
Yale University

Department of Computer Science

Contour-Based Binocular Stereo: Inferring

Coherence in Stereo Tangent Space

Gang Li
Yale University

Steven W. Zucker
Yale University

YALEU/DCS/TR-1324
May 2005



Contour-Based Binocular Stereo: Inferring

Coherence in Stereo Tangent Space

Gang Li
Yale University

Steven W. Zucker
Yale University

Abstract

Standard approaches to stereo correspondence have difficulty when
scene structure does not lie in or near the frontal-parallel plane, in
part because an orientation disparity as well as a positional disparity
is introduced. We propose a correspondence algorithm based on dif-
ferential geometry, and inspired by neurobiology, that takes explicit
advantage of both disparities. The algorithm relates the 2D differ-
ential structure (position, tangent, and curvature) of curves in the
left and right images to the Frenet approximation of the (3D) space
curve. A compatibility function is defined via transport of the Frenet
frames, and they are matched by relaxing this compatibility function
on overlapping neighborhoods along the curve. The remaining false
matches are concurrently eliminated by a model of “near” and “far”
neurons derived from neurobiology. Examples on scenes with complex
3D structures are provided.

1 Introduction

Stereo vision has made significant progress in computer vision [2, 11, 36,
4]. Nevertheless, Fig. 1 reveals many of the problems still remaining for
stereo correspondence algorithms: structure is not fronto-parallel, as in
many man-made scenes; ordering constraints [33] are violated accordingly;
point-wise uniqueness constraints [23, 33, 41] are inconsistent with self-
occlusion; branching and discontinuities are inconsistent with smoothness
constraints [23, 26]; and feature density is not uniform. Nevertheless, there
is a structural relationship between features in the (left, right) image pair
and the 3D scene, and our goal in this paper is to develop this relationship
into a new stereo-correspondence algorithm.

There are two sources of motivation for our algorithm. The first is bio-
logical: tree-dwelling primates are spectacularly adept at stereo [34], which
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implies they can solve the problems in Fig. 1. The neurophysiology in sup-
port of this is classical; and begins with binocularly-selective neurons that
are also orientation selective[17, 32]. This suggests an approach based on
differential geometry, with orientation identified with the tangent to spatial
structure, and leads to our second motivation: to use differential geome-
try [12] to derive the underlying structural relationship between image fea-
tures and 3D spatial structure. But even with the local geometric constraint
there still exist ambiguities: different pairings of image features give rise to
different 3D structures, thereby creating multiple ghost matches as well as
correct ones. So finally we return to the biological motivation, and introduce
an extended model for binocular neurons that implements their “near” and
“far” tuning properties to eliminate these ghost matches. The result is a
system that works on a wide range of imagery rich in contours that meander
through space.

In our algorithm we first need to compute the space curve local approx-
imations based on image measurements. Our geometric calculations follow
the literature on curve matching. Cipolla and Zisserman [8] determined
image tangent and geodesic curvature from a single view of a space curve
under perspective projection. Faugeras and Robert [35, 14] used tangent
and curvature constraints in a trinocular system, and predicted the curva-
ture at a point in the third image based on measurements in the first two.
Assuming knowledge of the fundamental matrix, Schmid and Zisserman [37]
described how to compute the normal at one 3D space curve point, thus
determining the osculating plane (in the form of its planar homography) at
that point from corresponding tangents and curvatures at two perspective
image points. We extend this previous work by showing how to compute
both the normal and the curvature at one 3D space curve point from the
perspective projections of the space curve in two views.

With the space curve local approximations at hand, we futher require
neighboring matching pairs to be consistent. Since the original stereo cor-
respondence problem cannot be solved by the point-wise geometric con-
straints, this idea is natural [24, 25, 33, 29, 6, 41, 38]. But the question
of how to define and formulate good measures of the consistency between
two nearby matching pairs has not been well answered. An early cooper-
ative algorithm[24, 25] simply uses a local excitatory neighborhood of the
same disparity level to support the current matching pair. In the PMF algo-
rithm [33] each potential match receives support from all potential matches
in its neighborhood that satisfy the disparity gradient limit. In the refined
cooperative algorithm [41] the local support is defined as the sum of all
match values within a 3D local support area, designed to include a small
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disparity range as an extra dimension. Shan and Zhang [38] use combined
binary measurements for line segments and curves as the compatibility func-
tion.

We argue that the neighborhood support information, or the compatibil-
ity measure between two nearby possible matches, can be derived geometri-
cally. The normals and curvatures provide the essentials for the basis of our
algorithmic framework, which follows the relaxation or belief propagation
model. The compatibility fields are defined from a local (Frenet) approxi-
mation to a space curve, and these are used to determine how compatible
two pairs of candidate matches are. In a first attempt the space curve was
heuristically approximated [1]. In this work we individually compute the
space curve local approximation for each candidate match pair using cur-
vature. The result is a system that operates on position and orientation
disparities concurrently while integrating the near and far neuron mecha-
nism to address the remaining ambiguity. Although orientation disparity is
widely studied in psychophysics [16], to our knowledge this is the first time
such mechanisms have been used together in stereo matching.

