
Single Pass Client Preprocessing Private Information Retrieval

Arthur Lazzaretti
Yale Univeristy

Charalampos Papamanthou
Yale University

Abstract
Recently, many works have considered Private Information
Retrieval (PIR) with client-preprocessing: In this model a
client and a server jointly run a preprocessing phase, after
which client queries can run in time sublinear in the size of
the database. In addition, such approaches store no additional
bits per client at the server, allowing us to scale PIR to a large
number of clients.

In this work, we propose the first client-preprocessing PIR
scheme with “single pass” client-preprocessing. In particular,
our scheme is concretely optimal with respect to preprocess-
ing, in the sense that it requires exactly one linear pass over
the database. This is in stark contrast with existing works,
whose preprocessing is proportional to λ ·N, where λ is the
security parameter (e.g., λ = 128). Our approach yields a pre-
processing speedup of 45-100× and a query speedup of up
to 20× when compared to previous state-of-the-art schemes
(e.g., Checklist, USENIX 2021), making preprocessing PIR
more attractive for a myriad of use cases that are “session-
based”.

In addition to fast preprocessing, our scheme features ex-
tremely fast updates (additions and edits)—in constant time.
Previously, the best known approach for handling updates
in client-preprocessing PIR had time complexity O(logN),
while also adding a logN factor to the bandwidth. We im-
plement our update algorithm and show concrete speedups
of about 20× in update time when compared to the previous
state-of-the-art updatable scheme (e.g., Checklist, USENIX
2021).

1 Introduction

Private Information Retrieval (PIR), as defined by Chor et
al. [7] is a protocol between a client and a server where the
server holds a public database DB of N bits and the client
holds an index i ∈ {0, . . . ,N−1}. The goal of the protocol is
for the client to learn DB[i] without revealing any information
about i to the server. PIR has found many applications, such as

in private contact tracing, oblivious ad serving, private movie
streaming, among others [2, 3, 14, 16, 21].

A PIR protocol is non-trivial if its bandwidth is sublinear
in N. For large N, it is desirable to also have o(N) server
computation. This was shown to be impossible by Beimel
et al. [4] for a single query, posing a significant limitation
for practical adoption. Due to the above limitation, Beimel
et al. [4] defined a server-preprocessing PIR scheme, where
the server runs a query-independent and client-independent
preprocessing in the beginning of the protocol, after which
it is possible to achieve o(N) amortized server computation
per query. However, all known protocols in this model are
of theoretical nature and are far from practical due to large
hidden constants (e.g., [4, 24]) or the use of trusted setup [6,
19].

Sublinear PIR through client preprocessing. In search for
more practical schemes with sublinear server time, Corrigan-
Gibbs and Kogan [8] recently introduced a slight modification
of the above server-preprocessing PIR model: Here, the client
and server jointly run a preprocessing phase, after which the
client’s queries run in o(N) time. The distinguinshing factor
of this model is that the server does not store any additional
information other than the database. Instead, the additional
information used for future queries is stored client-side, allow-
ing more efficient scaling to a large number of clients. We call
this model the client-preprocessing PIR model (also known as
offline-online PIR). Client-preprocessing PIR has definitely
brought PIR closer to practice, due to particularly fast on-
line server times. For example, one of the fastest schemes,
Checklist [21] (published in USENIX 2021), can answer a
PIR query on a database of 3 million entries in less than a
millisecond!

At a high level, Checklist (and all prior client-preprocessing
PIR schemes [8, 21, 23, 30, 35]) works as follows. We assume
here the two-server model where the database is replicated
in two, non-colluding servers, Server 0 and Server 1. During
the offline phase, the client picks λ ·

√
N independent random

sets S1,S2 . . . ,. Each Si is a subset of {0, . . . ,N−1} and has

1

Scheme Preprocessing Time Query Time Query BW Client Storage Update Time

Checklist [21] O(λ ·N) O(
√

N) O((logN)(λ logN +w)) O(N logN +λ
√

N ·w) O(logN)
SinglePass O(N) O(Q) O(Q ·w) O(N logN +(N/Q)w) O(1)

Table 1: Table measuring asymptotics of updatable single pass scheme against Checklist for databases of N elements of size w.
We only include word size in the asymptotics for storage and bandwidth. Q ∈ [[[N]]] is a parameter that determines query time and
size, along with storage.

size
√

N. These sets are sent to Server 0. Server 0 computes
the parities/hints p1, p2 . . . , of these sets by setting

pi =
⊕
k∈Si

DB[k] ,

where DB is the public database. The hints are then sent to
the client to be stored together with the sets Si. During the
online phase, on a query to some index x, the client finds a
preprocesssed set Si (and its corresponding parity pi) such
that Si contains x, and sends Si \{x} to Server 1.1 The server
computes the parity p of Si \ {x} and sends p to the client.
Then the client can retrieve DB[x] as p

⊕
pi. With many ad-

ditional careful considerations to this outline, this provides
privacy for unlimited queries. The query phase also requires
sending a fresh set to Server 0, to replace the set used and
maintain the client state’s distribution.

Limitation of client-preprocessing PIR schemes. The
informal description above shows that all existing client-
preprocessing PIR schemes share a significant limitation:
Their client-preprecessing phase requires at least λ

√
N ·
√

N =
λ ·N database accesses, for security parameter λ. If we set
λ = 128, the entire database will have to be accessed roughly
128 times during preprocessing before a single query can be
issued! (The reason λ

√
N sets are required is technical—to

ensure that one of these subsets contains any index the client
wishes to query with overwhelming probability.) For use cases
where the database is dynamic, or the number of queries is
small, such a slow preprocessing can be difficult to justify
and lead to particularly slow implementations.

Our contribution: PIR preprocessing in a single pass.
In this work, we overcome this limitation by proposing the
first client-preprocessing PIR scheme whose preprocessing is
(what we informally define as) “single pass”, meaning that the
preprocessing performs one linear pass over the database, op-
erating on each element exactly once. This is asymptotically
optimal [4], and the preprocessing roughly equals the cost of a
single PIR query for a non-preprocessing PIR scheme, mean-
ing that preprocessing becomes much more accessible for the
many applications that require a small amount of queries. We

1Since Checklist sets do not have a fast membership testing mechanism,
they instead keep a hashmap which maps indices to sets, which is processed
offline, for faster queries. This incurs O(N logN) client storage.

implement our single pass client-preprocessing PIR scheme
and show that it performs extremely well in comparison to
previous known schemes. Crucially, our scheme does not re-
quire the client to perform offline computation for extended
periods of time or to maintain a permanent storage to have
fast queries. Using our scheme, the first query runs at approxi-
mately the cost of a non-preprocessing PIR query, after which
subsequent queries run extremely fast, for the duration of a
“session”, after which we can delete the state. In other words,
the faster preprocessing opens the avenue to allow for pre-
processing to happen “online”, and consequently for us not
to have to worry about the added complexity of dealing with
updates, since preprocessing happens often.

Furthermore, as a second contribution, we also show that
our scheme can natively support updates to the preprocessed
client state in constant time. Previously, client-preprocessing
schemes could not support edits and additions natively (except
if using O(λ

√
N) time per update). Ma et al. [25] (USENIX

2022) and Kogan et al. [21] (USENIX 2021) studied dif-
ferent techniques to overcome this challenge, however both
approaches incurred non-constant overhead per update. For
example, [21] first maps the PIR scheme to keyword PIR and
then uses a ”waterfall technique” from hierarchical ORAM
[13] to support edits and additions in O(logN) amortized time
per operation, at the cost of also an additional logN overhead
in query bandwidth. With our new scheme, the independence
of λ in our preprocessing algorithm and client state allows us
to define Edit and Add algorithms for our preprocessed client
state both of which run in O(1) time. This means that our
scheme can not only improve PIR in the static ’session-based’
setting, but also greatly reduce server and client time for up-
dates in the case where clients keep the preprocessed state in
storage and wishes to update it sporadically. In Table 1, we
provide a table with the comparison between the asymptotics
of our new scheme and Checklist. In the table (and hence-
forth), we denote our new scheme as SinglePass. Just like
Checklist, our scheme suffers from a client storage with linear
dependency on N. However, because our client storage no
longer has a dependency on λ, it actually performs much bet-
ter in many cases. For example, for a word size of 1024 bytes,
Q =
√

N, λ = 128 our storage is only worse than the client
storage for previous schemes [8,21–23,30] for N greater than
one billion elements. In practice, databases with a size on the
order of a million elements encompass a large array of PIR

2

use cases, including private blocklists [21], metadata-hiding
communication [1, 2], private movie streaming [14], private
wikipedia [27], among others. This is the size of databases
we focus on mainly for this work, and where our single pass
PIR scheme excels, since we can also greatly reduce Q.

1.1 Notation
Throughout the paper, we will use α

$← S as shorthand for
meaning α is an element sampled uniformly at random from
the set S. For a natural number N, we will denote [[[N]]] as the
set of elements {0, . . . ,N− 1}. Let PN denote the set of all
permutations of [[[N]]].

1.2 Intuition
Below, we provide some intuition on our main technical
contribution, a novel “single pass” client-preprocessing PIR
scheme. We go through a short example of a preprocessing
and query step with visuals.

