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ABSTRACT
A Formal Model for Divide-and-Conquer and Its Parallel Realization
Zhijing George Mou
Yale University
1990

Divide-and-conquer (DC) has long been known to be an effective programming
paradigm in sequential computing. More recently, its significance to parallel com-
putation has also been noted; many efficient parallel DC algorithms have emerged.
However, the notion of divide-and-conquer has not yet received the formal treatment
it deserves. This has precluded recognition of the common structure and intrinsic con-
stituents of many DC algorithms, as well as the definition of a parallel programming

environment that supports the development of DC algorithms.

This dissertation contains the results of a research effort aimed at solving the
problems above. I present (1) an algebraic model for divide-and-conquer.called pseu-
domorphism, which permits DC ;':ngorithms to be designed by studying the algebraic
properties of the problems; (2) a programming notation called Divacon which allows
DC algorithms to be specified by a small set of primitives and functional forms in a
way that is concise, hierarchical, and highly modular; (3) a collection of applications
programs based on the formal DC model; (4) a tool developed for the analysis of Di-
vacon programs; and (5) a prototype implementation of the model on the Connection

Machine.

The DC model leads to the definition of two parallel programming constructs
called PDC and SDC. Their expressiveness is demonstrated by several examples,
including polynomial evaluation, matrix multiplication, sort, Gaussian elimination,
and the solution of triangular systems. Furthermore, these two parallel programming
constructs are powerful enough to subsume many other well-known parallel constructs

such as broadcast, reduction, and scan.
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Chapter 1

Introduction

1.1 Objective

Divide-and-conquer (DC) is a well-known strategy with a long history in the area
of computation. More than two thousand years ago, the algorithm Archimedes used
to find the value of 7 to lie between 3.1415924 and 3.1416016 is essentially a DC
algorithm [21]. Many of the important algorithms added to the computing litera-
ture in this century are also based on divide-and-conquer, for example, Danielson
and Lanczos’s fast Fourier transform (FFT) algorithms (1942) and Strassen’s matrix
multiplication (1969). Aho et al., in their book The Design and Analysis of Algo-
rithms [3], identified divide-and-conquer as an effective programming paradigm and
illustrated its power by giving DC algorithms for a wide range of problems including

integer multiplication, sort, search, matrix algorithms, and Chinese remaindering.

Since the late 60s, computer scientists have been facing the challenge of exploit-
ing the enormous computation power offered by parallel computers. Due to rich
parallelism and the machine-independent nature implicit in the notion of divide-and-
conquer, DC algorithms originally intended for sequential computers can be adopted

on parallel computers, and yield high performance in most cases [43, 54, 17]. New

1



2 CHAPTER 1. INTRODUCTION

DC algorithms designed for parallel computation are also emerging. Some of the ex-
amples are Batcher’s bitonic sort (1968) [6], Ladner and Fischer's prefix (1980) [31],
and Wang’s tridiagonal equations (1981) [56]. The observation has been made by
many (43, 40, 20, 36] that divide-and-conquer is an effective paradigm not only for

sequential but also for parallel computation.

Despite all this, divide-and-conquer has so far been an informal notion without a
mathematical identity. In the literature, divide-and-conquer is thus described, illus-
trated with examples, but not formally defined. The informal status of DC has been
observed, for example, by Nelson and Snyder in {40],! and by Mou and Hudak in [36].
This situation is unsatisfactory. By Dijkstra’s argument [15], we may say that divide-
and-conquer so far can be only regarded as a craft rather than a discipline of study,
owing to its lack of formality. Consequently, the full potential of divide-and-conquer
has not been brought out because there is no basis for us to understand, teach, reason

about, and manipulate divide-and-conquer algorithms as mathematical objects.

The thesis of this dissertation is that divide-and-conquer is a good model for
concurrency — conceptually, theoretically, and pragmatically. To support this, we will

present:

e a formal model of DC which permits DC algorithms to be designed by studying

the algebraic properties of the problems;

¢ a small set of primitives and functional forms by which DC algorithms can be

specified hierarchically, concisely, and with enhanced modularity;

e a collection of applications of the model to a variety of problems, including scan,
polynomial evaluation, matrix multiplication, triangular system solution, and

sorting;

INelson and Snyder, in fact, expressed their doubt about the possibility of formalizing program-

ming paradigms such as divide-and-conquer.
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¢ a tool that can be applied to DC algorithms in a systematic way to derive the
time and processor complexity of DC algorithms, and show that the applications
presented in this dissertation are optimal or sub-optimal in some well-defined

sense;

e a prototype implementation of the model on the Connection Machine (CM) [52]
that suggests a class of parallel programming languages which are high-level,

easy to use, and efficient.

It should be pointed out that the proposed DC model is powerful enough to
subsume most known parallel programming constructs such as broadcast, reduction,

scan, sort, inner product, and FFT.

1.2 Overview

1.2.1 Organization

The dissertation is divided into eight chapters:
e Chapter 1: Introduction.

o Chapter 2: This provides a general theoretical foundation for the rest of the
dissertation. The concept of space is introduced, and the divide and combine
operations over spaces are defined. We also point out how divide operations

introduce algebra into a space domain.

e Chapter 3: The general theory of previous chapter is applied to a particular
domain - arrays. In addition to divide and combine operations, we also study
other operations over arrays, and functional forms which allow complex opera-
tions to be specified in terms of simple operations. The notation introduced in
this chapter will be referred to as Divacon notation and used throughout this

dissertation.
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o Chapter 4: We derive the algebraic model for divide-and-conquer by generalizing
the notion of morphism to pseudomorphism. The expressiveness of the model is
demonstrated through detailed examples. DC algorithms based on this model
are called parallel divide-and-conquer (PDC) because the recursive application

of the computed function over the substructures can be computed in parallel.

o Chapter 5: The model for sequential divide-and-conquer (SDC) algorithms -
those in which the recursive function application over the substructures must
be computed sequentially - is introduced. We show that despite the apparent
sequential nature, SDC algorithms can gain substantial speedup with excellent
efficiency. The source of parallelism in SDC algorithms is investigated and

compared with that of PDC algorithms.

o Chapter 6: Tools for time and processor complexity analysis of DC algorithms
are developed. The effectiveness of the tools is illustrated with complete ex-
amples. The performance of DC algorithms appearing in the dissertation is

given.

o Chapter 7: The key issues of the parallel implementation of the DC model are
studied, and a prototype CM implementation is presented. Benchmarks of the

primitive operations and several DC algorithms are also presented.

o Chapter 8: Conclusion. Limitations of the model and future work are discussed,

and we comment on related work.

1.2.2 Summary

In the following, we give a detailed summary for each of the chapters of the dissertation
excluding the introduction and conclusion. The purpose of doing so is three-fold:
first, it gives readers an opportunity to grasp the most important ideas behind the

work without having to go through the dissertation; second, it helps to motivate
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the formal notations, algorithms, and proofs in the chapters; finally, it helps readers
to understand the contents of the dissertation since the exposition in the summary

involves less formalism and more intuition than that in the chapters.

Chapter 2, Space Domain Algebras

A formal notion for divide-and-conquer calls for a formal notion for the divide oper-
ation, which in turn calls for a formal notion for the objects of the operation. In this
dissertation, the general model for the objects is the space.

A space is no more than a set, called universe, with relations over the set. A
graph, for example, is a space where the universe is the set of its vertices; there is
only one binary relation over the universe, which is called the set of its edges. Viewing
functions as special cases of relations, we can also say that all algebraic structures
such as lattice, groups, and rings are spaces.

The notion of space allows us to define the subspace relation over spaces. One
space A is a subspace of another B if A’s universe is a subset of B’s universe and each
relation of A is a subrelation of the correspondent relation of B. By this definition,
for example, a graph () is a subspace of another G, if and only if G; is a subgraph
of G, by graph theory. With the notion of' subspace, the divide operation is defined.
The combine operation can then be defined as the inverse of the divide operations.

Since we can talk about the sizes of the spaces, which are the cardinality of their
universes, we can compare the size of a space with the sizes of its subspaces generated
by a divide operation. Accordingly, divide operations can be classified as balanced
or unbalanced. The recursive application of a divide operation to a space yields its
division tree, which has logarithmic height if the divide function is balanced.

A space domain is a collection of spaces. In the end of Chapter 2 we make an
important observation that the divide operation introduces an algebra into a space
domain, because a domain with a combine operation is an algebra and a combine

operation is determined given a divide operation.
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Chapter 3, Arrays and Array Operations

After having laid out a general theoretical foundation, we focus our attention on a
particular type of space - arrays. We will develop a formal notion for arrays under
the framework of space, define a few divide functions over vectors, show how divisions
over higher dimensional arrays and multiple arrays can be defined in terms of divisions

over vectors, and present combine operations as the inverse of divisions.

Divide and combine functions take arrays apart and put them together without
ever changing the indexed values of their entries. Apparently, for most applications,
we would also need operations with the opposite nature. These operations manipulate
the indexed values of the array entries but preserve the array structures. To emphasize
the difference, we call divide and combine relational operations, while others are called

universal operations.

The universal operations over arrays can be in turn divided into two categories
with orthogonal nature. A local operation requires no communication between the
array entries whereas a communication operation performs only inter-entry commu-
nication (without local computation). The separation between the two types allows
universal operations over arrays of either type to be specified with a function, called
a generator, defined over the array’s entries: for local operations the generator can
decide its new value by applying the generator to its old index value; for communi-
cation operations each entry can decide its communication partner by applying the

generator to its own index.

