
of mapping system, improving the robot’s map.

RETRACE STEP:

One important source of error and ambiguity in a map is positional uncertainty.
When the robot performs an action with a very uncertain estimate of relative
position, and the robot’s a posteriori position estimate (after matching to its
map) is also particularly uncertain, a simple and useful heuristic for reducing
uncertainty both in the map and in the current position estimate is to retrace the
last step taken. That is, the robot tries to return to the place it just came from;
if it manages that, it tries to get back to where it started.

o Uncertainty of the last Aposition high
o Uncertainty of all track positions high
e Didn't just retrace step

o Try to get a fixation on the last place visited;

o If found, go there, otherwise exit;

e Try to return, if possible.

RETRACE STEP

HEAD FOR UNCERTAINTY:

A more generally applicable heuristic for reducing map uncertainty is to simply
head for nearby places with large positional uncertainty, under the assumption
that if they are reached, new constraints will improve the positional estimate.
This can only be reasonably tried, of course, if the robot’s current place is unam-
biguous.




o There is a nearby place whose uncertainty is high
e Only one track is current

e Try to get a fixation on the uncertain place based on its
relative position;
o If fixation found, go there, otherwise exit.

HEAD FOR UNCERTAINTY

HEAD FOR CERTAINTY:

The converse of the last script is useful when the robot’s positional uncertainty
gets too high, and that is to head for a nearby place whose position is known
very precisely. If the robot reaches and recognizes the place, the robot’s position
will then also be known more precisely, improving further mapping.

e There is only one track, with high uncertainty
e There is nearby place with low uncertainty

e Try to go to that place.

HEAD FOR CERTAINTY

DISAMBIGUATE TRACKS:

It will often occur that the robot’s estimate of its current position will be ambigu-
ous. If there are thus multiple current tracks, a good way to distinguish between
them is to try to perform an action with different results for the different possible
places the robot is at. This will usually result in the incorrect track becoming
inconsistent and thus dropped.

PROBE AMBIGUOQOUS ACTION:

One kind of map ambiguity is when a place has multiple action links coming from
it labelled with the same action. While this ambiguity may be inherent, it may
also be that one of the links is due to a transient; hence, further examination
is warranted. This is achieved by attempting to perform such an ambiguous
action—this will tend to speed up elision of any transients, and just maintain the
real action links.




e There are multiple current tracks.

o Choose an action link whose destination is known reach-
able from some, but not all, of the tracks’ places;
e Try to go to that link’s destination place.

DISAMBIGUATE TRACKS

o There is a single current track,

o There are multiple links from the current place labelled
with the same action.

e Perform that action.

PROBE AMBIGUOUS ACTION

PROBE SPLITTAGE:

The kind of map ambiguity we consider for now is where two identical links from
different places end at the same place and there is reason to believe that only
one is real. This happens when a place is split (see above). Since both places
resulting from a split have copies of the same action links, many of those links will
be invalid. Hence, when the robot is at a place which resulted from a recent split,
the PROBE SPLITTAGE script tries to perform an action that has (in the map)
identical consequences in the two split-off places. This will accelerate elision of
the invalid action links.

e There is a single current track,

e The current place was recently split off from another
place.

e Choose an action link which both places have in com-
mon,
o Try to traverse it.

PROBE SPLITTAGE




HEAD FOR UNEXPLORED AREA:

Most of the previous scripts have dealt with improving the system’s knowledge of
places already in its map. Finding new, unknown places in an efficient manner,
however, would also be useful, so that the world may be more quickly explored.
We thus try to head for an area of the world which has not likely been visited
by the robot before. To decide that this holds of some area, each local reference
frame has associated with it a coverage grid, which tesselates the area about
the frame into a coarse grid, and keeps track of an estimated certainty that the
robot has visited each grid cell. Then, an area is deemed to be unexplored if the
likelihood of part of it having been visited in the past is sufficiently low. Thus,
HEAD FOR UNEXPLORED AREA looks in the vicinity of the current place for a
nearby area which looks unexplored, and if one is found, attempts to head in its
direction.

HEAD FOR RARE PLACES:

Recall that transient environmental features are eventually elided by the mapping
system by noting their frequency of apprehension. This process can be speeded
up if the robot tries to reach places which look likely to be transients. Since
transients, by their very nature, are not encountered often, it is likely that a
place that has not been visited often is transient. If so, then repeatedly trying
to reach the place will cause the system to notice that it is not encountered as
expected, and so it will eventually be elided. If it is not a transient, then the
mapper will just gain a bit more information about the place.

e There is only one current track.
o The current place has a neighbor which has been visited
less than a threshhold number of times.

e Choose such a rarely visited neighbor,

e Try to go to there.