1.1 Overview of Our Approach

Our correspondence algorithm is based on differential geometry and takes
explicit advantage of both position and orientation disparities. The basic
idea is as follows (Fig. 2). A curve in R

3 has a tangent, normal, and bi-
normal frame (Frenet frame) associated with every regular point along it.
For simplicity, consider only the tangent in this frame, and imagine it as
an (infinitly) short line segment. This space tangent projects into a planar
tangent in the left image, and a planar tangent in the right image. Thus,
space tangents project to pairs of image tangents. Now, consider the next
point along the space curve; it too has a tangent, which projects to an-
other pair of image tangents, one in the left image and one in the right
image. The key concept that we utilize in this paper is transport, or the
movement of the frame in R

3 from the second point back to the first, which
is essentially contextual information expressed geometrically; note that this
transport has a correspondence in the left-right image pairs. Our goal is to
use this transport to find corresponding pairs of image tangents such that
their image properties match, as closely as the geometry can be approxi-
mated, the actual space tangents. Two notions of disparity arise from the
above transport model. First, the standard notion of positional disparity
corresponds, through the camera model, to depth. Second, an orientation
disparity is introduced if the space tangent is not in the epipolar plane. In
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Figure 1: (top) Natural scenes are dense in physical structure with depth discontinuities,
occlusions, and junctions, thereby posing a problem to traditional stereo algorithms. For the region
around the center of the left image, when compared to its corresponding part in the right image,
note the left-right ordering constraint fails inside the window because of the depth discontinuity.
Partial occlusion at the junction would cause a problem for the point-wise uniquess constraint. Our
algorithm is designed to function on image pairs such as this. (bottom) The (left,right) tangent
(edge) map pair for the (top) images. Such tangent maps form the basis for our correspondence
algorithm, and suggest a curve-based approach.

the computational vision literature, orientation disparity is largely unex-
plored, except in special cases [20, 39]. The success of our system derives, in
part, from the simultaneous use of position and orientation disparities, and
the underlying differential geometry that naturally combines them.

2 Geometry of Space Curves

Let α(s) be a regular curve parametrized by arc length in R
3. If the Frenet

(tangent, normal, binormal) frame {T0,N0,B0 }, the curvature κ0, and tor-
sion τ0 are known at α(0)(w.l.o.g.), we can obtain a local Frenet approxima-

tion of the curve by taking the third-order Taylor expansion of α at s = 0 and
keeping only the dominant terms: α̂(s) = α(0)+ sT0 + s2

2 κ0N0 + s3

6 κ0τ0B0.
The projection operator π maps this (local) Frenet frame to the left and

right image planes:

4



xr

yr

xl

yl

X

Y

Z

ji

Transport in R3

pair j

pair i
Il Ir

Figure 2: Transport of the Frenet frames in R
3 helps finding consistent left-right image

tangent pairs. Position disparity and orientation disparity are combined naturally.

π : R
3 × T (R3) × N(R3) × B(R3) × κ(R) × τ(R) 7→

R
2 × T (R2) × κ(R) × R

2 × T (R2) × κ(R)

That is, the Frenet trihedron in R
3 projects to two Frenet (tangent, normal)-

dihedra, one in the left image and one in the right image, each augmented
by curvature. Notation T (R3) denotes the tangent space to R

3; while this is
isomorphic to R

3 our notation is chosen to facilitate the reader’s intuition.
We refer to the space R

2 ×R
2 × T (R2)× T (R2)× κ(R)× κ(R) as the stereo

tangent space; a point in this space is (xl, yl, xr, yr, θl, θr, κl, κr), where xi

and yi are the image projection coordinates of X ∈ R
3, θi the orientation

of projected tangent in the image planes, and κi the image curvatures, with
i = { l, r } representing left and right images.

2.1 3D Space Curve Structure From Two Views

We now seek to determine the inverse mapping π−1, the space curve struc-
ture around the 3D point X from its projection in the stereo tangent space.
Unfortunately, as we will show, π−1 is not one-to-one: given a node in the
stereo tangent space i = (xl, yl, xr, yr, θl, θr, κl, κr), we can only determine
the position X, the Frenet frame {T,N,B }, and the curvature κ at the
space curve point. The torsion τ can not be determined. To prove this
we assume the following image measurements are given: position, tangent,
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curvature, i.e. (x, y, θ, κ) at every image curve point in both images. We
further suppose (for space reasons)that the 3D position X and tangent T
are computed by standard methods [13, 15]. Note that in this article we
assume camera calibration information is available. We now describe how
to compute the normal and curvature at a 3D space curve point from two
views.

We begin with a standard construction [7]. Let α be a smooth space
curve with non-vanishing curvature κ. Denote its position by the vector r(s)
in the world coordinate system, and its spherical projection to the unit radius
image sphere with center c by a vector u in the camera coordinate system
(see Fig. 3(a)). Assume the world and the camera coordinate systems have
the same orientation, that is, there is only translation (no rotations) between
them. Then the space curve can be described as: r(s) = c + λ(s)u(s),
where c is the vector pointing to the camera center in the world coordinate
system, λ is the Euclidean distance of r(s) to the camera coordinate system
origin, and u is the vector pointing to its spherical projection in the camera
coordinate system.

Previous work [8, 7] shows that the relationship of image geodesic cur-
vature and the 3D space curve geometry under perspective projection is:

κg =
λκ(u × T) · N

(1 − (u · T)2)
3
2

(1)

where κg is the image geodesic curvature at the image spherical projection u
of the space point being studied, T and N are the space tangent and normal
at that point, κ is the curvature at the space point r(s). We now calculate
the relationship between 3D space curve properties and their (measurable)
perspective projection image plane properties.

