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ABSTRACT
In the near future, the advent of large-scale networks of mobile
agents autonomously performing long-term sensing and commu-
nication tasks will be upon us. However, using controlled node
mobility to improve communication performance is a capability
that the mobile networking community has not yet investigated. In
this paper, we study mobility as a network control primitive. More
specifically, we present the first mobility control scheme for im-
proving communication performance in such networks. Our scheme
is completely distributed, requiring each node to possess only lo-
cal information. Our scheme is self-adaptive, being able to trans-
parently encompass several modes of operation, each respectively
improving power efficiency for one unicast flow, multiple unicast
flows, and many-to-one concast flows. We provide extensive eval-
uations on the feasibility of mobility control, showing that con-
trolled mobility can improve network performance in many scenar-
ios. This work constitutes a novel application of distributed control
to networking in which underlying network communication serves
as input to local control rules that guide the system toward a global
objective.
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1. INTRODUCTION
As technology rapidly progresses, diverse sensing and mobility ca-
pabilities will become more readily available to devices. For ex-
ample, many modern mobile robots are already equipped with var-
ious sensing capabilities. As another example, there are presently
research activities on low-power robotic insects that move in a vari-
ety of ways, including flying (e.g., [2, 1]) and skimming across the
surface of water (e.g., [3, 15]). Once mobility becomes feasible,
we envision that large systems of such mobile autonomous agents
performing various important tasks will be soon to come. Commu-
nication will undoubtedly be one of the essential functionalities of
these mobile networks. The objective of this paper is to explore
the novel capability of these networks to optimize their communi-
cations using controlled mobility.

One can envision many settings in which mobility can potentially
be used to improve network communications. One such scenario is
a long term “bugging” deployment of self-organizing mobile sen-
sors whose purpose is to intercept or record, and then report as
much data as possible from a target such as an enemy communi-
cation tower or command center. If the sensor nodes are able to
move into positions that minimize the energy cost of reporting this
stream of data out of the network, the amount of useful information
the network can transport would be maximized. Similar arguments

for mobility can apply to long-term concast data gathering [9] or to
aggregation of large data events in a GHT [24].

One can also imagine mobile networks being uniformly deployed
over space with the intention that when a large, geographically dis-
persed user such as a military division moves in and sets up a base,
the network will adapt its configuration in order to best serve the
specific communication demands of that user. Such adaptive wire-
less networks with the capability to autonomously align themselves
to fit user needs would be tremendously useful.

In general, long-term deployments which exhibit persistent or ha-
bitual communication patterns are prime candidates for the applica-
tion of mobility to improve network performance. In such settings,
the traffic will be regular enough and high enough in volume to
warrant nodes expending energy moving in order to more cheaply
forward traffic.

There may also exist situations where the power source for mobil-
ity is renewable but separate from a non-renewable power source
for communications. Such situations could exist in hybrid bio-
electronic systems, the simplest example of which is a network of
people carrying small radios running on unrechargeable batteries.
A more fanciful example is a system of simple living organisms
such as insects that are outfitted with radio transmitters and whose
motion is controlled by a neuro-electronic interface. In light of the
fact that mobility is a capability already perfected by nature, while
wireless communication is a human work-in-progress, this type of
technological separation of duties might have its merits.

While the previous discussion has motivated some of the potential
applications of controlled mobility, there are still few studies in the
mobile networking literature on improving communication perfor-
mance through this capability.

Although mobility has the potential to improve network perfor-
mance in many settings, there may also exist scenarios in which
mobility will be less effective due to various extenuating factors
including hardware limitations and traffic patterns. The objectives
of this paper, therefore, are to 1) analyze when controlled mobility
can improve fundamental networking performance metrics such as
power efficiency and robustness of communications; and 2) provide
initial design for such networks.

One major issue in using mobility is how to effectively control it.
Designing mobility control algorithms for communications is chal-
lenging, because any scheme that would achieve the apparent po-
tential of the idea should address the following issues.

• First, the precise nature of any effective mobility control will
be application dependent. It is clear that nodes will need
to move differently under different traffic patterns, e.g., a
single source-destination pair (called a single flow), multi-
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ple source-destination pairs (called multiflows), or multiple
sources and single destination (called concast). Is there a sin-
gle self-adaptive mobility control scheme that can be applied
to such a broad range of scenarios?

• Second, for scalability and robustness purposes, there should
not be a central entity who computes the movements of all
the nodes. In other words, the mobility-control scheme should
be a totally distributed scheme. Is there a mobility control
scheme such that although each node makes movement de-
cisions for itself informed by purely local information, the
collective system achieves desirable global properties?

• Third, the distributed mobility-control scheme should be able
to self-organize the nodes to optimize a performance metric
while at the same time satisfying other constraints. For ex-
ample, although one major objective of a mobility-control
algorithm could be to optimize data reporting power effi-
ciency after target detection, it may be important that the
network maintain connectivity and/or coverage throughout
the operation of the distributed algorithm. Can we design a
general mobility-control scheme possessing the flexibility to
optimize communication performance while simultaneously
conforming to user-imposed connectivity/coverage require-
ments?

The framework proposed in this paper is the first attempt to design
and analyze a system addressing the above issues.

The foundation of our system’s self-organizing capability is a dis-
tributed descent primitive. One inspiration for this primitive is the
distributed averaging algorithm used in [16, 24]. The averaging
algorithm of Rao et al. [24] operates in virtual space; our system
subsumes such averaging as a special case and operates in physi-
cal space. Another inspiration of our primitive is the rendezvous
algorithm proposed by Lin, Morse and Anderson [20]. The ob-
jective of the rendezvous algorithm is to have all nodes in an ar-
bitrary connected network converge to a single point in space by
using uniform, distributed, and locally informed mobility control
rules. In this paper, we generalize elements of the two algorithms
to design a powerful and self-organizing primitive that can achieve
diverse configuration goals and that can be gracefully tuned to en-
sure desirable network properties such as connectivity, coverage,
and power efficiency.

We apply our mobility-control primitive to a broad range of traf-
fic scenarios, under different application requirements. For each
scenario, we present and formally prove the correctness of our al-
gorithm. We perform extensive simulations to evaluate the effec-
tiveness of controlled mobility. Our evaluations show that there are
many scenarios where mobility control can achieve substantial per-
formance gains. For example, in a random network, we simulate a
realistic scenario in which 10 Kbps voice stream data flows over a
single 1 Km long greedily routed multihop path of mobile nodes ca-
pable of moving at around 0.1 m/s. In under a minute, our mobility
control is able to guide the network to its optimal routing configu-
ration in which communication uses as little as 50% of the energy
originally required. Taking into account the cost of mobility, total
energy savings are realized after five minutes.

The remainder of this paper is organized as follows. In Section 2,
we discuss related work and compare our approach with previous
approaches. In Sections 3, 4, 5 respectively, we present algorithms
for optimization of single source-destination pair, multiple source-
destination pair, and many-to-one traffic patterns. In each section,

we include extensive simulation results to analyze when controlled
mobility is effective and demonstrate the effectiveness of the pre-
sented algorithm. We conclude and discuss future work in Sec-
tion 6.

2. RELATED WORK
Although mobility has been extensively investigated in the mobile
networking community, the focus so far has been on random mobil-
ity, e.g., [19, 17, 31], instead of controlled mobility. For example,
in [10], Grossglauser and Tse have shown that the random move-
ment of users can be used to improve network throughput. In [5]
Chakraborty, Yau and Lui have studied algorithms that try to pre-
dict user movements to reduce power consumption.