Paramaters and additional notation:

Let N = 16,Q = 4, where Q is a tunable parameter for the
set size. Again, we work with two, non-colluding servers
which both hold the database. First, we organize the database
DB as Q arrays of N/Q = m elements. Let DBi be the array
containing DB[i∗m : (i+1)∗m].

Example preprocessing and query:

Offline, Server 0 first samples a permutation pi for each DBi,
i ∈ [[[Q]]], where each pi is a permutation of [[[m]]]. Then, for
each j ∈ [[[m]]], Server 0 computes h j =

⊕
i∈[[[Q]]] DBi[pi(j)] and

sends it to the client (along with the seed used to generate the
permutations). After the offline phase, the client state can be
pictured as follows:

p0 : 0 1 2 3

p1 : 3 0 1 2

p2 : 1 0 3 2

p3 : 3 2 0 1

h0 h1 h2 h3

0

3

1

3

h0

1

0

0

2

h1

2

1

3

0

h2

3

2

2

1

h3

This picture shows what elements are contained in each hint
given the permutations sampled by Server 0 were p0, . . . , p3.
For example, DB3[2] is contained in h1 because p3(1) = 2.
Now, let us examine how we use this state to perform queries.

Consider a query to x = (1,2). First, we find position ind in
p1 such that p1(ind) = 2. In this case, ind = 3. Notice that
the hint h3 contains DB[x] = DB1[2]. After we find ind, we
send the column that ind belongs to to Server 1, replacing
p1(2) with a random element from [[[N/Q]]]. We also sample
a random position ri ∈ [[[N/Q]]] for each pi and send the array
of [pi(ri) : i ∈ [[[Q]]]] to Server 0. We name the arrays sent to
Server 1 and Server 0 as Squery and Srefresh, respectively. The
servers respond with Ab which is an array with all elements
requested by the client (where the indices requested are of the
form (i, j), where i is the position of the number if the array,
and j is the number itself. This can be pictured as follows.

p0 : 0 1 2 3

p1 : 3 0 1 2

p2 : 1 0 3 2

p3 : 3 2 0 1

h0 h1 h2 h3

3

2

2

1

2

0

1

1

0

3

1

3

h0

1

0

0

2

h1

2

1

3

0

h2

3

2

2

1

h3

Squery : 3 �A2→ r 2 1

Srefresh : 2 0 1 1

A1 : DB0[3] DB1[r] DB2[2] DB3[1]

A0 : DB0[2] DB1[0] DB2[1] DB3[1]

The red circles represent pi(ri) for i ∈ [[[Q]]] and the blue
squares represent pi(ind) for i ∈ [[[Q]]]. The client then builds
Squery and Srefresh. Squery will be sent to Server 1 as the ele-
ments needed to retrieve DB[x] using its hint (along with an
additional random element) and Srefresh is sent to Server 0 in
order for the client to be able to ’refresh’ the client state back
to a set of uniform permutations from Server 1’s perspective.
The client sends Squery and Srefresh to Server 1 and Server 0,
respectively, and gets back A1 and A0. The client has now
enough information to both:

1. Recover DB1[2] by simply xoring h3 with every element
in A1 except DB[r].

2. Refresh the state by performing swaps between the ele-
ments sent to Server 0 and the elements sent to Server 1

3

for each permutation.

The purpose of (1) is clear, to retrieve the element of interest.
The purpose of (2) is to reset the client state before the next
query. For our example, the swapping happens as follows:

p0 : 0 1 2 3

p1 : 3 0 1 2

p2 : 1 0 3 2

p3 : 3 2 0 1

h0 h1 h2 h3

3

2

2

1

2

0

1

1

0

3

1

3

h0

1

0

0

2

h1

2

1

3

0

h2

3

2

2

1

h3

Since we have the value for each element on the permuta-
tion we wish to swap, we can update the hints accordingly by
just xoring the elements in and out. Intuitively, these swaps
make it so that each permutation is now completely unknown
to the server again. If we can show that the first query is se-
cure, and that after the swaps, each permutation is completely
unknown to Server 1, then we can use induction to show that
this scheme is secure for any number of queries. Looking
ahead, we model and formally prove the statement on the
swaps in Lemma 3.1. After the query, this is what our new
refreshed client state looks like:

p0 : 0 1 3 2

p1 : 3 0 1 2

p2 : 2 0 3 1

p3 : 3 2 0 1

h0 h1 h2 h3

0

3

2

3

h0

1

0

0

2

h1

3

1

3

0

h2

2

2

1

1

h3

Notice that no swap happened in p1. This is simply because
we don’t show any information about p1 to Server 1. After
resetting its state, the client is ready to perform a new query.

We stress here also that although Server 0 sees the pre-
processing, it only sees uniform random elements after that
(since each ri is picked independently from each other and
from the query itself). Then, Server 0 also learns nothing
from any sequence of queries. We formalize this intuition
after introducing our full scheme.

1.3 Outline
The work is structured as follows. In Section 2, we define PIR
and the client-preprocessing model, as well as other crypto-
graphic primitives to be used in our scheme. In Section 3, we
introduce our novel single pass client-preprocessing scheme,
prove its security and discuss some efficiency tradeoffs at
a high level. In Section 4, we benchmark our PIR scheme
against previous state-of-the-art client-preprocessing PIR and
show very favorable trade-offs for a myriad of use cases. Fi-
nally, in section 5, we discuss an application of our single
pass client-preprocessing PIR to a private encyclopedia ser-
vice, and show that the service has very attractive concrete
performance.

2 Model and Definitions

This section is used to expose the model and definitions we
will be using throughout our work.

2.1 Private Information Retrieval
In this work, we will consider PIR protocols in the two-server
model. The two server model assumes that the database of
N bits is replicated in two servers where at least one server
behaves honestly. The privacy of the PIR scheme holds for any
adversary controlling either server and any number of clients,
but does not capture an adversary controlling both servers.
This can be satisfiable in practice by having the servers be
run by different companies. Throughout this work, we will
operate entirely over the two server model. Therefore, we
will henceforth denote two server client-preprocessing PIR as
simply a client-preprocessing PIR for brevity.

A client-preprocessing PIR scheme for a database DB with
N records of length w is tuple of four algorithms2 defined as:

Definition 2.1 (Client-Preprocessing PIR [21]). A multi-
query, two-server client-preprocessing PIR scheme Π is a
tuple of four polynomial-time algorithms:

• Hint(DB ∈ {0,1}N·w)→ (ck,h):

A randomized algorithm that takes in a database DB ∈
({0,1}w)N and outputs the client keys ck and a client
hint h.

• Query(ck,x)→ (ck′,q0,q1):

A randomized algorithm that takes in the client keys ck
and an index x ∈ [[[N]]] and outputs updated client keys ck′

and queries q0,q1.

• Answer(DB,qb)→ (Ab) :

A deterministic algorithm that takes in the database DB
a query qb and outputs an answer Ab.

2We use a slightly modified definition from the initial works on Of-
fline/Online PIR [8, 21].

4

• Reconstruct(ck,h,A0,A1)→ (h′,yt)

A deterministic algorithm that takes as input the client
keys ck, the hint h and answer A and outputs an updated
hint h′ and y, database word at index x.

Furthermore, we require that the multi-query
two-server client-preprocessing PIR algorithm
Π = (Hint, Query, Answer, Reconstruct) algorithms sat-
isfy the Correctness and Privacy as per Definition 2.2 and
Definition 2.3 respectively.

Concretely, the scheme will run as follows. Whenever a
new client connects, Server 0 runs the Hint algorithm, and
outputs the client’s keys and hint, which it returns to the client.
After this, for any query x the it desires to query, the client can
use the client keys and x to output two queries q0 and q1, each
directed to Server 0 and Server 1 respectively. Notice that
the client at this stage also updates its keys (in our context,
the permutations). Each Server returns an answer Ab, which
is then used by the client along with the hints to devise its
desired information, DB[x], and update its hints for the next
query. Our correctness game will model the fact that under
a correct execution, the client should always retrieve the cor-
rect word {DB[xi]}i∈t for any sequence of t queries x1, . . .xt
it desires to make. Our privacy game will model the privacy
for both servers. Specifically, Server 0 sees the preprocessing
and q0 for each query. Our privacy game models that this
should leak no information about each index requested by the
client. Server 1 will see only the q1 for each query and not
the preprocessing. Again, we model that seeing the sequence
of q1 for each query performed by a client, no information
is leaked about the index the client desires. Our assumption
of no collusion comes in here. Although we can model that
the information received by each server individually is in-
dependent from the queries issued, there are no guarantees
about their joint view. We formalize the intuition above on
the definitions below.

We now give the definition of correctness for the PIR
scheme. Correctness is defined quite naturally. Given a se-
quence of queries to indices in x0, . . . ,xt ∈ [[[N]]]T , the probabil-
ity that the client outputs DB[x0], . . .DB[xt] for each t ∈ T is 1.
Correctness only needs to hold for honest servers, as opposed
to privacy for which we will consider malicious servers. We
capture this formally in Definition 2.2 below.