Consider the 2D image plane curve formed by r(s) through perspective
projection, with p the vector pointing to the projection in the image plane
(u = p/‖p‖), and f the vector pointing to the image center, both in the
camera coordinate system. Since we choose the camera and image coordi-
nate systems such that they are aligned, two dimensional vectors tangent
and normal in the image coordinate system can be lifted to R

3, the camera
coordinate system, to t and n, with the third component being zero. Note
that this construction will form the same spherical projection as r(s). Fur-
thermore, although for a plane curve the curvature is defined as the signed
curvature κp, and the normal is defined such that the tangent-normal basis
has the same orientation as the coordinate axis basis, the quantity κpn is
still the same if we study this curve as a 3D curve. The binormal at any
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point on this curve is b = t × n = f/‖f‖. The relationship between the
perspective projection image curvature and the geodesic curvature is thus
given by:

κg =
‖p‖κp(u × t) · n

(1 − (u · t)2)
3
2

=
‖p‖κpu · (t × n)

(1 − (u · t)2)
3
2

=
‖p‖κpu · f

‖f‖

(1 − (u · t)2)
3
2

=

1
‖f‖κ

pp · f

(1 − (u · t)2)
3
2

=
‖f‖κp

(1 − (u · t)2)
3
2

=
fκp

(1 − (u · t)2)
3
2

(2)

with f = ‖f‖ the focal length obtained from camera calibration.
Using the geodesic curvature as the bridge, we can now connect the above

two equations to formulate the relationship of the 3D space curve curvature
and its perspective projection image curvature:

λ(u × T) · N

(1 − (u · T)2)
3
2

κ =
f

(1 − (u · t)2)
3
2

κp (3)

Remark 1. By assuming the osculating plane (spanned by T, N) at the
space curve point coincides with the XY plane of the world coordinate sys-
tem (as in [40]), and using similar techniques as [37], we could also derive
the relationship of the 3D space curvature and image curvatures in a pro-
jective geometry framework [13, 15]. The world coordinate system and the
camera coordinate system could have different orientations, with a homog-
raphy used to relate the image plane and the osculating plane. We omit the
formulas due to space limitation.

Assuming there are no rotations among the (left, right) camera co-
ordinate systems and the world coordinate system with known calibra-
tion, now we can compute the normal N and curvature κ at a 3D space
curve point from image measurements (xl, yl, xr, yr, θl, θr, κl, κr) of one cor-
responding pair, where fi is obtained from calibration; pi, ti can be easily
computed from the above image measurements, and denote ul = pl/‖pl‖,
ur = pr/‖pr‖; 3D tangent T and distance (depth) λi can also be computed
using traditional techniques as described previously, with i = { l, r }. Thus
we have:

Proposition 1: Given two perspective views of a 3D space curve with

full calibration, the normal N and curvature κ at a space curve point X
are uniquely determined from the positions, tangents, and curvatures of its
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projections in two images. Thus the Frenet frame {T,N,B } and curvature

κ at the space curve point X can be uniquely determined.

(a) (b)

Figure 3: (a) 3D space curve, its spherical projection to unit sphere, and its perspective
projection to image plane. (b) The geometry for Proposition 1. Given (xl, yl, xr, yr, θl, θr, κl, κr),
we can compute normal N and curvature κ at the 3D space curve point. Thus we can determine
the position, the Frenet frame {T,N,B }, and the curvature κ. But the torsion τ can not be
determined.

Rewriting eq. (3) to keep the unknown normal N and curvature κ on
the left side, and using it for the left and right images, the relationship of
3D position, tangent, normal, and curvature at a space curve point and its
image positions, tangents, and curvatures under perspective projection is:

(ul × T) · Nκ =
fl(1 − (ul · T)2)

3
2

λl(1 − (ul · tl)2)
3
2

κp
l

(ur × T) · Nκ =
fr(1 − (ur · T)2)

3
2

λr(1 − (ur · tr)2)
3
2

κp
r (4)

T · Nκ = 0

where subscript l and r represent measurements from left and right images,
respectively. The last equation specifies that N has to be orthogonal to
tangent T. This is a linear system with four unknowns subject to the con-
straint that ‖N‖ = 1, which can be treated as three unconstrained unknowns
Nκ = {Nxκ, Nyκ, Nzκ }. In general positions this system has a unique so-
lution for these three unknowns, from which we can compute the curvature
κ = ‖Nκ‖ since ‖N‖ = 1 and κ > 0, and normal N = Nκ

κ . Figure 3 il-
lustrates that from (xl, yl, xr, yr, θl, θr, κl, κr) we can compute the 3D space
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curve normal, thus determine the Frenet frame {T,N,B } and curvature κ
at a 3D space curve point, but not the torsion τ .

Remark 2. While in general configurations there is a unique solution,
this system becomes degenerate when the space tangent T is horizontal
(or when T lies inside the epipolar plane in general epipolar geometry).
Then (ul ×T) and (ur ×T) in the first two equations are parallel (linearly
dependent). The space tangent T cannot be computed and the Frenet frame
is undetermined. And also this system has no solution when space curvature
κ vanishes.

Remark 3. The assumption about no rotations (the “rectified” effect)
is not essential and rotations can be introduced to the two view calculation
as well.

3 Stereo Correspondence Algorithm

In the previous section, we described how to compute the space curve local
approximation given image measurements in two perspective views. Now
we describe how this geometric relationship can be used to solve the stereo
correspondence problem. The central idea is as follows.

At each point α(s0) along the space curve, a Frenet approximation can
be constructed to characterize the local behavior of the curve around that
point based solely on the measured information at that point. This Frenet
approximation supplies geometric constraints on nearby points along α(s).
Since measured information is also available for nearby points, it can be com-
pared with the transported information along the approximation at α(s0).
Nearby points whose measured information is “close to” the transported
information are positively supported, and that which is “far away” are not
supported. Both position and orientation information are used in determin-
ing these distances. Note that, for a nearby point on another space curve
β(s), it will be supported by its own neighboring points along β but not by
α(s0).

