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l. Introduction

In this paper we consider the numerical solution of elliptic par-
tial differential equations in spherical domains. There are numerous
applications in engineering and the physical sciences in which the sol-
ution of a spherical elliptic equation is desired; see the references
in [12]. When all the functions involved are spherically symmetric
(that is, they depend only on distance from the center of the domain),
the problem can be replaced by an equivalent two-point boundary value
problen. The resulting problem is singular, but nevertheless has a
smooth solution. It should therefore be possible to approximate the
solution accurately using the Rayleigh-Ritz Galerkin method with a
piecewise polynomial subspace on a quasiuniform mesh. We will obtain
optimal-order error bounds, showing that this procedure is theoretically
well-founded. Instead of the usual Sobolev norms, we use mnorms which
are appropriate to the original n-dimensional setting of the problem.

The problem has been considered, in 2 and 3 dimensions, by Russell
and Shampine [12]. They obtain error bounds for approximation proce-
dures specially designed to deal with the apparent singularity at the
origin. In particular, they treat collocation in which the basis is
augmented by singular basis functions, singular patch bases (L-splines),
and a finite difference scheme of Jamet [8] designed to handle the sin-
gularity. Crouzeix and Thomas [l] and Reddien [l1] consider this prob-
lem as part of a wider class and obtain similar results.

Dupont and Wahlbin [4] and Jesperson [9] have analyzed an approxi-
mation procedure similar to ours, and have obtained error bounds of op-
timal order in the usual Sobolev norms. The import of their results,
together with those of this paper, is that no special measures are re-
quired for this problem: the Rayleigh-Ritz Galerkin method wusing
high-order piecewise polynomial spaces on a uniform mesh is a highly
effective numerical method.

2. Spherically Symmetric Elliptic Problems

Let B(a) be the open sphere of radius a in Rp, i.e.,

B(a) = {x ¢ R | r(x) < a},
where r(x) = /éf + xg + ...+ xi, and B = B(l) be the open unit
sphere.

Consider the partial differential equation
- A +QU = F in B, (1)
U=0 on 3B, (2)

where F and Q are given functions defined on B. We say that a function



defined on B is spherically symmetric if it depends only on distance r
from the origin. If F and Q are spherically symmetric then an obvious
symmetry argument shows that U is, too (a change in coordinate systems
by rotation around any axis passing through the origin leaves the prob-
lem, and hence its solution, unchanged).

Let u(r), f(r), and q(r) be functions such that

F(x) = f(r(x)),
Q) = q(r(x)),
U(x) = u(r(x)).

Then u(r) can be obtained as the solution of the singular two-point
boundary value problem

=™ owy) + P (e = 2 (), 0O<r<1, (3)
Du(0) = u(l) = 0, (4)

.4

We note that in case n = 3, the well-known change of variables
v = ru results in the nonsingular problem

- Dzv + qv = rf, 0<r«<l,

v(0) = v(1)

0.
. However, we know of no such trick in two dimensions!
For real-valued functions f,g defined on (0,a) we let

a
-1
(f’g)B(a) = é rn f(r)g(r) dr,

and

[ET

Furthermore, we define Jm(a) (respectively J?(a)) to be the closure of

the C° functions (respectively the ¢” functions which vanish in a
neighborhood of a) with respect to the norm

m i 9 1/2
1€l gy [jfo I fuB(a)) :



We assume that the coefficient q € C(I) is such that there exist
positive constants X and A such that
2

2
lbullge,y < Tuulg

2

B(a) )

2
@y < Al

for all u ¢ Jl(a), where
a

-1
rn [DuDv + quv] dr.

[u,V]B(a) = é

Our approximation-theoretic results in the spaces Jm will rely on
the following basic fact, proved in Courant and Hilbert [2].

1
Lemma 1l: If f € Jo(a), then

£l < a IDEN,, 6)

B(a) )’

Inequalities (5) and (6) show that the bilinear form [ , ]B is

1 0
positive definite over the space JO. Thus, for each £ € J there exists
a unique u € Jé, called the generalized solution of (3) - (4), such that

1
[u,v]B = (f,v)B, for all v ¢ JO.

This differential equation is exceedingly well-behaved. In fact,
we know that the size of the solution is bounded in terms of the size of
the data.

Lemma 2: There exists a constant T such that, for all f ¢ Jo, the gen-
eralized solution u of (3) - (4) satisfies

2
< .
ID%ull, < tlfll,

Proof: See [13].

We now state a variant of the Sobolev lemma. Let [-X—J denote the
greatest integer not exceeding x.
o .
Lemma 3: Let u € J (a). There exists a positive constant Cn such that,
for all r ¢ [0,a],

2

2 T 2§-n i
(N < ¢y = 2T qndulig o)

where m = L%J + 1.




Proof: See Friedman [7].