Definition 2.2 (Correctness). A multi-query two-
server client-preprocessing PIR scheme Π =
(Hint, Query, Answer, Reconstruct) is correct if, for
any λ,w,N,T ∈ N, every DB ∈ ({0,1}w)N and every
x0, . . . ,xT−1 ∈ [[[N]]]T , the honest execution of the following
game always outputs “1”:

• Compute (h,ck)← Hint(DB).

• For t = 0, . . . ,T −1, compute:

– (ck,q0,q1)← Query(ck,xt).

– For b ∈ {0,1}, Ab← Answer(qb).

– (h,yt)← Reconstruct(ck,h,A0,A1).

• If ∀t ∈ [[[T]]], yt = DB[xt], output “1”, else output “0”.

We now define privacy for a PIR scheme in our model.
Privacy is defined with respect to each server individually.
This is standard for the two-server assumption, which assumes
non-collusion between both servers. Informally, our privacy
definition says that each server, individually, can learn ‘no
information’ about the queries being made by the client, even
if an adversary picks the queries adaptively. This implies
that each server’s view is in fact independent from the actual
queries being picked. We formalize this intuition below.

Definition 2.3 (Privacy). A multi-query two-
server client-preprocessing PIR scheme Π =
(Hint, Query, Answer, Reconstruct) is private if, for security
parameter λ, for all polynomially bounded N(λ),T (λ) ∈ N,
for any efficient stateful algorithm A , for σ = {0,1}

Pr
[
PrivGameσ

A ,λ,N,T → 1
]
≤ 1/2+neg(λ),

where PrivGame0 and PrivGame1 are defined as per Figure 1.

We reiterate that the definitions in this subsection are only
slightly modified from the initial works on Offline/Online PIR
[8, 21]. The modification is mainly with respect to including
the word size w as part of the PIR definition. This helps us
better quantify the schemes’ efficiency.

The privacy of the scheme is computational, and the cor-
rectness is not.

2.2 Pseudorandom Functions and Permuta-
tions

2.2.1 Pseudorandom Functions

A pseudorandom function can be used to produce a large
number of pseudorandom outputs from a single truly random
seed. In our construction, PRFs will be important for concrete
efficiency, however, unlike previous schemes, they will not
be necessary to argue security.

2.2.2 Sampling Permutations

Our new PIR scheme relies heavily on permutations. Specifi-
cally, these permutations will be over ‘small’ domains of at
most a couple million elements. 3 Sampling pseudorandom
permutations over small domains (for an adversary that can
query the whole permutation) is a well-studied problem with

3Small here is comparative to the domain of the AES permutation which
has a domain size of 2128. In comparison we require permutations with
domain of size on the order of 220 elements.

5

PrivGame0 (Privacy for Server 0)

• b $←{0,1}

• (ck,_)← Hint(DB)

• st← A(1λ,ck)

• For t = 0, . . . ,T −1 :

– (st,x0,x1) = A(st).

– (ck,q0,_)← Query(ck,xb).

– st← A(st,q0)

• b′← A(st)

• Output b = b′

PrivGame1 (Privacy for Server 1)

• b $←{0,1}

• (ck,_)← Hint(DB)

• st← A(1λ)

• For t = 0, . . . ,T −1 :

– (st,x0,x1) = A(st).

– (ck,_,q1)← Query(ck,xb).

– st← A(st,q1)

• b′← A(st)

• Output b = b′

Figure 1: Privacy Games for PIR

a long line of work [18, 26, 28, 29, 31, 32]. To date, current
approaches are still not as fast as AES and many have later
been found to be insecure [17, 33]. For this work we sample
random permutations using a well-known method of sampling
truly random permutations, described below, and avoid the
problem of sampling pseudorandom permutations over small
domains completely.

The Fisher-Yates shuffle, also known as the Fisher-Yates-
Durstenfeld-Knuth shuffle [9,10,20], is an algorithm to output
an unbiased permutation of the set [[[N]]]. The algorithm samples
a permutation uniformly from the set of all permutations of
[N] in O(N) time. In this work, we will use this algorithm to
sample permutations uniformly from all the permutations of
[[[N]]]. We will use the following Lemma for our work, proved
in previous works. For brevity, we will refer to it as the Fisher-
Yates shuffle.

Lemma 2.1 (Fisher-Yates Shuffle [9,10,20]). For any positive
integer N, there exists an algorithm Permute(N) that can
output a permutation of the set [[[N]]] sampled uniformly from
the set of all permutations of [[[N]]], PN , in O(N) time.

The Fisher-Yates Shuffle and Lemma 2.1 will be crucial in
our construction of our single pass client-preprocessing PIR
scheme. We use the Permute algorithm above in our main
protocol.

We can define a computational version of the Fisher-Yates
shuffle by using a PRG and a single random seed to sample
all the randomness used in the protocol. Note that for any PPT
adversary, a Fisher-Yates shuffle run with true randomness
and computational randomness is indistinguishable (except
with probability negligibly in the security parameter λ), by
security of the PRG. While using a seeded PRG allows for
representation of the permutation, this concise representation
does not allow for point queries to the permutation in o(N)
time. Looking ahead, for our PIR scheme, we store the whole
permutation at the client, since this storage turns out to be
small compared to the database elements the client needs to
store, however, we can optimize offline communication by
having the server and client communicate only the seed for the
permutations rather than the permutations in their entirety.

3 Single Pass Client-Preprocessing PIR

In this section, we formally present our single pass client-
preprocessing PIR scheme. We first give intuition on the
scheme’s security through a new game which we call the Show
and Shuffle game. Afterwards, we present our full scheme
(Figure 3), along with our main theorem (Theorem 3.1) and
its proof.

3.1 Show and Shuffle
To aid in our proof and abstract out a key concept neces-
sary for our scheme to work, we define a game called Show

6

Show and Shuffle

Public Parameters: L,K ∈ N.

Experiment:

1. Sample (P1, . . . ,PL)
$← (PK)

L

2. Adversary A outputs x = (ℓ,k) ∈ ([[[L]]]× [[[K]]]).

3. Find j such that Pℓ(j) = k.

4. Experiment outputs v = (v1, . . . ,vL) where for each
i ∈ [[[L]]]:

• vi = Pi(j) if i ̸= ℓ.

• vi
$← [[[K]]] if i = ℓ.

5. Let b $←{0,1}.

6. If b = 0 : Output R0 = (F1, . . . ,FL)
$← (PK)

L.

7. Else:

• For each i ∈ [[[L]]], i ̸= ℓ, sample ri
$← [[[K]]], and

let P′i = Pi except swapping Pi(j) and Pi(ri).

• Let P′ℓ = Pℓ
• Output R1 = (P′1, . . . ,P

′
L)

8. A(ℓ,k,v,Rb)→ b′ ∈ {0,1}.

9. Game outputs 1 iff b′ = b

Figure 2: Show and Shuffle experiment.

and Shuffle, formally defined in Figure 2. It is exactly cap-
tures single-round security of our scheme. For this game,
parametrized by parameters L,K ∈ N the experiment uni-
formly samples L permutations of [[[K]]]. The adversary out-
puts a tuple (ℓ,k) ∈ ([[[L]]]× [[[K]]]). The experiment then defines
j = P−1

ℓ (k), and outputs (v1, . . . ,vL) where vi = Pi(j) if i ̸= ℓ

and v j
$← [[[K]]].

Next the experiment flips a bit b, and either outputs a
swapped version of (P1, . . . ,PL) or freshly sampled permuta-
tions (F1, . . . ,FL) dependent on b. For each of these swapped
versions of Pi, denoted P′i , the experiment samples ri

$← [[[K]]]
and swaps the outputs of Pi(j) and Pi(ri). We do not perform
a swap for Pℓ. This experiment models exactly one round of
our PIR query, and will help us show that after each query,
the resulting state of the client’s hint is competely uniform.
Looking ahead, to prove our scheme secure we will apply the
Show and Shuffle Indistinguishability Lemma T times.

Now, we will show that for any adversary playing this game,

the adversary cannot guess b with probability greater than 1/2.
This is because the outputs of the experiment in the second
round are identically distributed. We prove this in Lemma 3.1.

Lemma 3.1 (Show and Shuffle Perfect Indistinguishability).
For the Show and Shuffle game defined in Figure 2, denoted
as SaS, for any adversary A , for any L,K ∈ N:

Pr
[
SaSA ,L,K → 1

]
= 1/2.

Proof.

Pr[SaSA ,L,K → 1]

=
1
2
(
Pr[SaSA ,L,K → 1 |b = 1]+Pr[SaSA ,L,K → 1 |b = 0]

)
=

1
2
(Pr[A(ℓ,k,v,R1)→ 1 |b = 1]

+Pr[A(ℓ,k,v,R0)→ 0 |b = 0])

=
1
2
(Pr[A(ℓ,k,v,R1)→ 1 |b = 1]

+ (1−Pr[A(ℓ,k,v,R0)→ 1 |b = 0]))

=
1
2
+

1
2
(Pr[A(ℓ,k,v,R1)→ 1 |b = 1]

−Pr[A(ℓ,k,v,R0)→ 1 |b = 0])

Finally, it holds that if we can show that:

Pr[A(ℓ,k,v,R1)→ 1 |b = 1] = Pr[A(ℓ,k,v,R0)→ 1 |b = 0],

then we have shown our lemma.
The only difference in the adversary’s view, from both

inputs, is Rb.
Now, we will show that the distribution of R0 and R1.

