We introduce a new version of the combined field integral equation (CFIE) for the solution
of electromagnetic scattering problems in three dimensions. Unlike the conventional CFIE,
the version reported here is well-conditioned. While we use a standard magnetic field
integral operator, we precondition the electric field integral operator, converting it into a
second-kind integral operator; the resulting CFIE is an integral equation of the second kind
that has no spurious resonances. We also report numerical results showing that the new
formulation stabilizes the number of iterations needed to solve the CFIE on closed surfaces.
This is in contrast to the conventional CFIE, where the number of iterations grows as the
discretization is refined.
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1 Introduction

Recent progress in the construction of “fast” methods for the solution of the
boundary integral equations of scattering theory [1] has vastly increased the size
of tractable problems [2, 3]; it has also increased the need for well-conditioned
boundary integral formulations. There are two principal reasons for this:

e Since we have'sparse decompositions of the integral operators of scat-
tering theory, but not their inverses, we employ iterative solvers. Well-
conditioned systems of equations can be solved with few iterations.

* Using a fine discretization to resolve source variations or geometric de-
tail on a subwavelength scale results in an ill-conditioned linear equation.
This is sometimes called the “low frequency” problem in computational
electromagnetics.

Only second-kind integral equations (see Appendix), or objects with similar
spectral behavior (such as appropriately preconditioned differential equations)
can be solved with fully controlled approximation error. The correct operators
are the sum of a constant (or at least well-conditioned and easily invertible)
operator and a compact operator.

Boundary integral operators of scattering typically violate this requirement
in one of three ways:

e The spectrum may accumulate at zero. A typical example is the first-kind
integral equation for the scalar Dirichlet problem (used for 2d electromag-
netic scattering calculations in TM polarization),

e the operator may have an unbounded spectrum, such as a pseudodifferen-
tial or hypersingular operator,

e the operator may have small eigenvalues associated with resonances, often
unphysical; the latter are often referred to as “spurious resonances” (see,
for example, [4]).

For electromagnetic scattering from perfectly electrically conducting (PEC)
surfaces, the standard boundary integral equations are the electric field integral
equation (EFIE)

-nxE' =TJ (1)

and the magnetic field integral equation (MFIE)

ZnxH = (%+K>J, @)




where the integral operators T" and K are defined (as in [5]) by*
TI = T(k)
ikn(x) x /5 ds’ {G(k, %, x') J(x) + kizv [VG(k,x, %) -J(x’)]} 3)

KJ

K(k)T = —n(x) x / ds' VG (k, x,%') x I(x), @)
S

where V denotes differentiation with respect to x, and n (x) is the unit normal
to the surface at x.

The MFIE is a second-kind integral equation. Unfortunately, this equation
is suitable for an unacceptably small class of electromagnetic problems. It is
inapplicable to open surfaces, becomes ill-conditioned in the presence of geo-
metric singularities, and suffers from spurious resonances. The EFIE has both
a compact piece and a hypersingular piece (coming from the double gradient
term). One can eliminate the spurious resonances of the MFIE by adding the
EFIE to form a combined field integral equation (CFIE) [6]. The cost of do-
ing so is the introduction of the EFIE’s hypersingular piece, which spoils the
conditioning for fine discretizations (or low frequencies).

Adams and Brown [7, 8] and Kolm and Rokhlin [9] recently observed that
a hypersingular integral operator and a first-kind integral operator are ideal
preconditioners for each other, in the sense that the composition of the two has
the spectral characteristics of a second-kind integral operator. In this letter,
" we show how the same approach can be employed to analytically precondition
the EFIE. In fact (as was implicit in a result of Hsiao and Kleinman [5]), the
electric field integral operator T preconditions itself.

Two issues raised in [8] are important for the successful application of this
idea to closed bodies. First, only the local (or short distance) behavior of
the preconditioner is important for asymptotic conditioning. Thus, one can
precondition the EFIE by multiplying it by an electric field integral operator
corresponding to an arbitrary wavenumber, real or complex; if the wavenumber
has a positive imaginary part, one avoids the introduction of any additional
resonances. (Obviously, if the EFIE preconditioner reproduced the MFIE reso-
nances, then the CFIE would also have them.) Second, one must take care that
the discretization of the product of preconditioner and preconditioned operators
preserves the correct spectral properties.