Controlled mobility is an active research area in the control the-
ory community; for example see [4]. In the last few years much
progress has been made in designing distributed mobile systems
and understanding both natural and artificial mobile systems. The
focus of these studies, however, is not on network communications.
For example, in [6], Cortes et al. have shown that mobility can be
purposefully controlled to implement network coverage; in [18],
Ladd et al. have shown that mobility can be used to improve the ac-
curacy of network localization; in DARPA’s self-healing minefield
project [8], mobility is used to improve and maintain network cov-
erage. However, none of these studies considers routing or power
efficiency, two of the fundamental issues in networking and com-
munications.

Some inspiration for this work came from the averaging algorithm,
which is used in various settings, e.g., [16, 24]. With the intention
of providing coordinates over which to perform geographic rout-
ing, in [24] Rao et al. let ”virtual positions” of nodes converge to
the potential energy minimizing configuration of an equivalent net-
work with edges replaced by springs. In the same way in which
the converged virtual configuration of Rao et al. reflects the un-
derlying connectivity of the network, our resulting physical con-
figuration reflects the connectivity of the portion of the network in
active usei.e. the communicating subgraph. However, there are
several major differences between our work. First, our system op-
erates in physical space; thus we must guarantee that connectivity
is preserved throughout the actual motions of the nodes. Our nodes
also move to a minimum “potential” configuration, but this time
with spring potentials assigned only to linksactivelybeing used for
communication. Lastly, the more general potential functions we
minimize are equivalent to the communication energy usage of a
configuration. Because of this, rather than averaging, we generalize
to aweighted descentmethod that optimizes realistic transmission
cost models and weights neighbors according to their share of lo-
cal communication volume. Furthermore, our algorithms make no
assumptions about the global traffic pattern, wireless environment,
or hardware power usage properties.

Another inspiration of this work is the rendezvous algorithm of Lin,
Morse, and Anderson [20]. They describe distributed local algo-
rithms for guiding a system of multiple nodes to a single point. In
this paper, we combine ideas from the rendezvous algorithm with
the generalized averaging scheme to design a powerful and flexible
tool that can achieve power optimizing configurations and be grace-
fully tuned to ensure desirable network properties such as connec-
tivity, coverage.

There is a large literature on power-efficient topology control and
routing; for example see [26, 23, 30]. A major difference between
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our scheme and the previous work is that we leverage mobility
while the previous work assumed that mobility cannot be controlled
by the communication layers of the network. As a precedent to our
work, there was also a previous study [28] on the optimal positions
of relay nodes for a single source-destination pair. Under a link
cost model ofP (d) = a + bdα, whered is distance,α a constant
between2 and 6, anda and b other constants, Stojmenovic and
Lin [28] show that over all multihop paths, straight paths are most
energy efficient and further that there is a unique hop count for any
distance that minimizes the cost of communications. However, the
focus of [28] is not on reaching the optimal configuration using a
distributed algorithm. Also, the focus of [28] is on a single source-
destination pair while we consider multiple source-destination pairs
while maintaining connectivity during mobility control.

3. MOBILITY CONTROL FOR NETWORK
WITH A SINGLE FLOW

We first present our mobility control algorithm for a network with
a single active flow. This is a simple yet important application sce-
nario.

We make the following assumptions. We assume that a path from
the source to the destination consisting of nodes with a mobility ca-
pability is discovered using a routing protocol, e.g., a greedy rout-
ing protocol or one of the ad hoc routing protocols. We label the
nodes from source to destination0, 1, . . . , n + 1. We call nodes
1, . . . , n relay nodes. We assume that there is a link between two
nodes iff their distance is less than a maximum communication ra-
diusr. We also assume that the relay nodes know their positions.
This can be achieved through either GPS [12] or some localization
methods, e.g. [27, 18]. Note that the above assumptions can be fur-
ther relaxed; however, to make our mobility control scheme clear,
we do not pursue these relaxations. Finally, our mobility control
algorithm is orthogonal to the routing discovery protocol.

3.1 Optimal Configuration of Relay Nodes
The objective of the relay nodes is to move to a new configuration
to optimize network performance. We assume that the source and
destination do not move as they are not relay nodes. This is reason-
able in many application scenarios in which the source is reporting
the results of some sensing task or going about some other duties,
while the relay nodes are in fact relay nodes because their energy is
well spent helping the source to communicate with its destination.
We expect that the source or the destination could also be moving,
thus requiring mobile tracking. For this case, we expect that our
mobility scheme is still guaranteed to maintain a multihop commu-
nication link between them as long as the moving speed is below a
threshold.

Without connectivity/coverage constraints, the optimal configura-
tion of the relay nodes depends on the cost model of communi-
cations. One way to derive communication cost as a function of
link distance is to use a link loss model, e.g., [7, 32]. If a node
transmits to another node at distanced away, taking into account
the loss rate of the link and minimizing the expected energy cost to
send one message, we have that the transmission power function is
P (d) = minω{E [ω/S(ω, d)]}, whereS(ω, d) is the success rate
associated with transmitting a message at powerω over a distance
d. We assume that a message is successfully received precisely
in the case that the signal-to-noise ratio at the receiver is higher
than a certain threshold. Under various realistic probability distri-
butions on noise, we can prove that the power functionP (d) is a

non-decreasing convex function ofd. As a result, the following
theorem becomes applicable:

THEOREM 1. Assume that the energy cost functionP (d) is a
non-decreasing convex function. Then the optimal positions of the
relay nodes must lie entirely on the line between the source and
destination. Furthermore the relay nodes must be evenly spaced
along the line.

PROOF. Let di be the distance from nodei to nodei + 1, where
i = 0, . . . , n. LetD denote the direct line distance from the source
to the destination. SinceP (d) is a non-decreasing convex function,

we have
∑n

i=0 P (di) ≥ (n + 1)P (
∑n

i=0 di

n+1
) ≥ (n + 1)P ( D

n+1
),

where the first inequality is due to the convexity ofP (d), and the
second one holds becauseP (d) is non-decreasing.

3.2 Mobility Control to Reach Optimality: the
Synchronous Scheme

The previous subsection has established that the optimal configura-
tion of the relay nodes is lying evenly on the line from the source to
the destination. We now introduce a uniform distributed algorithm
that allows the relay nodes to move to their optimal positions.

. xi: current position of nodei.

. xi−1 andxi+1: positions of nodesi− 1 andi + 1.

. g ∈ (0, 1]: damping factor.

repeat
sendxi to neighborsi− 1 andi + 1
receivexi−1 andxi+1

setx′i = (xi−1 + xi+1)/2
move toxi + g · (x′i − xi)

until (convergence)

Figure 1: The distributed, synchronous mobility-control algo-
rithm at relay node i. Nodei− 1 and i + 1 are its neighbors on
the routing path.

Figure 1 shows a distributed mobility control algorithm. The al-
gorithm proceeds in globally synchronous rounds of maneuvering
alternating with quiescence. The key ingredient of the algorithm is
the simple averaging step, which we will extend for more complex
scenarios and call the target point primitive. Note that although
a node computes the average of its two neighbors, the node only
moves toward this point, instead of reaching it in one step. In other
words, the movement is damped. In some configurations, without
this damping, oscillations can occur that inflate the total distance
traveled by the nodes before convergence. Damping is also use-
ful as a tool for avoiding node overreaction to ephemeral traffic
by setting the time scale over which convergence takes place to be
sufficiently large.

Next, we prove that our mobility control algorithm has the essen-
tial property that connectivity between communicating neighbors is
never broken. This property ensures that throughout maneuvering,
the communication functionality of the path is never compromised
and that each neighbor always has contact with its two neighbors
necessary for computation of a target point. Furthermore, this prop-
erty can avoid the cost of re-routing, which can be a major source
of overhead for many routing protocols in mobile networks.
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Figure 2: Illustration of Theorem 2.

THEOREM 2. Connectivity between communicating neighbors
is not lost in the synchronous algorithm.

