
We describe an algorithm for the reparametrization of a closed curve defined by a sequence
of m points while providing the user a high level of control over the frequency content
of the resulting curve. Specifically, the algorithm views the tangential angle of the curve
as a function of the arc-length, filters it as such, and adds a small analytic perturbation
so that the curve passes through the input data. If the number of nodes in the initial
discretization is n, the entire scheme has asymptotic complexity O(n log n). The resulting
curve is analytic and bandlimited. The performance of the scheme is illustrated with several
numerical examples.
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1 Introduction

The need for resampling of discretized planar curves arises in many areas: CAD/CAM
systems, computer graphics, numerical computation, etc. Due to their simplicity and highly
developed underlying theory, splines and related methods are the standard approaches in
these fields; in many situations, they work quite well. The idea is to use relatively low-degree
polynomials (combinations of exponentials with polynomials, etc.) in a piecewise fashion
while ensuring sufficient smoothness (i.e., differentiability) at connecting points (see, e.g.,
[1, 2, 4, 5]).

Unfortunately, there are several classes of problems where such techniques encounter
difficulties. For example, rapidly convergent algorithms of numerical analysis tend to require
data with many continuous derivatives. In other situations, the nodes at which the curves are
specified are poorly spaced, often leading to undesirable behavior of spline-based algorithms.

Sometimes, it is desirable to have direct control over the frequency content of the curve.
In such cases, it is tempting to view the coordinates of the curve as a function of the arc-
length and to use standard Fourier domain filtering techniques. Unfortunately, the process
of filtering the coordinates changes the arc-length in a non-uniform manner, so it generally
fails to remove the high frequency components of the curve.

In this paper, we describe an algorithm for the reparametrization of a closed curve defined
by a sequence of points S = {xi, yi}i=1,...,m ∈ R2. The resulting curve is analytic (in the
sense that the coordinates of a point on it are analytic functions of the arc-length) and the
user has direct control over its frequency content. The algorithm views the tangential angle
of the curve as a function of the arc-length and filters it as such. While the straightforward
application of this approach leads to a curve that does not pass exactly through the original
data S, it tends to pass very close. A small analytic perturbation of the curve eliminates
the discrepancy while minimizing the impact on its Fourier content.

This paper is organized as follows. Section 2 summarizes various standard mathematical
facts used in the remainder of the paper. Section 3 describes the algorithm for the con-
struction of the closed, bandlimited curve. Section 4 contains the results of our numerical
experiments.

2 Mathematical and Numerical Preliminaries

2.1 Parametrizations of a Curve

In this section, we summarize several facts from elementary differential geometry. We refer
the reader to, e.g., [10, 12] for details.

A curve γ is a continuous mapping γ : I = [a, b]→ R2; we will use the notation

γ(t) = {x(t), y(t)}. (2.1)

A curve is simple if γ(t1) = γ(t2) implies that t1 = t2, i.e., it is not self-intersecting. It is
closed if γ(a) = γ(b). Unless otherwise stated, in this paper we only consider simple closed
curves γ ∈ C2[a, b].
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The length of a curve γ on the interval [t1, t2] ⊆ I = [a, b] is given by the formula
ˆ t2

t1

∥∥γ′(t)∥∥ dt =

ˆ t2

t1

√
(x′(t))2 + (y′(t))2dt, (2.2)

so the length of the entire curve is

L =

ˆ b

a

∥∥γ′(t)∥∥ dt. (2.3)

We define the function s : [a, b]→ [0, L] via the formula

s(t) =

ˆ t

a

∥∥γ′(τ)
∥∥ dτ (2.4)

and observe that s(t) is the length of γ on the interval [a, t] ⊆ I = [a, b]. We denote the
inverse of s by ξ : [0, L]→ [a, b] so that ξ(s(t)) = t for all t ∈ [a, b]. Since s is the arc-length
of the curve, the continuous mapping γ̃ : [0, L]→ R2, given by the formula

γ̃(s) = {x̃(s), ỹ(s)} = γ(ξ(s)), (2.5)

is referred to as the arc-length or natural parametrization of the curve γ (s is called the
natural parameter).

For planar curves, the tangential angle θ(s) of a curve is the angle between the tangent
line to the curve and the x-axis. Given the curve γ̃ in (2.5), the tangent line to the curve is
γ̃′(s) = {x̃′(s), ỹ′(s)}. Hence,

γ̃′(s) = {cos(θ(s)), sin(θ(s))}. (2.6)

This is known as the natural equation of the curve. Integrating (2.6) yields

x̃(s) =

ˆ s

0
cos(θ(σ))dσ + cx

ỹ(s) =

ˆ s

0
sin(θ(σ))dσ + cy,

(2.7)

where cx, cy are arbitrary constants. Hence, in order to obtain the curve uniquely from θ(s),
the point (cx, cy) ∈ R2 must be fixed a priori.

From (2.7), it follows that for a closed curve,

0 = x̃(L)− x̃(0) =

ˆ L

0
cos(θ(s))ds

0 = ỹ(L)− ỹ(0) =

ˆ L

0
sin(θ(s))ds.

