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Abstract

Physicists believe that the world is described in terms of gauge theories. A popular
technique for investigating these theories is to discretize them onto a lattice and simulate
numerically by a computer, yielding so-called lattice gauge theory. Such computations re-
quire at least 10'* floating-point operations, necessitating the use of advanced architecture
supercomputers such as the Connection Machine made by Thinking Machines Corporation.
Currently the most important gauge theory to be solved is that describing the sub-nuclear
world of high energy physics: Quantum Chromo-dynamics (QCD). The simplest example
of a gauge theory is Quantum Electro-dynamics (QED), the theory which describes the
interaction of electrons and photons. Simulation of QCD requires computer software very
similar to that for the simpler QED problem. Our current QED code achieves a computa-
tional rate of 1.6 million lattice site updates per second for a Monte Carlo algorithm, and
7.4 million site updates per second for a microcanonical algorithm. The estimated perfor-
mance for a Monte Carlo QCD code is 200,000 site updates per second (or 5.6 Gflops/sec).

t also: Departments of Computer Science and Electrical Engineering, Yale University,
P.O. Box 2158, New Haven, CT 06520




1. Introduction
Universally accepted for some time has been the belief that testing the fundamental

interaction laws of physics will demand enormous computing resources. This is a conse-
quence of the fact that the gauge theories involved do not permit an analytic solution, and
large-scale Monte Carlo, or alternatively microcanonical, simulations have to be performed.
These computer simulations generate configurations which then have to undergo extensive
analysis before yielding the desired results. Depending on the form of the gauge field being
simulated, the configurations may correspond to either QED (quantum electro-dynamics)

or QCD (quantum chromo-dynamics).

The configurations are of a space-time region containing the gauge fields. The interac-
tion of these fields is governed by a coupling parameter, which is analogous to temperature.
It is possible to represent the four dimensions involved as four Euclidean dimensions, and
the region is bounded in these four dimensions by cyclic repetition. The gauge fields within
this region are initially randomized and then allowed to attain thermodynamic equilibrium

following either Monte Carlo or microcanonical algorithms.

2. Connection Machine

The Connection Machine [6] is configured as 1 - 4 quarter sized units, each consisting
of 128 Mbytes of memory using 256 kbits memory chips, or 512 Mbytes using chips of 1
Mbits each. The fully configured machine has 64k processors. The Connection Machine
can also be equipped with hardware support for floating-point operations giving it a peak
performance of several Gflops/sec (for example, 15.5 Gflops/sec for 4x4 matrix multipli-
cation). The communication system in the Connection Machine includes a router, largely
implemented in hardware. The router allows for efficient access to any part of memory,
which is partitioned into 8 kbytes/processor. There are 16 processors to a Connection Ma-
chine chip, and a maximum of 4k such chips interconnected as a 12-dimensional Boolean
cube. The communication bandwidth depends on the access pattern, with a peak memory
bandwidth of 50 Gbytes/sec, and a bandwidth of 1.6 - 16 Gbytes/sec for emulation of
lattices, 7 - 16 Gbytes/sec for emulation of butterfly networks, and about one fifth of that
for random permutations.

The Connection Machine requires a host, which currently can be either a VAX with
a BlI-bus, or a Symbolics 3600 series Lisp Machine. The programming languages for the
Connection Machine are currently C* [12] and *Lisp [14], with *Fortran [13] becoming
available later this year. C* is strongly influenced by C++, *Lisp is an extension of Com-
mon Lisp, and *Fortran implements the array extensions proposed for Fortran 8X [9]. The

modifications essentially amount to one new data type, known as poly in C* and parallel
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variables (pvars) in *Lisp. In C* domains are used to identify objects with the same data
structure. In C* the difference between poly and mono variables, and operations upon
them, is entirely transparent to the programmer, and so is communication. The program-
ming and debugging environment is that provided by the language environment on the
host machine. The Connection Machine is mapped into the address space of the host. The
host fetches the program instructions from its memory, and passes on to the Connection
Machine instructions that apply to variables in the Connection Machine memory. The
host provides the scalar processing capability. Instructions for the Connection Machine
are decoded and executed by a microcontroller that manages it.