In this letter we describe well-conditioned formulations for both open and
closed surfaces. We also present numerical results for closed surfaces which
demonstrate the advantages of the new CFIE formulation over the conventional
CFIE.

*The other terms follow the usual conventions: J = ZnXx H is the unknown surface current,
E® and H are the incident electric and magnetic fields, respectively, Z = \/u/€ is the wave
impedance, and G (k,x,x’) = exp (ikr) /4mr is the 3d Helmholtz kernel with r = |x — x’|
being the distance separating field and source points. Harmonic time dependence e~¥? is
assumed.




2 Preconditioning the EFIE operator

References [8] and [9] consider integral operators constructed from the kernel
for the Laplace and Helmholtz equations in 2d. They observe that the prod-
uct of a first-kind operator, constructed from an undifferentiated kernel, and a
hypersingular operator, constructed from a twice differentiated kernel, has the
desirable spectral characteristics of a second-kind operator. Since the EFIE in-
tegral operator T has both of these, one might expect that the composition of
two such operators T2 = T'oT would include a constant operator and a compact
operator. One might also worry that the product of hypersingular components
would produce another hypersingular operator. It is easy to see, however, that
the rotation operation nx in the definition (3) of T', which annihilates the com-
ponent of the surface vector field normal to the surface, also ensures that the
product of the two hypersingular operators is identically equal to zero. Indeed,
applying the hypersingular component of the second T operator to an arbitrary
tangential surface vector function f (x') produces a surface gradient function

n X Vo (x) = %(nxV)/Sds’ VG (k,x,x') £ (x) , (5)

which the hypersingular component of the first T' operator, in turn, annihilates
(for closed surfaces) by virtue of the identity

Vs-[nx V¢ (x)] =0, (6)

with Vs denoting the surface gradient operator on S; identity (6), the surface
analog of the 3d identity V - [V x ¢ (x)] = 0, can be found, for example, in [10],
and is valid for any sufficiently smooth function ¢ on S. It follows immediately
from (3), (5), and (6) that T2 behaves as a second-kind integral operator.

In this letter we investigate in detail the spectral properties of the EFIE
and MFIE integral operators and combinations thereof for the PEC sphere, a
simple 3d target for which the spectral properties of these operators are known
analytically. A complete set of basis functions on the surface of a sphere of
radius a is given by the vector spherical harmonics [11]

_ a
X[m (9, (,0) = i_-_l(l_+ﬁn X VYim (0, QO) y (7)
Ulm (0’ SD) =nXx le (0v 90) ) (8)

defined here in terms of the scalar spherical harmonics Y, (6, ).
The result of applying T and K+ = (K + 1) to each basis function is' [5]

Xim | _ | =Ji(ka)H (ka) Uy,
T"”{ Ui }“{ e B (e } (©)

tThe MFIE eigenvalues in [5] contain a sign error which is corrected here.




and

Xim | _ [ i3} (ka)H, (ka) Xim
ew{ o )= { SR} w

where J; and Hj are Riccati-Bessel and (first-kind) Riccati-Hankel functions of
order /, and k is the wavenumber associated with the kernel of each integral
operator. The Riccati-Bessel and Riccati-Hankel functions are defined [12] in

terms of spherical Bessel and Hankel functions j; (z) and h,(l) (z) by

Ji(z) = zj; (2), (11)
H (z) = zh{") (z). (12)

Although our chosen basis functions X;,, and Uy, are not eigenfunctions of
the operator T (k), they are eigenfunctions of T2 (k) = T (k) o T (k):

7 () { Tim } = -0k B o) Ty B ) { B . g)

The operator T2 (k) has a bounded spectrum, since, in the limit of large ,
its eigenvalues accumulate at —% (a result which follows from the asymptotic
properties of j; and hl(l) given, for example, in [12]). However, as is evident
from (10) and (13), the operator T2 (k) also shares resonances (at the zeros of
J; (ka) for the X;,, modes, and at the zeros of J; (ka) for the Uj,, modes) with
the MFIE operator K* (k). This fact is also evident from the identity

T2 (k) = K* (k) - % =K~ (k)o K*(k), (14)

(where K~ = K — 1) derived in [5]. Therefore, although T2 (k) is a second-kind
integral operator, it is not a suitable component of a resonance-free combined
field integral equation for closed bodies.