Throughout, we implicitly condition on the other inputs the
adversary has access to which are invariant in both schemes:
ℓ,k,v.

Now, for any p1, . . . , pL, where each pi is a permutation of
[K], by construction of our experiment, it follows that:

Pr[(F1, . . . ,FL) = (p1, . . . , pL)] = (1/K!)L .

Then, if we can show that the same holds true for our set
R1, we are done. Formally, we have to show that for any
p1, . . . , pL, where each pi is a permutation of [K]:

Pr[(P′1, . . . ,P
′
L) = (p1, . . . , pL)] = (1/K!)L.

First, notice the important fact that each P′z for z ̸= ℓ is only
dependent on P′ℓ and no other permutation. More formally, by
construction, we have that:

Pr[P′z = pz|{P′i = pi}i ̸=z] = Pr[P′z = pz |P′ℓ = pℓ]. (1)

7

This gives us that for each P′z,P
′
y,z,y ̸= ℓ, P′z and P′y are

conditionally independent given P′ℓ. Now, going back to our
initial equation, we can break it up as follows:

Pr[(P′1, . . . ,P
′
L) = (p1, . . . , pL)]

= Pr[(P′1, . . . ,P
′
ℓ−1,P

′
ℓ+1, . . . ,PL)

= (p1, . . . , pℓ−1, pℓ+1, . . . , pL)|P′ℓ = pℓ]∗Pr[P′ℓ = pℓ]

=

(
∏

z∈[L],z̸=ℓ

Pr[P′z = pz |P′ℓ = pℓ]

)
Pr[P′ℓ = pℓ]

Where the first equality follows from a simple chain rule
and the second equality follows because the set {P′z}z ̸=ℓ is
conditionally independent given P′ℓ, from Equation (1).

Notice that the only element that affects P′z out of P′ℓ is
j = P′−1

ℓ (k), so we can condition only on j rather than the
whole permutation.

Now, for each z ∈ [L],z ̸= ℓ, pick any permutation of [K],
pz = [q1, . . . ,qK]. We need to calculate Pr[P′z = pz | j]. Con-
sider two cases:

Case 1: q j = vz:

Pr[P′z = pz | j,q j = vz]Pr[q j = vz]

=
1
K

Pr[Pz = pz | j,q j = vz]

=
1
K

(
1

(K−1)!

)
= 1/K!

Line 1 to 2 holds since Pr[q j = vz] = Pr[rz = j] = 1/K. Line
2 to 3 holds because since rz = j we did not perform any
swaps and the rest of Pz (other than Pz(j) which is fixed) is
uniformly distributed by definition.

Case 2: qs = vz for some s ̸= j:

Pr[P′z = pz | j,qs = vz,P′z(j) = q j]Pr[qs = vz,P′z(j) = q j]

= Pr[P′z = pz | j,qs = vz,P′z(j) = q j]

∗Pr[P′z(j) = q j|qs = vz]Pr[qs = vz]

=
1
K

Pr[P′z = [q1, . . . ,qK] | j,qs = vz,P′z(j) = q j]

∗Pr[P′z(j) = x|qs = vz]

=
1
K

Pr[Pz = [q′1, . . . ,q
′
K]| j,qs = vz,Pz(s) = q′s]

∗Pr[Pz(s) = q′s|s ̸= j]

=
1
K

(
1

K−1

)
Pr[Pz = [q′1, . . . ,q

′
K]| j,qz = vz,Pz(s) = q′s]

=
1
K

(
1

K−1

)(
1

(K−2)!

)
=

1
K!

.

Where Line 1 to 2 holds by just opening up the conditioning,
Line 2 to 3 holds because Pr[qs = vz] = Pr[rz = s] = 1/K.
Line 3 to 4 holds by construction, if we redefine q′i = qi for
every i ̸= s and i ̸= j, and let q′s = q j and q′j = qs (we are
just inverting the swap on P′). Line 4 to 5 holds because

Pz(s) cannot equal vz conditioned on s ̸= j, but is uniform
among the rest of the elements. Finally, Line 5 to 6 holds
because when we fix Pz(s) and Pz(j), the rest of the elements
are unchanged and uniform by definition of Pz.

So, we have shown that for any z ̸= ℓ, Pr[P′z = pz |P′ℓ =
pℓ] = 1/K!.

Plugging this back in to our equation we found before, we
have that for any p1, . . . , pL:

Pr[(P′1, . . . ,P
′
L) = (p1, . . . , pL)]

=

(
∏

z∈[L],z ̸=ℓ

Pr[P′z = pz |P′ℓ = pℓ]

)
Pr[P′ℓ = pℓ]

=

(
∏

z∈[L],z ̸=ℓ

1
K!

)
Pr[P′ℓ = pℓ]

=

(
1

K!

)L−1

Pr[P′ℓ = pℓ] =
(

1
K!

)L

.

Note that the last line just follows because P′ℓ = Pℓ was sam-
pled uniformly in the experiment. Then, tying back to the
beginning, this means that:

Pr[A(ℓ,k,v,R1)→ 1 |b = 1] = Pr[A(ℓ,k,v,R0)→ 1 |b = 0].

This proves our lemma. ■

3.2 Our Scheme
We now have enough intuition to present our scheme, which
uses the intuition and the Show and Shuffle game described
above to devise an efficient client-preprocessing PIR scheme.
Our scheme can be found in Figure 3.

For clarity, Server 0 will be running Hint(DB), the client runs
Query with its index and the keys output by Server 0’s Hint and
sends q0 to Server 0 and q1 to Server 1. Then, each server runs
Answer(DB,qb), and returns the output to the client. Finally,
the client runs reconstruct to retrieve the actual word at the
desired index and update its hints. The privacy with respect
to each server is modeled and explained in Section 2.

For the scheme, we assume that the client implicitly keeps
track of x, ind, and {ri}i∈[[[Q]]] in between Query and Recon-
struct. We capture the scheme’s security in Theorem 3.1 below.

Theorem 3.1 (Single Pass Client-Preprocessing PIR). The
scheme in Figure 3 is a client-preprocessing Private Informa-
tion Retrieval scheme as defined in Definition 2.1 and runs
with the following complexities:

• Hint(qh,DB) runs in O(N ·w) time and outputs a hint of
size (N/Q) ·w bits.

8

Single Pass Client-Preprocessing PIR Scheme

Public Params: Let Q,N ∈ N such that Q|N. Let m ∈ N= N/Q. Let DB be an array of N elements of size w. For i ∈ [[[Q]]], let
DBi = DB[i∗m : (i+1)m].

Hint(DB):

1. For i ∈ [[[Q]]], pi
$← Permute(N/Q)

2. Compute hints h0, ...hm−1, where for j ∈ [[[m]]]:

h j =
Q−1⊕
i=0

DBi [pi(j)] .

3. Output h = {h j} j∈[[[m]]], ck = {pi}i∈[[[Q]]].

Query(ck,x = (i∗, j∗) ∈ [[[Q]]]× [[[m]]]):

1. Parse x = (i∗, j∗). Find ind ∈ [[[m]]] such that pi∗(ind) = j∗.

2. Let S = [p j(ind) : j ∈ [[[Q]]]]. Rewrite S[i∗] = r∗ $← [[[m]]].

3. Sample r0, . . . ,rQ−1 independently and uniformly from [[[N/Q]]].

4. Let Srefresh = [pi(ri) : i ∈ [[[Q]]]],

5. For i ∈ [[[Q]]], i ̸= i∗, swap pi(ind) and pi(ri).

6. Output ck, q0 = Srefresh, q1 = Squery.

Answer(DB,qb):

1. Return Ab = [DBi[qb[i]] : i ∈ [[[Q]]]] .

Reconstruct(ck,h,A0,A1):

1. Let DB[x] = DBi∗ [j∗] =
(⊕

i∈[[[Q]]],i̸=i∗ A1[i]
)
⊕hind

2. For each i ∈ [[[Q]]], i ̸= i∗, update:
hind = hind⊕A0[i]⊕A1[i]

hri = hri ⊕A0[i]⊕A1[i]

3. Output DB[x],ck,h

Figure 3: Our main scheme.

9

• Query(ck,x) runs in O(Q) time.

• Answer(DB,qb) runs in O(Q ·w) time.

• Reconstruct(ck,h,A0,A1) runs in O(Q ·w) time.

• The client stores a state with O(N logN + (N/Q) ·w)
bits.

• The server stores only DB.

We prove Theorem 3.1 in the Appendix A, however the
basic intuition for the security of our scheme is that every
time we show any element part of the permutation, we shuffle
it back in. Then, we show that an adversary that can break
the PIR scheme can win the Show and Shuffle experiment
(Figure 2) and contradicts Lemma 3.1.

4 Benchmarking for Static Databases

In this section, we benchmark an implementation of our
scheme against previous schemes for a variety of parame-
ters. Our static scheme is implemented in only about 300
lines of Go code and 150 lines of C code, as an extension to
the existing PIR framework from Checklist [21]. Benchmarks
are all run on an AWS EC2 instance of size t2.2xlarge. All
schemes are run on a single thread. 4

For our comparisons, we compare our scheme against
Checklist [21], TreePIR [23] and MIR [30], three novel state-
of-the-art client preprocessing PIR schemes.

