Yale University
Department of Computer Science

Some Remarks on Completely Vectorizing Point
Gauss—Seidel While Using the Natural Ordering

Craig C. Douglas’

YALEU/DCS/TR-943
December 22, 1992

! Department of Computer Science, Yale University, P. O. Box 2158 Yale Station, New Haven,
CT 06520 and Mathematical Sciences Department, IBM Research Division, Thomas J. Watson
Research Center, P. O. Box 218, Yorktown Heights, NY 10598. E-mail: douglas-craig@cs.yale.edu
and bells@uatson.ibm.com

SOME REMARKS ON COMPLETELY VECTORIZING POINT
GAUSS-SEIDEL WHILE USING THE NATURAL ORDERING*

CRAIG C. DOUGLAS!

Abstract. A common statement in papers in the vectorization field is to note that point SOR
methods with the natural ordering cannot be vectorized. The usual approach is to re-order the
unknowns using a red-black or diagonal ordering and vectorize that. In this paper, we construct a
point Gauss—Seidel iteration which completely vectorizes and still uses the natural ordering. The work
here also applies to point SOR. When this approach is reasonable to use is also shown.

Key words. iterative methods, vectorization

1. Preliminaries. In this paper a completely vectorizable point Gauss—Seidel
iteration using the natural ordering is constructed for solving the system of linear
equations

(1) Az = b,
where A is symmetric and positive definite. Gauss—Seidel,
(2) (D+ L)z =b—-Usz', i=1,2,---and A=D+L+U

(D, the main diagonal of A, and L and U are the strictly lower and upper triangular
parts of A), is assumed to converge for (1).

While this is presented for fairly general matrices A, the real problems of interest
to the author are ones derived from discretizing partial differential equations. Hence,
the examples used here will typically be the five and nine point operators (and will be
referred to as As and Ao, respectively). The idea in this paper generalizes to higher
dimensional partial differential equations problems trivially.

Assume that A has the following block structure:

Dy | Uy
L, | D; | U,

(3) A= ., Li=0,U,=0.

L, | D,
The blocks U; and L; can have any structure, including be dense. However, they are

quite sparse for the five and nine point operators. The n; x n; blocks D;, 1 <2 < p, are
assumed to be tridiagonal:

Di = [eia di7 ui]‘

* Yale University Department of Computer Science Report YALEU/DCS/TR-943, New Haven, CT,
1992.

t Department of Computer Science, Yale University, P. O. Box 2158 Yale Station, New Haven,
CT 06520 and Mathematical Sciences Department, IBM Research Division, Thomas J. Watson
Research Center, P. O. Box 218, Yorktown Heights, NY 10598. E-mail: douglas-craig@cs.yale.edu
and bells@watson.ibm.com

1

Associated with either A5 or Ag is an M x N point lattice Gayn. For Ay > 0 and
hy > 0, define

(4) Gun ={(zi,yj): zi=gz0+thy, yj =yo+jhy, i=1,--- M, 5=1,--- N}.

By the natural ordering, the points are ordered in (4) as (z1,v1), (z2,v1), -+, (Ta, Y1),
(xl, yZ)’ T (xM, yN)

2. Standard procedures. Before introducing the vectorized iteration, a review
of standard methods for vectorizing (partially or fully) Gauss—Seidel is worthwhile. A
good reference is Hayes [1].

2.1. Red-black ordering. The usual way of vectorizing (2) when A = Ajs is to
use a red-black ordering of the unknowns. This causes the approximate solution and
right hand side vectors to pass through cache twice, even though only half of the
elements are accessed each time. For long vectors (i.e., on the order of the length
MN), this also requires that M in Garn be odd, which is not always an option. Finally,
the red-black ordering does not produce a vectorized iteration for Ag nor for the more
general A in (3).

The cache issue can be resolved by programming red—black by strips of the lattice
that just fit into cache. However, this is a highly nonstandard manner for programming
this example and is not always possible anyway.

2.2. Diagonal orderings. Another re-ordering class is based on diagonals. For
example, the D1 ordering of the points in (4) is (z1,v1), (%1,%2), (Z2,¥1), (Z1,¥3),
(z2,92), (%3,91), -+, (zm,yn). Once again, this produces a vectorizable Gauss—Seidel
method for As, but not for Ag. Sometimes a red-black diagonal ordering (D2) is used,
which produces a vectorizable method for Ag.

2.3. Mostly vectorized, some scalar, but the natural ordering. When the
natural ordering is used, the common computational method is to do as much of the
updates in vector mode as possible followed by a scalar mode update. If the vectors =
and b are partitioned into pieces of length n;, similar to (3), then the complete (k+1)-st
(vector) update in block 7,7 =1,2,---,p, is given by

(5) 25 = g1 — Lig®) — Ug® — uiz®) — d7 1+,

Note that only the last term needs to be done in scalar mode since all of the earlier
ones vectorize. If the matrix A is complicated (i.e., has a large number of nonzeros per
row), the machine in question has fast scalar arithmetic units, or no cache, then this is
a very good choice for implementing Gauss-Seidel with the natural ordering.