As stated earlier, boundedness of the spectrum of the product of two EFIE
operators (of the form (3)) is assured if they have the same short-distance be-
havior, a condition that does not require the two operators to share the same
wavenumber (propagation constant). If we choose EFIE operators with differ-
ent wavenumbers, T (k;) and T (k;), we can simultaneously obtain a bounded
product and avoid MFIE resonances.

The following analysis indicates that ¢k is a particularly good choice for the
wavenumber in the preconditioning operator (assuming that the wavenumber k
is real). The eigensystem for T (ik) o T' (k) on a sphere is

) Xim | _ I (ika) B, (ika) J; (ka) Hy (ka) Xim
T"k)”(k){ Uom }“ ‘{ T (ika) H, (ika) 3} (ko) E (k) s } (15)

It is straightforward to show (given the properties [12] of j; and hl(l) ) that the
eigenvalues of T (ik) o T' (k) accumulate at ; and —% for the Xim and Uim




eigenmodes, respectively, and that T (ik) o T (k) does not share any resonances
with the MFIE operator K (k).

Since T (ik) o T (k) is a second-kind integral operator (in the sense described
in the Appendix) and does not share any resonances with K+ (k), we are finally
in a position to write a well-conditioned CFIE operator. The simplest form of
such an operator is

T (ik) o T (k) + aK* (k), (16)

where « is a constant to be chosen. In creating this CFIE operator we have
preconditioned the EFIE part before adding to it the MFIE part (which is
already a second-kind integral operator). The same applies to the excitation
side of the equation. The resulting CFIE is

=T (ik) (n x E¥) + aZn x H' = [T (ik) o T (k) + K+ ()] J.  (17)

The eigensystem for the CFIE operator (16) is

Ul m

_ { [J; (ika) Hy (ika) I; (ka) — icd) (ka)]| H; (ka) Xim (18)
- [J: (ika) H; (ika) J} (ka) + ied; (ka)] H, (ka) Uy [

(T (z‘k)oT(k)+aK+(k)]{ Xim }

If one chooses a = +£1 then, as a function of the argument ka, these eigenvalues
have no zeros. For a = +1, they circle the origin of the complex plane.

Other well-conditioned CFIE operators can be devised, for example, by pre-
conditioning the MFIE part before combining it with the preconditioned EFIE
part. We have investigated two forms:

T (ik) o T (k) + aK* (ik) o K+ (k) (19)
and
T (ik) o T (k) + an x K*(ik) on x KT (k). (20)

Our experience shows the numerical behavior of all three CFIE formulations to
be similar.

We have proven the CFIE operators in (16), (19) and (20) to be second-kind
and resonance-free for spheres. However, given that the asymptotic behavior of
the eigenvalues on a smooth surface stems from the short distance behavior of
the kernel, we argue (following the theorems proved in [9]) that the asymptotic
behavior of the various operators on spheres should also obtain for any closed
surface that can be obtained by smooth deformation of a sphere. The numerical
results presented in Section 4 support this argument. We also present results for
a cube, which, like many targets of practical interest, has geometric singularities.
These results suggest that the new CFIE formulations should be well conditioned
for a wide class of closed surfaces.




3 A Different Form of the Preconditioned EFIE
Operator

There are several ways to produce a Nystrém discretization of the product
operator T (k1) o T (k). The simplest and most straightforward approach, mul-
tiplying the discretized representations of the individual operators, can lead to
numerical difficulties. The reason is that it is relatively difficult to make the dis-
cretized representations of the hypersingular part of each operator sufficiently
accurate (especially for high-spatial-frequency eigenmodes) to numerically effect
the cancellation that obtains analytically.