The situation is analagous to co-circularity in R
2 [30]. Planar curve in-

ference from edge tangents (Fig. 4) indicates how consistent a neighboring
tangent ej is with a given tangent ei. For a unit speed planar image curve
α(s) with positive curvature, the unique osculating circle that approximates
α around s is used to define co-circularity constraints so that nearby (esti-
mated) edge elements can be transported (approximately) along the curve
locally. Compatibility functions encode these transport operations. Three
distances are used in building them for co-circularity: the transport distance
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along the osculating circle, the distance from this point to the edge, and the
angular difference between the measured and the transported edges[30, 43].
A relaxation labeling network maximizes a global functional of how well the
transported edges match. This selects those tangents that minimize such
distances, resulting in geometrically consistent image curve representations.
We now seek to do this for space curves in R

3, but the situation is a little
more complicated.

ej

ei
*

ei

= Cej
Ce i

*

φ
r = 1/κ j

Figure 4: (LEFT) Co-circularity in the plane indicates how consistent a neighboring tangent
ej is with a given tangent ei. Since the positions i and j are close, the actual (edge) curve can be
approximated by its osculating circle at j, and curvature is approximately constant. The neigh-
boring tangent ej can be transported along the osculating circle, and the mismatch in position,
and orientation between e∗

i and ei, provides a (distance) measure between them. The larger the
mismatch, the bigger the distance. Compatibility functions encode these transport operations.
(RIGHT) Examples of the compatibilities around ej (center), derived from planar co-circularity.
Brightness encodes compatibility value for a neighbor tangent ei (of different orientations), with
light gray level for high support and dark gray level for low (no) support. Two samples are for
θj = 0◦ and κj = −0.2; and θj = 45◦ and κj = 0.0, respectively.

3.1 The Discrete Tangent Map

Edges are first detected in each image to provide (x, y, θ, κ), with (x, y)
the position coordinates, θ the orientation of the (edge) tangent, and κ
the curvature. Special care must be taken at occlusions, junctions, and
in general, points where orientation change is not continuous. We allow
multiple tangents to be represented at such image points (Fig. 1), again
following a biological model [42]. To illustrate: at the image junction in
Fig. 5(a), the tangent map has two different tangents, one for the branch in
front and one for the branch behind. These two tangents can match with
the tangents in the right image along the epipolar line. As a result, both
the branch in front and the branch behind have a valid correspondence pair
at the junction point.

This multiple-valued representation is not typically used. For feature-
based methods that use curve primitives, a standard practice is to first use
a traditional edge detector (e.g. Canny [5]), followed by a fitting algorithm
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(e.g. B-spline) to the edge chains. But problems arise (see Fig. 5). In
our model each well-defined 4-tuple (x, y, θ, κ) is a legitimate entry in the
tangent map.

(a) (b)

Figure 5: Problems with standard edge detector: (a) Original image. (b) Edge map of the
highlighted region in (a), returned by Canny edge detector. Note that near T-junctions (arrow)
Canny edge detector incorrectly smoothes discontinuous orientation changes. This leads to two
problems[37]: First, frequently curves are incorrectly joined together (e.g. at T-junctions), thereby
smoothing over discontinuous orientation changes (for details see Fig.15 to Fig.17 in [19]). A curve
in one image then only matches parts of an incorrectly smooth curve in the other image. Second,
point to point correspondence in the image domain is often not unique because of occlusions in
space.

To get the discrete tangent map (Fig. 1), we first use logical/linear op-
erators [19] on the original images to get the initial edge tangents and re-
fine these local measurements using planar co-circularity [30] (Fig.4). This
coarse orientation selection stage is necessary to eliminate noise and to local-
ize points of singularity; i.e. those initial multiple orientations at one spatial
location. It is performed at 16 orientations. Then we use an interpolation
function [10] to improve the orientation accuracy and obtain the curvature
information. The orientation and spatial quantization is improved by six
times. The initial edge tangents are interpolated to 96 quantized orienta-
tions and 21 discrete curvatures(Fig. 1). This discrete tangent map is used
as the input to our stereo algorithm. The additional accuracy in orienta-
tion is required for the orientation disparity component of the compatibility
distance function, derived below. Since orientation is quantized around 2π,
Light/Dark relations along edges are maintained.

3.2 Geometric Compatibilities in Stereo Tangent Space

The (left,right) tangent maps provide the candidate matches to build the
relaxation network. For each item (xl, yl, θl, κl) in the left tangent map, a
search along the epipolar line in the right tangent map reveals pairs of pos-
sible correspondences. Each stereo tangent pair (xl, yl, xr, yr, θl, θr, κl, κr) is
then a node in the relaxation labeling network (described in detail later).
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The edges that connect the nodes in this network are given by spatial neigh-
borhoods in the image domain. The stereo correspondence problem is then
for each node in this network to decide whether it is a correct (TRUE) match
or not (FALSE).

To achieve this goal we define a measure of how compatible two nearby
nodes are. This measure is derived geometrically through the study of the
relationship of the differential properties of 3D objects and their images.

We start with only two (nearby) nodes to illustrate the underlying idea.
For each stereo tangent pair, we compute its local space curve Frenet approx-
imation in its osculating plane as described previously. To infer the whole
3D space curve, we transport the measured tangent along its approximation
to nearby positions and compare with the measured information there. A
relaxation labeling network will select the nodes that are consistent based
on their contextual information.