(2.8)

Moreover, since d
ds x̃(L) = d

ds x̃(0) and d
ds ỹ(L) = d

ds ỹ(0) for closed curves, the functions
cos(θ(s)) and sin(θ(s)) are periodic with the period L.
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Given a curve γ̃ parametrized by its arc-length, the curvature κ is

κ =
∥∥γ̃′′(s)∥∥

=
∥∥{− sin (θ(s)) θ′(s), cos (θ(s)) θ′(s)}

∥∥
=
√(

sin2 (θ(s)) + cos2 (θ(s))
)

(θ′(s))2

= θ′(s).

(2.9)

Hence, κ measures the rate at which the tangent line to the curve rotates.

2.2 Bandlimited Periodic Functions

The Discrete Fourier Transform (DFT) is a transformation F : Cn → Cn defined by the
formula

f̂k =
1

n

n−1∑
j=0

fje
−2πikj/n, k = 0, . . . , n− 1. (2.10)

The inverse of the DFT is given by the formula

fj =

n−1∑
k=0

f̂ke
2πikj/n, j = 0, . . . , n− 1. (2.11)

The n complex numbers {f̂k} are referred to as the Fourier coefficients of the signal {fj}.
In many applications, such as those of this paper, it is convenient to view {fj} as n equally-
spaced samples of a continuous, periodic real function f with a single period defined to be
[0, 1].

Observation 1. The DFT and its inverse can also be described by the closely related for-
mulae

f̂k =
1

n

n−1∑
j=0

fje
−2πikj/n, k = −n− 1

2
, . . . ,

n− 1

2
(2.12)

fj =

n−1
2∑

k=−n−1
2

f̂ke
2πikj/n, j = 0, . . . , n− 1. (2.13)

While the forms (2.10) and (2.11) are the standard representation for the DFT, the forms
(2.12) and (2.13) are usually preferred in applications of DFT to analysis (see, e.g., [6]). If
tj = j

n , j = 0, . . . , n− 1 are the equally-spaced samples on [0, 1], i.e.,

fj = f(tj), (2.14)

then (2.13) can be restated as

fj =

n−1
2∑

k=−n−1
2

f̂ke
2πiktj , j = 0, . . . , n− 1. (2.15)
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The corresponding trigonometric polynomial for the evaluation of f(t) anywhere on [0, 1] is
therefore

f(t) =

n−1
2∑

k=−n−1
2

f̂ke
2πikt. (2.16)

Obviously, straightforward computation of the DFT or its inverse costs O(n2) opera-
tions. Algorithms that perform such computations in O(n log n) are known as Fast Fourier
Transforms (FFT) (see, e.g., [8, 11]).

The function f is referred to as bandlimited with band-limit n̂ whenever f̂k = 0 for
k /∈ [−n̂, n̂]. However, approximate notions of band-limit are more useful for practical
purposes, such as ∑

k/∈(−n̂,n̂)

∣∣∣f̂k∣∣∣ < ε ·

n−1
2∑

k=−n−1
2

∣∣∣f̂k∣∣∣ (2.17)

for some small ε.

2.3 Filtering a Function

For {fj} in (2.14), a finite impulse response (FIR) filter {gj} transforms the signal {fj} into
{hj} by the formula

hj =

j∑
k=0

gkfj−k, j = 0, . . . , n− 1, (2.18)

which is known as convolution. If {f̂k}, {ĝk}, and {ĥk} for k = 0, . . . , n− 1 are the Fourier
coefficients of {fj}, {gj}, and {hj}, respectively, then it is well known that

ĥk = f̂kĝk, k = 0, . . . , n− 1. (2.19)

Thus, a signal which is not bandlimited can be made so by attenuating its high-order (e.g.,
those larger than some desired band-limit) Fourier coefficients. Such a filter is called a
low-pass filter [8, 11].

An ideal low-pass filter, also referred to as a brick-wall filter, has Fourier coefficients

ĝk =

{
1 k ∈ [−n̂, n̂]

0 k /∈ [−n̂, n̂]
(2.20)

for some cutoff frequency n̂. In this case the filtered {fj} is

hj =
n̂∑

k=−n̂
f̂ke

2πikj/n, j = 0, . . . , n− 1. (2.21)

However, even if the signal {fj} is non-oscillatory, the output {hj} may oscillate due to the
abrupt truncation of slowly decaying Fourier coefficients - the so-called Gibbs phenomenon
[8, 11]. This is an affliction of many low-pass filters and it is often desirable to minimize the
magnitude of this effect.
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Certain low-pass filters do not exhibit the Gibbs phenomenon. One such example is the
Gaussian filter, which has Fourier coefficients

ĝk = e−
ln(c)

n̂2
k2 , k = −n− 1

2
, . . . ,

n− 1

2
, (2.22)

where c is chosen so that ĝn̂ = 1
c . In many engineering applications, another popular filter

is the Kaiser window [8, 11], which has Fourier coefficients

ĝk =

I0

[
β

√
1−

(
2k
n−1

)2
]

I0 [β]
(2.23)

where I0 is the modified Bessel function of order zero and β is computed so that ĝn̂ = 1
c for

some desired c.

Observation 2. Large curvature in (2.9) gives rise to high-order frequencies of θ when
viewed in the Fourier domain. For the purpose of fitting smooth curves to a sequence of
points in a plane, we would like to filter out these high-order frequencies. It is in this sense
that we seek to fit a bandlimited curve to the data. Viewed in this context, the band-limit of
θ may be understood to be a measure of smoothness of the curve.