All languages on the Connection Machine support a “data parallel]” programming
model. For many problems in science and engineering it is often convenient to express data
structures and computations in the original problem domain, like four dimensional lattices
for QED and QCD simulations, and two and three dimensional lattices for solving many
partial differential equations in engineering. The order of the parallelism with suitable
algorithms is often the same as the order of the data set. Expressing algorithms at this
level is simple, and the programming languages on the Connection Machine support it,
for instance by providing primitives for relative addressing in multi-dimensional lattices.
Another important feature is that of virtual processors, which allows the programmer to
focus on the data structures in the problem domain by associating a virtual processor
with each “atomic” object, like a lattice point. The mapping to real Connection Machine
processors is currently made at compile time, and is transparent to the user. Each virtual
processor allocated to a real processor occupies a part of that processors memory. The
virtual processors assigned to a real processor time-share that processor. The scheduling

is transparent to the user.

3. Physics

In constructing a lattice gauge theory the gauge symmetry must be kept explicit in
the lattice formulation so that in the continuum limit (when the lattice spacing tends to
zero) the original gauge theory is recovered. The simplest such formulation is the original
one due to Wilson [15] in which the action S for the gauge fields U is local, involving
only the product of the gauge fields around elementary squares, called plaquettes, on the

lattice. This is written as follows
1
S(U)=pBEU) = ,BZ(I - ﬁReTrUp) , (1)
P

with
U, = Uu()U, (n+ W)U} (n + 2)UJ (n), (2)
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and is illustrated in Figure 1. The gauge fields U,(n) are elements of the gauge group
of the theory being studied (U(1) for QED, SU(3) for QCD). They are associated with
links on the four dimensional lattice joining sites n and n + [, where f is a unit lattice

vector in the p-direction. U,(n) is a directed variable: in going from n + f to n we use

U I (n). The parameter 3 determines the coupling (interaction strength) or “temperature”
of the theory; the constant N is the dimensionality of the group elements (1 for QED, 3
for QCD).

As we are primarily concerned with QED here, it is worth giving slightly more detail
for this particular theory. The gauge group for QED is U(1) and the elements of this group

may be represented by complex numbers with unit modulus:

U,(n) € U(L) = (™, (3)

Hence U I (n) = e~%»(") and Eqn. (1) can be rewritten as
50) =8 X [1 — cos(Buln) +0u(n+ 1) — B,(n-+ ) - Bu(m), ()
P

which is the form implemented in the QED code.

There are several algorithms which can be used for the computer simulation of lat-
tice gauge theory. These algorithms fall into two categories: stochastic or deterministic.
The most popular stochastic method is Monte Carlo, as exemplified by the Metropolis
algorithm [10]; the deterministic method used is usually a microcanonical algorithm [1].
The Monte Carlo algorithm changes the energy of a system while keeping its temperature
constant, whereas the microcanonical algorithm conserves the total energy while allowing
temperature to vary. We make use of both in our QED code. The Monte Carlo method
is used first to bring the lattice gauge theory into equilibrium at a specified temperature
(coupling), then the (faster) microcanonical algorithm is used to evolve the system for
measurements of its properties. During the latter phase we periodically switch back to the

Monte Carlo algorithm in order to obtain ergodicity [2].

3.1. The Monte Carlo algorithm

Monte Carlo algorithms, such as Metropolis [10], cycle through all the gauge field
links of the lattice by a random procedure changing their values until they settle down
into physically correct configurations, C. These are such that, when statistical equilibrium
is reached, the probability of finding any one of them is proportional to its Boltzmann
factor e=5(C), where S is the action of the gauge theory. A sufficient condition for sta-

tistical equilibrium to be attained is that, at each step of the Monte Carlo algorithm, the
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probability of changing a configuration C into a new one C' is the same as the probability
of changing C' back to C. This is called “detailed balance” and it has important conse-
quences for parallel computer implementations - in order to preserve detailed balance one
cannot simultaneously update gauge field links which interact with one another. As the
action involves interactions around plaquettes, one can therefore update only half the links
in any one dimension simultaneously and preserve detailed balance, as shown in Figure 2
(in two dimensions for simplicity). On a parallel computer full processor utilization is ob-
tained by observing that there are two plaquettes to be calculated for each dimension and
link update, and scheduling half of the processors to calculate the “positive plaquettes”
and half to calculate the “negative plaquettes”, Figure 3.