None of the previous works is able to avoid the dependency
on the security parameter for preprocessing and client storage.
5

Benchmarking the cost of the ‘static’ version of the scheme
serves two purposes. First, it gives a baseline as to what to
expect when we also include the logic to handle updates. Sec-
ondly and more importantly, the ‘static database’ scenario is
akin to a client that does not want to hold long term storage.
Instead, the client would like to preprocess the database on-
demand only to perform a small amount of queries quickly,
and then leave and delete the state. This is akin to web-
browsing and could find applications for websites such as
Wikipedia, Youtube, domain name lookups or compromised
credential checking where clients usually perform multiple
queries in a short span of time, and do not wish to save a
permanent client state between sessions. To properly evalu-
ate such scenario, we also include a comparison against the
state-of-the-art two-server PIR scheme with no preprocessing
from [5, 11, 15], which we will denote as DPF.

4An anonymized version of our code for the submission can be found at:
https://github.com/SinglePass712/Submission.

5In fact, because of this, as aforementioned in Section 1, even for a
databases of 1 billion 1024 byte elements, our scheme concretely achieves
less client storage than some of these scalable schemes, despite its worst
asymptotics, for the same Q [23, 30, 35].

Figure 4: Comparison of total end-to-end time for varying
number of queries over a database of one million 512-byte
elements.

The choice of parameters picked throughout the section
reflect a sample use case of a private encyclopedia service,
where a user would browse to a private encyclopedia website,
access a couple of articles privately, and afterwards leave (af-
ter which we can delete the preprocessing). In this scenario,
it matters that the preprocessing is very fast so that it can take
place as soon as the user accesses the website with no wait
time. Therefore, we split the benchmarks in two different fig-
ures. First, we measure end-to-end time of our scheme against
previous state of the art client preprocessing schemes and
the state-of-the-art two-server PIR scheme with no prepro-
cessing, denoted DPF for a database of one million 512-byte
elements. This is shown in Figure 4. Out of the range database
sizes and entry sizes we found for encyclopedias online (up
to two million entries of size 512 to 2048 bytes) we picked
this one arbitrarily to be representative; however the trend
seen in Figure 4 holds across any set of parameters. This is
fundamentally because of the asymptotic improvement of a
factor of λ in preprocessing time. Results show that whereas
other schemes start beating DPF after 50+ queries, the total
end-to-end time of SinglePass is already better even when
performing two queries.

In Figure 5, we provide a more fine-grain comparison of
preprocessing time, per-query time, and bandwidth between
SinglePass, Checklist,TreePIR and MIR, thorugh the whole
range of parameters mentioned in the paragraph above. Here,
as aforementioned, the parameter choices reflect our envi-
sioned use case of a private encyclopedia service. For these
tests, we normalize the tests by client storage. By this, we
mean that we run the tests for MIR,TreePIR and Checklist, and
subsequently run SinglePass picking the smallest Q such that
our client storage does not exceed the storage of the previous
schemes. In doing this, we can benchmark the performance
of the schemes when given similar client resources, and we
see that SinglePass gives us very favorable trade-offs in pre-
processing time, and query time, at a modest bandwidth cost

10

https://github.com/SinglePass712/Submission

with respect to MIR and Checklist. In Appendix C, we include
tests normalized by query time. In those tests, all schemes
have very close query times, and the other metrics vary. We
discuss this further there.

5 Handling Dynamic Databases

In contrast to the scenarios studied in Section 4, there are
other cases, such as within user applications (either mobile
or desktop) where using some long term client storage is per-
fectly acceptable. In these cases, it makes sense that the client
only run the preprocessing once (or rarely) and re-use the
information already preprocessed in the future, downloading
only the changes made to the database. In this section we
study how to slightly modify our single pass PIR scheme to
support updates.

Previous works in preprocessing PIR do not have the abil-
ity to handle updates natively in constant time. At a high
level, this is because the preprocessing step of previous client-
preprocessing PIR schemes involves sampling about λ

√
N

independent subsets of [[[N]]]. Since the hint is a collection
of independent subsets, we need to potentially update all of
them.

To deal with this, previous works [21, 23] borrowed tech-
niques from hierarchical ORAM [12] to support amortized
O(logN) time updates by incurring overheads in both query
time and client storage (this approach is also known as a wa-
terfall update approach). The transformation from a static pre-
processing PIR scheme into an updatable one in this manner
requires two steps. First, a transformation from standard PIR
to keyword PIR with indices as the keys [7]. Second, a black-
box application of this waterfall preprocessing data structure
approach to this keyword PIR. We cannot apply the waterfall
approach directly to standard PIR since it involves storing log
databases of exponentially increasing size (where the smallest
holds the newest updates, and we update the i− th smallest
only when all the ones smaller than i are full; the largest one
holds N elements), and as such we need a way to maintain
the original indices.6 Each of these steps adds some overhead
in bandwidth, communication, client and server time. Other
approaches have been studies [25] but also incur significant
overheads in comparison to the static preprocessing scheme.

To provide a robust set of update operations, we must sup-
port edits, additions and deletions. Our new single pass PIR
scheme only preprocesses each element exactly once. Since
our hint only consists of a single (partitioned) permutation of
the database, we can update the hint data structure in O(1)
time natively, without any other additional overhead. Below,
we give some intuition first on how to handle each of these,
and subsequently provide formal algorithms for each.

Edits/Deletions: For an edit to an index x = (i, j) ∈ [[[Q]]]×
[[[N/Q]]]. We compute k = p−1

i (j) and this tells us which hint

6The full approach is discussed in detail on the Checklist paper [21].

contains x, hk. Then, given the original preprocessed value
at index x, denoted DB[x]old and the new value at x, denoted
DB[x]new, the client can update its hint by simply updating
hk = hk⊕DB[x]old ⊕DB[x]new, after calculating k. Since all
these steps take constant time, editing takes constant time. We
also define a deletion to be an edit where DB[x]new equals 0
(or a special delete value).

Additions: We can support additions at the end of the array
in two steps. We first sample a new permutation pQ, and
then let k = p−1

Q (N). We let hk = DB[N]. Note that we only
have to sample the permutation once for every N/Q additions,
and sampling the permutation takes O(N/Q) time. Every
subsequent addition takes O(1) time, since we just xor it
into the appropriate hint by checking the inverse. This gives
us constant amortized time for addition. This can be easily
deamortized by sampling a constant part of the permutation
at each step.

The attentive reader will notice that the Add operation
introduces a new permutation, and therefore a new element
being sent on each query which may be out of bounds for the
current database. The server can just choose to ignore indices
out of bounds. Furthermore, every N/Q additions increase
the bandwidth by an additive factor of 2w (by increasing our
value of Q to be Q+1). After N additions, this means that our
new bandwidth will be 2Q rather than our initially selected
Q. After N additions, one can re-run the preprocessing step
to again tune Q to whatever is desired while maintaining a
constant update cost (since this is performed only every N
updates). This step too can be de-amortized by running a
constant amount of steps at each update.

We give the full procedure for Edit and Add in Figure 6.
Next, we look at how our update capabilities perform in

practice.

6 Benchmarking for Dynamic Databases

We implement the updatable logic for our scheme in an addi-
tional 200 lines of Go code and 50 lines of C code. We again
run all benchmarks on the same AWS EC2 instance of size
t2.2xlarge. Schemes are run on a single thread.

After preprocessing, the client now can update its prepro-
cessed hint through an update function. In the case of Sin-
glePass, the server streams to the client the changes on the
database since the last client update (the client keeps track
of the version number for its last update/preprocess call, and
sends it along with the update request), and the client updates
its hint accordingly, in the fashion described in Section 5.

In addition to benchmarking the preprocessing time, query
time, bandwidth and client storage, we now also measure the
update time for each of the databases studied before. The
update time in the tables and figures reflects the amortized
time for a batch of 500 updates.

Unlike in Section 4, we do not include the DPF scheme
in our benchmarks for the updatable version, since these use

11

512-byte word databases 1024-byte word databases 2048-byte word databases

Figure 5: Comparison of benchmarking over preprocessing time, query time, bandwidth and client storageover increasingly sized
static databases (x-axis) for different element sizes (on a log scale).

12

Edit(ck,h, i,DB[i]old ,DB[i]new):

1. Compute i0, i1 such that i = (⌈N/Q⌉)i0 + i1.

2. Let k = p−1
i0 (i1).

3. Let hk = hk⊕DB[i]old⊕DB[i]new

Add(ck,h,w):

1. Let j = N mod (N/Q)

2. If j = 0 :

(a) Sample pQ = Permute([[[N/Q]]])

(b) Let Q = Q+1

3. Let k = p−1
Q−1(j)

4. Let hk = hk⊕w

5. Let N = N +1

Figure 6: Update Operations for SinglePass

cases assume the client will run the preprocessing only once
(or at least extremely sparsely). Also, Checklist is the only
scheme out of the previous state of the art PIR schemes which
provide an updatable implementation, so in this section, we
compare exclusively against Checklist. Note that all previous
schemes (Checklist included) do not naively support updates.
Instead, one can handle updates through employing a similar
technique to the one used in Checklist (as also mentioned
in [23, 35]). Through this technique, they achieve O(log(n))
time updates and with significant storage overhead at the
client.