2.4 Spectral Integration

For f(t) defined in (2.16), we would like to compute the integral

g(t) =

ˆ t

0
f(τ)dτ

=

ˆ t

0

n−1
2∑

k=−n−1
2

f̂ke
2πikτdτ

=
∑
k 6=0

f̂k

ˆ t

0
e2πikτdτ +

ˆ t

0
f̂0dτ

=
∑
k 6=0

f̂k
2πik

(
e2πikt − 1

)
+ f̂0t

=
∑
k 6=0

f̂k
2πik

e2πikt −
∑
k 6=0

f̂k
2πik

+ f̂0t.

(2.24)

at equally-spaced t = tj = j
n , j = 0, . . . , n− 1 on [0, 1].

Clearly, evaluating (2.24) at all t0, . . . , tn−1 directly costs O(n2) operations. The follow-
ing algorithm reduces the cost to O(n log n) operations:

1. Compute the Fourier coefficients {f̂k} via the FFT; denote the output as {ĝk}

2. Set ĝ0 = 0
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3. Divide {ĝk}k 6=0 by 2πik

4. Invert {ĝk} via the (inverse) FFT to obtain {gj}

5. At this point, g0 =
∑

k 6=0
f̂k

2πik , so subtract g0 from all of the terms in {gj}

6. Add in the linear term f̂0t by adding {f̂0tj} to {gj}.

The output of this algorithm is the sequence {gj} = {g(tj)}.

Observation 3. As a consequence of (2.12) and (2.24), for f(t) defined in (2.16), the
integral ˆ 1

0
f(t)dt = f̂0 =

1

n

n−1∑
j=0

f(tj) (2.25)

can be evaluated exactly by the n-point Trapezoidal rule [9].

2.5 Lagrange Interpolation

Given {fj} where fj = f(tj) for f(t) defined in (2.16) and tj = j
n , j = 0, . . . , n − 1, a

single evaluation of the function f(t) at a point other than tj costs O(n) operations. As
an alternative, we can use Lagrange polynomials to accurately interpolate the function at
intermediate points and reduce the cost of evaluation to O(1) [3] - provided the sampling of
the curve is sufficiently dense.

Since f(t) is periodic with period 1,

f(tj+λn) = fj (2.26)

where tj+λn = tj + λ for any integer λ. For tk ≤ t < tk+1, the Lagrange basis polynomial

`j(t) =

k+n
2∏

i=k−n
2

i 6=j

t− ti
tj − ti

, j = k − n

2
, . . . , k +

n

2
(2.27)

satisfies the property

`j(ti) = δij =

{
1 i = j

0 i 6= j.
(2.28)

Hence,

ψ(t) =

k+n
2∑

j=k−n
2

fj`j(t), tk ≤ t < tk+1 (2.29)

is the Lagrange interpolating polynomial for f(t), i.e., ψ(tj) = fj .
In practical implementations, the interpolation is constructed locally using low-degree

polynomials. For a given t, this means that the interpolation is restricted to the nearest
m� n samples. For tk ≤ t < tk+1,

ψ̃(t) =

k+m
2∑

j=k−m
2

fj ˜̀j(t) (2.30)
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where

˜̀
j(t) =

k+m
2∏

i=k−m
2

i 6=j

t− ti
tj − ti

, j = k − m

2
, . . . , k +

m

2
(2.31)

In our experience, m ≈ 20 works well for double precision computations.
To see that the evaluation of (2.30) costs only O(1) operations, we write˜̀

j(t) =
wj
t− tj

φ(t) (2.32)

where
wj =

1∏k+m
2

i=k−m
2

(tj − tk)
(2.33)

and

φ(t) =

k+m
2∏

i=k−m
2

i 6=j

(t− tk). (2.34)

Thus,

ψ̃(t) = φ(t)

k+m
2∑

j=k−m
2

wj
t− tj

fj , tk ≤ t < tk+1, (2.35)

which is known as the modified form of Lagrange’s interpolation formula. The computation
of each wj costs O(m). Since {tj} are equally spaced samples, the set of coefficients {wj}
will remain the same regardless of the value of k. Hence, {wj} can be pre-computed and
the total cost is O(m2) operations. Once {wj} have been computed, the cost of evaluating
ψ̃(t) at any point t ∈ [0, 1] is O(m). Since m is O(1), the cost of evaluating the function
f(t) for any t ∈ [0, 1] is O(1).

2.6 Method of Conjugate Gradients

The method of conjugate gradients (see, e.g., [14]) is an iterative scheme for the solution of
a symmetric, positive-definite m×m linear system

Ax = y. (2.36)

A single iteration of the method costs O(m + q) operations where q is the cost of matrix-
vector multiplication.