Effective discretizations of T (k1) oT (k2) can be obtained either by discretiz-
ing the product operator directly or by reformulating the product operator to
eliminate the product of hypersingular operators. We have not implemented the
first method because of the added complexity it entails. We have implemented
the second approach using a reformulated product operator that eliminates all
instances of hypersingular operators. A short derivation of the reformulated
equation is given below. -

The first step toward obtaining a more useful form of the product opera-
tor T (k;) o T (k2) is to separate each integral operator into its singular and
hypersingular components. Introducing the abbreviations

Ty =T (k), (21)
T, =T (ks), (22)
we write
Ty = ik TS + kiTlH , (23)
1
Ty = ik T3 + = TF, (24)
2
where
T3J =n(x) x / ds' G (km,x,x")J (x'), (25)
s
THY = (n(x) x V) / ds' VG (km,x,x')-J (x'). (26)
S

The product operator T; o T, can be expanded into four terms. Each of the two
cross terms, T oTH and T 0T, can be transformed (by Stokes’s theorem) into
the product of new, single-gradient integral operators on S plus a line integral
around the boundary of S. The term formed by the product of hypersingular
integral operators, T{# o TF, reduces to a line integral. The result is further
simplified by noticing that two of the three line integrals, when applied to J,
can be combined into a single term whose argument is identical to the incident
electric field E* by virtue of (1).

The next step is to reformulate the excitation side of the equation, taking
advantage of the fact that the incident wave obeys Maxwell’s equations. By




applying Stokes’s theorem, we rewrite the term T [n(x') x E¢ (x')] as the sum
of a single-gradient integral operator on V' x E* (x') and a line integral that
exactly cancels the line integral involving E? on the other side of the equation.
A further simplification follows from Faraday’s Law, V x E = iwpH.

The final result for the analytically preconditioned EFIE with reformulated
integral operator product is

— ik T (n x E) - ZﬁTf (n-HY)

ky
= @Tf' oTf + ﬁTf oTY — kTS o TS — ﬁTIE oTE ) I, (27)
ky ks ks
where the various integral operators are defined by
T2¢ =n(x) x / ds' VG (km,x,x') ¢ (x'), (28)
S
T8 6 = n(x) x / ds' n(x') X V'G (km, %, %) 6 (x') , (29)
S
TLf = / ds' VG (km,x,x') - f (x), (30)
S
TTf = n(x) - / ds' VG (kmyx, %) x £ (x'), (31)
S
T3f = n(x) x / ds' G (km,x,x') f (x'), (32)
S
TE¢ = n(x) x f{ U G (km,x,x') 6 ('), (33)
as

with m = 1,2. Note that T2, T2, and TF map scalar functions to surface
vector functions, whereas T)% and TZ do the reverse. The operator on the right
hand side of (27) maps surface vector functions into surface vector functions.

In the remainder of this section we discuss closed surfaces and observe that
Ti o T behaves like a second-kind integral operator. For open surfaces, the
situation is somewhat more complicated in that additional analytical machin-
ery is required to convert (27) into a second-kind integral operator. We have
performed such analyses for the 2d and 3d scalar cases, and will report these
results in the future.

If S is a closed surface, the term TF o T4J vanishes, and (27) simplifies to

ko

—ik T (n x E) — 2T (n-HY) = S (b, k2) 3, (34)
1
where
S12 = S (ku,k2) = ’]:—21";' oTf + :—1T1’3 oTE — kykoTS o TS (35)
1 2

We note several features of S;,.




First, all of the individual integral operators that comprise S5 involve ker-
nels with one or no gradients on the Helmholtz Green’s function G. All such
integral operators are bounded.

Second, the eigenvalues of the integral operator S1» do not accumulate at the
origin. We will demonstrate this by examining its three components T o T,
TP o TE, and TS o TS . The operator T o TY is a second-kind integral operator
for the transverse (divergence-free) component of J, and is identically zero for
the longitudinal (irrotational) component of J. Likewise, the operator Tlﬁ oTf
is a second-kind operator for the longitudinal component of J, and is identically
zero for the transverse component of J. Since any surface current distribution
can be decomposed into longitudinal and transverse components [11], the sum
BTPoTS + %Tlﬁ o T¥ is a second-kind integral operator; subtracting ki kTS o
Ty, a compact operator, does not change this result. As observed in Section 2,
we can avoid resonance sharing by setting k; = ik and ks = k. In this case, the
eigenvalues of S12 accumulate at two points, i%, rather that at —i—.