PROOF. Without loss of generality, suppose that node1 at posi-
tion x1 has as communicating neighbors nodes0 and2 at positions
x0 andx2. Figure 2 shows the nodes before all nodes on the path
move. Letxij denote the midpoint1

2
(xi + xj) of the line between

nodei and nodej. Node1 then moves to positionx′1 = x02. We
see that

|x′1 − x01| = |1
2
(x1 − x2)| ≤ 1

2
r,

wherer is the communication radius. The new position of node1 is
within half a communication radius away fromx01 and similarly,
x12. Analogous statements must hold for its neighbors as well:
|x′0 − x01| ≤ r/2, and |x′2 − x12| ≤ r/2, so all new positions
are within a distance ofr from each other. Since nodes move along
straight paths to their target points, we have shown that connectivity
is guaranteed throughout the maneuvering period.

We next establish the convergence of our algorithm; that is, we
prove our algorithm always terminates. Here we define termination
as arrival at a configuration in which all relay nodes are evenly
spaced on the line between the source and destination.

THEOREM 3. Using the distributed synchronous algorithm, all
nodes will eventually be evenly distributed on the line between the
source and destination.

PROOF. Let xi(k) denote the position of nodei afterk steps of
the algorithm have completed. We will assume unless otherwise
stated thati ∈ {1, 2, . . . , n}. The update equation forxi is given
by

xi(k + 1) = xi(k) + g[
xi−1(k) + xi+1(k)

2
− xi(k)]

for k ∈ {0, 1, . . .} and damping factorg ∈ (0, 1].

We letx̄i = x0 + i
n+1

(xn+1−x0) be thei-th evenly spaced point
on the line betweenx0 andxn+1. We will show that this is the
location to which nodei converges.

Define the error at stepk asei(k) = xi(k) − x̄i. Observing that
x̄i = 1

2
(x̄i−1 + x̄i+1) = (1 − g)x̄i + g

2
(x̄i−1 + x̄i+1), we have

that fori ∈ {2, 3, . . . , n− 1},
ei(k + 1) = xi(k + 1)− x̄i

= (1− g)xi(k) +
g

2
(xi−1(k) + xi+1(k))− x̄i

= (1− g)ei(k) +
g

2
(ei−1(k) + ei+1(k)).

As for e1 anden, a simple calculation reveals that

e1(k + 1) = (1− g)e1(k) +
g

2
e2(k)

and

en(k + 1) = (1− g)en(k) +
g

2
en−1(k).

Define the error vectore = (e1, e2, · · · , en)T . It follows thate(k+
1) = Te(k) = T k+1e(0), where

T =




1− g g/2 0 0 · · · 0
g/2 1− g g/2 0 · · · 0
. . . . . .
0 · · · 0 g/2 1− g g/2
0 · · · 0 0 g/2 1− g




n×n

and can be rewritten asI + gM , where

M =




−1 1/2 0 0 · · · 0
1/2 −1 1/2 0 · · · 0
. . . . . .
0 · · · 0 1/2 −1 1/2
0 · · · 0 0 1/2 −1




n×n

.

BecauseM is symmetric, its eigenvalues are real. From the Ger-
schgorin Circle Theorem,−2 ≤ ρ(M) ≤ 0, whereρ(M) is the
largest eigenvalue ofM . Simple calculation reveals that neither0
nor−2 is an eigenvalue ofM ; thus−2 < ρ(M) < 0. It follows
from this and the fact thatg ≤ 1 that−1 ≤ 1 − 2g < ρ(T ) <
1 − 0g ≤ 1, i.e |ρ(T )| < 1. It follows from a standard result
in the theory of matrix products [13] thatlimk→∞ T k = 0. This
implies thatlimk→∞ e(k) = 0, thereby establishing that the algo-
rithm converges to a configuration of nodes evenly spaced on the
line betweenx0 andxn+1.

3.3 Mobility Control to Reach Optimality: the
Asynchronous Scheme

While the simplicity and functionality of the synchronous algo-
rithm is appealing, the globally synchronous mode of operation is
at odds with the need for distributed algorithms that do not require
any global information. To remedy this violation of the localized
design requirement, we present an asynchronous algorithm, shown
in Figure 3, which uses no global information and requires only
that each node eventually reach its target point in bounded time.

The algorithm outlined in Figure 3 defines the operation of all re-
lay nodes other than the two nodes1 andn respectively connected
to the source and destination. Node1 has its state variableL per-
manently set toTrue and noden hasR permanently set toTrue.
Other than this, the operation of nodes1 andn is identical to that
of all the other relays.

A state transition diagram describing the asynchronous algorithm
for nodes2 throughn − 1 is shown in Figure 4. We omit the
slightly different but straightforward diagram for nodes1 andn.
The system starts in the state in which nodes are stationary and in-
formed of the positions of their neighbors. The state variablesM ,
L, andR respectively represent the state of moving and of having
fresh position information for the left and right neighbors. In the
diagram, we abuse notation a bit and represent byxj the reception
of a message containing the position of nodej, signaling that node
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. xi: current position of nodei.

. xi−1 andxi+1: positions of nodesi− 1 andi + 1.

. g ∈ (0, 1]: damping factor.

repeat
sendxi to neighborsi− 1 andi + 1
repeat listen()until (L ∧R == True)
sendmovingi to neighborsi− 1 andi + 1
setL := False, R := False
setx′i := (xi−1 + xi+1)/2
move towardxi + g · (x′i − xi)
repeat listen()until (arrive in bounded delay)

until (convergence)

subroutine listen():
upon receivexi−1 do L := True
upon receivexi+1 do R := True
upon receivemovingi−1 do L := False
upon receivemovingi+1 do R := False

. L andR: internal boolean state variables.

. movingi: message signaling nodei starting to move.

Figure 3: The distributed, asynchronous mobility-control algo-
rithm at node i, where i = 2, . . . , n− 1.

j has stopped moving; bymj the reception of a message indicating
that nodej is moving; and by\y the action of sending messagey.

Since this is an asynchronous protocol, one potential concern is that
it could cause deadlock. The proposition below shows that if mes-
sages can be reliably transmitted, then our asynchronous protocol
is deadlock free. If messages can be dropped, then we can use a re-
liable transport protocol to guarantee reliability; or if each node in
quiescent mode periodically transmits its position and a transmis-
sion arrives after finite number of retransmissions, there will still
be no deadlock.

PROPOSITION 1. The asynchronous protocol is deadlock free,
if messages are not dropped.

PROOF. Assume the system is deadlocked. Then there is some
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Figure 4: State transition diagram for the asynchronous algo-
rithm: i = 2, . . . , n− 1.

nodei that is the last to stop moving, say by timeti. By assumption,
no nodes are moving at timeti. We will denote the state of a nodej
by Sj and refer to nodes by their index. Without loss of generality,
upon nodei stopping,R ∈ Si−1, wherei−1 is the left neighbor of
i. It must be the case then thatSi−1 = {L̄, R} or elsei− 1 would
be able to move, violating our assumption of deadlock. Nodei−1’s
left neighbori− 2 must have stopped moving strictly beforei− 1
did, or elseL ∈ Si−1. Sincei − 1 stops moving afteri − 2,
R ∈ Si−2. But by the same argument as before,Si−2 = {L̄, R}.
As this process continues as shown in Figure 5, we reach the node
i − k whose left neighbor is the source and conclude thatSi−k =
{L̄, R}. But by our algorithm design,L ∈ Si−k and we have a
contradiction. Hence, the system cannot be deadlocked.

L _

i

L R L R LR

ii−1i−2 i+1

...

X

i−ksource

S ... L R

t

Figure 5: Illustration of deadlock proof contradiction. Node i
must have at least one ofL and R asFalse.

We next prove that no node loses communicating neighbors.

THEOREM 4. Connectivity between communicating neighbors
is not lost in the asynchronous algorithm.