If x is the solution of the linear system, the relative error at step k is bounded by

‖x− xk‖A
‖x‖A

< 2

(√
κ− 1√
κ+ 1

)k
(2.37)

where
‖x‖A = x†Ax (2.38)

and κ is the condition number of the matrix A, i.e., ratio of the largest eigenvalue of A to the
smallest. In finite precision, additional complications arise whenever the condition number
of the matrix A is large; in this paper, we will only deal with well-conditioned matrices.
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2.7 Adaptive Gaussian Integration

Quadrature formulae are expressions of the form

n−1∑
j=0

wjf(tj) (2.39)

where the points tj ∈ R and coefficients wj ∈ R are the nodes and weights of the quadrature,
respectively [3, 13]. The nodes and weights of Gaussian quadratures are chosen so that
polynomials of degree less than or equal to 2n− 1, {φ0, . . . , φ2n−1}, are integrated exactly,
that is,

n−1∑
j=0

wjφi(tj) =

ˆ b

a
φi(t)dt (2.40)

for all i = 0, . . . , 2n− 1. Provided that the function f is well approximated by linear combi-
nations of such polynomials, the Gaussian quadrature formulae provide good approximations
to integrals of the form ˆ b

a
f(x)dx. (2.41)

An adaptive implementation of Gaussian quadrature formulae approximates (2.41) on
repeatedly subdivided intervals until the approximation of the integral over a subinterval
achieves a desired level of accuracy ε. Specifically, we compute

I ≈
ˆ b

a
f(x)dx (2.42)

as well as

I1 ≈
ˆ a+b

2

a
f(x)dx (2.43)

and

I2 ≈
ˆ b

a+b
2

f(x)dx (2.44)

using Gaussian quadrature formulae. If |I − (I1 + I2)| < ε, then I is declared to be a
sufficiently accurate approximation to the integral. Otherwise, the interval is halved and
this procedure is repeated on both subintervals separately.

3 Description of the Algorithm

3.1 Initial Discretization

In the remainder of the paper, we assume that all curves are discretized in the counterclock-
wise direction; if the discretization is in the clockwise direction, some of the formulas will
have to be changed slightly. Given S = {xi, yi}i=1,...,m ∈ R2, the initial construction of the
curve is the polygon obtained by connecting the points in S with straight lines, which we
denote γpoly. Using the obtained polygon, we construct a mapping from the arc-length to
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the tangent angles in the following manner: if the arc-length of the polygon from (x1, y1) to
(xi, yi) is denoted si (s1 = 0), then θpoly(si) is the angle between the line segment connecting
(xi, yi) to (xi+1, yi+1) and the x-axis. Since the curve is closed and non-self-intersecting, we
introduce the notation (xm+1, ym+1) = (x1, y1) and hence

θpoly(sm+1) = θpoly(s1) + 2π (3.1)

where L = sm+1 is the arc-length of the entire polygon.
Obviously, the function θpoly : [0, L]→ R1 is a step function given by the formula

θpoly(s) = θpoly(si), for all s ∈ (si, si+1); (3.2)

in other words, θpoly is the tangential angle of the polygon as a function of its arc-length.
We then resample θpoly(s) at n equally-spaced points tj = j

n · L, j = 0, . . . , n− 1 to obtain
{θj}, where θj = θpoly(tj).

3.2 Filtering {θj}

Since cos(θpoly(s)) and sin(θpoly(s)) are periodic with the period L and the curve is non-self-
intersecting, the function

θpoly(s)−
2π

L
s (3.3)

is also periodic with period L. Due to corners in the polygon, the function (3.3) is not
bandlimited. Thus, we construct a bandlimited approximation to (3.3) via a fairly standard
filtering procedure.

Using {θj} obtained from the discretization of the polygon, we apply the DFT to obtain
the Fourier coefficients of (3.3) with respect to arc-length on γpoly:

θ̂k =
1

n

n−1∑
j=0

(
θj −

2π

n
j

)
e−2πikj/n, k = −n− 1

2
, . . . ,

n− 1

2
. (3.4)

We filter the Fourier coefficients using the Gaussian filter (2.22) (with c and n̂ to be chosen
later), so the filtered Fourier coefficients φ̂k become

φ̂k = θ̂ke
− ln(c)

n̂
k2 , k = −n− 1

2
, . . . ,

n− 1

2
. (3.5)

To reconstruct the bandlimited version of {θj}, we apply the inverse of the DFT to obtain

φj =

n−1
2∑

k=−n−1
2

φ̂ke
2πikj/n +

2π

n
j, j = 0, . . . , n− 1. (3.6)

Due to (2.16), {φj} are equally-spaced samples on [0, L] of the trigonometric polynomial

φ(s) =

n−1
2∑

k=−n−1
2

φ̂ke
2πik s

L +
2π

L
s. (3.7)
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Observation 4. While in our codes we used the Gaussian filter, other low-pass filters (such
as the Kaiser window) can be used. In our experiments, the results were not particularly
sensitive to the choice of filter.

Observation 5. Obviously, the filtered curve obtained in this manner will not necessarily
be closed even if γpoly is. Indeed, for any closed curve defined in (2.7),

ˆ L

0
cos(θ(s))ds =

ˆ L

0
sin(θ(s))ds = 0. (3.8)

While cos(φ(s)) and sin(φ(s)) for φ(s) defined in (3.7) are still periodic, there are no assur-
ances that their integrals will be zero.

3.3 Closing the Curve

Since the process of filtering, generally speaking, will open the curve, we need to enforce the
constraint ˆ L

0
cos(φ(s))ds =

ˆ L

0
sin(φ(s))ds = 0, (3.9)

while changing the curve as little as possible otherwise. Given the expansion (3.7), these
integrals are

ˆ L

0
cos(φ(s))ds =

ˆ L

0
cos(

n−1
2∑

k=−n−1
2

φ̂ke
2πik s

L +
2π

L
s)ds

ˆ L

0
sin(φ(s))ds =

ˆ L

0
sin(

n−1
2∑

k=−n−1
2

φ̂ke
2πik s

L +
2π

L
s)ds.