With the above “primitive” operations defined, we next study functional forms
which can be used to construct more complex operations from simpler ones. Most of
the functional forms discussed, with possibly different names and unusual notions, are
familiar to the readers, e.g., function composition, if-then-else, and map a function
over a tuple (like the map in Lisp over a list). There are, however, a couple of unusual

forms, including filter and what we call sequential distribution over tuples. The reason
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for introducing the latter will become clear in Chapter 5.

A few issues addressed in this chapter deserve separate elaboration here:

Polymorphism: A divide function over arrays is said to be polymorphic if it can
be defined in terms of a partition over its index set. To put it another way,
a polymorphic divide function is independent of the indexed values of the ar-
rays. The head-tail, left-right, and even-odd divisions are all polymorphic while
the division used in quicksort is not. The distinction is important not only
because polymorphic and non-polymorphic divisions are completely different
mathematical objects but also because the former can be computed on paral-
lel computers efficiently whereas the latter cannot. This dissertation studies

exclusively divide-and-conquer with polymorphic divisions.

Normalization: An array is normalized if its indices start from zero (or tuples of
zeros) and are consecutive. Normalized arrays are preferable to non-normalized
counterparts for the easy grasp of their index domains. However, we have to
deal with non-normalized arrays because they are generated by divide opera-
tions even if the operand array is normalized. For example, the right subvector
produced by the left-right division does not start with index zero; neither of the
subvectors produced by an even-odd division is consecutive. Normalization is

the bijection that maps a non-normalized array to its normalized counterpart.

Relative indexing scheme: It simply states that an operation over array(s) is to be
performed (at least conceptually) by first normalizing the array(s), then apply-
ing the operation, and finally performing the inverse of the normalization. This
scheme greatly simplifies the specification of communications in DC algorithms.
For example, the frequently used communication pattern called correspondent is
one during which each array entry communicates with the entry in the sibling
subarray with the same relative index while the array is recursively divided.

Without the relative indexing scheme, the communication generator would be
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a function that takes the level of a division as a parameter; with the relative
indexing scheme, the generator is simply the identity function. Other com-
mon communication patterns, including broadcast and mirror-image, also can

be specified with very simple generators under the relative indexing scheme.

Divacon notation: As Dijkstra pointed out in [15], a programming language is not
merely a set of notations, it represents, and even forces us to follow, a particular
way of thinking. The way of thinking implied by the notion of divide-and-
conquer is not well reflected in any existing programming languages. This can
be clearly seen by noting that arrays cannot even be divided in these languages.

It is therefore necessary to introduce a new set of notations for DC algorithms.

While defining arrays and the auxiliary data types including tuples, index sets,
and structures, primitive operations over the data types, and combining forms
used to construct more complex operations, we also define a set of notations for
the types, primitives, and functional forms. This set of notations is called the
Divacon notation, which allows DC algorithms to be written in a way that is

highly modular and concise.

Chapter 4, Parallel Divide-and-Conquer

In this chapter we present the algebraic model for divide-and-conquer, show how it
can be computed, and demonstrate its expressive power with examples.

The embryo of our model is the morphism (also called homomorphism) (13, 16, 27].
A function f from one algebra (a set closed under an operation) (X, +) to another
(Y, *) is a morphism if

flxr+22) = (f @1) * (f z2)

Let “” denote function composition, !f(z1, ;) = (f z1, f z2). Then the above can

be rewritten as

fiH(zr,ze) =+ 1f(zy,22)
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which can be simplified to

fi4+=x:1If

| The morphism captures the notion of divide-and-conquer in that it reduces the
function application over one compound argument to multiple applications over the
sub-arguments. Many, if not most, mathematical operations with which we are famil-
iar are morphisms with respect to certain algebras, for example, logarithm, differen-
tiation, and Fourier transform. With parallel computation in mind, we are however
more interested in morphisms with respect to array domain algebras induced by poly-
morphic divisions. An example is the reduce function as defined in APL, which takes
a binary associative operator @ and a vector as arguments, and returns the sum with
respect to @ of all the vector entries. The function (reduce @) is a morphism since

the following can be easily verified:
(reduce @) : cip = @ : !(reduce D)
where ¢, denotes the left-right combine operation. For example,

(reduce +) : cir ([1 2], [3 4])
= 4 : (reduce +) ([1 2], [3 4])
= + ((reduce +) [1 2], (reduce +) [3 4))
= +(3,7)=10

Many functions are not morphisms, or at least they are not morphisms with respect
to interesting algebras from the parallel computation point of view. The function scan
as in APL, which takes a binary operation and a vector as arguments and returns a
vector of which each entry is the partial sum of all the entries with smaller or equal

indices, for instance, is not a morphism since

(scan @) : cip # cip : Y(scan @)
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However, if we introduce the following function h,.,, which, when applied to two

vectors, will add the last entry of the first vector to each of the second, namely,

hacan &b (vla 1)2) = (vh ’Ué),
where v} ¢ = @ (v2 ¢, v1 (|va| — 1))
(where |vy| is the size of vy, |v1| — 1 is the index of the last entry of v;)
then we will have
(scan @) : cir = cir : hyean : !(sCAN D)

wpn

The presence of “!” above indicates that scan is subject to divide-and-conquer because

one application of scan can be reduced to two over smaller arguments despite the fact

that it is not a morphism. For example,

(scan +) :cir ([12], [34])
= Cip t Byean 2 1(scan +) ([1 2], (3 4])
= i ¢ hocan 1 ((scan +) [1 2], (scan +) [3 4])
= i hocan ([1 3],(3 7]))
= ¢ ([13], [610]) =[1 36 10]

The function scan is an example of what we call a postmorphism. A function f
from algebra (X, c;) to algebra (Y, c,) is a postmorphism if there exists a postadjust

function A : Y2 — Y? such that

fiecg=cyih:!f
Similarly, a function f: X — Y is a premorphism if there exists a preadjust function
g: X% — X? such that

frea=c:!lf:g
A simple example of premorphisms is the inverse operation over a vector, where g

will simply exchange the two subvectors, assuming the combine operator is ¢, .
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A pseudomorphism is a function f that has both a postadjust function h and a

preadjust function g, such that

fiez=c¢cy:h:lf:g

Clearly, morphism, postmorphism, and premorphism are all special cases of pseu-
domorphism, where one or both of the adjust functions happen to be the identity
function. At this point, it may be helpful to look at Figure 4.1 where the four differ-

ent types of morphisms are depicted.

After the concept of pseudomorphism is studied in Section 4.1, we show in Section
4.2 how pseudomorphisms can be computed in terms of their constituents. Quite
obviously, the recursive behavior of a pseudomorphism has been determined by the
equation defining the pseudomorphism; the computation will be fully specified if we
further specify the base case of the recursion. It follows that a pseudomorphism can
be computed if we can determine its divide, combine, preadjust, postadjust, base
predicate, and base functions. The higher order function PDC, standing for “parallel
divide-and-conquer”, is defined to take the above functional arguments in that order,
and return a function that is equivalent to the pseudomorphism. For example, the

function scan discussed above can now be defined as
scan ® = PDC (dy, ciry id, hsean B, atom?, id)

where id is the identity function, and atom? is the predicate that returns true for

arrays of size one.

In Section 4.2, we also discuss how DC algorithms can be nested to yield higher
order DC algorithms, and introduce some illustration schemes for DC algorithms so

that we can “see” the computation of PDC with pictures.

In the last section, the concepts, notations, and illustrations previously developed
are applied to a number of problems such as broadcast, polynomial evaluation, matrix

multiplication, and monotonic sort. For each of the above problems, I give one or
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more divide-and-conquer algorithms in Divacon notation. All the algorithms are pre-
ceded by discussion in English; the intention is to show (informally) how the explicit
knowledge of the pseudomorphism model can aid in the design of DC algorithms and
how the model allows us to derive DC algorithms from the mathematical properties

of the problems.

Chapter 5, Sequential Divide-and-Conquer

The essence of divide-and-conquer is the recursive reduction of a function application
to two or more applications on the subarguments. Naturally, there may or may not be
an order imposed over the recursive applications on the subarguments depending on
the natures of the problems. A DC algorithm without the imposed order is said to be a
parallel divide-and-conquer (PDC) because we can compute the recursive applications
in parallel. A DC algorithm with the imposed order is said to be a sequential divide-
and-conquer (SDC) because we must compute the multiple recursive applications one

at a time.

To show that SDC algorithms are useful in applications, let us first look at two

examples:

1. We have shown that scan is a postmorphism and therefore can be computed
by PDC, in which scan is recursively applied to the left and right subvector in
parallel. The PDC code is desirable for parallel computation, but would appear
unnatural to an average Lisp programmer. If he is presented with the definition
for scan, and asked to write a DC program for scan with left-right division, he

is likely to write something corresponding to this:

scan v = ¢, (scan vy, scan vl)
where
v, 1= (eq? 02) = (ve 2+ v fvy = 1)); v, 2

(vla ‘l),-) = dlr v



1.2. OVERVIEW 13

Ag Xo By

Figure 1.1: Division of a linear triangular system

where p — €;; ey is the “if-then-else” construct.

From the sequential computation point of view, the above code is very eflicient
as only the first entry (compared to all in the case of PDC) of the right subvec-
tor is “adjusted” at each level of recursion. The key feature we should observe,
however, is that the adjustment is made after the recursion over the left subvec-
tor and before the recursion over the right. It follows that these two recursions

cannot be done in parallel.

2. Given a linear lower triangular system, we can solve it by dividing it into two

half-sized lower triangular systems as shown in Figure 1.1.