PROOF. At the instant that nodei starts moving towards the av-
erage of its neighbors, its neighbors must be stationary, or else it
would have invalidated at least one of its state bits preventing itself
from leaving. As nodei is moving, neither of its neighbors can
move, since they invalidated a state bit uponi’s departure. At the
moment nodei stops, it is clear that it will be within distancer/2
from its neighbors.

Finally we prove that the asynchronous algorithm will also con-
verge to an evenly spaced straight configuration. This proof uses
a new proof technique similar to that used in [20]. The translation
of the algorithm into an manageable mathematical model depends
crucially on the invalidation of a state bit upon receiving amoving
signal from a neighbor. Once the model is set up, the convergence
result is a direct consequence of the assumptions that the source and
destination are fixed and that nodes reach their targets in bounded
time.

time

1 t2 t3 t4

t i1 t i2

t j3t j2t j1

{i, j}
time

i
time

j

t

Figure 6: Illustration of event time.

Before we begin our proof, we first establish a preliminary con-
cept. We define anevent timeto be any real timētik at which some
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nodei begins to move, wherek indicates that it is thek-th time that
nodei starts to move. Deleting duplicates, we now arrange the
set of all event times{t̄ik : i ∈ {1, 2, . . . , n}, k ≥ 1}, in increas-
ing order and label the ordered times byts, s ∈ {1, 2, . . .}. For
i ∈ {1, 2, . . .}, let si(k) denote the value ofs for which ts = t̄ik

i.e., the index of the event time at which nodei moves for thek-th
time. Becauses corresponds to an event time at which nodei starts
moving,s is said to be in theimageof si, Im{si}. This is illus-
trated in Figure 6 wheresi(1) = 1, si(2) = 3, sj(1) = 2, sj(2) =
3, sj(3) = 4, Im{si} = {1, 3}, andIm{sj} = {2, 3, 4}.

THEOREM 5. Using the asynchronous algorithm, all nodes will
eventually be evenly spaced on the line between source and desti-
nation, given that there is an upper bound on the time it takes for a
node to move to its target point.

PROOF. (sketch)For the sake of brevity, we will not include the
complete proof but only a sketch. We set the damping constant
g = 1 for clarity.

We will first define a discrete model that describes the position of
each mobile node indexed by event time.

At the event time indexed bys, every nodei is either starting to
move (ifs ∈ Im{si}), in the process of moving, or stationary. We
definexi(s) as the next resting position of nodei after ts in the
following way. If at timets, i is starting to move or in the process
of moving,xi(s) represents its target point. Ifi is stationary atts,
we definexi(s) to represent the position at which it is resting. This
state variablexi(s) was carefully designed in conjunction with the
algorithm to guarantee accurate representation of algorithm behav-
ior as well as convergence.

If nodei does not start moving at event times, thenxi(s) = xi(s−
1): The next resting location ofi is the target of its last motion.
Otherwise, the update equation forxi(s) is given by

x1(s) =
1

2
(x0 + x2(s− 1)),

xn(s) =
1

2
(xn+1 + xn−1(s− 1)),

and

xi(s) =
1

2
(xi−1(s− 1) + xi+1(s− 1)),

for i ∈ {2, 3, . . . , n− 1}.

Note that the design of our algorithm ensures that ifs ∈ Im{si},
nodesi − 1 andi + 1 may not be moving at timets. Assuming
s ∈ Im{si}, then without loss of generality, if nodei − 1 was
moving at timets−1, then by design, nodei−1 must have come to
rest at positionxi−1(s−1) by timets. If nodei−1 was stationary
at timets−1, then at timets, its position will bexi−1(s − 1), as
by the definition of event time, it could not have moved in-between
consecutive event times. We can see now thatxi(s), which is the
target of nodei’s incipient motion, is the average of its neighbor’s
positions at the instant it departs. This representation is possible
only because the algorithm dictates that each node invalidate the
position of either of its neighbors who starts moving.

Next,we normalize the distance between source and destination to
be one, and define our equilibrium positionsx̄i = i

n+1
. We de-

fine the error asei(s) = xi(s) − x̄i, and set up the error equation

evolving on the sequence of event times as we did in the conver-
gence proof of the synchronous algorithm. As before, we can put
the error update equations into matrix forme(s) = M(s)e(s− 1),
wheree = [e1, e2, . . . , en]. In this case however, instead of the
update matrix having a single form,M(s) is now a matrix defined
at an event time in a way which depends on exactly which nodes
begin to move at that event time. This update matrix has the follow-
ing form. If nodei ∈ [1, . . . , n] does not start moving at event time
s i.e., if i /∈ Im{si}, row i appears as it does in then × n identity
matrix. If nodei does in fact move, rowi appears as it does in the
following n× n matrix:




0 1/2 0 0 · · · 0
1/2 0 1/2 0 · · · 0
. . . . . .
0 · · · 0 1/2 0 1/2
0 · · · 0 0 1/2 0




n×n

.

At event times, the error is given by the product ofs matrices of
typeM(s) applied to the initial error vectore(0). In our full proof,
we show that after a finite time, the maximal row sum or reduced
infinity norm of this product has an upper bound strictly less than
onepreciselybecause the source and destination are fixedandevery
node reaches its destination in finite time. Consequently,e(s) → 0
ass →∞ and the state variables and therefore the positions of all
nodes converge to their desired locations evenly spaced on a line
between source and destination.

3.4 Maintaining Connectivity
for Non-Communicating Neighbors

In the previous two subsections, we have shown that both the syn-
chronous and asynchronous algorithms guarantee that communi-
cating neighbors are never disconnected. However, it is possible
that as a communicating node moves towards its optimal location, it
becomes disconnected from some of its non-communicating neigh-
bors.

In networks where preserving all connectivity is important, we can
introduce a simple constraint on the motion of nodes to guarantee
permanent connectivity to all nodes connected to it, either com-
municating or non-communicating. We call the mobility control
algorithm without this constraintunconstrained mobility control,
and the algorithm with this constraintconstrained mobility control.
Specifically, the constraint is that a communicating node does not
move beyond the maximum communication range away from any
of its non-communicating neighbors. This means that the com-
municating node moves to the point closest to its target point that
satisfies all constraints imposed by non-communicating neighbors.

3.5 Evaluations
We now evaluate the performance of the mobility control algo-
rithm.

3.5.1 Simulation Setup
We have implemented a simulator to evaluate the performance of
our mobility-control algorithms. The simulator generates nodes
uniformly at random, and then randomly chooses a source and a
destination. Next, it runs the greedy geographic routing protocol
to locate a routing path. The nodes on this routing path then move
to decrease the energy usage of the path using our synchronous
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mobility control protocol. Our statistics regarding network power
consumption are obtained by running our algorithm on 50 different
random network instantiations for each combination of parameters.
It is worth noting that in uniformly random networks, the perfor-
mance improvements through mobility are minimized because the
paths chosen by greedy routing already tend to approximate their
optimal straight configuration. Mobility in anisotropic networks
or networks with geographic routing holes will yield greater per-
formance improvements than we see here, so this study serves to
delineate the baseline of the potential performance enhancements
offered by mobility.

A key ingredient of the simulator is the communication cost model.
We assume that the cost of transmission of a single bit over a dis-
tanced is P (d) = a + bdα, whereα is between2 and6, anda
andb are constants. This is a commonly used power function [25]
where the values ofa and b depend on the hardware and algo-
rithms used for transmission, reception, decoding, and encoding.
Typical values, which we adapt for use here, area = 100 nJ and
b = 0.1 nJ/m2 [11] for a path loss model ofα = 2. For a general
path loss model ofα ∈ [2, 6], in order to achieve the same receiver
signal-to-noise ratio as forα = 2, we must transmit at a propor-
tionately higher powerP ′ ∝ dα. Therefore, we use parameters
a = 100 nJ,b = 0.1 nJ/mα, andα ∈ [2, 6].