Third, the spectrum of Sj;, after discretization, is bounded and includes
accumulation points at the expected locations. However, an accurate discretiza-
tion will have zero (or very small) eigenvalues wherever the EFIE operator T (k)
has a resonance. Thus, it has to be combined with an appropriate discretization
of the MFIE operator, to obtain an effective discretization of the CFIE.

Finally, it should be noted that (34) is manifestly insusceptible to the “low-
frequency” problem that plagues the EFIE. Since the well-conditioned behavior
of S12 comes from the composite operators %Tl"‘ oTT and %T{s o T, both of
whose prefactors have modulus unity (assuming |k;| = |k2| = k), and since the
term kik TP o T3 tends to zero as k — 0, the full operator S, remains well
conditioned in the limit of low frequency.

In summary, although the operators T3 o T; and S;2 have identical spectral
properties for closed bodies, it is easier to construct an accurate Nystrom dis-
cretization for S;» because it is composed of less singular integral operators.
Matrix representations of Si2 have bounded spectra, but also suffer from spuri-
ous resonances inherited from the EFIE operator T (k3). These resonances can
be eliminated by combining S;2 with K*(k2) (or the modified MFIE operators
in (19) and (20)). The result is a well-conditioned system of linear algebraic
equations.

4 Numerical Results

In this section we compare the numerical performance of the conventional CFIE
(referred to below as CFIE1)

-nx (nxE)+ZnxH =[nxT(k)+K*(k)]JI (36)




with the preconditioned CFIE (CFIE2)

kTS (ik)n x E* +iZT° (ik)n - H' — Zn x H'
= {i [-T* (k) o TT (k) + T (ik) o T (k) — kTS (ik) o TS (k)] —= K*(k)} I
(37)

produced by combining (17) (with a = —1) and (34) (with k; = ik and k; = k).
We discretized the individual operators in these equations using a high-order
Nystrém scheme [13]. In all cases, the wave impedance Z was set to unity.

We present three examples. The first example shows how the condition
number of each operator, defined as the ratio of the largest to smallest singular
values, depends on the fineness of discretization. Table 1 lists the condition
number (CN) of the matrix representing each CFIE operator as the size of the
sphere decreases. In all cases, the same discretization was used, created by
placing a 6-point quadrature rule on each of the 80 nearly identical patches that
cover the sphere, for a total of 960 unknowns. As the sphere radius decreases,
the condition number for the CFIE2 integral operator stabilizes at about 2,
whereas the condition number of the CFIE1 integral operator continues to grow
in inverse proportion to the radius.

radius()\) | CFIE1 | CFIE2

1 42 | 3.04
1/4 15 2.68
1/16 59 2.04

1/64 230 | 1.99
1/256 | 940 | 1.97
1/1024 | 3800 | 1.97
1/4096 | 15000 | 1.97

Table 1: Condition number of CFIE matrices for shrinking PEC spheres

The second test compares iterative solver performance for the new CFIE and
the conventional CFIE. The target geometry consists of two PEC spheres, one
with a radius of A/2, the other set at a resonant radius, namely, the first zero
of Ji (2nr/A) or r ~ 0.43667457 A. The spheres are separated by a A/100 gap.
We subdivided the patches near the gap by a factor of about 10 to adequately
resolve the currents, which vary rapidly there. Table 2 compares iteration counts
and radar cross section (RCS) errors for several discretizations. The iterations
columns list the maximum number of iterations a conjugate gradient squared
(CGS) routine required to reach a residual error of 10~3. A solution computed
from a substantially more refined discretization provided an accuracy reference.
The stated error is the root mean squared (RMS) value of the difference between
the monostatic ¢¢ RCS of the comparison solution and the reference solution at
181 angles. For identical discretizations, the two methods had about the same
error. The data show a dramatic difference, however, in the iteration count
behavior of the two methods in response to discretization refinements.




unknowns | patches CFIEl CFIE2
iterations | error | iterations | error
1496 748 60 0.46 9 0.40
4488 748 126 0.18 11 0.18
996 498 44 0.61 9 0.48
2988 498 103 0.23 12 0.16
5976 498 163 0.016 11 0.029

Table 2: Iteration count and solution error vs. discretization for two PEC

spheres.