It is easy to show that the solution to the system is the catenation of the

following systems

AoXo = By

A1 X, =B, - 5X,
Again, we should observe that the solution to the first subsystem (Xj) is used
to adjust the second subsystem. And therefore, the first subsystem must be

solved before the recursion over the second begins.

In this chapter, we introduce the notion of crossmorphism to model SDC algo-
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rithms, show how it can be computer by a higher order function, and demonstrate

the usefulness of the model with some examples.

A number of interesting questions naturally arise:

e Given the linear order in SDC algorithms over the recursive applications, is it
possible that more than one constituent can be computed in parallel at any

moment of SDC computation?

If no, is there z.my parallelism in SDC algorithms?

e If yes, what is the source of parallelism in SDC algorithms?

e Can the parallelism be effectively exploited, and how?

Will the balance of division permit additional speedup in SDC algorithms?

Reflection on these questions reveals that a distinction in mathematics can be
made between two types of parallelism: multiplicative and additive. Roughly spes,k-
ing, the former corresponds to what others may call “expression level” or “control
level” parallelism, the latter “data level parallelism” [23]. PDC algorithms can be
shown to contain both types of parallelism; SDC algorithms only contain additive
parallelism, which, however, still allows them to be computed on parallel computers

with significant speedup in many situations.

Chapter 6, Complexity Analysis

In the previous two chapters, we have seen how divide-and-conquer algorithms can
be developed under the formal DC models and expressed in Divacon notation hierar-
chically. The main purpose of this chapter is to provide tools of complexity analysis
for such DC algorithms. By applying these general tools to specific algorithms, in
the end of this chapter we will also be able to show that most DC algorithms in this
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dissertation are all optimal or nearly optimal in terms of their performance on parallel

computers.

We start by studying the communication complexity. By doing so we can dis-
cuss complexity without involving the tedious specification of machine architecture
and implementations. Although the communication time is affected by three factors,
namely the size of message (size), the distance the message travels (locality), and the
fan-in and fan-out of each communicating agent (pattern), we make an argument that
the pattern is the most important factor to DC algorithms. The pattern of communi-
cation can be studied through its graph, which is decided by the set of communication
agents and the send-receive binary relation over the set. Since communication in Di-
vacon is given by functions, the fan-in of each node in a communication graph is at
most one. We say a communication is permutative (broadcasting) if each node in the
graph has O(1) (O(n)) fan-out. The correspondent and mirror-ima.ge communications
widely used in DC algorithms therefore are permutative. We will show how these two
communications in fact have perfect locality on hypercube machines, therefore taking
O(1) time. Broadcasting communications can be computed, as we showed in Chapter
4, by divide-and-conquer with permutative communications in logarithmic steps, thus

taking O(logn) time, where n is the fan-out of the communication.

It is easy to see that the complexity of a Divacon functional form can be given by
the complexity of its constituents, which allows us to reduce the task of performing
the analysis of a Divacon program to the analysis of its constituents. Formally, we
can view the time analysis as a mapping from Divacon syntax to time (functions).
Let us refer to this mapping as the time complezity function. The reducibility of the
analysis to the constituents actually implies that the time complexity function is a
morphism. The domain algebra of the morphism is the set of Divacon programs with
the functional forms as operators, and the co-domain algebra is time (functions) with

arithmetic operators.

For example, the time used by function composition is obviously the sum of the
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time used by the composed constituents. Formally, let 7 denote the time complexity

function; then we have

T(f:9=] =T[f y]+Tlg =]

where y =g z

Observe that the above equation suggests that the function 7 is a morphism with
respect to the operators “.” and “+”. Also to be observed is that the above equation

holds regardless whether the form is computed sequentially or in parallel.

For another example, consider the time complexity used by the array distribution
!f, which applies f to each entry of the array. Assuming the array entries have
constant size, and f fakes constant time on constant sized arguments, then to compute
!f sequentially takes time linear to the size of the array, and to compute it in parallel
takes only constant time. Let 7, and 7, denote the sequential and parallel time
complexity functions respectively, and n the size of the array. The above discussion
gives us:
T[S A] = O(n)
TIif Al=0(1)

We say that a functional form is a parallel form if substantial speedup (T's/Tp #
O(1)) can be expected when computed in parallel. Array distribution therefore is a
parallel form while function composition is not. After giving the morphism equation
for each functional form, we will see that the only other two non-recursive parallel

forms besides array distribution are tuple distribution and communication generation.

The two DC forms in Divacon, namely PDC and SDC, are different from other
forms due to their recursive nature. Take the PDC form, for example: by applying
the complexity function to both sides of its definition we will obtain a recursive
definition of complexity function for the PDC form. In other words, the recursive
definition of the DC forms in the domain of Divacon programs results in the recursive

definition of the complexity function of the DC forms in the domain of complexity.
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The complexity of both PDC and SDC forms therefore can be analyzed by solving
the recursive equations in the domain of complexity.

Our discussion about time complexity analysis is completed with a brief discussion
on the time used by divide and combine functions, and a long section in which we
illustrate with examples how we can apply the complexity function to DC algorithms
and mechanically derive their time complexity. We will also be able to observe that
polymorphic divide and combine operations in fact do not contribute to the time
complexity of DC algorithms.

Processor complexity refers to the number of processors required by parallel al-
gorithms under certain constraints. The constraint we impose is reflected by what
we call the one-one norm, which enforces a one-one correspondence between the ar-
ray entries and processors. It immediately follows that anti-polymorphic operations
including communication and array distribution do not contribufe to the processor
complexity of DC algorithms because they do not alter the structure, nor the size,
of arrays. Since all adjust functions in our DC algorithms are compositions of anti-
polymorphic operations, we can focus our attention on divide, combine, and base
functions for the purpose of processor complexity analysis.

In the end of this chapter, we list the time and processor complexities of all the
DC algorithms in this dissertation and show that most DC algorithms are optimal
or sub-optimal in the sense that their processor-time products are of the order of the

best known sequential time, within a logarithmic factor.

Chapter 7, Implementation’on the CM

In this chapter, we show the parallel realization of the proposed DC models by showing
how the Divacon notation can be implemented with the parallel language *Lisp [53]
on the CM [52].

From a data structure point of view, the essential differences between Divacon

and *Lisp are:
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e Parallel data structures in *Lisp are flat in the sense that they cannot be divided

and combined, while Divacon arrays are recursive (non-flat);

e Communication in *Lisp must be specified in the flat global address space, while
Divacon arrays allow communication to be specified by relative indexing into

the recursively divided subarrays.

Divide-and-conquer is a form of recursion which calls for recursive data structures
(with relative communication scheme). CM languages including *Lisp cannot ex-
press DC algorithms directly owing to the flatness of their parallel data structures.
Because our DC algorithms can be decomposed into either recursive array operations
or operations that are well supported in *Lisp, the key to a CM implementation of

Divacon is the implementation of the recursive Divacon arrays.

Now let us first consider how to implement the left-right division over vectors.
Since the division is polymorphic, it depends on and affects only the vector indices.
Figure 1.2 illustrates with an example how the division maps each relative index to
a new relative index while the vector is recursively divided. Observe that the new
relative index is related to the old relative index for each vector entry in a simple
way - the new one can be obtained from the old by masking off the most significant

(leftmost) bit of their binary representations.

It is straightforward to see that the left-right combine operation involves an oppo-
site mapping (unmasking) on the binary representations of the indices. It follows that
assuming the vector entries are distributed over a set of processors each processor can
decide the new relative index without communication with others under the left-right
divide and combine operations. Therefore, these two operations can be computed in

parallel in constant time by the manipulation of binary indices.

From the above discussion, we can see that the binary number of an index i at
any stage of the divide and combine operations can be partitioned into three sections:

Q, B, and R, where Q consists of the masked bits on the left, B consists of one bit,
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Step 0: 0 1 2 3 4 5 6 7
(000) [001) [o10} [o11) (100] {101] {110) [111)

o o} (o} (o} o o o} (o}

Step 1: 0 1 2 3 0 1 2 3
[00) fo1] (10) [11) [o0] [o1] [10) (11)

o} o (o} (o} o] o o} o}

Step 2: 0 1 0 1 0 1 0 1
[o] (1) (0] 1] (o] [1] (0] {1]

o} (o} (o} o} o o (o} (o}

Step 3: 0 0 0 0 0 0 0 0
{-] I (-] [-] | [-] [-) I {-] (-] | [-]

o o} (o} (o} o} o} o} (o}

Figure 1.2: Effect of left-right division on binary indices

also called the dividing bit, which is just masked off by a divide operation or is about
to be unmasked by a combine operation, and R consists of the bits on the right
which represents the present relative index of the entry. We will write the above as
1= Q" "B"R. Now let V| and V, be two sibling subvectors, which were divided from,
or will be combined into, one vector V, and let iy = @Q;"B;,"R; and :, = @, B, R,
be binary indices of two arbitrary entries from V; and V; respectively. Then we can

9+
“_17

prove the following two important equations: @; = @, and B; = —B,, where is

the bit inversion operation.

Now let us consider how to support the relative indexing communication of Diva-
con. Since *Lisp provides communication by absolute indices, all we need to show is
how relative indices can be translated to absolute indices at any stage of the divide
and combine process. To be concrete, let us consider inter-vector communication
with the left-right operations. Let X be an entry with the index whose binary rep-
resentation is I, let Y be the communication partner of X with relative index whose
binary representation is J. How can X figure out the absolute index of Y knowing
only its relative index J? The two equations shown in the previous paragraph pro-
vide a simple solution: let I = @, B,;" R, and J’ be the absolute index of Y, then

J' = Q; "~ B;"J. Note that this translation uses only the information that the entry
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X has in itself. It follows that the translation from relative indices to absolute indices

for all vector entries can be computed in parallel locally in constant time.