The heart of this process is cartooned in Fig. 6(a), where two space tan-
gents along the 3D Frenet approximation (at one point) are shown. Observe
that each of the space tangents projects to a pair of image tangents, so the
nodes i and j in the relaxation network consist in pairs of image tangents,
one in the left image and one in the right, and compatibilities rij (denoting
how compatible i and j are assuming both are correct matches) are de-
fined over these pairs. In particular, while the expected positional disparity
between these tangents is introduced, there is also orientation disparity.

A stereo tangent pair, or point in the stereo tangent space, consists in
the 8-tuple: (xl, yl, xr, yr, θl, θr, κl, κr). The set of all stereo tangent pairs
i in the neighborhood of j, such that i and j are compatible, is called the
excitatory compatibility field around j.

To build the compatibility fields for stereo, recall that torsion remains
a free parameter. 1 However, the Frenet frame does specify the osculating
plane in R

3, so we use transport distance along the Frenet approximation
in the osculating plane at each point to define the compatibility field (a
“piecewise co-circularity” in R

3)(see Fig. 6). Moving along the curve, the
Frenet approximation (and the osculating plane) change accordingly. In
practice, we found this model works sufficiently well. Since the change of the
pose of the osculating plane in R

3 is related to the torsion, the result amounts
to a minimal torsion constraint.We conjecture that τ varies smoothly along
the curve almost everywhere.

1From Frenet formulas[12] we have B′ = −τN, torsion can be approximated by the fi-
nite difference of two nearby nodes in the stereo tangent space, τ(s0) = −B′(s0)/N(s0) =

− lims1→s0

B(s1)−B(s0)
(s1−s0)N(s0)

≈ −
B(s1)−B(s0)
(s1−s0)N(s0)

. But in practice not much information can be ob-

tained through this computation due to coarse quantization of the measurable quantities.
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Given two nearby nodes i and j in the stereo tangent space, which sep-
arately encode their own position disparity and orientation disparity in the
image pair, the compatibility rij that both node i and j are “TRUE” (i.e.
correct match) is determined by both the position disparity and the orienta-
tion disparity as well. We implement it similarly to co-circularity for planar
image curves (Fig. 4). Let the reconstructed 3D tangents be ei, ej , then
project ei to the Frenet approximation computed at ej in the osculating
plane given by the (Tj , Nj) frame (Fig. 6). The transported tangent along
the approximation to this projection point is e∗i . We call the distance from
ej to e∗i along the approximation the transport distance s, c the projection
distance from ei to the approximation, and ∆φ the angular rotation between
projected ei and e∗i . Then the compatibility rij that both node i and j are
“TRUE” is given by:

rij(TRUE, TRUE) = Gσt(s)Gσc(c)cos(∆φ) (5)

where Gσt(s) and Gσc(c) are Gaussian kernels with parameters σt, σc.

T

N
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j je

ei
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(a) (b) (c)

Figure 6: (a) Cartoon of the stereo relaxation process. (top) shows a pair of space tan-
gents associated with the Frenet approximation around the point with tangent ej . Each of these
tangents projects to a (left,right) image tangent pair; compatibility between the space tangents
thus corresponds to compatibility over (left,right) image tangent pairs. The projected tangents
are shown as thick lines. One left image tangent is redrawn in the right image (as thin lines) to
illustrate positional disparity (∆d) and orientation disparity (∆θ). (b) Illustration of transported
information. The nearby tangent at ei is projected onto the Frenet approximation computed at
ej . According to the minimum torsion constraint, this is approximated by projection onto the
Frenet approximation at ej in the osculating plane given by the (Tj ,Nj) frame. Thus three com-
ponents contribute to the compatibility: transport distance along the approximation; projection
distance onto the approximation; and angular rotation to tangency. (c) As we move along the
space curve, the Frenet approximation (and the osculating plane) change accordingly.

An intuitive demonstration of “slices” of sample compatibility fields rij
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around j are shown in Fig. 7. The left and right images of a 13x13 neighbor-
hood centered at node j = (940, 0,−940, 0, 131◦, 120◦, 0.5712, 0.4760) (red
colored tangent pair in the center) are shown in (a)(b). The position dispar-
ity is fixed between the left and right images such that the tangent in the
left image matches to the tangent at the same relative position in the right
image. With the orientation of the tangents in the right image fixed to be
116◦ (Fig. 7(b)), by varying the orientation of the tangents in the left image
at each position, we can show the degree of support a neighboring node i
receives from j. Brightess encodes compatibility value with light gray level
for high support and dark gray level for low (no) support. Fig. 7(c) shows
only the positive support part of Fig. 7(a). Fig. 7(d) shows three slices
at different depths, with Fig. 7(c) as the middle one. From these few slices
we can see that both position and orientation disparities affect the com-
patibilities. For display purposes only eight orientations are shown. The
computation was performed with a stereo baseline 334mm and focal length
1274 pixels.

Extending this sample compatibility field provides a justification of our
choice for the geometric compatibilities. Fig. 8 shows the compatibility fields
if we use only image position information, or if we use only position infor-
mation and image tangents. This figure should be compared with Fig. 7(c).
If only the position information is used to determine the compatibility field,
the distance from a neighboring node to the central node will be used as the
compatibility measure. At each position different orientations have the same
magnitude of support without any preference(Fig.8(a)), which is undesir-
able. If, in addition to the position information we also use image tangents,
the compatibility measure will be a combination of distance to the central
node and the orientation difference between the two space tangents. The
resulting compatibility fields prefer certain orientations (Fig. 8(b)). What is
still missing is the “bending” and “twisting” effect (imagine the “bending”
and “twisting” of a space curve and the projection of its 3D tangents to
the images). The consideration of curvatures is necessary to take this effect
into account (see Fig.7(c)). Also keep in mind that this simple comparison
is carried out for fixed positional disparities (depth), and the edge tangents
in the right image have the same orientation. The difference between these
and the proposed compatibility fields becomes more obvious if a 3D version
for these is examined (compare with Fig. 7(d)).
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(a) (b) (c)

d

d+1

d−1

(d)

Figure 7: Sample compatibility fields around node j (see text for details): (a)(b) Left and
right images of a 13x13 neighborhood centered at the two red colored tangents (node j). Fixing
the position disparity and the tangent direction in the right image, left image shows different
compatibilities from node j for neighboring tangents of different orientations (node i). Brightess
encodes compatibility value with light gray level for high support and dark gray level for low (no)
support. (c) Redraw (a) to show only the “positive” support part. (d) Slices of compatibility
fields at different depth, both position and orientation disparities affect the compatibilities.