In the cases n = 2 or 3, (7) applies with m = 2.
Let Sn be a finite-dimensional subspace of Jé.

is the Rayleigh-Ritz Galerkin (RRG) approximation to u if

The function U € Sn

[u,vn]B = (f,vn)B, for all vn € Sn.

Since the RRG approximation is the projection of u on Sn with respect to

the inner product [.,.]B, we have the error bounds

[u - T,u - u]B = inf [u - v U = vn]B,

v €S

n n
and by (5),

-1

ID(u - ) llB < A A dinf ID(u-v) . (8)
n B
vnsSn

Let A be a partition of [0,1]:

M = < oo =
A: O X, < X < X, < Xy 1,

and h = max (x, - x
1<icN

i—l)' We assume that the partition is quasiuni-

forﬁ, meaning that the global mesh ratio,

X, - X,

B i i-1

M = m ax e o st e et
A X

p—

1<i,jsN %5 T -
is bounded independent of N.

As approximating subspaces we will use spaces of piecewise poly-
nomials with respect to the partition A:

Sl(;(A,v) = {s e C’[0,1]) | s(1) = 0, and

s is a polynomial of degree < k on each of
the intervals (xi-l’ xi), 1 <i<N}.



3. Spherical Spline Approximation

We first consider approximation by polynomials in a neighborhood of
the origin.
Lemma 4: Let v € Jm(a), m > 1. There exists a polynomial Tav of order
m satisfying

. IV
I’ (v - 1w < & vl

B(a) = (9)

B(a)
for all 0 < j < m.
Proof: Let Tav be the first m terms of the Taylor series for v at a,

i.e.,

m-1
Tav(x) = v(a) + Dv(a)(x-a) + . . . +~£L:;:%%§L (x - a)nhl.

Since Dm_l(v - Tav) € Jé(a), we may apply inequality (6), obtaining

m-1

m
" sl < e I - T

m
a [ID vl

]

B(a)*

To prove (9), we note that DI (v - Tav)(a) =0 for all 0 < j < ml. We

may therefore apply (6) to each of the remaining derivatives, and use

j+l 3

the result for D to obtain the result for D~ .

Q. E‘D.
Theorem 1: For each integer 2 < m < k, there exists a positive constant

K = K(k,m,n), depending on the global mesh ratio, such that for each

f e Jm n J1

0 there exists an approximation f ¢ SS(A,v) to f satisfying

m-j

i m
ID°(f£ - )y < Kho~ QD |l 4. (10)

Proof: The details of the proof may be found in [13]. We will sketch
the main ideas here.

The approximation whose existence is asserted can be explicitly
constructed. Let {31}2;1 be the B-spline basis functions for the space

SE(A,»). In [3], de Boor and Fix construct a set of linear functionals

{Xi} dual to the B-spline basis, i.e.,

1 i=j
A = 5. = .
1) i3 {o i4



The approximation

F f

A

d
i ).i(f)Bi

i=1

is called the quasiinterpolant of f.

The functional Ai is a linear combination of derivatives, eval-
uated at some point T, € support(Bi). Moreover, difference approxima-

tions may be used instead of derivatives.

We assume that L X, for all i such that X, is in the support of

Bi’ and that the points used in the corresponding difference approxima-
tions are all contained in the interval (O’XI)' It can be shown that

there exists a constant C such that, for all such i,

@1 < ¢ el . (11)
L (0,x1)

To obtain error bounds for the quasiinterpolant in the weighted
norm || IIB, we use the fact that the quasiinterpolant of any polynomial

of degree < k is that polynomial [3]. Considering first the interval
(0 X )9
> 71

h| ]

X, ) 1

1 X,)

1

3 -
+ |ID FA(Tle £) nB(XI).

Let R =f ~-T_ f. By (11),
X

N
o~ o

3 3
Io'e (£ - 0 | ENCOTN LN

1 )

B(x,) i=1 B(x;

in

¢ g
C :1 ID Bi B(x.)"

IR, =
L (O’X].) 'y 1

1

All but k of the basis functions vanish in (0,x1). For those that
dont, it is readily shown that

x(n/2)—j

k|
1ols 0y, k x(M2,

1)

Together with the Sobolev lemma and the bounds for R given in Lemma 4,
this yields



h| _ m-j m
ID7F (T £ = £) IIB(XI) < Kx " b f”B(xl)' (12)

A similar argument gives the same result for the intervals
i+1), 2 <1i<k. In the remaining intervals, the support of any

basis function which is nonzero in the interval is bounded away from
zero. Using this fact, an approximation result analogous to (12) is
easily obtained. Combining these results yields (10).

X, X
(x5

Q.E.D.

4, Error Bounds for the RRG Approximation

We now consider the error in the RRG approximation to the general-
ized solution u of (3) - (4), and show that the RRG approximation

i€ S&(A,v) approximates u to optimal order.