We run a complete test suite in Figure 7, with the same
parameters as we picked in Section 4. This could reflect a
mobile app for the private encyclopedia service envisioned
in Section 4, where it is okay to use some permanent stor-
age. In this scenario, minimizing update times is crucial to to
impose as small as a burden as possible on the servers. On
the chart, the update represents the update time for a batch
of 500 updates. Notice that while Checklist’s update time
scales logarithmically with the database size, the update time
for SinglePass remains basically the same across all database
sizes. The other trends, preprocessing time, query time and
query bandwidth, follow mostly the same patterns identified
in Section 4, with an improvement in the comparative band-
width for SinglePass, because of the overhead incurred when

mapping Checklist to its updatable version. For databases
of up to 1 million elements, we notice that SinglePass has a
bandwidth which is at most 1.5x Checklist’s bandwidth, while
maintaining a query time reduction of roughly 20x on aver-
age across alll experiments and a preprocessing time speed
up of up to 100x. As in Section 4, we pick Q for our single
pass scheme accordingly, so as to benchmark both schemes
while using comparable client storage, and include tests that
fix query time in Appendix C.

As a second source of comparison, in Table 2, provide
a benchmark of SinglePass and Checklist for the blocklist
application studied in Checklist, with the parameters picked
in the paper: a database of 3 million 32-byte elements that
is updated in batches of 500. In comparison to Checklist, our
scheme achieves over 100x speed up in preprocessing, over
a 47x speed up in query time, an approximate 2x saving in
bandwidth and a 19x faster update time. The saving stems
primarily from not requiring a dependency on the security
parameter for the preprocessing and storage. Because our
client storage for using the same set size as Checklist is much
smaller, we can tune Q such as to use about the same storage.
For the scenario benchmarked in Table 2, this comes out a set
size of Q = 10. This is how the λ saving in client storage and
preprocessing can translate into improved query time. The
update time discrepancy of about 20x follows the expected
difference between an algorithm that runs in constant time
and an algorithm with a O(logN) overhead. 7

7 Next Steps

Our new scheme, SinglePass, expands the realm of possibil-
ity for Private Information Retrieval by removing the depen-
dency of the scheme’s efficiency with the security parameter.
As seen throughout Section 4 and Section 6, this allows for
great practical savings across the board. Some natural next
questions for this line of work are whether we can have a
client-preprocessing PIR scheme whose efficiency is inde-
pendent of λ, and that operates in the single server setting;
and whether we can get rid of the linear dependency of our
scheme’s client state and the database size.

References

[1] Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal,
Amr El Abbadi, and Trinabh Gupta. Addra: Metadata-
private voice communication over fully untrusted infras-
tructure. 2021.

7One caveat of the comparison is that Checklist supports keyword queries
(it is necessary for the updatable version of Checklist that it support keywords
in order to achieve the O(logN) amortized bandwidth). Our single pass
scheme is a pure PIR scheme that only supports index queries. However,
using cuckoo hashing it could be translated to a keyword PIR scheme with a
2x overhead [34].

13

512-byte word databases 1024-byte word databases 2048-byte word databases

Figure 7: Comparison of benchmarking over preprocessing time, query time, bandwidth, client storage and update time over
increasing updatable databases sizes (x-axis) for different element sizes (on a log scale).

14

Scheme Preprocessing Time (s) Query Time (ms) Query BW (KB) Client Size (MB) Update Time (ms)

SinglePass 0.122 0.02ms 0.68KB 23.3MB 0.19ms
Checklist 13.22s 0.95ms 1.48KB 23.6MB 3.78ms

Table 2: Comparison for Updatable Database with 3,000,000 32-byte elements. The update time is for a batch of 500 updates.

[2] Sebastian Angel and Srinath Setty. Unobservable com-
munication over fully untrusted infrastructure. In Pro-
ceedings of the 12th USENIX conference on Operating
Systems Design and Implementation, OSDI’16, pages
551–569, USA, November 2016. USENIX Association.

[3] Michael Backes, Aniket Kate, Matteo Maffei, and Kim
Pecina. ObliviAd: Provably Secure and Practical Online
Behavioral Advertising. In 2012 IEEE Symposium on
Security and Privacy, pages 257–271, May 2012. ISSN:
2375-1207.

[4] Amos Beimel, Yuval Ishai, and Tal Malkin. Reduc-
ing the Servers Computation in Private Information
Retrieval: PIR with Preprocessing. In Mihir Bellare,
editor, Advances in Cryptology — CRYPTO 2000, Lec-
ture Notes in Computer Science, pages 55–73, Berlin,
Heidelberg, 2000. Springer.

[5] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function
Secret Sharing. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology - EUROCRYPT 2015,
Lecture Notes in Computer Science, pages 337–367,
Berlin, Heidelberg, 2015. Springer.

[6] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Woot-
ters. Can We Access a Database Both Locally and
Privately? pages 662–693, November 2017.

[7] Benny Chor, Niv Gilboa, and Moni Naor. Private Infor-
mation Retrieval by Keywords, 1998. Report Number:
003.

[8] Henry Corrigan-Gibbs and Dmitry Kogan. Private Infor-
mation Retrieval with Sublinear Online Time. In Anne
Canteaut and Yuval Ishai, editors, Advances in Cryptol-
ogy – EUROCRYPT 2020, Lecture Notes in Computer
Science, pages 44–75, Cham, 2020. Springer Interna-
tional Publishing.

[9] Richard Durstenfeld. Algorithm 235: Random permuta-
tion. Communications of the ACM, 7(7):420, July 1964.

[10] Ronald Aylmer Fisher and Frank Yates. Statistical tables
for biological, agricultural and medical research, edited
by R.A. Fisher and F. Yates. 6th ed. Edinburgh: Oliver
and Boyd, 1963. Accepted: 2006-06-27T07:57:52Z.

[11] Niv Gilboa and Yuval Ishai. Distributed Point Functions
and Their Applications. In Phong Q. Nguyen and Elis-
abeth Oswald, editors, Advances in Cryptology – EU-
ROCRYPT 2014, Lecture Notes in Computer Science,
pages 640–658, Berlin, Heidelberg, 2014. Springer.

[12] Oded Goldreich, S. Goldwasser, and S. Micali. How to
Construct Random Functions (Extended Abstract). In
FOCS, 1984.

[13] Oded Goldreich and Rafail Ostrovsky. Software protec-
tion and simulation on oblivious RAMs. Journal of the
ACM, 43(3):431–473, May 1996.

[14] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Sri-
nath Setty, Lorenzo Alvisi, and Michael Walfish. Scal-
able and private media consumption with Popcorn. In
Proceedings of the 13th Usenix Conference on Net-
worked Systems Design and Implementation, NSDI’16,
pages 91–107, USA, March 2016. USENIX Associa-
tion.

[15] Syed Mahbub Hafiz and Ryan Henry. A Bit More
Than a Bit Is More Than a Bit Better: Faster (essen-
tially) optimal-rate many-server PIR. Proceedings on
Privacy Enhancing Technologies, 2019(4):112–131, Oc-
tober 2019.

[16] Laura Hetz, Thomas Schneider, and Christian Weinert.
Scaling Mobile Private Contact Discovery to Billions
of Users, 2023. Publication info: Published elsewhere.
Minor revision. ESORICS 2023.

[17] Mihir Bellare Hoang, Viet Tung and Stefano Tessaro.
Message-recovery attacks on Feistel-based Format Pre-
serving Encryption. Technical Report 794, 2016.

[18] Viet Tung Hoang, Ben Morris, and Phillip Rogaway. An
Enciphering Scheme Based on a Card Shuffle. Tech-
nical Report arXiv:1208.1176, arXiv, November 2014.
arXiv:1208.1176 [cs] type: article.

[19] Justin Holmgren, Ran Canetti, and Silas Richelson. To-
wards Doubly Efficient Private Information Retrieval.
Technical Report 568, 2017.

[20] Donald E Knuth. The Art of Computer Programming,
Volume II: Seminumerical Algorithms. Addison-Wesley,
1969.

15

[21] Dmitry Kogan and Henry Corrigan-Gibbs. Private
Blocklist Lookups with Checklist. In 30th USENIX
Security Symposium (USENIX Security 21), pages 875–
892. USENIX Association, 2021.

[22] Arthur Lazzaretti and Charalampos Papamanthou. Near-
Optimal Private Information Retrieval with Preprocess-
ing. In Guy Rothblum and Hoeteck Wee, editors, Theory
of Cryptography, Lecture Notes in Computer Science,
pages 406–435, Cham, 2023. Springer Nature Switzer-
land.

[23] Arthur Lazzaretti and Charalampos Papamanthou.
TreePIR: Sublinear-Time and Polylog-Bandwidth Pri-
vate Information Retrieval from DDH. In Advances
in Cryptology – CRYPTO 2023: 43rd Annual Interna-
tional Cryptology Conference, CRYPTO 2023, Santa
Barbara, CA, USA, August 20–24, 2023, Proceedings,
Part II, pages 284–314, Berlin, Heidelberg, August 2023.
Springer-Verlag.