3. Completely vectorized.

3.1. The algorithm. The technique of this paper advocates solving (5) in two
phases. First, the obviously vectorizable part is computed and stored in a vector register:

(6) g = d71[b; — Lig®Y) — Uiz®) — 2],
2

Then the bidiagonal system of equations
(7) Siz®) = 240 where S; = [4;, d;, 0],

is solved in vector mode using a highly simplified form of cyclic reduction, which will
be outlined. Lambiotte and Voigt [2] is followed, but more efficient variations exist for
certain problems (see Sweet [3] and its references).

There are 3 steps to solving (7): factorization, forward substitution, and backward
substitution. If extra storage is available, then it is worthwhile to save the factorization.

3.2. Factorization. First, assume that the matrix A has been scaled so that
aj; =1, all j. Then the factorization step in any block 7 is just computing a sequence
of new bidiagonal matrices using a divide (i.e., re—ordering) and conquer scheme. For
simplicity, assume that for some block ¢, n; = 27, some ¢ > 0. Note that the algorithm
will work for general n;’s with a minor change. Note that S; is already factored into

LU form:

1 0
Ca 1
S@ = s 1 I

0
Let
(8) G=cy, 1<j<2,

E=cyp, 0<j<271-1,

then

¢ =-GE

results in a 297! x 2971 bidiagonal matrix similar to S;:

1 0
¢ 1

¢ 1
0

This can be done in 2 vector compressions (length 27 to 2771), 1 vector multiply (length
2971}, and 1 vector sign change (length 27-!). On machines with stride > 1 capabilities
and multiply-add chaining, this is only 1 vector compression (length 27 to 2271) and 1
vector multiply-add (length 2771). While log, n; steps of this can be done recursively,
the starting costs of the vector operations will be a limiting factor (see §3.5). In the
ensuing discussion, a superscript may be added to E and G to denote recursion.

3.3. Forward substitution. Forward substitution is defined recursively. At the
k-th step,

L2y = PrZr—

1s solved where

Zk = [—u—] and Pka_l = Pk l:——lg-} - [w,] ’
v T

x
where v, z, and 2’ are of length @ = 297%+! and u and w are of length n; — a. Further,
[T
' = (21,23, , Tac1,T2, T4y, Tq)" -

For cyclic reduction of a bidiagonal system, the forward substitution is just

u=w,
’Uj‘:.'l,‘"i, j=17"'7a/27
Vitaj2z = x.l7'+a/2 - G(k)ij J= 1’ e ’a/z’

where G is derived from (8). This requires 2 vector compressions (length o to a/2),
1 vector multiply (length «/2), and 1 vector subtract (length «/2). On machines with
stride > 1 capabilities and multiply-add chaining, this is only 1 vector compression
(length « to a/2) and 1 vector multiply-add (length «/2).

3.4. Backward substitution. Backward substitution is also defined recursively.
A sequence of problems of the form

UPy - UP1Zo = Zy

must be solved. Let
! w

%ﬁ=[%4=¢xﬁdf% and aﬂﬂz[;%,

where v, v’, and z are of length o = 277%* and u, u’, and w are of length n; — a.
Similar to the forward substitution case, this is calculated by

u = w,
(9) v;:wj, . j:a/2+17...7a,
Vipasr = 8 = E® vy papiq, j=1,---,0/2,

where E(*=9 is derived from (8). The permutation, Zj_; = PLi+1Z}_;, is computed
by

(10) {u=¢,

(v1,- - vva)T = (vg, v:y/2+1’ 3, vllx/2+27 coe ’v,a)T°
The latter is a perfect shuffle merging of the upper and lower halves of v’. This requires
1 vector merge (length /2 to @), 1 vector copy (length a/2), 1 vector multiply (length
a/2), and 1 vector subtract (length «/2). On machines with stride > 1 capabilities and
multiply-add chaining, (10) can be done for free by storing information computed in
(9) appropriately. Hence, this can be done in only 1 vector copy (length /2) and 1
vector multiply-add (length a/2).
4

3.5. Costs. Associated with a vector computer are costs (machine cycles or some
unit of time) involving both a startup time and time associated with getting results out
of a pipeline. Typically, for an operation on a vector of length n, the cost is

S 4 T(V)(n).
Even for a single scalar operation, the cost may well be modeled by
S 4 7N (1).

The basic operations that are used in this paper are the following:

Operation Symbols | Description
Compression | Sgar, Tonm | Copy every other element of a vector into a new

vector.