In this chapter we also show how the above implementation strategy can be gener-
alized to even-odd division and higher dimensional arrays, describe the representation
of recursive arrays (by a number of flat parallel data structures), and give the algo-
rithms which implement divide, combine, and index translation operations based on

the ideas presented above.

Although the PDC construct is defined as a recursive process, we will show that
it can be easily implemented, in a way transparent to programmers, with iteration,

and therefore can be computed more efficiently than a naive implementation.

In the last section, we briefly describe the present implementation of Divacon on
the CM which is accomplished by embedding Divacon in *Lisp. The benchmarks
of divide, combine, correspondent communication, mirror-image communication, and
broadcast communication together with the benchmarks for a number of DC algo-
rithms are presented in the end. These benchmarks are good enough to sustain a
claim that the basic recursive array operations can be computed in parallel in con-
stant time and the application programs are asymptotically sub-optimal. In the next
version of the implementation, the absolute time performance of the same algorithms

is expected to improve by a factor of between four and ten.

1.3 Suggestions on Reading this Dissertation

Read this introduction! It is also important to read the summary for the chapters in
the introduction carefully. To understand the significance, the limitations, and the
position of the work, you may choose to read the conclusion before you start to tackle
any other chapters. It may also be helpful to review the summary of a chapter before

or while reading the ché.pter itself in order to keep a picture of the chapter in mind.
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Chapters 2 and 3 can be thought of as preliminary for the contents in the chapters
that follow. Roughly speaking, Chapter 2 introduces formal notions, and Chapter 3
introduces formal notations. You may first glance through the two chapters, and use

them as a reference in reading the other chapters.

The chapter about sequential divide-and-conquer algorithms - Chapter 5 - is rel-

atively independent of other chapters. It may be skipped in a self-contained reading.

Readers are assumed to be familiar with the basic notions used in functional
programming such as currying, higher order functions, and pattern-matching. An
introduction to functional programming can be found in [22, 1], while more recent
development of the field can be found in [18, 41]). Familiarity with the notion abstract
interpretation [2] is not assumed but will help in understanding the discussion on

complexity analysis in Chapter 6.
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Chapter 2

Space Domain Algebras

To understand divide-and-conquer, we must understand the operation divide first.
This, in turn, cannot be achieved without a good understanding of the objects of the
division.

In this chapter, we provide formal notions for objects, called spaces, and two
operations over space domains, namely divide and combine. We also examine the
relation between the two operations, and finally point out how the divide operations
introduce algebras into space domains. Since our model for DC algorithms is based
on the notion of morphisms, which are mappings from one algebra to another that
preserve operations, the concepts introduced in this chapter will be crucial in later

discussions.

2.1 Spaces and Space Domains

A space is a pair S = (U, R), where U is a set called the universe, and R is a set of

1

relations over U called the relation.! Since functions are special cases of relations,

11t should be pointed out that the concept of space here is essentially identical to that of structure
used in predicate calculus [32], although they are studied from different angles and for different

purposes.

23
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they can also be members of space structures. It immediately follows that all common
algebraic structures, such as posets, lattices, and groﬁps, can be viewed as spaces with

certain properties.

Abstract data structures and data structures found in programming languages
can also be interpreted as spaces. Graphs in graph theory, for examples, can be
viewed naturally as spaces. A graph G with vertex set V and edge set E is the space
G = (V,E), where E should be considered as a binary relation over V. Lists and
trees in turn can be viewed as graphs with special properties. Vectors, matrices, and
higher dimensional arrays can all be modeled by spaces; we will discuss this in the

next chapter.

The size of a space S = (U, R), denoted by |s|, is defined to be the cardinality of
its universe |U|; similarly, the arity of the space is defined to be the cardinality of its
relation. A space is finite if its size is a finite number; a space is simple if its arity is
1. If a space S is simple, then instead of writing S = (U, {r}) we may choose to write
S = (U,r) to improve the readability. In this dissertation, we will study exclusively
finite and simple spaces.

Let S = (U,r), S' = (U’',r') be two (simple) spaces. We say S is a subspace of S',
written S C S, if and only if

UCU" and rCr'

Since a k-ary relation r over a set U is no more than a subset of the Cartesian product
U*, one relation can be a subset of another. When a relation r is a subset of another
', we also say that r is a subrelation of /. Thus, the above conditions mean that
a subspace must have a subuniverse and a subrelation of the space of which it is a

subspace.
By this definition, a subgroup of a group in algebra is a subspace of the group

space; a subgraph of a graph is a subspace of the graph; a subtree of a tree is a

subspace of the tree, and so on.
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Let S = (U,r) be a space, and W C U its subuniverse. The set of subspaces of
S with W as the universe, denoted by S(W), is called the subuniverse U' spanned
subspace. A partial ordering < can be introduced to the set S(W): for S’ and S” in
S(W),
<S8 & S'CS”
Informally speaking, although all the subuniverse spanned spaces have the same size,

the subspaces that are greater by this ordering have richer structures than the smaller

subspaces.

Let 7 be a k-ary relation over a set S (therefore a subset of S¥), and S’ a subset

of S. The restriction of the relation r to the subset S’, denoted by r|%, is [33, 16]
rls =rnS*
Now it is easy to verify that the mazimum subspace of S(W), where S = (U,r), is
Smaz = (W, 7|w)

This maximum subspace Sn.. is also called the subuniverse W induced subspace of
the space S.

Given two spaces S = (U,r), S’ = (U’,r'), where r and r’ are k-ary relations, we
say S and S’ are isomorphic to each other if there is a bijection ¢ : U, — U,, such
that

(uoy .oy uk) €7 & (& ugy.o,pug) €7’
For example, two lists are isomorphic if and only if they have the same length; two

graph spaces are isomorphic to each other if and only if they are isomorphic graphs

by graph theory [14].

A space domain, or simply domain, is a set of finite or infinite spaces with certain

common properties. Some space domains we will encounter in latter discussions are

L: the domain of lists.
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B: the domain of binary trees.

A: the domain of arrays.

V: the domain of vectors.

M: the domain of matrices.

A space domain § is a subdomain of another &’ if S C &’. For example, £ and B in
the list above are subdomains of the graph domain. V and M are subdomains of A.

Vector, matrix, and array space domains will be studied in detail in Chapter 3.

We define the special space nil to be ({}, {}). In other words, the space nil
has empty universe and empty relation. It follows from the definition that nil is a

subspace of any space. Moreover, we define it to be a member of any space domain.

2.2 Operations over Space Domains

2.2.1 Divide Operations
Basics

Let S be a space domain. A ma.ppiﬂg d:S — S*is a k-ary divide function over
S if, whenever d S = So,...,Sk-1, where $,5,,...,5-, € S, S = (U,r), Si =
(Ui,ri), fori=0,...(k—1), we have

1. {U,...,Ux} is a partition of U.
2. S =S,
It follows from the definition that

Proposition 2.1 Let d be a divide function on domain S, S € S,dS = S,,...5-1, S =
(U,R), Si= (U, R:) fori=1tok. Then
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1. S;C S for ¢ =0 to (k — 1) (Subspace).

2. (a) U;NU; =0 if i # j (Disjoint).
(6) UoU-+-UUx-1 = U (Complete).

3. Let S; = (U}, R;), where U! = U;, S; C S. Then S!C S; (Maximum).
Proof:

1. Since s; = s|y,.

2. Since {Uh,...,Ux} is a partition of U.

3. Since subuniverse induced subspaces are mazimum.
Q.E.D.

By considering nil as a special element of the domain S*, we will allow it to be
returned by divide functions. A space s is dividable by d if d s # nil, otherwise
the space is undividable. A divide function d over S thus partitions S into two
subdomains, the dividable subdomain S; and the undividable subdomain S, defined
by

Se={S|S€eS, dS #nil}
S;=8-5;

As an example, let us consider the following function defined over lists

dly, () = nal
dly, (a) = nil

dlht (aOaal, ce ,an—l) = ((00), (ala v aan-—l))

The function dl;; can be verified to be a divide function over the domain of £. It
divides a list L with size greater than one into-two sublists; the first sublist consists
of the first element of L, the second consists of the rest. Lists of size equal or smaller

than one are not dividable, and are in the undividable subdomain La,,-
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Note that the divide function dl;; resembles, but is not the same as, the “car-
cdr” or “head-tail” division over lists commonly found in functional programming
languages [22, 41]. The essential difference is that the “head” returned by the latter
is the first element, not the list consisting of the first element, and thus is not a divide

function over £ by our definition.

Division Tree

It should be clear that the subspace relation C is a partial ordering over a space
domain S. A divide function d over § introduces another partial ordering < over S,

called the descendant relation.

Let d be a divide function over §, S and S’ € S. We say S’ is a descendant of S,
written S’ <4 S if and only if

1. d S =(So,...,8k-1) and S’ = S for some 0 < i < k.
2. or, S" <4 S; for some 0 <7 < k.

It is easy to verify that < indeed is a well-defined partial ordering of S. Moreover,
the relation < is a stronger one than that of C, in that the former implies the latter

but not vice versa:

S'<4S =S CS

Given a divide function d over S, a space S € S, we can identify all the descendants

of S in its descendant set defined by
S« ={S'"|S'eS, §"=<aS}
A simple but important fact we can derive about the poset (S, <4) is

Proposition 2.2 If d is a k-ary divide function over S, S € S, and the descendant
set Sy, is not empty, then the Hasse diagram [16] of the poset (S<,,<4) is a k-ary

tree. Moreover, the root of the tree is S, and the leaves are undividable spaces of S.
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N
2 G4
7N\
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Figure 2.1: An example of a division tree

The tree in above is called the division tree of space S with respect to divide
function d. The division tree of a space can be explicitly constructed by recursively

dividing the space until all the leaves are undividable.