[24] Wei-Kai Lin, Ethan Mook, and Daniel Wichs. Doubly
Efficient Private Information Retrieval and Fully Ho-
momorphic RAM Computation from Ring LWE, 2022.
Report Number: 1703.

[25] Yiping Ma, Zhong Ke, Tal Rabin, and Sebastian Angel.
Incremental Offline/Online PIR (extended version). In
USENIX Security 2022, 2022.

[26] Rashed Mazumder, Atsuko Miyaji, and Chunhua Su.
A simple construction of encryption for a tiny domain
message. pages 1–6, March 2017.

[27] Samir Menon. SpiralWiki, 2022.

[28] Sarah Miracle and Scott Yilek. Cycle Slicer: An Algo-
rithm for Building Permutations on Special Domains.
pages 392–416, November 2017.

[29] Ben Morris and Phillip Rogaway. Sometimes-Recurse
Shuffle. In Phong Q. Nguyen and Elisabeth Oswald,
editors, Advances in Cryptology – EUROCRYPT 2014,
Lecture Notes in Computer Science, pages 311–326,
Berlin, Heidelberg, 2014. Springer.

[30] Muhammad Haris Mughees, Sun I, and Ling Ren. Sim-
ple and Practical Amortized Sublinear Private Informa-
tion Retrieval, 2023. Publication info: Preprint.

[31] Thomas Ristenpart and Scott Yilek. The Mix-and-Cut
Shuffle: Small-Domain Encryption Secure against N
Queries. In Ran Canetti and Juan A. Garay, editors, Ad-
vances in Cryptology – CRYPTO 2013, Lecture Notes in
Computer Science, pages 392–409, Berlin, Heidelberg,
2013. Springer.

[32] Emil Stefanov and Elaine Shi. FastPRP: Fast pseudo-
random permutations for small domains. Cryptology
ePrint Report 2012/254. Technical report, 2012.

[33] Viet Tung Hoang Tessaro, Stefano and Ni Trieu. The
Curse of Small Domains: New Attacks on Format-
Preserving Encryption. Technical Report 556, 2018.

[34] Kevin Yeo. Cuckoo Hashing in Cryptography: Opti-
mal Parameters, Robustness and Applications. In Ad-
vances in Cryptology – CRYPTO 2023: 43rd Annual
International Cryptology Conference, CRYPTO 2023,
Santa Barbara, CA, USA, August 20–24, 2023, Proceed-
ings, Part IV, pages 197–230, Berlin, Heidelberg, August
2023. Springer-Verlag.

[35] Mingxun Zhou, Andrew Park, Elaine Shi, and Wenting
Zheng. Piano: Extremely Simple, Single-Server PIR
with Sublinear Server Computation, 2023. Publication
info: Published elsewhere. Major revision. IEEE S&P
2024.

A Proof of Main Theorem

In this section, we restate and prove Theorem 3.1

Theorem 3.1 (Single Pass Client-Preprocessing PIR). The
scheme in Figure 3 is a client-preprocessing Private Informa-
tion Retrieval scheme as defined in Definition 2.1 and runs
with the following complexities:

• Hint(qh,DB) runs in O(N ·w) time and outputs a hint of
size (N/Q) ·w bits.

• Query(ck,x) runs in O(Q) time.

• Answer(DB,qb) runs in O(Q ·w) time.

• Reconstruct(ck,h,A0,A1) runs in O(Q ·w) time.

• The client stores a state with O(N logN + (N/Q) ·w)
bits.

• The server stores only DB.

Proof. Complexities: For Hint, by Lemma 2.1, we can sam-
ple the permutations needed in O(N) time, and then use ran-
dom access to compute the hints in O(N ·w) time. Query to
x = (i∗, j∗) has to find the index ind such that pi∗(ind) = j∗.
Notice that given the expanded format of each permutation
and its inverse, this can be done in O(1) time, by simply tak-
ing p−1

i∗ (j∗).8 After, we just have to index pi(ind) for i ∈ [[[Q]]]

8We can store the inverse along with the permutation with constant over-
head. In practice, for some scenarios, it might be beneficial to not store
the inverse in order to save space. In those cases, the client time would be
O(Q+N/Q). This is the only place where the inverse is used for that static
scheme. For the updatable scheme, we require the inverse to get O(1) update
operations.

16

which takes O(Q) time, and send that to the server (with a
symmetric number of operations to generate the refresh hint).
Answer only reads the array of size Q and accesses each el-
ement indexed by the array. Assuming random access costs
constant time, this also runs in O(Q) time. Finally, Recon-
struct does O(Q) operations to update the hint parities of the
elements used (from the above complexities, only O(Q) el-
ements are sent/received on each query. The client storage
is the hint it receives from Hint (and whatever refresh op-
erations done on it, which don’t increase its size) plus the
expanded client keys (N indices of [[[N]]], therefore, N logN
space). Alternatively, the client can store only the seed used
for the permutations and expand them at query time, but by
Lemma 2.1 this would then require Query to run in O(N)
time.

Correctness: Follows by construction (we reiterate correct-
ness is modeled for honest servers only).

Note that after a correct preprocessing, Server 0 sends back
to the client (ck,h) = ({pi}i∈Q,{h j} j∈⌊N/Q⌋ where each pi
is a pseudorandom permutation of [1,⌊N/Q⌋] and each h j =⊕

i∈Q DB[pi(j)].
Then, for a query to x=(i∗, j∗), first define ind to be the ele-

ment of [[[N/Q]]] such that pi∗(ind) = j∗. If Server 1 responds to
q1 honestly, then it is clear to see that the client’s output for the
query is

(⊕
i∈Q,i̸=i∗ DBi[pi(ind)]

)
⊕ hind = DBi∗ [pi∗(ind)] =

DBi∗ [j∗] = DB[x].
For a subsequent query, what is left to show is that for every

following query, for every j ∈ [[[N/Q]]], h j =
⊕

i∈[[[Q]]] DBi[pi(j)]
after the swaps. Notice that for each swap between pi(k) and
pi(v), we let hk = hk⊕DBi[pi(k)]⊕DBi[pi(v)] therefore ef-
fectively removing the old element in this hint’s position from
the xor and adding the new one (this happens symmetrically
on hv). Then, at the beginning of the next query, each hint h j
is still equal to

⊕
i∈[[[Q]]] DBi[pi(j)]. Then, by our argument for

the first query, correctness holds as well (and holds for any
T).

Privacy: We consider the privacy of each server separately
according to the games defined in Figure 1.

Server 0: To show privacy for Server 0 for any λ ∈ N and
any N(λ),T (λ), for any PPT adversary A(λ),

Pr
[
PrivGame0

A ,λ,N,T → 1
]
≤ 1/2+neg(λ).

Note that in PrivGame0, which models the view of Server
0, Server 0 has access to both the client keys, and then for
each query t ∈ T , it gets access to the corresponding q0 for
that query, which we will denote here as qt

0.
Notice that as long as each pi is bijection from [[[N/Q]]] to

[[[N/Q]]], then each pi(ri) is uniform and independent of the
query being made, since by definition each ri is uniform and
independent of the query being made. Since for every step,
the new swapped pi is still a bijection, then this holds for
any timestep t. So each q0 is a set of elements in [[[N/Q]]]
independent of the query being made. Then, since each step

q0 is independent of the query being made, it follows that for
any pair x0,x1, even conditioned on seeing the preprocessing,
an adversary acting as Server 0 cannot distinguish between
b = 0 and b = 1 on the PrivGame0 experiment. If we use
pseudorandomness output by a PRG with security parameter
λ rather than true randomness to sample each ri, we incure
a negligible probability of distinguishing, directly from the
PRG security definition. Finally, we get that,

Pr
[
PrivGame0

A ,λ,N,T → 1
]
≤ 1/2+neg(λ).

Server 1: To show privacy for Server 1 for any λ ∈ N and
any N(λ),T (λ), for any PPT adversary A(λ),

Pr
[
PrivGame1

A ,λ,N,T → 1
]
≤ 1/2+neg(λ).

Notice that here, the adversary acting as Server 1 does not
get access to the preprocessing (since it is run by Server 0),
but it does see q1 for every timestep t ∈ T .

Here, we use Theorem B.1. Note that Experiment 1 in
Theorem B.1 is exactly equivalent to our PIR query at each
timestep. Then, by Theorem B.1, we can replace each q1
shown to Server 1 by uniform random elements of [[[N/Q]]].
This implies that for any x0,x1 picked by the adversary as
inputs from PrivGame1, the outputs at each timestep will
be identically distributed and indistinguishable when using
true randomness. Then, we can replace the randomness used
by pseudorandomness sampled through a PRG with security
parameter λ (which is what we do in our scheme), and it fol-
lows by the PRG security that this would be computationally
indisinguishable from before. Then, it follows that:

Pr
[
PrivGame1

A ,λ,N,T → 1
]
=≤ 1/2+neg(λ).

■

B Server 1 Indistinguishability

We include a theorem here to modularize the proof of Theo-
rem 3.1. It is used to prove our scheme satisfies PrivGame1.

Theorem B.1 (Query indistinguishability). For any adaptive
adversary A , Experiment 0 and Experiment 1, as defined in
Figure 8, are perfectly indistinguishable.