The way the Metropolis algorithm proceeds computationally is as follows. In order
to change a configuration C into another C' the change in action (3 times the change in
energy) is computed:

AS = S(C") - S(0C). (5)
If AS <0, the change is accepted and C replaced with C'; otherwise if AS > 0, the new
configuration is accepted with the probability e, In practice this is done by generating
a pseudo-random number = in the interval (0,1] with uniform distribution. If » < ™45,
the change is accepted; otherwise it is rejected. With the condition AS < log.r and Eqns.
(4) and (5), it is relatively straightforward to write the pseudo-code in Appendix A for one

Monte Carlo update. The operations required are given in Table 1.

3.2. The Microcanonical algorithm
Monte Carlo algorithms move through configuration space stochastically, whereas the
microcanonical algorithm moves deterministically. Here, one enlarges the configuration
space by adding fictitious momenta canonical to the degrees of freedom one wants to
study, then solves Newton’s equations [1]. Computationally this means solving coupled
partial differential equations using difference approximations. The gauge theory action
S = BE is interpreted as [ times the potential energy for a classical dynamics governed
by Newton’s law:
U@) = —E(U). (6)
Then the canonical momentum II = U and the Hamiltonian H(II,U) = I12/2 + E(U) are
introduced. From the resulting kinetic energy term T' one obtains the temperature of the
system as
B! = 2T/ Nindeps (7
where Njpgep is the number of linearly independent variables amoung the N gauge field

links U. Njpndep < N because of the gauge symmetry in the theory. In the thermodynamic
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limit (N — oo) the number of linearly independent variables in d dimensions for the U(1)
gauge theory is
Ningep = [(d—1)/d]N = (d — 1)L, (8)

for a hypercube with L lattice sites along each side.
Again, it is worth going into slightly more detail for QED. We write U,(n) = e®?x(")
and use Eqn. (4) to turn Eqn. (6) into:

bu(n) = = 3 [sin(0(m) + 0, (n + 1)~ Oy(n+ ) ()
v#p
(9)
—sin(fu(n—2)+0,(n+ p— ) — 0,(n) — 0,(n — D))|.

This is pseudo-coded to perform one microcanonical update in Appendix B, yielding the

operation counts listed in the third column of Table 1.

4. Communication Structure

The communication structure for QED and QCD calculations is a regular, periodic,
four-dimensional lattice. It is well known [3,8] that multidimensional lattices with sides
being powers of 2 can be mapped into Boolean cubes preserving adjacency by using a Gray
code [4]. Gray codes by definition differ in a single bit for consecutive numbers. Nodes in
a Boolean cube can be assigned addresses such that adjacent nodes have addresses that
differ in precisely one bit. The most frequently used Gray code for lattice embedding in
Boolean cubes is a binary-reflected Gray code [11]. This Gray code is periodic. Grids of
arbitrary shapes can be embedded preserving proximity, but not adjacency, with minimal
expansion [5,7], that is, the number of cube nodes need not be greater than the smallest
number of dimensions required to provide at least as many nodes in the cube as the total
number of nodes in the lattice. We only consider lattices with sides being powers of two
here.