As an example, the division tree of the list (1, 2, 3, 4) with respect to the divide
function dl,, is given in Figure 2.1.
Balance

Let d be a divide function over S. We say d is balanced if for any dividable space

S € 8, there exists a constant m > 1 such that

dS= (So,...,Sk_l) = |S,| < |S|/7TL, 1=0to (k—l)

The constant m above is called the division factor of the divide function d. It follows

immediately from the definition that

Proposition 2.3 Let d be a balanced division over S with division factor m, S a
dividable space in S, and H the height of the division tree of S with respect to d.
Then H < log,, |S|.
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A divide function which is not balanced is unbalanced. An unbalanced division d
over § is decremental if for any dividable space S € S, there exists a constant integer

b > 1 such that

dS=(S0...,5-1) = |Si| =2 |S|—b, forsome0<:i<k

The constant b above is called the division subtrahend of the divide function d. It

follows immediately from the definition that

Proposition 2.4 Let d be a balanced division over S with division subtrahend b, S
a dividable space in S, and H the height of the division tree of S with respect to d.
Then H < |S|/b.

The head-tail divide function dl;; of the last section, for example, is decremen-
tal unbalanced division with subtrahend one. We will study some of the balanced
divisions over arrays in Chapter 3; all of them have division factors of powers of two.

Both balanced and unbalanced division play important roles in parallel DC algo-
rithms. However, balanced divisions generally yield better parallel time performance,

as we will see in later chapters.

2.2.2 Combine Operations

Let S be a space domain. A mapping ¢ : §¥ — S is a k-ary combine function over
S if whenever c(sg,...,5k-1) = s,where S,S; € S, 5; = (U, R;) fori =1 to k, S =
(U,R), s # nil, we have

1. {Uy,...,Us} is a partition of U.

2. Si= S|y, fori=1to k.

When nil is returned by a combined function, the k spaces (Sq, ..., Sk—1) are said

to be incompatible.
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As an example, consider the following append operation over lists as defined in

Lisp
append (Lo, L) = L
where
L =(ag,...,8m—-1,8m,...,8n-1)
(agy-..,am-1) = Lo
(@my.veyan-1 = Iy

It should be easy to verify that append is a binary combine function over the space

domain of L.

Observed that combine functions have functionality opposite to that of divide
functions. It follows that a combine function can be the inverse of some divide
function on the same domain. Formally, let d and ¢ be respectively a divide and a
combine function for the domain §. The combine function c is a left inverse of the

divide function d if and only if for all dividable spaces in S, we have
c:d=1d

where “:” denotes function composition, “id” denotes the identity function.

For example, the combine function append is a left inverse of the divide function

dl of Section 2.2.1, since

append : dlyy L =L

for any L in the dividable subdomain La,,.

It is well known that a function has a left inverse if and only if it a is one-one
mapping [33, 16]. And since the divide functions we study in this dissertation are
all one-one mappings, their left-inverses always exist. However, since these divide

functions are not onto mappings, their left-inverses are generally not unique [33, 16].

The combine function append, for instance, is not the only left-inverse of the divide

function dly;. Consider the following combine function over list domain £, which will
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only append two lists when the first list has exactly one element, and the second has

one or more elements

clye ((a),(a1,...,an-1) = (a,ay,...,an-1), wheren >1

cly (Lo, Ly) = nil

Like the function append, cl}; is also a legitimate left inverse of the divide function
dly;. These two left inverses are nevertheless different. In fact, the function ¢l}; can

be easily shown to be a subfunction of the function append.

Let d be a divide function over S, and C the set of all its left-inverses, namely
C={d|c:d=1id}

We define the least left inverse of d, denoted by d~1, to be the function that has the
smallest graph.? This function can be uniquely determined by the intersection of all
the function graphs of the left inverses:

d_]=ﬂc

ceC

For example, dly;~! = cly;. The least left inverse of a divide function contains
no “arbitrary information” unrelated to the divide function. In later discussions, we

may simply say “left inverse” to mean “the least left inverse”.

2.3 Operation Induced Domain Algebras

First, let us review the very basic concept of algebra. An algebra is a set S and a set
of finitary operations under which S is closed [48, 16]. For the purpose of this thesis,
however, it is sufficient to consider algebras with only one operation. An algebra thus

will be considered, throughout this dissertation, as a pair A = (S, ®), where S is a set,

*The graph of a function f: X — Y is the set of pairs of the form {(z,y) |z € X, y = fz, y #
nil}. See [45, 16].
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and @ is an operation with respect to which S is closed. In other words, if @ is a k-ary

operation, and So,...Sk-; € S are k elements of S, then S = &(So,...,Sk-1) € S.

The arity of the operation of an algebra is also called the arity of the algebra. In

this dissertation, we will encounter both binary and higher arity algebras.

It is easy to verify that a combine function over a space domain defines a domain
algebra. Moreover, a divide function can introduce an algebra to a space domain

through its left inverse. Formally,

Proposition 2.5
1. If ¢ is a combine operation over space domain S, then (S,c) is an algebra.
2. If d is a divide function over space domain S, then (S,d™!) is an algebra.

The algebra (S,d™!) is called the divide function d induced algebra over S. In
Chapter 4, we will see the significance of the division induced algebras in our abstract

model for divide-and-conquer.
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Chapter 3

Arrays and Array Operations

In this chapter, we will apply the notions introduced in Chapter 2 to a particular
space domain, namely arrays. Besides the divide and combine operations, which
only manipulate the structure of arrays, we will also study a number of operations
with exactly opposite nature, namely operations that only change the values of array
entries but always preserve the structures. As we will see in later chapters, DC
algorithms over arrays can generally be decomposed into these two orthogonal types

of operations.

A number of related data structures, such as tuples, index sets, and structures will
also be discussed. The notations introduced in this chapter will be used throughout

the dissertation.

3.1 Tuples

A k-tuple has the form

T= (:Bo,. . .,(Dk_l)
where z;, 0 < i < k is said to be the ith component of Z.

35
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A component of a tuple can be accessed by the projection function:
proj i £ = x;

The value of a component can be mapped to a different value by the injection
function:

e
inj 1V T = (Toy...,Tic1,VyTiplye -+ The1)

Let b = (bo,...,bk-1) be a k-tuple of binary bits with m non-zero bits, and 7 a
k-tuple as in above. We can derive from 7 and b a m-tuple which consists of only the
components of Z, to which the corresponding bits in b are ones. This is done by the

select function:
sel b & =7, where ¥ = {z; | b;=1,i =0 to (k— 1)}

Given k sets Up,...,Uk_1, their Cartesian product or simply product is a set of k

tuples [16]
74 =UOX"'XUk_1
=1z Ui
= {(uo,...,uk-1) | v € U;, for i =0 to (k — 1)}
HUy=U =:--=Ug; = U, the product of the k set is designated by W = U*.

Similarly, given k partially ordered sets (posets),
(Uoy <o)+ vy (Uk-1, <k-1)
their direct product [16] is the poset
W= (U %+ x Ug1,<)
where for w,w' € W, w < w' iff
proj i w <; proj 1 w', fori =0to (k—1)

We will often write U for a poset (U, <) when the ordering is clear from the

context.
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3.2 Index Sets

3.2.1 Basic Notions

An index set is a direct product of subsets of integers. Formally, let N denote the set
of all non-negative integers (with the usual ordering), Ip,...,Ix~1 C M. An index set

is a direct product with the form

I =Iyx -+ X I
=526 1;
The cardinality of I;, m; = |I;| is called I’s size along the jth dimension; the
k-tuple (Po,..., Pr-1) is the shape of the index set; the product m = ]"[f;é m; is the
size of the index set.

A k dimensional index set I = ]"[f;é I; is a normalized indez set if for each 0 <

J < k, the set I; has the form
i={i|0<i< P}
In other words, each set I; consists of all the integers between zero and P; (excluding
P; itself).
3.2.2 Normalization

Non-normalized index sets lack the simplicity of normalized index sets, and generally
it is harder for us to grasp their distribution pattern and scope. Fortunately, it is
easy to transform a non-normalized index set to a normalized one: we first sort for

each I;, 0 < j < k, into a sequence

so that
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i, < i, for 0 <m< (Pj—1)

We can then use a simple mapping [';, defined below, to map each integer of each

set I; to a new integer according its position in the sorted sequence:

Y -
F;¢, =m

We can then define the mapping
I'= (Fo, e ,Fk—l), where I (io, e ,ik-]) = (Fo io, ey Fk—l ik—l)

It should be observed that the normalization transformation I is a bijection for a

given index set. Therefore, the inverse transformation I'"! can be performed.

For example, the index set {(2), (6), (4),(0)} can be normalized to {(0), (1), (2),(3)}
by the normalization transformation I' ¢ = ¢/2, the inverse of the transformation is

I't=2x%z1,

3.3 Arrays

3.3.1 Basic Notions

An array in abstract is a mapping A : I — U, where I is its indexing set, and U is
its indexed set. The dimension, the shape and the size of an array are respectively
the dimension, shape, and size-of its index set. We will occasionally talk about the
type of arrays, which means the type of their indexed set. An array is normalized if

its index set is normalized.

Some very basic operations defined over arrays include
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Shape: $A = shape of A.
Size : $$A = size of A.