(3.10)

Therefore, we need to change the Fourier coefficients φ̂k to ensure that the constraint (3.9)
is satisfied with minimal impact on the higher order coefficients.

In practice, we evaluate these two integrals using the Trapezoidal rule. The constraint
(3.9) becomes

n−1∑
j=0

cos(φj) =
n−1∑
j=0

sin(φj) = 0. (3.11)

Hence, we have two functions which we want to simultaneously set to zero:

fx(φ0, . . . , φn−1) =
n−1∑
j=0

cos(φj)

fy(φ0, . . . , φn−1) =
n−1∑
j=0

sin(φj).

(3.12)

Since there are n parameters φ0, . . . , φn−1 which can be used to solve these equations, there
are many ways to enforce (3.11). However, in many applications it is desirable (or necessary)
to preserve straight lines. In other words, when the user resamples a polygon, the result
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should look like a smoothed version of the original polygon. Yet another interpretation is to
observe that any smoothing process will have to change the curvature of the user-specified
curve - but a large region with zero curvature should stay that way. The iterative procedure
below has been constructed with this in mind. Given the values of {φj} in (3.6), we compute

φnewj = φj + δx cos(φj) + δy sin(φj). (3.13)

In practice, we filter cos(φj) and sin(φj) in order to minimize the impact on the higher order
Fourier coefficients.

The objective of the iteration is to choose δx, δy so that

fx(φnew0 , . . . , φnewn−1) = 0

fy(φ
new
0 , . . . , φnewn−1) = 0.

(3.14)

To evaluate (3.12) at (3.13), we compute its Taylor expansion:

fx(φnew0 , . . . , φnewn−1) =
n−1∑
j=0

cos(φj)−
n−1∑
j=0

sin(φj)(φ
new
j − φj) +O(δ2

x + δ2
y)

fy(φ
new
0 , . . . , φnewn−1) =

n−1∑
j=0

sin(φj) +

n−1∑
j=0

cos(φj)(φ
new
j − φj) +O(δ2

x + δ2
y).

(3.15)

We approximate fx, fy by ignoring the higher order terms and find δx, δy so that these
approximations of fx, fy are zero. That is, at every step of the iteration, we compute δx, δy
so that

0 =
n−1∑
j=0

cos(φj)−
n−1∑
j=0

sin(φj)(φ
new
j − φj)

0 =
n−1∑
j=0

sin(φj) +
n−1∑
j=0

cos(φj)(φ
new
j − φj).

(3.16)

Substituting (3.13) into (3.16) yields

0 =

n−1∑
j=0

cos(φj)− δx
n−1∑
j=0

sin(φj) cos(φj)− δy
n−1∑
j=0

sin2(φj)

0 =
n−1∑
j=0

sin(φj) + δx

n−1∑
j=0

cos2(φj) + δy

n−1∑
j=0

cos(φj) sin(φj).

(3.17)

This can be written as the 2× 2 linear system( ∑n−1
j=0 sin(φj) cos(φj)

∑n−1
j=0 sin2(φj)

−
∑n−1

j=0 cos2(φj) −
∑n−1

j=0 cos(φj) sin(φj)

)(
δx
δy

)
=

( ∑n−1
j=0 cos(φj)∑n−1
j=0 sin(φj)

)
, (3.18)

which we solve to obtain δx, δy. We iterate the procedure in (3.13) until fx, fy is sufficiently
small. Being a version of the Newton algorithm, this procedure converges rapidly.
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3.4 Reconstructing the Curve

Given θ(s) on [0, L], we reconstruct the curve γ(s) = {x(s), y(s)} using (2.7). The constants
cx, cy will be determined later, so we first compute

x̃(s) = x(s)− cx =

ˆ s

0
cos(φ(σ))dσ

ỹ(s) = y(s)− cy =

ˆ s

0
sin(φ(σ))dσ.

(3.19)

Using the procedure described in Section 2.4, we obtain x̃(s) and ỹ(s) at n equally-spaced
points {x̃j , ỹj}j=0,...,n−1, where x̃j = x̃(sj) and ỹj = ỹ(sj) for sj = j

n ·L and j = 0, . . . , n−1.
To evaluate the curve at intermediate points, we use Lagrange interpolation as described in
Section 2.5.

Clearly, there are many ways in which cx and cy can be chosen so that some selected
properties of the location of γ coincide with such properties of γpoly, the polygon obtained
from the input data. We choose cx, cy so that the center of mass of γ

x =
1

L

ˆ L

0
x(s)ds

y =
1

L

ˆ L

0
y(s)ds,

(3.20)

coincides with the center of mass (xpoly, ypoly) of the polygon γpoly viewed as a curve; a
simple calculations shows that

xpoly =
m∑
i=1

xi+1 + xi
2

√
(xi+1 − xi)2 + (yi+1 − yi)2

ypoly =
m∑
i=1

yi+1 + yi
2

√
(xi+1 − xi)2 + (yi+1 − yi)2.

(3.21)

Evaluating (3.20) via the Trapezoidal rule (see Observation 3) yields

x =
1

n

n−1∑
j=0

x(sj) = cx +
1

n

n−1∑
j=0

x̃j

y =
1

n

n−1∑
j=0

y(sj) = cy +
1

n

n−1∑
j=0

ỹj .