By the results of [28], communication under this cost model is
achieved with least power expenditure in a multihop fashion with
hop length(1000/(α − 1))1/αm. Hence, in order to interpret our
simulation results realistically, we scale our simulation distances so
that the hop lengths typically used are of this order of magnitude.

Another key ingredient of our simulation setup is the cost of mobil-
ity. We choose to use a distance proportional cost modelPm(d) =
kd. A distance proportional cost model is reasonable for wheeled
vehicles, where the energy used to accelerate can typically be re-
covered upon braking, neglecting losses due to friction. It is possi-
ble that flying, floating, and swimming vehicles may have to over-
come larger fixed energy costs to initiate motion and less to main-
tain it, but we do not consider these details here and abstract to
the distance proportional cost model. So as not to overestimate
the potential benefit of mobility, the values ofk that we consider
are kept conservatively large; ranging from 0.1 J/m to 1 J/m. A
one kilogram wheeled vehicle with rubber tires moving on con-
crete must overcome a 0.10 N force of dynamic friction, or expend
0.10 J/m [29], so an energy cost of 1 J/m does not seem unrealistic.

3.5.2 Simulation Results
Before we report quantitative results, we first present several fig-
ures to visually illustrate the effectiveness of the mobility control
algorithm. Figure 7 shows network configurations before and after
mobility control. In this experiment, we use both greedy routing
and “stingy” routing to find an initial routing path. Stingy routing
is a form of routing that picks the neighbor which makes the least
forward progress [14]. The proved convergence of our mobility
control algorithm to the straight and evenly spaced line is corrob-
orated by these simulations. Since our algorithm converges from
all initial configurations and requires only local information, it is
robust against both increases in network size and highly irregular
paths such as those produced by stingy routing.

The converged configurations and Theorems 3, 5 have only shown
that our mobility control algorithm will move the relay nodes to
the optimal configurations. However, a mobility control algorithm
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Figure 8: Blowup of network path.

could move the nodes along arbitrarily long curves, thus consuming
much energy for mobility. We define blowup as the ratio between
the distance that a node actually travels between its initial and final
positions and the straight line distance. We observe in Figure 8 that
the path blowup for greedy path optimization is small, indicating
that our algorithm does not suffer from large oscillations. In Figure
8, MaxMove is a parameter that expresses the maximum speed of
node mobility by imposing an upper limit on distance traveled by a
node per round. As one would expect, the path blowup of uncon-
strained optimization is greater than it is in constrained optimiza-
tion; however, the value is still small. Overall, the small blowup
factor of our algorithm indicates that our algorithm consumes close
to optimal energy on mobility.

Having established the convergence and small blowup factor of our
algorithm, now we evaluate whether mobility control can improve
the power efficiency of a routing path. We evaluate this under the
cost model [11]P (d) = 10−7 + 10−10d3 andPm(d) = kd, in
Joules, whered is in meters, scaled from our simulation as de-
scribed earlier. Note that we are comparing the power usage of
greedy routing paths before and after mobility throughout. Situa-
tions in which greedy routing paths could not be found were dis-
carded in order to produce a baseline evaluation of mobility, despite
the fact that it is in precisely those discarded cases that mobility will
perform the best.

We first evaluate the effectiveness of mobility control for a wide
range of communication environments. We control this effect by
varying the value ofα, the exponent of path loss and power depen-
dency on distance. Figure 9 shows the performance improvements
of unconstrained and constrained mobility control. The x-axis is
the exponent while the y-axis is the percentage improvement com-
puted as100 ∗ (E − Em)/E, whereE is the energy cost of the
routing path before mobility control andEm is the energy cost
of the path after mobility control. For constrained mobility con-
trol, as we increaseα from 2 to 6, the improvement is increased
from around 10% to around 50%, translating into a potential im-
provement in lifetime of from 10% to 100%. The performance im-
provement when there is no connectivity constraint is even higher
(note that the connectivity of communicating neighbors is always
maintained). We observe that the typical performance improve-
ment when there is no connectivity constraint almost doubles that
with the connectivity constraint. One conclusion we can draw is
that mobility control will be more effective in improving power ef-
ficiency for larger values ofα.
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(a) unconstrained; greedy (b) constrained; greedy (c) unconstrained; stingy

Figure 7: Network configurations before and after mobility control. The first term of each subcaption indicates whether mobility
control is constrained or unconstrained. The second term indicates the routing protocol used to find an initial routing path.
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Figure 9: Performance improvement of mobility control under
different α values.
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Figure 10: Effect of node density (number of neighbors) on per-
formance improvement.

Network density, expressed through average number of neighbors,
also plays a role in the effectiveness of mobility control. Figure 10
shows the result forα = 3. We observe that with increasing den-
sity, the performance improvement decreases. This is as expected
given that as density increases, greedy routing finds paths that more
closely approximate the straight line. Thus one conclusion we can
draw is that mobility control will increase in effectiveness as the
density and regularity of networks decreases. As network density
increases, it is likely that the requirement that relay nodes not lose
connectivity with their static neighbors will become less essential.
This may justify the use of unconstrained mobility, which produces
robust energy savings even for highly dense networks.

The previous results evaluate only the total energy consumption of
a path. However, a path becomes disconnected if any one of the
nodes runs out of battery. From this perspective, mobility con-
trol has the further advantage that since one of its functions is to
produce paths with equal hop length, the problem of premature
path disconnection due to imbalanced power usage along a path
is reduced. A potential problem with this claim however, is that
nodes may move varying total distances, thus consuming unequal
amounts of mobility energy. In other words, it could be possible
that an unequal communication burden be reduced at the expense
of unequal mobility energy cost. Figure 11 shows that the distances
traveled by mobile nodes are quite balanced. We do not observe the
heavy tails that would indicate some nodes spending an inordinate

8



 0

 200

 400

 600

 800

 1000

 1200

 0  0.5  1  1.5  2

T
ot

al
 P

ow
er

 U
se

d 
(J

)

Total Bits Sent (MB)

w/o mobility
1.00 J/m
0.50 J/m
0.25 J/m
0.10 J/m

(a) unconstrained

 0

 500

 1000

 1500

 2000

 2500

 0  0.2  0.4  0.6  0.8  1  1.2

T
ot

al
 P

ow
er

 U
se

d 
(J

)

Total Bits Sent (MB)

w/o mobility
1.00 J/m
0.50 J/m
0.20 J/m
0.10 J/m

(b) constrained

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1

B
its

 S
en

t a
t T

ra
ns

iti
on

 (
M

B
)

Mobility Power Constant (J/m)

constrained
unconstrained

(c) crossing time

Figure 12: Trade-off between mobility energy cost and communication energy cost.
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Figure 11: Distribution of distance moved.

amount of energy on mobility relative to average.

Next, we will summarize the trade-off between mobility energy
cost and communication energy cost. We assume that nodes com-
municate with their neighbors during mobility periods as if they are
aware of the maximum distance to their neighbor over the period
and send at the exact power required. In a realistic setting however,
this is not possible and nodes may do one of two things. First, they
may send traffic to a neighbor during mobility periods as if it is
r/2 + di units away, wheredi is the separation from the neighbor
during the previous quiescent period. The alternative is that nodes
send the coordinate of their target point before they begin moving.
In this way, every pair of neighbors can determine the maximum
potential separation between them over each mobility period and
send at the appropriate minimum power level. As we will see, the
transient period before the network converges is relatively short, so
such details will not affect the salient properties of our simulation
results.