Indexing : $A 1= application of A to the index z.
The graph of a function f: X — Y, denoted by G f, is the set of argument-value
pairs of the form [16, 45]
{(:z,y)l:z‘EX, y=fl‘}

Since arrays are functions, we can talk about graphs of arrays. Given an array

A:I4—V,its graph GA is

{Gu)|zel, u=A7}

The partial order < over the index set I induces a partial order < over the elements

of the graph GA, which is
R | g o
1<t & (tu) < (¢7,u)
An array A : I — V therefore can be viewed as a space of the form
A=(GA,<)

where < is the partial order over GA induced by the order over the index set I.

The elements in the graph of an array with the form (, v) are called the entries of
the array, where 7 and v are respectively called the indexing value and indezed value
of the entry. We will sometimes refer to the “indexed value” of an entry simply by
the “value” of the entry when the ambiguity can be resolved from the context.

A subarray A’ of an array A is just a subspace of A, which we write A’ C A. By
definition, if A’ C A, then GA’ C GA. It follows that if an entry is in both the array

A and a subarray A’ C A, then the entry must have the same indexing and indexed

values in A and A’
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By making the partial order over the graph of an array implicit, the array can be
represented by the graph alone. We therefore can informally identify an array space
with its graph. As we will see in Chapter 7, the graph of an array is closely related

to the distribution of an array over multiprocessors.

The space domain of all arrays is a very large one. Often we only need to deal
with restricted array domains such as vectors, matrices (Section 3.3.2), and other
arrays with specific small dimensionalities. Array domains with fixed dimensionality

can still further be refined into subdomains according to their types.

3.3.2 Vectors and Matrices

Following the convention, we call one- and two-dimensional arrays respectively vectors

and matrices. We will also denote a vector space of n entries
Vil-U=({(u)|i€l}, <)

by
[(iO, uO)a sy (in—la un—])]
where i, < 7,41 for 0 < p < (n - 1).

Similarly, a matrix of shape (n,m)
M:I-U=({Gj)u)|@¢5)el}, <)

can be displayed by an “array” of n rows and m columns

({70, J0)s too) o ((Z0yJm-1)s Uo(m-1))

((in—la jO),u(n—l)(m—l))a vt ((in—ly jm—l),u(n—l)(m—-l)

where i, < ipyy, for 0 <p< (n—1), j, < jop1, for 0 < g < (m —1).
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3.3.3 The Relative Indexing Scheme
A non-normalized array can be normalized by normalizing its index set. More pre-

cisely, let A : I — U be an array, and I' the normalization transformation for the

index set I. Then the normalization of A is another array A’ = I'A = ||A||, defined by

A:I' - U,
Ai=A:T14
where “:” is the function composition. It should be clear that for a normalized array,

the I' transformation is simply an identity function, which we will denote by “id".

Array indexing therefore can also be performed by first normalizing the arrays.
This leads to the relative indezing scheme. We also find it is convenient to allow
backward (relative) indezing, which also requires an array A to be normalized first,
2]

but when the argument index is 7, the actual relative index used is $A4 — ?, where “—’

denotes element-wise subtraction between tuples.

Normalize: A =T A= A"
Relative Indexing: AfRl=A:Tx

Backward Indexing: A=) =A:T (8A-1-7), where T = (1,...,1).

Observe that in the above, relative indexing is given a different syntax from that
for absolute indexing by enclosing the index in a pair of square brackets. But for the
sake of conciseness, from now on we will denote relative indexing without the brackets

unless otherwise specified.

In the rest of the dissertation, we also adopt the following two conventions related

to the relative scheme:

1. A vector or a matrix can be displayed without the indices of the entries whenever

the normalization function is not the issue of the discussion.
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2. If f is a function over arrays depending on the indices of the arrays, and A is

an array, then the application f A by default is meant

fA=T'.f:TA

For example, the vector V and the matrix M of the above section can now be

written respectively as

[UQ, ey un_1]
and
Ugo e Ugim—1))
Un-1)(m=-1)y " U(n-1}m-1)

The normalization functions for V and M above are respectively

Foip=7y
FM (ipaiq) = (pv q)

which will be left unspecified whenever the point can be made without it.

Clearly, the relative indexing convention also enables us to define operations over
arrays as though all arrays are normalized, and therefore greatly facilitates the dis-

cussions in the remaining sections of this chapter.

It should be pointed out that the relative indexing convention not only gives
us notational convenience, but also fits nicely with our intuitive notion of recursive
computation over arrays. Moreover, the communication over arrays found in many
applications, can be described by very simple functions which otherwise would be

rather complicated if defined over absolute indices.
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3.4 Divide Operations

3.4.1 Basic Notions
Let d be a k-ary divide function over an array domain 4, A € A dividable, and
d A= (Ao,...,Ax-1)

Then by definition, the subarrays Ay,..., Ax—1 form a partition of A, where A; is the

1th equivalent class or block of the partition.

Since a partition can be given by its quotient function [16, 33], which maps each
element to a block of the partition, a divide function over arrays can also be given
in terms of its quotient function. Let d be a k-ary division over arrays, d A =
(Ao, ..., Ar_1). Then the quotient function qq of the division d is a mapping from the
array entries to the integer set {0,...(k — 1)}, such that an entry is mapped by g4 to
¢ if and only if the entry is mapped by d from A to A;, where 0 < i < k.

For example, the binary divide function dj; that partitions a vector of length
greater than 1 into its “head” and “tail” can be defined in terms of the quotient

function
_ 0, if: =0,
qne (i,u) = .
1, otherwise
The division d,, used in quicksort can be modeled by a 3-ary division over vectors.

Let V be a vector. Then the quotient function associated with the division is

0, fu<VO,
qqs(isu) = 1, fu=V 0,

2, otherwise.

We call a divide function defined by a quotient function the divide function induced

by the quotient function. When d is induced by g, we write

d=Dgyq
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For example, from the above we have

dp = Dth
dyy = D qqg

A fundamental difference between dy; and d,, should be observed: the behavior
of divide function dj, is independent of the indexed values of the arrays, while d,, is
not. We call divide functions that are independent of the indexed values polymorphic

functions.!

Formally, a divide function d is polymorphic if and only if d = D ¢, and there

exists quotient function ¢’ defined over index sets such that

- -

qu)=j & ¢ (1) =7
Polymorphic divide functions have some valuable properties:

o They can be applied to arrays of different types as long as the dimensions of the
arrays are compatible. A polymorphic divide function generally can be shared

by many divide-and-conquer algorithms.

e They are static in the sense that the result of the division can be predicted

before the (indexed) values of the arrays are known.

¢ On parallel computers, polymorphic divide functions can be implemented with-

out communication between the processors.

All the divide functions we will discuss in the rest of the dissertation are polymor-

phic unless otherwise stated.

!Not to be confused with the more general notion of polymorphic function used in functional

programming circles [51, 41].
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3.4.2 Balanced Divisions

We first show how the partitions defined over the index sets naturally induce divide

functions over arrays with the index sets to which the partitions are applicable.

Like the restrictions of relations which we mentioned in Section 2.1, we can define

the restriction of a function to a subdomain. Let f : X — Y be a function; therefore
it is a subset of (X x Y), X’ a subset of X, and f X' =Y’ (the range of X' is Y").
Then the restriction of f to X', denoted by X|x: is [33]

ff=fnX'xY)

Now, let A be an array domain, T4 be A’s index domain (Section 3.3.1), and II a
partition function over Z such that for I € Z, either I I = nil (and in that case we

say II is not applicable to I), or
H = {]0,. . ,Ik_]}
We can then define a function d : A — A* by

dn A= {Allo, e '7A|1k—1}

Proposition 3.1 The function dy is a valid polymorphic divide function over A.
Proof

To show that dy is a divide function, we put the arrays in the form of spaces, let

A=(GA,<), Aly = (GA;.<) for 0 < j < (k ~1). Clearly
1. {GAo,...,GAr_1} is a partition of GA.
2. (GA,,S) = (gA,S)lgAJ, for 0 <7<0.

The divide function dp is polymorphic since the quotient function of I is obviously

independent of the indexed values.

Q.E.D.
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The divide function dn above is called the divide function induced by the partition II.

Proposition 3.1 allows us to define polymorphic divide functions over array do-
mains easily. In fact, the head-tail division over vectors of Section 3.4.1 can serve as
our first example. Let II;, be the partition over index sets defined by the quotient
function gx;. Then the divide function di; = D gy clearly can be defined equivalently
as

dhi = dl'l,,,

Now consider a one-dimensional index set I of size 2™ for some integer m > 1.
Any index ¢ € I therefore can be represented by a binary number with m bits. Let ®

be the encoding function that maps an integer to its binary representation, namely
®i=(io,...,im-1)
where 7g is the most significant bit of the binary number, and i,,_; is the least signif-

icant.
We can then define two partitions II;, and I, by defining their respective quotient
functions ¢, and q.,:
qir t =1
Geo t = Tm—]
where (0,...,im—1) = ¢
The divide functions over one dimensional arrays induced by I}, and II.,
dir =D qr = dn,
des =D geo = dn,,
are respectively called the left-right and even-odd divisions. The following proposition

explains the reason for giving them such names.

Proposition 3.2 Let V be a vector where $§V = 2m form>1, ie.

V = [’Uo, o .,'U2m_1]
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then
d]r V= ([‘Uo, Vigeony 1)2m—1_1], [‘Uzm—l gy Vam—-141... ,‘Ugm_]])

deo V = ([’Uo, V2y.ne ,‘Uzm], [‘U], U3y ,‘Ugm_l])
For example,

dr[abcde fghl=(abcd], [efgh])
de [abcde fghl=(laceg], [bd f h))

In contrast,

dulabede fghl=(lal, [bede fg hl)

It is obvious that the divide functions d;, and d., are balanced, while the divide

function dj; is not.