(3.22)

Hence,

cx = xpoly −
1

n

n−1∑
j=0

x̃j

cy = ypoly −
1

n

n−1∑
j=0

ỹj .

(3.23)
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Observation 6. Since the tangential angles θpoly have been filtered, the reconstructed curve
will not pass through the original data S = {xi, yi}i=1,...,m. We denote by ti the parameter
value for which γ(ti) = {x(ti), y(ti)} is the point on the curve γ closest to (xi, yi). We
compute ti by minimizing the function

f(s) = (x(s)− xi)2 + (y(s)− yi)2 (3.24)

for s ∈ [ti−1, ti−1 + L] (thus, t1 < · · · < tm).

3.5 Perturbations of the Curve

As a consequence of the filtering step, the reconstructed curve γ(s) = (x(s), y(s)), s ∈ [0, L]
does not pass through the original data S = {xi, yi}i=1,...,m (see Observation 6). To construct
a curve γ̃ that passes through the points in S, we add a small analytic perturbation to γ.

We denote by t1 < · · · < tm the parameter values for which γ(t1), . . . , γ(tm) are the
points on the curve γ closest to S. We define the functions

gj(s) = e−σj(
νj(s)−tj

L
)2 (3.25)

where

νj(s) =


s tj − L

2 ≤ s ≤ tj + L
2

s− L s > tj + L
2

s+ L s < tj − L
2

(3.26)

for s ∈ [0, L] and j = 1, . . . ,m. Obviously, |νj(s)− tj | ≤ L
2 for all s ∈ [0, L], since γ(s) is a

periodic function with period L.
While the curve γ does not pass through the points in S, the distance between them is

usually small. To construct a curve γ̃(s) = {x̃(s), ỹ(s)} so it passes through the points in S,
we add the functions gj(s) to the curve γ(s) at the points t1, . . . , tm so that

x̃(s) = x(s) +
m∑
j=1

cj · gj(s)

ỹ(s) = y(s) +
m∑
j=1

dj · gj(s),
(3.27)

where the coefficients cj , dj for j = 1, . . . ,m are determined by solving the linear system

xi = x(ti) +

m∑
j=1

cj · gj(ti)

yi = y(ti) +

m∑
j=1

dj · gj(ti).
(3.28)

By construction, the curve γ̃ passes through the points in S. We define the matrix G via
the formula

Gij = gj(ti). (3.29)
For small-scale problems (perhaps m ≤ 200), this linear system can be solved directly. For
larger ones, iterative schemes like the method of conjugate gradients discussed in Section
2.6 are more appropriate.
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3.5.1 Selection of the Parameters σi and the Solution of the Linear System

Clearly, the selection of {σj} in (3.25) is critical. In particular, we have to achieve three
seemingly contradictory goals:

1. The linear system must be solvable and, ideally, well-conditioned

2. The coefficients cj , dj should be small

3. The functions gj(t) should be smooth, so their Fourier coefficients decay fast

Clearly, we can choose functions gj(s) with very large σj so that the resulting linear system
in (3.28) is nearly diagonal. Each function gj(s) is a Gaussian, so its Fourier coefficients
have magnitude

|ĝk| =
√
π

σj
e
−π2 k2

σj . (3.30)

Hence, as σj becomes large, the rate of decay of |ĝk| decreases. On the other hand, choosing
σj to be too small can result in an ill-conditioned linear system, leading to large coefficients
cj , dj .

Observation 7. Once the functions gj(s) in (3.25) are added, the resulting curve γ̃(s),
s ∈ [0, L] in (3.27) is no longer parametrized by its arc-length, so the equally-spaced arc-
length discretization of γ̃(s) will not correspond to the equally-spaced discretization of gj(s).
While this change in sampling of gj(s) will impact the Fourier coefficients in (3.30), such
“second order” effects can usually be ignored, except for the need to resample the curve once
more (see Section 6.1).

Observation 8. The following selection of {σj} has worked well in our experience.
We choose σ1, . . . , σm so that the linear system being solved is diagonally dominant to

ensure that G is well-conditioned. Specifically, we choose σ1, . . . , σm so that

2 ·
∑
i 6=j

gj(ti) < gj(tj) = 1. (3.31)

In this case, due to the Gershgorin circle theorem [13], the magnitude of all the eigenvalues
of G will be in the range [1

2 ,
3
2 ] and hence G will be well-conditioned.

We also choose σj to be sufficiently large so that the function gj(s), a Gaussian centered
at tj, is negligible for νj(s) /∈ [tj − b, tj + b] for some b ≤ L

2 . This allows the matrix G to be
applied to an arbitrary vector for a cost of no more than O(m2) operations.

To solve the linear system in (3.28), we observe that the matrix G is well-conditioned
and, for large-scale problems, apply the standard method of conjugate gradients to the
corresponding normal equations. Needless to say, for small-scale problems, the linear system
(3.28) is solved directly.

Observation 9. The straightforward evaluation of the curve γ̃(s) = {x̃(s), ỹ(s)} in (3.27)
at a single point costs O(m) operations if the curve γ(s) = {x(s), y(s)} evaluated at a single
point costs O(1) operations (due to Lagrange interpolation). Likewise, the sums

m∑
j=1

cj · gj(s),
m∑
j=1

dj · gj(s) (3.32)
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can be evaluated at a single point in O(1) operations with Lagrange interpolation, but requires
a preprocessing step where these sums are first evaluated at many (e.g., n) equally-spaced
points in the parameter s. This approach is particularly advantageous if the curve γ̃(s) is to
be evaluated at a large number of points N , especially with N � n.