The total energy usage was calculated using our previously de-
scribed transmission power model with a path loss exponent of
α = 3 for a 10 Kbps flow1 along a path of mobile relays approxi-
mately 1 Km long. Each maneuvering period lasts10 seconds and
during these periods, a node typically moves no more than a me-
ter, resulting in reasonable speeds of about 0.1 m/s. We ran a trace
of the evolution of the system under unconstrained mobility and
another under constrained mobility. These were distinct network
instantiations, resulting in the disparate total power usage.

Our results are shown in Figure 12. The slope of the lines is the
energy used per MB. We can see that the slope of the line corre-
sponding to the static network is always greater than the slope of
the lines corresponding to the mobile networks, as expected. Note
that also consistent with earlier simulation results, the slope of the
constrained mobile traces shown in part(b) exhibits proportion-
ately less decrease from the static case than the unconstrained mo-
bile traces shown in(a). The higher slopes of the mobility traces
close to the origin are due to the energy used on movement before
convergence. We can see that the energy usage of the mobile net-
work is substantially higher than that of the static network in the
early stages of its development, meaning that mobility can incur
high energy penalties if a flow is short-lived.

However, there is a number of bits sent after which the energy us-
age of the static network permanently outstrips that of the mobile

110 Kbps is a rate appropriate for minimal voice streaming.

9



network. For flows sending more than this number of bits, mobil-
ity saves energy. We plot thiscrossing pointin part (c). Clearly,
the value of the crossing point depends on the cost of mobility.
As mobility becomes more expensive, the crossing point becomes
larger. Another feature to notice is that the crossing point is always
lower for constrained mobility than it is for unconstrained mobility.
This is due to the fact that the nodes move less distance and con-
verge faster to their final positions. So we can see distinct advan-
tages to constrained mobility besides the intended functionality of
preservation of path connectivity with static neighbors. First, a per-
formance improvement is achieved for a smaller amount of traffic
sent than in unconstrained mobility. Second, a smaller maximum
energy penalty for prematurely ending flows is incurred than in un-
constrained mobility. The disadvantage to constrained mobility is
of course that the energy savings to be gained are more modest than
they are through unconstrained mobility.

4. MOBILITY CONTROL FOR NETWORK
WITH MULTIPLE FLOWS

Controlled mobility can also be applied to a network consisting of
multiple flows. For nodes that are on the path of only one flow, the
averaging algorithm described in the previous section is still valid;
that is, in each step a relay node moves to the average position of its
two neighbors. However, in a network with multiple flows, some
relay nodes will be on the routing paths of multiple flows; we call
such nodes junction nodes. Applying the averaging algorithm from
the previous section in the presence of junction nodes can raise
several issues.

4.1 Issues of Multiple Flows

j

1

S 2 D2

D1

i

S

Figure 13: Illustration that moving to average can cause junc-
tion nodesi and j to disconnect, wherei and j are on the paths
from S1 to D1 and S2 to D2.

The first issue that arises in the application of averaging to mul-
tiflow networks is that junction nodes may become disconnected
from their communicating neighbors. An example of this is shown
in Figure 13. Nodesi andj start out separated by the maximum
communication radius. As soon as one of them moves toward the
average of its neighbors, connectivity between them is lost.

qp

Figure 14: Effect of α on the optimal configuration; the point
p is the average of the four empty circles, while the point q is
the center of the minimum enclosing circle of the four empty
circles.

The next issue is that the optimal position of a junction node may

not be the average of its neighbors. This is the case because the op-
timal position of a node serving as a relay between more than two
neighbors depends on the power model. Consider the power model
P (d) = dα. Forα = 2, we can show that the energy minimizing
position for a relay node between multiple sources and destinations
carrying equal amounts of traffic is always the average of the po-
sitions of its neighbors. However, this is only a special case. For
α > 2, the average is no longer always an optimal solution. Fig-
ure 14 illustrates this point with an example of placing a single
relay between four nodes. To minimize total energy usage under
a cost function quadratic in distance, the optimal point is p; but as
α →∞ the optimal point approaches the point q which minimizes
the distance of the maximum distance node. This point q lies at
the center of the smallest circle which contains all the nodes i.e.,
the point minimizing thel∞ norm. Keep in mind however, that for
non-junction nodes, the average of the neighbors’ positions is the
energy minimizing point for all convex energy cost functions, as
we showed in the previous section.

Another reason that the average is not in general the optimal target
point is that a single link to a neighbor may be on any number of
paths, and further, there may simply be different amounts of traffic
along different flows. We need to weight the importance of neigh-
bors by the amount of communication done with them. Note that
in a line topology however, the weights of neighbors of a relay are
equal due to flow conservation. Thus, in order to define a general
scheme capable of adapting to these varying optimality conditions,
we must devise an algorithm that yields an optimal configuration
under varying power usage environments and which allows flexi-
ble weighting.

4.2 Mobility Control for Multiple Flows
To address the above two issues with multiple flows, we generalize
the averaging algorithm in two ways. First, for a general power cost
function and number of neighbors, instead of having nodes move
toward a known minimizer, as we were doing in the line topology
by moving toward the neighbors’ average, nodes must now descend
along a local-minimization direction in order to decrease commu-
nication cost. Our descent direction algorithm provably converges,
but we omit the proof here. For a large class of power functions, the
descent direction can be computed easily using only local informa-
tion; even further, such algorithms can be extended to be adaptive
to channel conditions such as multipath and interference.

More precisely, assume that the link cost function of a junction
node to itsi-th neighbor isPi(di). Assume that the relative amount
of traffic to and from neighbori is wi. For example, in Figure 13,
if each source sends the same amount of traffic to its destination,
the weight of linkij is 2 while the weight of the other links is1.
Then the descent direction can be computed as∆x = xn − xo,
wherexo is the current position of the junction node, andxn can
be computed as follows. Letx(k) denote thek-th dimension of the
vectorx. We have

x(k)
n =

∑n
i=1

wi
di

∂Pi
∂di

x
(k)
i∑n

i=1
wi
di

∂Pi
∂di

,

wherexi is the position of thei-th neighbor.

For the particular power functionP (d) = a + bdα, we have

x(k)
n =

∑n
i=1 wid

α−2
i x

(k)
i∑n

i=1 wid
α−2
i

.

10



Note that whenα = 2 and all neighbors have the same amount of
traffic, this descent direction is a constant pointing directly to the
average of the neighbors’ positions. In a line topology with any
α > 2, the optimal configuration of relays is at the average of their
neighbors but the descent direction is no longer a constant. This
results in a curved path leading to the same eventual destination as
averaging. Thus the previous averaging algorithm is just a special
case of this more general descent algorithm. Forα > 2, nodes
must locally follow the descent direction with sufficiently small
step size to guarantee convergence. For line topologies however,
a small optimization is found in simply having nodes move toward
the average of their neighbors regardless of the value ofα, resulting
in their moving along a shorter path before convergence than using
the general descent direction.

To address the disconnection issue, we impose apairwise con-
straint on every moving node. The pairwise constraint, shown
in Figure 15, holds between two potentially mobile nodes that are
neighbors. It makes explicit the intuition behind the disconnection
impossibility proofs for the single path case by dictating that in or-
der to stay connected to a neighbor, a node must not move outside
the disk of radiusr/2 centered at the midpoint of the line between
itself and that neighbor. A separate pairwise constraint is enforced
for every mobile neighbor, thereby restricting a node’s motion to
the intersection of a number of disks. The less restrictivestatic
constraintthat a node must stay within communication ranger of
all of its non-mobile neighbors may also be enforced. A node is
potentially mobile if and only if it is actively communicating.

This pairwise constraint in conjunction with the static constraint
guarantees that all pre-existing connectivity is preserved through-
out any mobility.

D1

D2

S 2
r/2

i

S

j

1

Figure 15: Illustration of pairwise constraint: nodes i and j
may not move outside of their respective shaded regions.

THEOREM 6. If the pairwise constraint is satisfied, communi-
cating neighbors will not become disconnected.