3.4.3 Dividing Higher Dimensional Arrays

in this section, we shall show how divide functions over higher dimensional arrays
can be constructed from those for one dimensional arrays.

Let II; be a partition over one dimensional index sets, where q is the quotient
function of the partition II,. We can then define another partition II(, ;) with the

quotient function (g ¢) defined over higher dimensional index sets by?
(¢' 1) = q: (proj i)

In other-words, the quotient function (¢’ 7) acts on the ith component of a multiply
dimensional index the same way as q does on a one dimensional index. This enables

us to define
(dn, 2) = dngy )
where ¢’ ¢ is defined as in above. Divide functions defined this way are said to be

constructed by dimensional projections.

2See Section 3.1 for the definition of the function proj.
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For example, (d); 0) divides a matrix into two submatrices: the first row and the
rest of the rows; (d;. 0) applied to a matrix divides it into two submatrices with equal
number of rows; (d., 1) applied to a matrix divides it into two submatrices consisting
respectively of all the even and all the odd columns.

Divide functions on higher dimensional arrays can also be constructed by intersec-
tion. By set theory the intersection of two partitions II = II; N II; has blocks which
are the intersections of the blocks in II; and II, [16]. Similarly, let do,...,dx_; be
m divide operations induced by partitions Ily,...,II,,_; respectively. We can define
their intersection by

(do i0) X+ X (dm—1 tm-1) = dy
where Il = (Ilg %9) X « -+ x (Ijy 24—1)
Just as notation, when the dimension parameters of the divide functions are con-

secutive and well ordered, we can write
do X oo de_1 = (do 0) X X (dm_1 (m—l))

The power of a divide function can then be naturally defined as

It is obvious that, given k; as the arity of the jth divide function in the intersection
for j = 0to (m—1), the intersection has arity of ]'I;-";o’ k;. This is to be contrasted with
construction by projection, where the arity remains the same after the construction.

In Figure 3.1, we give illustrations of various divide functions by construction.

The following are two concrete examples.

Examples:
(001 2 3]
4 5.6 7
Let M =
8 9 10 11
i 12 13 14 15 |
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dp? dy? (dir 0) X (dpe 1)

Figure 3.1: Some constructed divisions over matrices

then
1.
di; 0 M = (Mo, My)
where
01 2 3 8 9 10 11
M0= ) M1= )
4 5 6 7 12 13 14 15
2.

dlzr M= (an,Mne,MawaMae)

where

2 3 8 9 10 11
. NE = . SW = , SE=
6 7 12 13 14 15

3.4.4 Dividing Multiple Arrays

0
NW =
4 5

So far all the divide operations are defined over single arrays. To compute functions
of higher arity, we also need divide operations over multiple arrays, namely, tuples of

arrays.

Let dy, d; be two divide functions over array domains Ay and .A; respectively.

Let ko, k1 be respectively their arities, Ag € Ag, A1 € A; two dividable arrays, and
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therefore

dO AO = (Aoo, ey AO(ko—l))
d1 A] = (AIOa ey Al(kl-l))

We define the outer-product of dy and d;, written d = dp - d;, to be

d (AO,AI) = ((A007 AIO), veey (A007A](k1—1))')

(Aoke-1)» A10), +++y (Ao(ko-1)s A1(ki-1)))
Clearly, the arity of the full outer-product of two divisions is the product of the arities
of the two divisions. The outer-product of the above thus divides a pair of arrays into
k = ko * ky sub-pairs.

For example, let a divide function over a pair of vectors dy, = d, - d;r. Then

d([1234],{abecd])=(([12][ad]),([L2][cd]),([34][ab]),([34],[cd]))

Frequently, we do not really need all the sub-pairs produced by an outer-product
division. This can be done by composing an outer-product with the tuple selection

operation (see Section 3.1). For example, let
d,,,,g = sel (1,0, 1,0) . d{,. : d],-

then
duws ([1234],[abcd])=(([12],[ab]), ([34],[a]))

For conciseness of notation, we will allow the binary tuple to be given in the decimal
form for tuple selection operation. For example, the divide function d,.s of the above
can be redefined by

dyys = sel 6 :dp-+-dyy

The above discussion is limited to outer-product of two divisions. The outer-

product of more than two divisions can be similarly defined.
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Observe that all primitive divide operations and the divide operations defined by
their products have the following static property: th<'e size of the array equals the sum
of the sizes of the subarrays. In contrast, divide functions defined by outer-product
may or may not expand in size. For example, the divide function d,, increases the

size of the array(s) by a factor of two, while d,,s does not.

Let k and m be respectively the arity and division factor of a balanced division

d. The ezpanding factor § of d is defined to be [36]
B =kim

By definition, if d is a divide function with expanding factor 8, C is the sum of
the sizes of the argument arrays, and C’ is the sum of the sizes of the resultant arrays,

then we have

C'<B*C

A balanced division is said to be static if its expanding factor is one, and dynamic

otherwise.

Aho et al. in [3] (Section 2.6) discussed the effect of expanding factors on the
time complexity of DC algorithms computed on sequential computers. In Chapter
6, we will see the impact of the dynamic property in the parallel complexity of DC

algorithms.

3.5 Combine Operations

Recall that in Section 2.2.2 we showed that, given a divide operation over a space
domain, a combine operation over the same domain can be defined as the minimum
left inverse of the divide operation. By applying this to the divide operations over
arrays, which we have studied with some breadth and depth in previous sections, we

automatically have many of the combine operations over array domains in hand.
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However, we would like to take some steps to improve the syntactic appearance

of our notations. We define:

1. ¢ = d,_,.l.
2. Ceo = dZ 1.

€o

3. let¢;=d fori=0to (m—1)

in (Co Zo) X e X (cm—l im—l) = ((do Zo) X oo X (dm—l im_l))_l.

4. co X+ Xemo1 =(c00) X+ X (e (m—1)).

We also say that an array combine operation c is a polymorphic combine operation
if ¢ = d~! and d is polymorphic. The combine functions ¢, ¢., and c; therefore are
polymorphic combine operations. The combine function used in mergesort [3] is an

example of a non-polymorphic combine operation.

Examples:

1. ¢, ([ad],[cd]) =[abcd].

2. Ceo ([a b),[cd]).=[acbd].

3. cr ([a],[bcd]) = ceo ([a],[b ¢ d]) = nil.

0123 8 9 10 11
MO = ) Ml =
4 5 6 7 12 13 14 15

4, Let
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then
Cir 0 (MO,MI) =M
where
(0 1 2 3]
4 5 6 7T
M =
8 9 10 11
] 12 13 14 15 ]
5. Let
01 2 3 8 9 10 11
NW= ’ NE: L SW= y SE=
4 5 6 7 12 13 15 16
then

cw? (NW, NE, SW, SE) = M

where M is the same as in (4).

3.6 Universal Array Operations

So far we have studied the divide and combine operations over arrays. These opera-
tions only take arrays apart and put them together but never affect the indexed values
of the array entries. We call operations of this nature relational functions, since from

the space point of view divide and combine operations act on the relational values

of the array spaces. Computations over arrays also need operations of an orthogo-

nal nature, that is, operations that map array entries to new values. We call these

operations universal functions since they do affect the array entry values.

By the above definition, universal functions over arrays still may or may not
affect the index sets of the argument array(s). A universal function is said to be
anti-polymorphic if it preserves the index sets of the argument(s). In other words,
anti-polymorphic universal functions preserve the structures of their arguments. We

will be studying only ahti-polymorphic universal functions.
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3.6.1 Distribution

Let f: X — Y be a function. We define ! f (read as “bang ") to be a function from

arrays of type X to arrays of type Y by
'f A=A, where A'i=f: A1

The function !f is called a distribution of f, where f is the distribution genera-

“I" should be considered as a higher order function that takes a

tor. The operator
generator defined over the arrays’ indexed values, and returns a function defined over
the arrays. It is similar to the “map” operation in functional programming languages
[22, 41, 18], but different since they operate on different data structures.

Besides arrays of primitive types, we will often encounter arrays of tuples — in
particular, arrays of pairs.> Unary operators over pairs such as such as +, *, min, max,
and the projection functions over tuples are the common distribution generators in

our applications. When the tuples have higher arity, the generators are often defined

with pattern matching [41].

Examples:
1. 1sq [1234] =149 16].
2.1+ [(1,2) (3,4) (5,6) (7,8)] = [3 7 11 15].
3. 'max [(3,6) (9,2) (4,1) (3,3)] = (694 3].
4. Let A =|(a,b) (c,d) (e, f)]. Then,

Iself A=laceé],
lother A=[bd f].
where self (z,y) = z,

other(z,y) = y.

3This is because the communication functions to be introduced in 3.6.3 generally map arrays of

type T to arrays of two-tuples of type T.
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5. 1f1(1,2,3) (4,5,6)] = [5,26], where f(z,y,z) =z *y +z
6. Strong local functions applied to matrix:

(1,2) (3,4) 2 12

! % =

(5,6) (7,8) 30 56

It should be observed that array distribution functions require no communication
among the array entries. Moreover, the order of the applications of f over the entries
are not specified. It follows that f can be applied to all entries in parallel. The

distribution functions in this sense are parallel operations.