HEAD FOR RARE PLACES

5 Results

To test a robotic mapping system, a large number of experiments must be run
in a variety of different environments, so that the generality and stability of the
method can be properly evaluated. However, this is difficult to do with a real
robot, as it is often hard to work in multiple controlled environments [12], and




X RoBOT SimuLATOR

Figure 1: The HALL world and a learned map. The map picture shows the topo-
logical structure with symbols denoting place types. Note that links only mean
that a sequence of actions is known to get directly from one place to another—no
geometric interpretation is implied. ’

running experiments is very time-consuming. Therefore experiments were run on
a simulated robot, designed with a realistic, though abstract, approach to sensing
and control error; worst-case assumptions were made where necessary. There is,
of course, no complete substitute for trials on a real robot, so we are currently
developing a robot control system to support the mapping module. The simulator
is described in detail in [6]; a brief overview is given below.

5.1 The simulator

Our simulator provides a point robot moving in IR?. The structure of the envi-
ronment is given by a 2D occupancy grid—individual cells are either full (walls)
or empty (space). Filled cells have a single numerical ‘color’, representing some
intrinsic property of the material, eg. texturedness. Empty cells have an optional
place type; the two currently used are door and corner.

The perceptual primitive is the view, which is simply a list of numbers, each rep-
resenting a visual measurement of the color of some object. The robot’s field of
view is evenly sampled, and the nearest filled cell in each direction is seen. Mea-
surements have uniform bounded error added to them; there is also a chance that
the measurement will be contaminated and chosen uniformly from the universe
of possible measurement values.

The robot can obtain a fixation on a place of a particular type and then go to
the place. Fixations are only valid until the robot moves. There is also error
inherent in getting a fixation—there is a chance that a bogus fixation will be
found, pointing in a random direction. When a fixation is approached, the robot
moves to the position indicated—if the place type is recognized, the approacher
succeeds, otherwise it fails. There is also a chance that the robot will go elsewhere
than the original fixation. The odometric estimate of the robot’s relative motion
is given as a random interval containing the true motion, with size proportional
to the distance travelled.
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Figure 2: SSD error v. number of moves. (a) With no exploration scripts (dashed)
and single exploration scripts (solid). Note that all scripts provide significantly
reduced prediction error. (b) No scripts (dashed) v. all scripts (solid).

5.2 Evaluation

The question of evaluating mapper results to determine the utility of different
scripts is not simple. The mere fact that a learned map ‘looks right’ is no guar-
antee that it is a good one, since there is quite a bit of invisible information. A
map that ‘looks’ good may easily become garbage in the near future. There are,
however, more objective methods for measuring mapper success. The method we
use here is based on prediction error—the error inherent in allowing the robot to
rely on the map to predict its expected position after each move. We measure
this by calculating the sum-of-squared-distance (SSD) between the robots actual
relative motion and predicted relative motion for each track after a move. If the
system is effective at mapping, we expect the average SSD per move to asymptot-
ically converge to a small constant. There are other objective ways of evaluating
performance, as discussed in [8], but as seen there, the different methods give
qualitatively similar results—space does not permit inclusion here.

5.3 Experimental results

To determine the advantage of using exploration scripts, we ran experiments in
the simulated world shown in Figure 1. The robot moved on a random walk, when
not controlled by exploration scripts. Experiments were run for different sets of
exploration scripts active. Each experiment consisted of 10 mapping runs, with
the robot making 400 moves (from place to place) in each run. Cumulative SSD
was sampled each 10 moves. Active exploration scripts were applied occasionally
(typically about half the time) when applicable. The results are summarized in
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Figures 2. As can be seen from Figure 2(a), application of any one exploration
script provides a noticable advantage over a random walk. The mapping improve-
ment provided by any particular script depends on the structure of the world.
Figure 2(b) shows the effect of using exploration scripts together and shows an
averaging effect; this is due to the fact that when multiple scripts are applicable,
one is chosen at random. We would expect scripts to act more synergistically
given good preference criteria.

6 Conclusions

For autonomous mapping systems to be useful, mapping must be able to coex-
ist with other goals. However, this implies that mapping may only control the
robot’s behavior when such control does not conflict with other goals. Hence, the
paradigm of active mapping, where the mapper requires that the robot behave
in a certain narrowly-defined manner, is inappropriate. The answer is passive
mapping, which operates by simply observing the behavior of the robot. Semi-
active methods can then be introduced, in the form of exploration scripts, which
can be spliced into the robot’s behavior when other goals permit. We have de-
veloped several such scripts for use with our mapping systems, and have tested
them in simulation. Our results show that use of even very simple scripts noti-
cably improves mapping effectiveness. Our future work includes studying more
closely interactions between different mapping scripts, as well as the porting of
the mapping system to a real robot.
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