3.6 Summary of the Algorithm and its Cost

The steps of the algorithm are:

1. Given S = {xi, yi}i=1,...,m ∈ R2, construct the polygonal curve by connecting these
points with straight lines.

2. Compute the tangential angles along the polygonal curve, θpoly(s) in (3.2), and sample
it at n� m equally-spaced points to obtain {θj}

3. Apply the DFT to obtain the Fourier coefficients {θ̂k}, filter {θ̂k} to obtain {φ̂k}, and
apply the inverse of the DFT to obtain {φj}

4. Close the curve using the iteration in (3.13)

5. Reconstruct the curve from its tangent angles via spectral integration

6. Solve the linear system (3.28)

The cost of linearly interpolating the data and discretizing it at n points is O(n). The
cost of filtering {θj} is the cost of the FFT, which requires O(n log n) operations. Clearly,
closing the curve iteratively costs O(n) operations. Reconstruction of the curve via spectral
integration is the cost of applying the FFT.

The cost of computing the coefficients of the Gaussians directly is O(m3). If the method
of conjugate gradients is used to solve the linear system, the cost is O(m2). However, for
most large-scale problems, the matrix G is banded (see Observation 8), so the cost is further
reduced.

Observation 10. In fact, evaluation of sums of Gaussians at multiple points is a well-
studied problem (see [7]). The techniques of [7] can be used to reduce the cost of Step 6
above to O(m) operations. However, in our experiments, the cost of this calculation had not
been excessive and this last step has not been implemented.

4 Numerical Experiments

We applied the algorithm of Section 3.6 to several different data sets. The first set of data
came from a sampling of the curve

γ(t) = {cos(t), sin(t) + α cos2(t)} (4.1)

where α is a tunable parameter. The other two are discretizations of curves with sharp
corners, which are potentially challenging examples for this algorithm. The results are
shown below.
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Figure 4.1 shows the output of the algorithm for the curve in (4.1) with α = 1 sampled at
128 points. For visual clarity, only some of the points are shown. In this case, the curve was
upsampled to n = 4096 points and filtered with the Gaussian filter (2.22) with ĝ32 = 0.1.
The magnitude of the Fourier coefficients of the tangential angle of the curve is displayed in
Figure 4.2.

Figure 4.3 shows the output of the algorithm for the curve in (4.1) with α = 2 sampled
at 512 points. Again, only some of them are shown. In this case, the curve was upsampled
to n = 16384 points and filtered with the Gaussian filter with ĝ1024 = 0.1. The magnitude
of the Fourier coefficients of the tangential angle of the curve is displayed in Figure 4.4.

Figure 4.5 is the input data of a sparsely sampled contour with corners that need to be
smoothed. In Figure 4.6, the curve was upsampled to n = 16384 points and filtered with a
Gaussian filter with ĝ256 = 0.1. In this case, the filter was too strong resulting in a curve
that is (arguably) too rounded or “cartoonish.” The magnitude of the Fourier coefficients
of the tangential angle of the curve is displayed in Figure 4.7. In Figure 4.8, the curve
was upsampled to n = 65536 points and filtered with a Gaussian filter with ĝ4096 = 0.1.
To the naked eye, the output appears to be the input data connected with straight lines.
However, by zooming in on the corner in Figure 4.9, we can see that it is actually smoothed.
The magnitude of the Fourier coefficients of the tangential angle of the curve is displayed
in Figure 4.10. In both cases, the Fourier coefficients have converged, but the appropriate
strength of the filter is clearly problem-dependent.

Finally, Figure 4.11 is contour with many corners that is heavily sampled. In this case,
the curve was upsampled to n = 32768 points and filtered with a Gaussian filter with
ĝ4096 = 0.1. The magnitude of the Fourier coefficients of the tangential angle of the curve is
displayed in Figure 4.12.

Figure 4.1: The crosses mark the input sampling of (4.1) with α = 1. Not all input points
are shown.
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Figure 4.2: Fourier series of the tangential angle for Figure 4.1

Figure 4.3: The crosses mark the input sampling of (4.1) with α = 2. Not all input points
are shown.
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Figure 4.4: Fourier series of the tangential angle for Figure 4.3
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Figure 4.5: The circles mark the input data of the contour.

Figure 4.6: Overfiltered tank.
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Figure 4.7: Fourier series of the tangential angle for Figure 4.6

��	

Figure 4.9

Figure 4.8: Mildly filtered tank - the filtering is not visible to the naked eye.

Figure 4.9: A closer look at a corner of the tank.
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Figure 4.10: Fourier series of the tangential angle for Figure 4.8

Figure 4.11: The circles mark the input sampling of a contour with many corners. Not all
input points are shown.
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Figure 4.12: Fourier series of the tangential angle for Figure 4.11

Observation 11. All of the above experiments have been run with the Kaiser window (2.23)
under identical conditions. The results are virtually indistinguishable.