Merge Sma, Tme | Interleave the components of 2 stride 1 vectors
to produce a new vector

Copy Scp,Tecp | Copy a vector to a new location.

Add Sa, Ty Do an element-wise vector addition. This is

assumed to be equivalent to subtraction.

Sign change | Ss¢,7s¢ | Do an element-wise vector sign change.
Multiply Suis T Do an element—wise vector multiplication.
Multiply—add | Samra,7ara | Do an element-wise vector multiplication and
addition to another vector, chained in hardware.

As noted earlier, a superscript will be added to denote scalar or vector costs.
Assume that k levels of recursmn occur in a block of the cyclic reduction process.
Then the cost of factorization is TFaC

k
Z[S(V) +8 (V) S(V) (V)(Qq—y) T(V)(Zq—j)—l-’fég)@q'j)]

J=1

or

zk:[)+ 5+ T @) + T @)

=1

depending on the hardware (no assumptions versus stride > 1 and multiply-add
chaining capability). The combined cost of the forward and backward substitutions
. (V)

18 %ubst:

|4 14 1% 14 |4 —j |4 —j
" Z; 2850 + S\t + 882 + 285 + 287 + 2783) (2777) + T2 (297)
1) 9=

VI (@) 4 250 (29) + 27|

5

or

k
(12) Z [(V) + (V) S(V) + Tcg\/l)(2q—]) + T(V)(zq._]) + 27..(V)(2q_3)]

=1

depending on the hardware. Assume that the smallest vector length in the cyclic
reduction is greater than 1, say of length N’. Then there will be a term of the form

N' 8P +89 + 1P 1) + T (1)

added to (11) and (12).

Let TF“ and Tér,,)st be the total cost of computing the factorization and forward
and backward substitutions. For r iterations of Gauss-Seidel, the algorithm described
in this paper is only useful when (the obvious, but trivial)

Tioo: +r T8 < TEUN) = TEN(NY)
(13)
= (N-N) (8P +89 + 1.0 + 1)

Hence, for this algorithm to be practical, the vector unit must be much faster than the
scalar one. In this case, N’ will be quite small in comparison to N. A quick look at
vector supercomputers of today shows that this requirement is currently with us (at
least for a while).

3.6. Example. This algorithm was tested on an IBM 3090J processor with a
vector unit. The problem was based on Poisson’s equation on a square with a uniform
lattice for Gay. This machine has vector registers of length 256. The technique
proposed here became cost effective when M > 40. With long enough vectors, the
(almost) completely vectorized method was 50% faster than the scalar version for both
As and Ay in the part of the code that was scalar only before. Since this was 25% and
12.5% of the total work per iteration, the savings were actually only 12.5% and 6.25%,
respectively.

3.7. Drawbacks. A feature worth noting is that current compilers (and vector
preprocessors) for Fortran and C do not globally optimize well enough to catch that in
calculating (7), the right hand side #; was just computed in (6). Hence, it can be left
in a vector register and not moved to main memory. Further, in Fortran, the language
standard seems to require this completely wasteful data movement. Unfortunately,
moving Z; to and then immediately from main memory destroys most, if not all, of the
usefulness of this algorithm. Hence, assembly language seems to be required for now,
which is utterly repugnant.

There is one exception to this worth noting, namely, certain SIMD (single
instruction, multiple data) parallel processors that can be considered large vector
processors. The startup time is essentially zero for vector operations, so that much
shorter vectors can be handled than on traditional vector supercomputers.

6

A final drawback is that the scalar update can be done in O(M) cost while the
left hand side of (13) can conceivably be O(M log, M). Hence, the vector lengths may
be limited to a closed interval where the vectorized method is better than the scalar
method.

4. SOR and concluding remarks. The techniques of this paper are immediately
applicable to point SOR-like methods with the natural ordering. Whether or not this
is worth using is dependent on the hardware, the size of the problem in (1), how much
time the scalar part of the iteration actually takes, and on some machines whether
or not anyone is willing to program in assembly language (unless the compiler writing
community improves their technology to accommodate the type of coding style required
here).

Finally, this method works conveniently (at least in theory) for nine point and
more general operators, which is important when solving partial differential equation
problems using finite element procedures on traditional vector supercomputers.

REFERENCES

[1] L. HaYES, Comparative analysis of iterative techniques for solving LaPlace’s equation on the unit
square on a parallel processor, master’s thesis, University of Texas, Austin, TX, 1974.

[2] J. J. LamBIOTTE AND R. G. VoiaT, The solution of tridiagonal linear systems on the CDC
STAR-100 computer, ACM Trans. Math. Soft., 1 (1975), pp. 308-329.

[38] R. A. SWEET, A parallel and vector variant of the cyclic reduction algorithm, SIAM J. Sci. Stat.
Comp., 9 (1988), pp. 761-765.