3.3 Stereo Via Relaxation Labeling

We now specify the stereo algorithm in more detail. The task is to select
pairs of nodes in the stereo tangent space that are most consistent with one
another by a relaxation labeling network using the discrete compatibility
fields just sketched. (They will be refined below.)

Relaxation labeling [18] is a computational framework for finding consis-
tent structures within a network of hypotheses (labels) assigned to nodes in
a graph based on the parallel use of local constraints. Suppose a set of nodes
are given, and a set of labels are defined for each node. pi(λ) is the probabil-
ity that label λ is correct for node i, therefore: (1) 0 ≤ pi(λ) ≤ 1, ∀i, λ; and
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(a) (b)

Figure 8: Left image showing alternative compatibility fields: (a) if only position information
is used, and (b) if position information plus image tangents are used. Note the lack of “bending”
and “twisting” effect, which becomes more obvious if a 3D version is examined.

(2)
∑

λ∈Λ pi(λ) = 1, ∀i. The relaxation labeling process starts with a given,
often ambiguous labeling assignment and iteratively updates the probabili-
ties to a more consistent one. Consistency between λ for i and λ′ for j is de-
noted by the compatibilities rij(λ, λ′). The contextual support label λ on node
i receives from its neighbors is: si(λ) =

∑
j

∑
λ′ rij(λ, λ′)pj(λ

′). Labels are
selected at each node by an constrained gradient ascent that maximizes the
functional A(p) =

∑
i

∑
λ pi(λ)si(λ) =

∑
i

∑
λ

∑
j

∑
λ′ pi(λ)rij(λ, λ′)pj(λ

′)

in parallel for all nodes i and labels λ, using the update rule pt+1
i (λ) =

ΠK[pt
i(λ)+δst

i(λ)], ΠK is an operator that projects its argument onto K, the
space of all possible assignments, and δ a constant step size.

The choice of relaxation labeling for this computation is motivated by
the observation that each decision regarding a stereo tangent pair is coupled
with all other possible decisions involving either tangent in the pair cou-
pled in their possible ways. Such coupled decisions are formally games, and
relaxation labeling with zero self-payoff terms has been proven to be equiv-
alent to a polymatrix game [27]. Compatibility fields correspond to payoffs,
and the consistent points of relaxation labeling are the Nash equilibria of
the corresponding game [28]. Computationally such games are examples of
linear complementarity problems and other algorithms can be used to solve
them [9]. Our compatibilities could also be adopted to other mathematical
programming or belief propagation systems; our focus in this paper is on
deriving the compatibilities and illustrating their use.

For the stereo correspondence problem, a relaxation network G is built
on the stereo tangent space. Let G = (V, E), then V is the set of nodes
i = (xl, yl, xr, yr, θl, θr, κl, κr) in the stereo tangent space. They are the ini-
tial stereo correspondence hypotheses, and are obtained by using the epipo-
lar constraint plus thresholds on the maximum allowable position disparity,
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orientation disparity and curvature disparity. No heuristic constraint (such
as ordering constraint) is used. The edges E in this network are determined
by the spatial neighborhoods. For node i, an edge is established to another
(neighboring) node j which falls into a 13x13x13 region (along x, y, and
disparity dimensions, respectively) centered at i, and a geometric compat-
ibility measure denoting how compatible they are will be computed. Each
node is assigned two labels λ ∈ {T, F }, meaning “TRUE” and “FALSE”,
respectively. Since there are only two possible labels at each node and
pi(T ) + pi(F ) = 1, we only store pi = pi(T ) (pi(F ) = 1 − pi). By imposing
the design condition that si(F ) = −si(T ), we can realize the compatibility
structure to be [3]: rij(T, T ) = −rij(T, F ) = −rij(F, T ) = rij(F, F ). Thus
we can simplify notation with pi, rij , and si, referring to pi(T ), rij(T, T ),
and si(T ), respectively. Then the update rule takes a very simple formula:

pt+1
i = Π1

0[p
t
i + δ

∑

j

rijp
t
j ] (6)

where Π1
0(x) , min(1, max(0, x)), denoting projection onto [0,1], and δ

is a constant step size. In our stereo system we set the confidences of all
initial hypotheses with p0

i = 0.5, and iteratively update the confidences with
the above update rule, using the geometric compatibilities rij as described
previously. Initial hypotheses that are compatible with the context in which
they are embedded get enough support to incerease their probabilities. After
the relaxation process converges, a threshold (p ≥ 0.95 in our experiments)
reveals all (TRUE) correspondences.