The third test also compares iterative solver performance for the two CFIE
formulations. In this case the target is a cube of size 1\. We present numerical
results for five different discretizations, the first of which was derived from a
mesh (i.e., a set of patches) obtained by dividing each face into four squares.
The second mesh was constructed from the first one by subdividing each square
into four smaller squares. The third mesh was constructed from the second
by subdividing edge-touching patches in half along a line parallel to the edge;
patches adjacent to two edges (i.e., corner patches) were divided into quarters.
Meshes for the fourth and fifth discretizations were constructed by recursively
applying the procedure by which the third mesh was constructed from the sec-
ond. This process, known as patch tapering, is useful for resolving the source
singularities that arise in the vicinity of geometric singularities. It also puts
stress on the conventional CFIE because points near edges get close together.
Table 3 lists the maximum and average number of iterations the CGS routine
needed to obtain solutions for 92 independent excitations to a residual error of
1073, The total number of unknowns is the result of using a 9-point quadrature
rule on each square or rectangular patch. The iteration count for CFIE2 grows
very slowly with increasing taper depth, whereas for CFIE] it increases steadily,
in accordance with expectations.

10

unknowns | taper CFIE1 CFIE2

depth | max | ave | max | ave

432 0 12 | 65| 10 | 4.3

1728 1 18 {99 | 11 | 4.9
3888 2 26 | 14 | 11 | 4.9
6912 3 41 | 23 | 11 | 5.5
10800 4 58 | 36 | 13 | 5.7

Table 3: Iteration count vs. taper depth for 1\ PEC cube.




5 Conclusions and Generalizations

The classical electric field integral operator is its own perfect preconditioner, in
the sense that applying it to both sides of the EFIE converts the latter into a
second-kind integral equation. When the preconditioned electric field integral
operator is used as a component of the CFIE, the latter is also converted into
a second-kind integral equation. Furthermore, if the preconditioning electric
field operator corresponds to a complex wavenumber, the resulting CFIE has
no spurious resonances.

In this paper, we describe in some detail an improved CFIE for electromag-
netic scattering from perfectly conducting closed surfaces, leading to a signif-
icant improvement in the performance of iterative solvers; incorporating the
approach into the existing “fast” solvers is completely straightforward. The re-
sults presented here admit generalizations in several directions. The extensions
discussed below are currently under investigation, and will be reported at a later
date.

The approach of this paper can be applied, with minor modifications, to
surface scattering with more general boundary conditions. The extension to an
interface between two dielectrics, for example, is straightforward; the resulting
operators have condition numbers that are in fact somewhat lower than in the
case described here. While structures consisting of several dielectrics do not
appear to present serious difficulties, places where several different dielectrics
come in contact with each other require separate analytical treatment.

The approach of this paper has to be modified only slightly in order to obtain
second kind integral equations describing electromagnetic scattering from open
perfectly conducting surfaces. In this environment, the CFIE is replaced with
an appropriately preconditioned EFIE, and the edge of the surface requires
separate treatment. The result is a pair of coupled integral equations, one on
the surface itself, and the other on the edge of the surface (which is, obviously,
a curve in R%). At this time, the theory has been constructed for the scalar case
when the boundary of the surface is a sufficiently smooth curve; the analysis of
open surfaces whose boundaries have corners is in progress.

A Appendix

The standard definition of a second-kind integral operator is an operator of the
form

A+ K, (38)

where ) is a constant, I is the identity, and K is a compact operator. In
scattering theory, one encounters operators of the form

AP+ AP + K, (39)
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where A\; and A, are constants and P; and P, are orthogonal projection operators
such that

Pi+P =1 : (40)

Operators of the form (39) possess most of the desirable properties of second-
kind integral operators. In a mild abuse of terminology, we refer to such expres-
sions as second-kind integral operators throughout this letter.
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