‘Theoreq 2: Let u be the generalized solution of (3) - (4). Let

d e SE(A,v) be the RRG approximation to u. If u ¢ J" n Jé, 2<m<k,
then
- -1 T
D -, < Aare™ oM, (13)
~ 2 .m m
lu =3l < (KTh |IDullg. (14)

Proof: The error bound (13) follows immediately from (8) and the result
of Theorem 1. Inequality (14) also follows, via Nitsche’s trick, from
Theorem 1 [10].

5. Computational Aspects of the Method

We have shown that the Rayleigh-Ritz approximation U to the solu-
tion u of (3) - (4) is optimally accurate in the natural norms for this
problem. We would like to think of this approximation as inducing a
smooth, accurate approximation of the solution U of the original problem
(1) - (2). For this to happen, the odd derivatives of U must vanish at
0. Unless we impose this requirement on the subspace, it will not be
fulrilled. ‘

There are two ways this can be done. We can simply force the ele-

ments of the space SE(A,v) to have odd derivatives which vanish at O.



Alternatively we consider, rather than (3) - (4), the two-point
boundary value problem

- D(|x|n—1Du) + len-lq(x)u = |x|n_1f(x),

-1 <x<1, u(=1l) = u(l) = 0,

also derived from (1) - (2). We then define SSE(A,v) to be the space of

c’ piecewise polynomials of degree < k (vanishing at -1 and 1) with
respect to a partition which is symmetric about O0:

A:=]1 = <  eee < = < < eee < =
:=1 XN X—N+1 x0 0 X xN 1,

]

where x i x,, 1 <i<N.

1

It can be shown that the results of Theorems 1 and 2 hold for the space
k
SSO(A,v) [13].

The B-spline basis functions then have a symmetry property, derived

from the symmetry of the mesh: if BO’ ceney Bd are the basis functions

(d+1 = dim(SSg(A,v)) numbered in the natural left-to-right order, then

B,(-x) = B, (x), -1<x<1, 0<icx<d.
i d-i - =
d
Clearly, i = I aiBi is even if the vector o is symmetric about its
i=0
middle:
@ = ey s 0<icx<d. | (15)

The symmetry property (15) will hold for the RRG approximation’s
coefficients, even though we do not impose it. The coefficients are
obtained as the solution of the linear system

Ao = f, (16)
where A = [aij],_£ = [fi]’ and
1 n-1
aij = {llxl (DBiDBj + qBiBj) dx,
1 -1
-1 1

Clearly, because of the symmetry of the data and the basis functions,
the matrix A will be symmetric about the alternate diagonal and the



vector f will be symmetric about its middle. This shows that the coef-
ficients of U will satisfy (15). Thus U is even, and all its odd deri-
vatives of order < v vanish at 0.

It does not cost any more, in work and storage, to use the (-1,1)
problem than the (0,1) problem. Because of the symmetries of A, only
1/4 of its elements need to be computed. Moreover, using an algorithm
of Evans and Hatzopoulos [5] which takes advantage of symmetry about the
alternate diagonal, the equations (16) can be solved in half the time
required by the usual band Cholesky algorithm.

The effect of numerical quadrature (used to compute the matrix A
and the right-hand side vector f) on the accuracy of the RRG approxima-
tion has been analysed by Fix for nonsingular problems [6]. He showed
that if the integrals are computed using composite Gaussian quadrature
with k-1 points in each interval, then the error due to the quadrature
is asymptotically as small as the discretization error. We have been
able to show that k points is sufficient for this type of singular
problem [13], but conjecture that this result can be improved, and that
k-1 points also suffice here. The numerical results of the next section
strongly support this viewpoint.

6. Numerical Results

In this section we present the results of a numerical experiment,
which illustrates the utility of the computational procedure analyzed in
the previous sections. Following Russell and Shampine [12], we consider
the problem

- D(xzDu) + 4x2u = = 20x2
Du(0) = u(l) = 0,
which has the solution u(x) = 2—5%22“25 - 5.
X sinh 2

k
The RRG approximations to u from several of the SO(A,v) subspaces

were computed, and the error graphed below. All computations were per-
formed in double precision on a PDP-10 (with 54 binary digits). The
integrals required were computed using composite Gaussian quadrature
with k-1 nodes in each interval of the mesh. We give the norms ||e||B

and IIDeIlB of the error and its derivative (computed with composite k+l

node Gaussian quadrature rules.)
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Jesperson has solved the quasilinear problem

-D(xDu) = - %% eu

Du(0) = u(l) = 0,
7
which has the unique solution u(x) = 2 lnC““‘f) « Our theoretical
8 - x
results can be made to apply to this problem in a routine manner; cf.
[14]. The RRG approximations to u were computed using Newton’s method
with an initial guess of 0; the resulting sequence of linear problems

was solved in the manner discussed above. The iteration was stopped

when the residual reached wlO-ls. In each case, this required 4 itera-

tions.

As predicted by the theory, the rate of convergence appears to be

-1
hk (for the error) and hk (for the derivative). Apparently, k-1
quadrature nodes per interval are sufficient to obtain the predicted
convergence rates.

11
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