Proof. We prove this through a series of hybrid experiments,
starting from H0 :

Experiment H0

Public Parameters: N,Q ∈ N, assume Q|N.

Experiment:
▶

17

Experiment 0

Public Parameters: N,Q ∈ N, assume Q|N.

Experiment:

1. For t ∈ {1, . . .T} :

(a) Adversary outputs xt = (it , jt) ∈ ([[[Q]]]× [[[N/Q]]]).

(b) Output (yt
1, . . . ,y

t
Q)

$← [[[N/Q]]]Q.

Experiment 1

Public Parameters: N,Q ∈ N, assume Q|N.

Experiment:

1. Sample P1
1 , . . .P

1
Q

$←
(
PN/Q

)Q.

2. For t ∈ {1, . . . ,T} :

(a) Adversary outputs xt = (it , jt) ∈ ([[[Q]]]× [[[N/Q]]]).

(b) Find ind s.t. Pt
it (ind) = jt

(c) Output S = (vt
1, . . . ,v

t
Q) where:

• vt
i = Pt

i (ind) if i ̸= it .

• vt
i

$← [[[N/Q]]] if i = it .

(d) Let {ri}i∈Q
$← [[[N]]]Q.

(e) For i ∈ Q, let Pt+1
i = Pt

i except we swap the val-
ues of Pt

i (ri) and Pt
i (ind) for i ̸= it .

Figure 8: Experiments

Experiment H0 (cont)

1. For t ∈ {1, . . .T} :

(a) Sample (Pt
1, . . . ,P

t
Q)

$← (PN)
Q.

(b) Adversary outputs xt = (it , jt) ∈
([[[Q]]]× [[[N/Q]]]).

(c) Find ind such that Pt
it (ind) = jt

(d) Output (vt
1, . . . ,v

t
Q) where:

• vt
i = Pt

i (ind) if i ̸= it

• vt
i

$← [[[N/Q]]] if i = it

We claim that Experiment 0 and Experiment H0 are indis-
tinguishable. For each step, we sample fresh permutations, so
consider each step independently. Now, consider the distribu-
tion of vt

i for i∈Q, t ∈ T . Since our permutations are sampled
uniformly, and each Pt

i for i ̸= it is independent from Pit , every
Pi(ind) is uniformly distributed over [[[N/Q]]], for i ∈ Q, i ̸= it .
Then, it follows that for i∈Q, i ̸= it , vt

i is uniformly distributed.
Now, also, by definition v1

it is uniformly distributed. We have
shown that for any step t ∈ [[[T]]], any i ∈ [[[Q]]], vt

i is distrubuted
uniformly and so it since the outputs of both experiments have
the same distribution at each step, it follows that Experiment
H0 and Experiment 0 are indistringuishable.

Then, consider the following hybrid:

Experiment H1

Public Parameters: N,Q ∈ N, assume Q|N.

Experiment:

1. For t ∈ {1, . . .T −1} :

(a) Sample (Pt
1, . . . ,P

t
Q)

$← (PN)
Q.

(b) Adversary outputs xt = (it , jt) ∈
([[[Q]]]× [[[N/Q]]]).

(c) Output (yt
1, . . . ,y

t
Q) where yt

i = Pt
i (x

t).

2. Sample (rT−1
1 , . . .rT−1

Q)
$← ([[[N/Q]]])Q.

3. Let PT
i = PT−1

i except we swap the values of
PT−1

i (rT−1
i) and PT−1

i (xT−1) for each i ∈ [[[Q]]], i ̸=
it .

4. Adversary outputs xT = (iT , jT).

5. Find ind s.t. PT
iT (ind) = jT

6. Output (vT
1 , . . . ,v

T
Q) where:

• vT
i = PT

i (ind) if i ̸= iT .

• vT
i

$← [[[N/Q]]] if i = iT .

.

18

Notice that for the first T − 1 steps of the experiment, it
runs exactly as H0, so up to that point they are indistinguish-
able. The only difference is how we sample each PT

i . In
Experiment H0, it is sampled uniformly at random, whereas
in Experiment H1, it is sampled by taking each PT−1

i , swap-
ping the only element shown of PT−1

i with a uniform random
point and denoting this new permutation as PT . Notice that, by
the indistinguishability of the Show and Shuffle experiment
(Lemma 3.1), we can see that each the set of PT

i in both ex-
periments is identically distributed. Then, it follows directly
that Experiment H0 and Experiment H1 are indistinguishable.

Now, we more generally define experiment Hk as follows,
k ∈ {1, . . . ,T −1}:

Experiment Hk

Public Parameters: N,Q ∈ N, assume Q|N.

Experiment:

1. For t ∈ {1, . . .T − k} :

(a) Sample (Pt
1, . . . ,P

t
Q)

$← (PN)
Q.

(b) Adversary outputs xt = (it , jt) ∈
([[[Q]]]× [[[N/Q]]]).

(c) Output (yt
1, . . . ,y

t
Q) where yt

i = Pt
i (x

t).

2. For t ∈ {T − k+1,T}

(a) Sample (rt−1
1 , . . .rt−1

Q)
$← ([[[N/Q]]])Q.

(b) Let Pt
i = Pt−1

i except we swap the values of
Pt−1

i (rt−1
i) and Pt−1

i (indt−1) for each i ∈ [[[Q]]].

(c) Adversary outputs xt = (it , jt).

(d) Find indt s.t. Pt
it (indt) = jt

(e) Output (vt
1, . . . ,v

t
Q) where:

• vt
i = Pt

i (ind) if i ̸= it .

• vt
i

$← [[[N/Q]]] if i = it .

.

Notice that for every k, we can show that Hk is indisinguish-
able from Hk−1 by the same argument above. The only differ-
ence between Hk and Hk−1 is the k−th step, where instead of
sampling a fresh random permutation at step T − k+1, we
use a swapped version of the permutation sampled in the last
step. Since distinguishing between Hk and Hk−1 is exactly
equivalent to breaking the Show and Shuffle experiment, we
can conclude that this holds for every k ∈ {1, . . . ,T −1}.

We define HT−1 explicity below. After T − 1 hybrids
(where each Hk−1 and Hk are indistinguishable by the Show
and Shuffle lemma), we only sample a permutation once, and

swap at each step thereafter (we rearrange slightly for ease of
reading):

Experiment HT−1

Public Parameters: N,Q ∈ N, assume Q|N.

Experiment:

1. Sample (Pt
1, . . . ,P

t
Q)

$← (PN)
Q.

2. Adversary outputs x1 ∈ [[[N]]].

3. For t ∈ {1, . . . ,T}

(a) Adversary outputs xt = (it , jt) ∈
([[[Q]]]× [[[N/Q]]]).

(b) Find indt s.t. Pt
it (indt) = jt .

(c) Output (vt
1, . . . ,v

t
Q) where:

• vt
i = Pt

i (ind) if i ̸= it .

• vt
i

$← [[[N/Q]]] if i = it .

.

(d) Sample (rt
1, . . .r

t
Q)

$← ([[[N/Q]]])Q.

(e) Let Pt+1
i = Pt

i except we swap the values of
Pt

i (r
t
i) and Pt

i (indt) for each i ∈ [[[Q]]].

Notice that Experiment HT−1 and Experiment 1 are the
same, except for the reordering of when each P1

i is sampled
and therefore they are indistinguishable. We conclude that
Experiment 1 and Experiment 0 are perfectly indistinguish-
able. ■

C More Benchmarks

In this section, we include benchmarks for the same tests
as those already performed, however, normalizing by num-
ber of operations performed by the server online, or in other
words, the number of elements the online server has to read.
In this case, for both static and dynamic cases, we will see that
SinglePass achieves 50-100x better preprocessing time and
approximately 80x better storage across the board, with simi-
lar query time. The price we pay is that the query bandwidth
with comparison to MIR and Checklist is much increaased.
However, with query sizes hovering around 150KB-3MB, we
find that it still is not an impediment for usage, since 3MB
is the size of an average web page. We provide the charts in
Figure 9 and Figure 10. As seen in Section 4 and Section 6,
we can decrease query bandwidth and query time by using
more storage.

19

512-byte word databases 1024-byte word databases 2048-byte word databases

Figure 9: Comparison of benchmarking over preprocessing time, query time, bandwidth and client storageover increasingly sized
static databases (x-axis) for different element sizes (on a log scale) when fixing query time.

20

512-byte word databases 1024-byte word databases 2048-byte word databases

Figure 10: Comparison of benchmarking over preprocessing time, query time, bandwidth, client storage and update time over
increasing updatable databases sizes (x-axis) for different element sizes (on a log scale) for fixing query time.

21

	Introduction
	Notation
	Intuition
	Outline

	Model and Definitions
	Private Information Retrieval
	Pseudorandom Functions and Permutations
	Pseudorandom Functions
	Sampling Permutations

	Single Pass Client-Preprocessing PIR
	Show and Shuffle
	Our Scheme

	Benchmarking for Static Databases
	Handling Dynamic Databases
	Benchmarking for Dynamic Databases
	Next Steps
	Proof of Main Theorem
	Server 1 Indistinguishability
	More Benchmarks