The address field of the Connection Machine is divided into three parts:
(of f — chiplon — chip|virtual processors). Configuring the Connection Machine as a lat-
tice automatically provides a binary-reflected Gray code encoding of the nodes in each
dimension of the lattice. What bits, or dimensions, in the Connection Machine address
field are used for a lattice dimension can be selected by the programmer. In order to
minimize the total communication the surface for a given volume should be minimized,
with the same frequency of communication in all directions. Hence, for the QED and QCD
calculations the subfield |on — chip|virtual processors) is divided as equally as possible

between the four dimensions. The length of the on-chip field is 4 bits, and if there is one
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virtual processor per real processor a Connection Machine chip will simply hold a 2x2x2x2
sublattice. Our current code allows for 64 virtual processors for a Connection Machine
equipped with 256 kbits memory chips. The sublattice on chip is in this case configured as
a 8x8x4x4 lattice (4+6 bits). With one virtual processor the number of lattice points that
communicate off-chip in any direction is 8, and the number of on-chip communications is
8. With 64 virtual processors the number of off-chip communications is 256 in two direc-
tions and 128 in two directions, and the number of on-chip communications is 768 and
896 respectively. On-chip communications are equivalent to moves (memory to memory

copies).

5. Timings

Table 2 provides measured times for all essential operations used in the QED code
implemented on a Connection Machine with hardware support for 32-bit IEEE format,
floating-point operations. The timings have all been made on early models operating at
a clock rate of 6.4 MHz and projected to the specified 8 MHz rate. The predicted times
required for one complete update of each algorithm - Monte Carlo and microcanonical -
for QED with one and 64 lattice sites per processor are listed in Table 3, and the actual
measured times and corresponding millions of site updates per second are listed in Tables
4 and 5, respectively. The figures for site updates per second, and total floating-point rate
are projected to a full machine from smaller configurations (8k and 16k configurations).
The measured times are longer than the predicted times because the predictions ignore
some infrequent operations and the overhead of the host broadcasting instructions to the
processors.

In computing the floating-point rate in Table 6 the operations for the random num-
ber generation are neglected. The implementation of the trigonometric functions uses 34
floating-point operations, and operates at 11 - 11.5 Gflops/sec. The logarithm evaluation
uses 14 floating-point operations. The trigonometric functions and the logarithm evalu-
ation are part of a library coded for efficent use of the floating-point unit. The random
number generator has not yet been coded for efficiency. A considerable improvement is
expected. The communication time can be improved by a factor of 2 for computations on
a lattice of 64* (16 million) lattice sites. Such a simulation would require 1 Mbits memory
chips. By simulating lattices of this size and performing code improvements a performance

gain by a factor of 1.5 - 2 is expected.

6. Conclusions
We have successfully implemented a QED simulation on the Connection Machine as

a first step towards implementation of a QCD simulation. The performance obtained on a
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fully configured Connection Machine with 512 Mbytes of memory and hardware support for
floating-point operations is of the order of a million site updates per second for the current
Monte Carlo routine, and 5 - 7 million site updates per second for the microcanonical
routine for QED (Table 5). The floating-point rate is in the range 2.3 - 3.6 Gflops/sec in
single precision IEEE format. A performance improvement by a factor of 1.5 - 2 is expected
by improving the code efficiency, and by simulating lattices of size 64* on a Connection
Machine with 2 Gbytes of memory. Such a lattice would fit in the memory, and a single
update of the entire lattice would require about 8 seconds for the Monte Carlo routine and
1.8 seconds for the microcanonical routine, with the current code. Code improvements
should make feasible update rates of about 3 million sites per second for the Monte Carlo
routine, and rates in excess of 10 million sites per second for the microcanonical routine.
For Monte Carlo QCD simulations we predict a computational rate of about 200,000
site updates per second, or 5.6 Gflops/sec, with 64 virtual processors. Almost all of the
arithmetic operations are in the form of multiplication of 3x3 complex matrices. We
estimate that these operations can be performed at a rate of 13 Gflops/sec with kernels
that make efficient use of the floating-point unit. At this rate approximately 42% of the
time is spent for matrix multiplication, 10% for miscellaneous operations, and 48% for
communication. The operation counts for the Monte Carlo algorithm for QCD are given
in Table 7 and our prediction of the time required using efficient matrix kernels is given in
Table 8. (We cannot easily predict the time for the microcanonical algorithm because it

is much more complicated for QCD.)
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mask

do

Appendix A

Pseudo-code for Monte Carlo algorithm

chessboardmask J black and white squares

1,4 loop over 4 links

i

linki = link[i]