As an illustration of the generality of this updated scheme, note that
in the case of a single flow, merely moving to the average of one’s
neighbors implicitly satisfies the pairwise constraint.

Since moving to the average for the general case may not satisfy the
pairwise constraint for junction nodes (nodes that are on multiple
flows), our algorithm has every junction node move as far as it can
within its allowable region; namely the intersection of the allowed
disks defined by pairwise constraints with every mobile neighbor
and static constraints due to every non-communicating neighbor.

One potential concern in the use of the pairwise constraint is that
it may hamper a node from reaching its optimal position. How-

ever, our observations show that the pairwise constraints are almost
never active at system convergence. Thus, in practice, both the non-
junction nodes and junction nodes are not held back by the pairwise
constraints; as a result our multiflow algorithm leads in most cases
to a globally optimal configuration of relay nodes.

Before we proceed to empirically evaluate the performance of the
multiflow algorithm, we observe that our descent algorithm has a
desirable self-adaptive property. That is, although this algorithm
is completely uniform, namely each node runs the same algorithm,
in regions of space containing multiple flows, all nodes move as
far as they can along the descent direction defined by the positions
of their neighbors and weights determined by traffic volume while
never violating their pairwise constraints; on the other hand, in re-
gions of space containing only one flow, nodes move to the same
target points as they did in the single flow algorithm as if they are
unconstrained and their neighbors unweighted. This self-adaptive
property means that there need be no global coordination such as
ordering a global mode change from multiflow mode to single flow
mode. Such local self-adaptation means that our algorithm can re-
spond to changes in the environment, evolution of the network, and
traffic events automatically, be it the path loss exponent changing
as a node moves, a node changing from a junction node to a non-
junction node, or large fluctuations in traffic volume.

4.3 Evaluations

(a) initial configuration

(b) final configuration

Figure 16: Comparison of network configurations before and
after mobility control.

In this subsection we evaluate the mobility control algorithm for
multiple source-destination pairs. The settings of these evaluations
are similar to those of the previous section, except that now we have
multiple communicating source-destination pairs. As a simplifying
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assumption, all flows carry the same amount of traffic. Thus, in our
algorithm, the number of flows passing through both a node and
one of its neighbors determines the weight assigned by the node to
that particular neighbor.

We first present the network configurations before and after relay
nodes move to their new positions. In these figures, only communi-
cating nodes are shown. The network in fact has a uniform density
of nodes. Figure 16 (a) shows the initial configuration of a network
with 10 randomly chosen source-destination pairs, and Figure 16
(b) shows the configuration after the mobility algorithm converges.
We can clearly see that the mobility control algorithm straightens
the lines of communication. For a flow sharing no nodes with other
flows (see the flow in the lower left corner), the behavior of the
multiflow algorithm is the same as that of a single flow.

While the descent algorithm theoretically performs better than av-
eraging method, we have found empirically that the method re-
sults in at best scant power savings over the far simpler averag-
ing rule. This is because there are few junction nodes, these junc-
tion nodes typically have at most three neighbors, and our power
exponents used are relatively small (3 to 6). In these cases, the
target point computed with averaging is very close to the target
point reached through the descent direction. For this reason, we
use averaging throughout our multiflow evaluations. In nonuni-
form networks where certain nodes may be choke points for many
flows from many asymmetrically located neighbors, we expect the
performance improvement from the descent method to be more
marked.

We now quantitatively evaluate the performance gain of mobility
control for multiple flows. Figures 17 (a) and (b) show the percent-
age gain in energy efficiency of mobility control of a network with
10 source-destination pairs, under constrained and unconstrained
mobility. We observe that even under constrained mobility, the per-
formance improvement is still substantial. The performance im-
provement is measured as the percent reduction from the energy
cost required to send one bit between each source-destination pair
in the original network configuration to the cost in the converged
post-mobility network. Note that we test here on relatively dense
networks communicating over greedy paths. The performance im-
provements will be substantially higher on sparser networks and on
non-greedily determined paths.

Finally, we evaluate the trade-off between mobility energy cost
and communication energy cost in networks with multiple source-
destination pairs. Figure 17 (c) shows the results for a15 source-
destination pair network. The system traces for the multiflow net-
work look very similar to Figures 12 (a) and (b) so we omit them
here. The crossing times show similar behavior to the single flow
case in that the cost of mobility is paid off with a small amount
of traffic. As before, the constrained rule realizes its performance
gains earlier than the unconstrained rule realizes its comparatively
larger gains. The crossing times are larger than in the single flow
case because there are now more flows, but still correspond to sim-
ilar numbers of bits per flow before mobility results in performance
gains.

5. MOBILITY CONTROL FOR CONCAST
NETWORKS

In this section we apply our mobility control algorithm to the mul-
tiflow scenario calledconcastin which the destination of all flows
is a singlesinknode. Concast matches many notable sensornet ap-
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Figure 17: Performance improvement of mobility control in
networks with multiple flows.
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plications. For example, concast describes traffic patterns of appli-
cations that involve data aggregation or reporting from distributed
sensors to a central sink, e.g., [9]. For sensor networks running a
geographic hash table [24], all data events of a particular type will
be stored at a single location in the network. The traffic pattern we
will see in this case is a multisink concast.

5.1 Mobility Control in Concast Network
Concast is simpler than the general multiple source-destination pair
case because of the single direction of traffic flow. In this case, we
can more easily determine the weight of each link. A junction node
need only keep track of the amount of traffic sent to it from each
of its upstream neighbors and assign these flow rates directly to its
upstream weights. The weight of the downstream neighbor is then
set to be the sum of all the upstream weights. It is clear that the
optimal position of concast junctions sags toward its sink side.

5.2 Evaluations

(a) initial configuration

(b) final configuration

Figure 18: Network configurations before and after apply-
ing concast mobility control: a single concast session with 50
sources.

Below, we evaluate the performance of mobility control for con-
cast. The settings of the evaluation in this section are similar to
those of previous sections. We again send the same amount of traf-
fic along each flow so that the weight of an upstream neighbor is
simply the total number of flows passing through it. Accordingly,
the weight of the downstream neighbor is the sum of all upstream
weights.

We first evaluate the scenario of a single sink which can be a good
model for a surveillance network with a global sink. Figure 18

shows the network configurations before and after applying concast
mobility control. The network has a single concast session with
50 sources. We observe that the initially highly irregular concast
tree converges to a sharp and regular tree with nodes evenly spaced
along its branches.

The effect of the weighting in our algorithm can be seen at the node
connected directly to the left of the sink in the final configuration.
This node aggregates three flows into one outgoing link. Without
weighting, the node would converge to a position much closer to
its three upstream neighbors than to the sink. However, because
the weight of the downstream neighbor is equal to the sum of the
weights of all upstream neighbors, the node converges instead to a
central location. Another example of the effect of weighting can
be seen in the node connected directly above the sink. This node
has two upstream neighbors: the one at left aggregating 10 flows
and the one at right aggregating 1. We can see that the converged
position of the node is only slightly affected by the presence of its
right upstream neighbor.

Figures 19 (a) and (b) quantify the performance gain of mobil-
ity control on concast networks. We observe that compared with
random source-destination pairs, concast has slightly lower perfor-
mance gain, due to concentrated traffic patterns. However, the per-
formance gain is still substantial. This substantial improvement in
communication cost translates into a lax design requirement for low
mobility cost. Figure 19 (c) shows the trade-off between mobility
energy cost and communication cost. We observe similar behaviors
as those of multiple source-destination pairs. A notable difference
however, is that performance gains are realized through mobility
after relatively little traffic has been sent. This concast consists of
50 flows, yet exhibits crossing times as little as10 times those of
the single flow scenario. This makes sense if one considers the fact
that in concast, many nodes are junction nodes, and their move-
ment simultaneously helps many flows. Hence, in concast, small
amounts of mobility tend to result in strikingly large performance
gains.