3.4 Refining Compatibility Fields

Even with the local geometric relationship derived above, however, there
still can be ambiguities along the epipolar line; we now address these in the
remaining two terms necessary for our compatibility functions. As we show,
both inhibit putative reconstructions that stand improperly in depth. To
illustrate, Fig. 9 shows the reconstruction based solely on geometric rela-
tionships. In the front view (Fig. 9(c)), the left and right parts have similar
(correct) depth, while the middle parts are false matches. The rotated view
(Fig. 9(d)) shows the correct matches as the middle two branches with simi-
lar depth. Such false matches will generically arise from the geometry alone
because one point in the left image could possibly match to multiple points
in the right image.
A. Disparity Gradient Limit and Ordering Constraints Revisited:
Different constraints on nearby matching pairs have been proposed: The
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(a) (b) (c) (d)

Figure 9: False matches from attempting correspondence on a pair of twigs, because the
geometric compatibilities can apply to all possible matches. (e.g., the left branch in (a) can match
both the left and right brances in (b), and so on.) (a)(b) Left and right tangent maps. (c) Front
view of reconstruction showing false matches (the middle two). (d) Rotated view showing false
matches plus ghosts from noise in the tangent map. Depth scale shown at right.

ordering constraint holds that it is geometrically impossible for points aris-
ing from the same opaque surface to be differently ordered in the two im-
ages [33, 13]; The disparity gradient limit constraint states that, given cam-
era geometry approximating the arrangement of human eyes, a disparity
gradient limit of 1 for points on a single object will almost always be satis-
fied for the correct matches [33]. Much psychophysical and analytical study
supports this.

However, as remarked in Sec.1, these constraints frequently break down
for the examples in this article. The discrepency arises from ubiquitously
(but incorrectly) assuming that, if only a small neighborhood is used in
matching, then every primitive inside this region comes from a single object.
If this is the case, then such constraints can be applied; if not, they cannot. A
close look at the problem regions we pinpointed previously reveals this point
immediately: for the image primitives from a single object (e.g. either the
front branch or the back branch in the highlighted region of Fig.1), these
constraints hold. It is not these constraints but their use with incorrect
assumptions that is misleading: Small image neighborhood does not imply
single object.

A chicken-and-egg problem emerges: our task for stereo correspondence
must determine whether a candidate matching pair is a true match or not,
i.e. whether it comes from an object in 3D space. But without knowing this,
how can we determine which other neighboring pairs come from the same
object so that the above constraints can be safely applied? For curves the
Frenet approximation extends image position: In general, neighbors whose
tangents continue (in 3D space) likely come from the same object.

We exploit this as follows. For a matching pair, if its computed 3D tan-
gent deviates greatly from the frontal parallel plane, then it will propagate
space curves with large disparity gradient values. For such pairs we sim-
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ply suppress their geometric compatibilities. The new compatibility value
is given by:

r′ij = L(Tj)rij (7)

where rij is computed as in the previous subsection and L(Tj) = {
0, DG(Tj) > 1
1, otherwise

,

with DG(Tj) the Disparity Gradient for space tangent Tj at position given
by node j.
B. Near/Far Inhibition: Our final modification of the compatibilities
implements the uniqueness constraint often applied in the image domain,
but again lifted into space. It functions in effect as a prior for the geom-
etry, inhibiting matches “near” and “far” from strong, preferred matches.
Matches are preferred in decreasing order from fixation and in proportion
to geometric match support(Fig. 10). We observe there is a direct biolog-
ical realization of this prior. We remarked earlier that binocular neurons
were orientation selective. We now observe that they also can be classified
into three groups [31](Fig. 10): (1)Tuned excitatory neurons form a group
that are disparity selective over a limited (and often narrow) range. (2)Far

neurons exhibit a selectivity for uncrossed disparities; and (3)Near neurons

are selective for crossed disparities. Far and near neurons are complemen-
tary: One set gives excitatory responses to objects farther than the point of
fixation and inhibitory responses to nearer objects; while other set has the
opposite behavior, excitation for nearer objects and inhibition for further
ones [22]2.

4 Experimental Results

4.1 Synthetic Example

We first assessed the accuracy of our algorithm with synthetic images. Twenty
algebraic 3D space curves were generated with parameters chosen randomly.
In these are five helices, five elliptical helices, and ten piecewise polynomial
3D space curves (each obtained using cubic spline interpolation with ten
control points). The curves were all started at a distance of 1800mm, and

2We believe this explains the double-nail illusion [21]. The configuration consists of two “nails”
held straight ahead at reading distance, one a few centimeters behind the other at the same eye
level. The viewer perceives two illusory nails side by side rather than one in front of the other.
This follows because they are in the disparity tuning zone of the tuned excitatory neurons, (that
is, consistent with our geometry), and because the inhibition of the near and far neurons, the
(true) front and back nails are not perceived.
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Figure 10: Near and Far neuron tuning function. In biological terms depth can be encoded
by neurons tuned to specific disparities; this is cartooned here as an excitatory neuron tuned
to 0 disparity. Also shown are tuning curves for near and far neurons (in dashed lines), which
are excited (resp. inhibited) by stimuli closer (resp. further) than the point of fixation. In our
implementation (in solid lines), the geometric compatibility functions are refined by these tuning
curves. Thus potential matches are supported by geometric consistency but inhibited by better
matches in the neighborhood.

ranged in depth from about 1640mm to 1960mm. These were then pro-
jected through the camera model to create an image pair, and our algo-
rithm was run on this pair. The results were then compared with ground
truth (Fig. 11). The quantization in the system is such that one pixel cor-
responds to about 9.3mm (at 1.8m), which shows that our edge detection
and interpolation are functioning to sub-pixel accuracy.
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Figure 11: Error analysis from a series of 20 algebraic curves with random parameters (see
text). (LEFT) Plot of reconstructed depth and true depth vs. arc length for an elliptical helix;
standard deviation: 1.7mm; maximal difference 8.0mm. (RIGHT) Average depth reconstruction
error (absolute value) of 20 3D curves vs. depth. Standard deviation: 2.1mm.