linktry = twopi * random() Y% possible new value for link

query = log( random() ) % for Metropolis

do parity = 1,2 ¥ loop over black thenm white squares

{

}

link[i] = linki

J can only update one set of squares simultaneously
where (mask) linknew = linktry ¥ black is positive plaquettes
else linknew = linki % white is negative plaquettes
deltaE = 0.0
do j = 1,4 7 loop over 3 plaquettes in positive ij-plane
{

if (j == 1) skip

linkj = link[j]

shlinkj = shift( linkj, i, + )
shlinki shift( linki, j, + )

shlinknew = shift( linknew, j, + )

plaqdiff =
cos( linknew + shlinkj - shlinknew - linkj ) 7 new - old

- cos( linki + shlinkj - shlinki - linkj ) 7 positive plaquette
shplaqdiff = shift( plagdiff, j, - ) / negative plaquette
deltaE = deltaE + plaqdiff + shplaqdiff % change in energy

}

vhere ( (beta * deltaE > query) &% mask ) Y Metropolis accept
linki = linknew

mask = !mask Y, swap black and white
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Appendix B

Pseudo-code for Microcanonical algorithm

do i = 1,4 J loop over 4 links

{

link[i] = link[i] + p[i] * deltat % advance links
} .
do i = 1,4 ¥ loop over 4 links

{

sumpdot = 0.0

linki = 1link[i]

do j = 1,4 % loop over 3 plagusttes in positive ij-plane
{ v

if (j == i) skip

linkj = link[j]

shlinkj = shift( linkj, i, + )

siolinki = shift( linki, i, *

pdot[i] = sin( linki+shlinkj-shlinki-linkj ) % positive plaquette
shpdot = shift( pdot([i], j, - ) % negative plaquette

sumpdot = sumpdot - pdot[i] + shpdot ¥ derivative of momentum

}

pdot [i] = sumpdot

}

do i = 1,4 7 loop over 4 links

{

pli]l = p[i] + pdot[i] * deltat % advance momenta



Operation Monte Carlo | Microcanonical
arithmetic (+,-,x) 244 76
sin ' 0 12
cos 48 0
log 4 0
random 8 0
move 48 20
communication 96 36

Table 1: Operation counts for one complete update of a
lattice site for QED.

Operation 1 vp |64 vp
arithmetic (+,-,x) | 36 25
sin 200 195
cos 200 195
log 120 | 115
random 950 940
move 22 20
communication 208 120

Table 2: Measured operation tir«s in js-seconds for 32-bit
operations (IEEE format) on a CM with floating-point
unit (fpu) option using 1 and 64 virinal processors (vp).




Operation 1vp |64 vp
Monte Carlo 0.0475 | 2.30
Microcanonical | 0.0131 | 0.57

Table 3: Predicted times in seconds for one complete lat-
tice update for QED with one site per vp.

Operation 1vp |64 vp
Monte Carlo 0.054 | 2.61
Microcanonical | 0.013 | 0.57

Table 4: Measured times in seconds for one complete lat-
tice update for QED a on CM with fpu option.

Operation 1vp |64 vp
Monte Carlo 1.21| 1.61
Microcanonical | 5.04 | 7.36

Table 5: Measured millions of site updates per second for
QED on a CM with fpu option.

Operation 1vp |64 vp
Monte Carlo 234 3.11
Microcanonical | 2.44 | 3.56

Table 6: Measured Gflops rates for QED on a CM with
fpu option.



Operation Monte Carlo
arithmetic (+,-,x) 28736
sin 0
cos 0
log 4
random 12
move 864
communication 1320

Table 7: Operation counts foi cue complete update of a
lattice site for QCD.

Operation 1vp |64 vp
Monte Carlo | 1.34 | 21.2

Table 8: Predicted times in seconds on a CM with fpu
option for one complete latiice update for QCD with
one site per vp. ,
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Ilustration of plaquette calculation




Figure 2
Showing that only half the links can be

updated in any one dimension simultaneously
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Illustration of positive and negative plaquettes