Next, we evaluate the performance improvement of mobility con-
trol when there are multiple concast sinks. This can be a good
model for many scenarios, for example GHT [24]. Figure 20 shows
how configuration changes through mobility and Figure 21 charts
the crossing times. We observe similar behaviors to those of a sin-
gle concast sink.

Overall, these results show that our algorithm is very robust against
diverse network environments, achieving performance gains in a
wide range of scenarios.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented the first mobility control scheme for
improving communication performance in wireless networks. Our
full mobility scheme is completely distributed, requiring each node
to possess only local information. The scheme is self-adaptive, be-
ing able to transparently encompass several modes of operation. In
particular, we showed how our single scheme improves power effi-
ciency for one flow, multiple flows, and many-to-one concast flows.
In addition to empirical verification, we have also formally proved
the correctness and convergence of our scheme under mild condi-
tions. We also provided evaluations of the feasibility of mobility
control and showed that there are many scenarios where controlled
mobility can provide substantial performance improvement.
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Figure 19: Performance of concast: using averaging for net-
works of a single concast session, with the session having 50
sources.

(a) initial configuration

(b) final configuration

Figure 20: Network configurations before and after mobility:
multisink concast without connectivity constraint: each concast
has 30 sources.
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Figure 21: Crossing time: 3 concast sessions with 15 sources in
each session.
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Although the full strength of controlled mobility can only be demon-
strated by completely functional prototypes, the initial design and
analysis in this paper show that mobility can be used as one of the
effective control primitives to improve network performance.

The focus of this paper is on power efficiency but one can envision
that controlled mobility can be also used to improve many other
aspects of network performance. The proposed algorithmic frame-
work in this paper can serve as starting point for such further explo-
rations. For example, one possibility with good potential is to use
controlled mobility to improve wireless network capacity. Looking
beyond communication, we imagine that our mobility algorithms
could be used in conjunction with trajectory-based routing [22] or
other routing methods as acommunication-drivenapproach to dis-
tributed formation of arbitrary spatial layouts of nodes.

In closing, we have elucidated some of the potential uses of con-
trolled mobility in improving network communications. This inter-
face between networking and control theory has been little explored
until now and is sure to be a promising and important area for future
exploration.

7. REFERENCES
[1] NASA project: Planetary exploration using biomimetics.

http://www.oai.org/pages/PlanX.html.

[2] BBC News: Robotic insect takes to the air.
http://news.bbc.co.uk/1/hi/sci/tech/1270306.stm, Apr 2001.

[3] BBC News: Robot insect walks on water.
http://news.bbc.co.uk/2/hi/science/nature/3126299.stm, Aug
2003.

[4] Block Island Workshop on Cooperative Control, Lecture
Notes in Control and Information Sciences, Block Island, RI,
2003. Springer Verlag. To appear.

[5] S. Chakraborty, D. K. Y. Yau, and J. C. S. Lui. On the
effectiveness of movement prediction to reduce energy
consumption in wireless communication (extended abstract).
In Joint International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS) 2003, San
Diego, CA, June 2003.

[6] J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage
control for mobile sensing networks: variations on a theme.
In Mediterranean Conference on Control and Automation,
Lisbon, Portugal, July 9-13 2002.

[7] D. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A
high-throughput path metric for multi-hop wireless routing.
In Mobicom 2003 [21].

[8] DARPA. Self-healing minefield.
http://www.darpa.mil/ato/programs/SHM/.

[9] D. Estrin, J. Heidemann, R. Govindan, and S. Kumar. Next
century challenges: Scalable coordination in sensor
networks. InProceedings of The Fifth International
Conference on Mobile Computing and Networking
(Mobicom) 1999, Seattle, WA, Nov. 1999.

[10] M. Grossglauser and D. N. C. Tse. Mobility increases the
capacity of ad-hoc wireless networks. InProceedings of
IEEE INFOCOM ’00, pages 1360–1369, Tel Aviv, Israel,
Mar. 2001.

[11] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan.
Energy-efficient communication protocols for wireless
microsensor networks. InProceedings of Hawaaian
International Conference on Systems Science, January 2000.
LEACH.

[12] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins.
Global Positioning System: Theory and Practice, Fourth
Edition. Springer-Verlag, 1997.

[13] R. Horn and C. R. Johnson.Matrix Analysis. Cambridge
University Press, New York. NY, 1995.

[14] T.-C. Hou and V. O. Li. Transmission range control in
multihop packet radio networks.IEEE Transactions on
Communications, 34(1):38–44, Jan 1986.

[15] D. L. Hu, B. Chan, and J. W. M. Bush. The hydrodynamics
of water strider locomotion.Nature, 427(7):663–667, August
2003.

[16] A. Jadbabaie, J. Lin, and A. Morse. Coordination of groups
of autonomous mobile agents using nearest neighbor rules.
48.

[17] A. Jardosh, E. Belding-Royer, K. Almeroth, and S. Suri.
Towards realistic mobility models for mobile ad hoc
networks. In Mobicom 2003 [21].

[18] A. M. Ladd, K. E. Bekris, A. Rudys, L. E. Kavraki, D. S.
Wallach, and G. Marceau. Robotics-based location sensing
using wireless Ethernet. InProceedings of The Eighth
International Conference on Mobile Computing and
Networking (Mobicom) 2002, Atlanta, GA, Nov. 2002.

[19] Q. Li and D. Rus. Sending messages to mobile users in
disconnected ad-hoc wireless networks. InProceedings of
The Sixth International Conference on Mobile Computing
and Networking (Mobicom) 2000, Boston, MA, Aug. 2000.

[20] J. Lin, A. Morse, and B. Anderson. Multi-agent rendezvous
problem.Proceedings of the 42nd IEEE CDC, Dec 2003.

[21] Proceedings of The Ninth International Conference on
Mobile Computing and Networking (Mobicom) 2003, San
Diego, CA, Sept 2003.

[22] D. Niculescu and B. Nath. Trajectory-based forwarding and
its applications. In Mobicom 2003 [21].

[23] C. Perkins.Ad Hoc Networking. Addison-Wesley, 2000.

[24] A. Rao, C. Papadimitriou, S. Shenker, and I. Stoica.
Geographic routing without location information. In
Mobicom 2003 [21], pages 96–108.

[25] V. Rodoplu and T. Meng. Minimum energy mobile wireless
networks. InIEEE International Conference on
Communications, Atlanta, GA, June 1998.

[26] E. M. Royer and C. K. Toh. A review of current routing
protocols for ad hoc mobile wireless networks.IEEE
Personal Communications, pages 46–55, April 1999.

[27] A. Savvides, C.-C. Han, and M. B. Strivastava. Dynamic
fine-grained localization in ad-hoc networks of sensors. In
Proceedings of The Seventh International Conference on
Mobile Computing and Networking (Mobicom) 2001, pages
166–179, Rome, Italy, July 2001.

15



[28] I. Stojmenovic and X. Lin. Power-aware localized routing in
wireless networks.IEEE Transactions on Parallel and
Distributed Systems, 12(11):1122–1133, November 2001.

[29] P. A. Tipler.Physics For Scientists and Engineers. Worth
Publishers, 3rd edition, 1991.

[30] C.-K. Toh.Ad Hoc Mobile Wireless Networks: Protocols and
Systems. Prentice Hall PTR, 2001.

[31] J. Yoon, M. Liu, and B. Noble. Sound mobility models. In
Mobicom 2003 [21].

[32] J. Zhao and R. Govindan. Understanding packet delivery
performance in dense wireless sensor networks. In
Proceedings of The First ACM Conference on Embedded
Networked Sensor Systems (SenSys 2003), Los Angles, CA,
Nov. 2003.

16