20



4.2 Natural Scene Examples

Fig. 12 shows the 3D reconstruction of image pair (Fig. 1) by our algorithm.
The color depth map indicates both the front and the back branches are
correctly reconstructed. As pointed out earlier, at the image junction point
in the left image the tangent map has two different tangents, one for the
branch in front and one for the branch behind. These two tangents both
get matched with the tangents in the right image along the epipolar line.
As a result, both the branch in front and the branch behind have a valid
correspondence pair at the junction point and they are both recovered as
smooth space curves. Such reconstructions can be observed throughout the
experimental section. A few false matches (about 0.9%) between the two
layers can be seen from the birds-eye view. The running time of our stereo
algorithm on this pair is 43 seconds on a Intel Xeon 2.4GHz PC with 1GB
memory. The computation of the geometric compatibility fields accounts for
about 70% of the total computation. And the relaxation process converged
after 5 iterations. A pair of Sony XC-555 cameras equiped with 12mm lenses
were used for the experiments. The baseline for this stereo pair is 128mm.
Parameters for the geometric compatibilities (eq. (5)) are σt = 3.0mm,
σc = 1.5mm with the selection based on the quantization of our system
and the size of the neighborhood region that we use. Parameter values and
number of iterations remain fixed for all experiments in this section.

(a) (b) (c)

Figure 12: 3D reconstruction of Fig. 1: (a)(b) Results at two different viewpoints. (c)
Birds-eye view. Note the two layers are clearly separated, and the false matches in (c) form short
segments rather than long curves and could be easily removed. Colored depth scale is shown at
right (units: meters).

Fig. 13 shows a more complex scene which is a lamp with curves defin-
ing its circular shape. The space configuration of this lamp is that curves
winding from upper left to lower right are closer than the vertical bar, while
curves winding from upper right to lower left are further away than the
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vertical bar. Fig. 14 shows our reconstruction result. The 3D configuration
is correctly recovered when compared to the depth scale at right 3. The
running time of our stereo algorithm on this pair is 84 seconds. The gaps
between curve segments arise for two reasons in our reconstruction. First,
edge information is missing from some crossings, so no reconstruction is
available for these short segments. Second, when image edge tangents are
horizontal (or when they pass epipoles in general stereo configuration), the
solution to the 3D tangent is unstable and the 3D Frenet frame can not
be determined (Remark 2). In our algorithm these edge tangents are not
used for reconstruction, which explains the lack of 3D reconstruction for
horizontal edges near the top of lamp pair.

Since no other feature-based algorithms are available for comparison, we
experimented with several dense stereo algorithms [36]. Maintaining only
the confident values (c > 0.04) of the cooperative algorithm [41] provided
the best results among these algorithms (Fig. 14(c)) for this pair. Note
the missing curves at several places and the lack of smooth depth change
along the curves. As we remarked earlier, although their algorithm also
uses neighboring support between nearby matching pairs, our geometric
consistency requirement outperforms traditional methods for these difficult
scenes.

A natural plant example is shown in Fig. 15, where the matched curve
points are overlayed with the orginal image pair to provide an intuitive idea
of which curve points are matched.

In Fig. 16 we show an example of wires winding in a complex fashion
relevant to complex grouping tasks in 3D. The three layers are clearly sepa-
rated and their respective depth is vivid when compared to the depth scale
at right. For this pair only the curve points on the wires are used to test
our algorithm. Note that when space curvature κ vanishes the Frenet frame
is undetermined. Under this situation our system degrades gracefully where
the space curve local approximation is essentially the tangent line.

To compare with other curve based algorithms, we emulate the experi-
ment performed in [37]. Our result(Fig. 17) is shown with matched curves
overlayed on the original images. Note that although they also use image
curvatures, the fundamental difference between our algorithm and theirs is
that we use “transport”, or the moving Frenet frames to geometrically con-
nect neighboring matching pairs. This provides extra geometric constraint.
Finally in Fig. 18 is another natural scene example. These last two examples

3All image pairs and results (in this paper) are available at http://www.cs.yale.edu/˜li-
gang/research/CurveStereo
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Figure 13: (TOP) Left and right images of a lamp. The space configuration of this lamp is
that curves winding from upper left to lower right are closer than the vertical bar, while curves
winding from upper right to lower left are further away than the vertical bar. (BOTTOM) Discrete
tangent map.

have a relatively “planar” structure.

5 Summary

By relating the differential structures at image points (position, tangent, and
curvature) in the left and right images with the geometry of the space curve
point (position, Frenet frame, and curvature), we show how nearby image
correspondence pairs should be consistent with the Frenet approximation
of the space curve, and how this compatibility relation can be put into a
stereo relaxation labeling network where positional disparity and orientation
disparity are combined naturally. Examples show how well our algorithm
performs on scenes with complex 3D structure, especially at places where
heuristic constraints fail.

Although there was not sufficient space to develop the neurobiological
foundations of our algorithm, we observe in closing how important they were

23



(a) (b) (c)

Figure 14: 3D Reconstruction of the lamp pair: (a)(b) Our results at two different viewpoints.
(c) Cooperative algorithm result [41]. Colored depth scale is shown at right (units: meters).

to its formulation. Continuing along this thought suggests that the next step
in developing these algorithms will invoke feedback from the reconstruction
to the initial edge maps, analagous to the feedback between different visual
areas, to complete those curves poorly inferred from monocular data.
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