5 Conclusions and Extensions

We have described an algorithm for the reparametrization of a planar closed curve defined
by a sequence of m points. The algorithm constructs an analytic curve that passes through
the m points while providing the user a high level of control over its frequency content. If
n is the number of points in the initial upsampling of the curve, the asymptotic cost of the
algorithm is O(n log n); however, in practice, if an arc-length parametrization is demanded,
the constants can be fairly large.

There are two obvious extensions of this algorithm: to curves with corners (i.e., planar
curves that are not closed) and to surfaces in R3. For curves with corners with the desired
tangential angles specified at their corner points, the trigonometric polynomials are replaced
by bandlimited functions, often represented by linear combinations of prolate spheroidal
wave functions [15]. The extension of this algorithm to surfaces in R3 using the fundamental
forms of surfaces is more involved. The work on this is being vigorously pursued.

6 Appendix

6.1 A Simple Algorithm for the Resampling of Analytically Specified
Curves

Given γ(t) = {x(t), y(t)} and γ′(t) = {x′(t), y′(t)}, t ∈ [0, 1], where x(t), y(t), x′(t), y′(t)
are specified by exact formulas, we describe an algorithm to reparametrize the curve by its
arc-length s.
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1. Compute the arc-length of the entire curve (via adaptive Gaussian quadratures as
described in Section 2.7)

L =

ˆ 1

0

∥∥γ′(t)∥∥ dt =

ˆ 1

0

√
(x′(t))2 + (y′(t))2dt. (6.1)

2. Find the (rather large) n points in the parameter t which correspond to equally spaced
points in the arc-length parameter. That is, starting with t0 = 0, we find the points

t1, . . . , tn (6.2)

such that for each i = 1, . . . , n

h =
L

n
=

ˆ ti

ti−1

√
(x′(t))2 + (y′(t))2dt. (6.3)

We solve for each ti via Newton’s method. To initialize the Newton iteration, we use
the Taylor expansion of the integral

ˆ ti−1+∆

ti−1

∥∥γ′(t)∥∥ dt =

ˆ ti−1

ti−1

∥∥γ′(t)∥∥ dt+
∥∥γ′(ti−1)

∥∥∆ +O(∆2)

=
∥∥γ′(ti−1)

∥∥∆ +O(∆2)

, (6.4)

which we would like to equal h. By ignoring the higher order terms, we obtain an
initial approximation for ti = ti−1 + ∆, where

∆ =
h

‖γ′(ti−1)‖
. (6.5)

Alternatively, after the first few ti have been computed, one can use the preceding
results and extrapolate forward to obtain an initial guess. As a result of this step,
we have a discretization of the mapping ξ from the arc-length s to the user-specified
parameter t, i.e., we have

ξ(si) = ti (6.6)

for i = 0, . . . , n where
si = i · h (6.7)

and ti is given in (6.2).

3. To evaluate γ corresponding to a given arc-length parameter s, we find τ such that

s =

ˆ τ

0

√
(x′(t))2 + (y′(t))2dt (6.8)

via Newton’s method. To initialize τ = ξ(s), we construct an approximation to the
mapping ξ. Specifically, we determine the nearest points among s0, . . . , sn to s and
the corresponding t0, . . . , tn to construct a polynomial approximation for ξ(s). For
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example, if sj < s < sj+1 for some 0 ≤ j < n, the linear approximation of ξ(s) is given
by

τ = ξ(s) ≈ tj+1 − tj
sj+1 − sj

(s− sj) + tj . (6.9)

In our experience, a cubic approximation of ξ(s) provides a good trade-off between
the accuracy of the approximation and the cost of computing it.

Observation 12. The above algorithm requires repeated integrations of
√

(x′(t))2 + (y′(t))2

over small intervals, which can naively be computed via adaptive Gaussian quadratures. In
this case, in order to evaluate

I =

ˆ b

a

√
(x′(t))2 + (y′(t))2dt, (6.10)

the integral must be approximated on [a, b] as well as [a, a+b
2 ] and [a+b

2 , b] (see Section 2.7),
thus requiring at least three evaluations of the integral - although the interval [a, b] might be
small.

In order to improve the speed of the computation of these integrals, we replace the adaptive
Gaussian quadratures with non-adaptive Gaussian quadratures by only integrating over suffi-
ciently small subintervals. Specifically, during the initial computation of the arc-length of the
entire curve (in Step 1), we store the subintervals over which non-adaptive Gaussian quadra-
tures are sufficiently accurate. We also store the corresponding value of the integral over this
subinterval. If we denote the boundaries of these subintervals by z0 = 0 < z1 < · · · < zp = 1
and the value of the integrals over these subintervals by r1, r2, . . . , rp, then

ri =

ˆ zi

zi−1

√
(x′(t))2 + (y′(t))2dt. (6.11)

To compute I where zi < a < zi+1 and zj < b < zj+1, we have

I =

ˆ zi+1

a

√
(x′(t))2 + (y′(t))2dt+

j−1∑
k=i+1

rk+1 +

ˆ b

zj

√
(x′(t))2 + (y′(t))2dt (6.12)

where the two integrals are computed via non-adaptive Gaussian quadratures to the desired
accuracy. In fact, most often, zi < a < b < zi+1, in which case

I =

ˆ b

a

√
(x′(t))2 + (y′(t))2dt (6.13)

can be computed non-adaptively. Hence, compared with evaluating all of the integrals adap-
tively, this approach reduces the cost of integration by nearly 2

3 .
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