3.6.2 Construction

Given k functions fo and fi;, their construction, denoted by (fo,..., fi-1), is a

function over k-tuples defined by

(an' . '1fk—l) (A01' " ,Ak—l) = (fO AO)-- -fk-l Ak-l)

The functions f; for i = 0 to k — 1 are called the constituents of the construction.

For the case when all the k constituents are identical, we write

(fyo ) =l

where “! f can be thought of as a distribution over tuples.

Just as the generator of array distribution can be computed in parallel over ar-
ray entries, the constituents of a construction can be computed in parallel over the
tuple components. We call both of them local functions since they do not require

communication among the array entries or the tuple components.

In our application, the constituents of a construction are often functions over

arrays. A construction is said to be strongly local if all its components are array
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distributions. Thus a strong local function is defined over tuples of arrays and has

the following form
Moy -3 1 i)

When all the constituents are identical in the above, we write

(..., 1) =hf
where “II” is read as “bangbang”.
Examples:
L. (!min,!max) ([(3,6)(5,4)], [(6,3), (4,5)]) = ([3 41,[6 51), (strong).

2. M+ ([(1w2)(3,4)], [(5’6)(7’8)]) = ([3 7]’[11 15])’ (Strong)'

e

(id, %) ([a 8], [(c,d) (e, f)]) = ([a b],[c* d e x f]), (strong).

4. (reduce, reduce) ([1 2}, [34) = (3,7), where reduce V = T8V-DV { (weak).

o

. pair-wise-add ([1 2], [3 4]) = [4 6] is not a local function, where pair-wise-add

(Vo,Vi) =V, where Vi=Vy i+ Vi i fori =0 to ($$Vp — 1).

3.6.3 Communication Functions

Let f:Z — T be a function from an index domain to itself. We define the function

#f (read as “sharp f”) to be a function over arrays with index sets in Z by

#f A=A, whereA'i=(A1, A:f17)
The function #f is called a communication function generated by the communica-
tion generator f. The operator # thus is a higher order function that transforms a
function over index sets to a function over arrays that performs communication. A

communication function maps each array entry to a pair, where the first component
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is the entry’s original value, and the second is the value of another entry whose index

is determined by applying the generator to the entry’s own index.

What the above defines is only the intra-array communication. Let A : [ —
X, B:J — Y be two arrays, f a function from I to J. We define the inter-array

communication from B to A to be:
#f (A, B)= A", where A'T= (A7, B: [?)

This above communication function is one-directional, since only the array A is
mapped to a new array A’ using the values from B. A bi-directional communication

can be defined with a pair of communication generators:

#(fay fi)(A, B) = (#/a (A, B), #f (B, A))

When f, = f, = f, the above communication function can be rewritten as #!f.

A wide range of parallel algorithms share communication patterns that can be
expressed with very simple communication generators. Some of these generators are

(see Figure 3.2):

corr 1 = correspondent communication
nd ind . . . .
mirrt =§ —1 mirror-image communication
-
brci=¢ broadcast from one entry to all
nd . .
last ci1=%-¢ broadcast from a entry with backwards index

The special communication generator null is used to denote the null communica-

tion.

Examples:
1. #mirr [12 3 4] =[(1,4) (2,3) (3,2) (4,1)]

2. #corr ([a b], [c d]) = [(a,c) (b,d)]
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or auvvnr v st VRN

(a) Correspondent communication

YN T IR

(b) Mirror-image communication

LR R S 0 \Q

(c) (Last 0) broadcasting communication

Figure 3.2: Communications over a pair of vectors of the same size
3. #(null, last 0) ([12], (34]) = (1 2], [(3.2), (4,2)

4. #leorr ([a b], [cd]) = ([(a,c) (b,d)], [(c,a) (d,b)])

5. All the above generators are applicable to higher dimensional arrays, e.g.

#(last(0,0)) [ ! 2] _ [ (1,4) (2,4) }
J 4

6. Let row_br (¢,7) = (4,0). Then #row_wise_br broadcasts the value of the first

entry of each row to all entries of the row, e.g.
1 2 (L,1) (2,1)
#rowyr =
3 4 (3,3) (4,3)
Likewise, simple communication generators can be defined for column-wise broad-

cast, broadcast of diagonal elements along corresponding rows or columns for matri-

ces, and broadcast vector elements to corresponding rows or columns of an array:

col_br (i,7) = (0,7) column wise broadcast from first row
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dia_row br (¢,5) = (1,1) row wise broadcast from the diagonal
dia_col_br (¢,7) = (4,7) column wise broadcast from the diagonal
v_m_row (3,j) =1 row wise broadcast from a vector
v_m_col (i,7) =j column wise broadcast from a vector

Communication functions, by their definition, move pieces of data around but
never perform any local computation. This is to be contrasted with local functions
which have the opposite characteristics. Communication functions and local functions
are in this sense orthogonal to each other. Many useful operations such as reversion
of vectors, transposition of arrays, array pair-wise operations, and many others can

be defined by the composition of communications followed by local functions:

Examples:

[u—y

. (!min, 'max) : #!corr ([5814],[3270])=([3210], [5874])
2. Let reverse = lother : #mirr. Then reverse [1234]=[4321].
3. Let [+] = !4 : #corr. Then [+] ([1 2], [3 4]) = [4 6].

4. Let [®] = !® : #corr. Then it performs entry-wise binary array operation

with respect to a binary operation @,

5. Let transpose = lother : #Freverse. Then the function transpose transposes a

matrix.

Finally, let us point out that a communication function fetches for each entry
a value from another entry, but the order over the entries in which the fetching
operation performed is unspecified. This means that whenever possible all the fetching
operations can be performed in parallel. Communication functions in this sense are

also parallel operations.
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3.6.4 Functional Forms

John Backus used the term functional forms in [4] to refer to constructs used to
construct new function from one or more other functions. In other words, a func-
tional form is a higher order function which takes other function(s) as argument(s)
and returns another function as a result. We will often refer to the arguments of a

functional form as its constituents.

Functional forms are not new to us. The functions we studied in previous sec-
tions, in fact, are all defined by functional forms. The following is a summary of the

functional forms we have encountered:

Function Composition denoted by “:”.
Array Distribution denoted by “!”.
Construction denoted by (fo,.. ., fk-1)
Communication denoted by “#”

Tuple Distribution (also) denoted by “!”.

Now let us define some other functional forms:

If-Then-Else denoted by the standard syntax of p — f;g with the usual meaning
of
p— figz=if pzthen frelsegz

If-Then denoted by p — f, defined by
pofrz=p— fiidzx
Filter denoted by (p = f), defined by

(p=>f) A= A'where A'7 = if pithen f Aielse A7
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The difference between if-then-else and filter should be observed: for example,

(<37 —>sq)[4321] = [4341]]
(<37 =ls) [4321] = [16941]

Sequential Tuple Distribution denoted by !f :: i, where 7 = (4o, ..., ptk—2) is a
tuple of functions. It is defined by

Ui (zo,. oy Zh1) = (Yor Y1y - -+ 1 Yk—1)
where
Yo = fzo
y1 = f: po(z1,90)

Yk—1 = f: ﬂk-z(fﬂk—layk—z)

Due to the dependency relation, the constituents of this form must be performed
one by one in a linear order. This contrasts with the distribution over tuples by

({3 )

the operation alone, which we may refer to as “parallel tuple distribution.”

In some applications, the function f is not applied to all the substructures; we
define that if the ith component of £ has the form %g;, then !f :: i is defined

to be the same as above except that the ith equation is replaced by

yi = pi(Tiy Tioy)

The usefulness of this sequential distribution form will be shown in Chapter 5.

3.6.5 Zip and Unzip
A structure of m objects ag,...,a,_; can be defined by

a = struct (ag,.-.,0m-1)
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where the objects a; for ¢ = 0 to (m — 1) are called fields of the structure a. Unlike
that for tuples, a field of a structure is accessed by its name, not by its index. For

example, for structure a of above, we have
a.a;=a;fori=0to (m—1)

Given m arrays of same shape (Ao,...,Am-1), their Z-structure is an array B of
the same shape, where each entry is a structure of the entries from the m arrays with
the same index. For example, with B as above, we have

-

B ¢ = struct (Ao 7,..., Am_1 1)

The zip and unzip operations are used to, respectively, construct and disperse

Z-structures. Thus, let A, By, ... B,_; be as above, we have

22]) (Ao, o ,Am—l) =B
unzip B = (Ao, ..., Am-1)

The arrays Ao,...,An_1 are called fields of the Z-structure B. A field of the Z-
structure is accessed also by naming it. For example, for the Z-structure B in above,
we have

B.A; = A

3.7 Divacon Notation

While studying array and array operations in this chapter, we have also studied
some relevant data structures such as tuples and structures; and introduced a set of
notations for expressing operations defined over these data structures. This set of
notation from now on will be referred to as the Divacon notation, which will be used
to specify all the DC algorithms in the rest of this dissertation.

Although much of the functionality that we need could be captured in a modern

functional language such as Haskell (18], it should be noted that Divacon notation
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has some unique features which are not found in most programming languages, but

which are crucial for DC algorithms:

e Arrays can be recursively divided and combined.
¢ Communication operation over arrays.
o Relative indexing scheme.

DC functional forms.

We therefore feel that it is more of a matter of necessity than a matter of taste to
adopt the Divacon notation over some well established programming language in our

discussion.
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Chapter 4

Parallel Divide-and-Conquer

4.1 Pseudomorphism: the Basic Models

Divide-and-Conquer is a notion that has been illustrated by examples and understood
only via intuition in the past. With the concepts developed in the last two chapters,
we will show that this notion may be formalized. The formal model we propose for
divide-and-conquer is called the pseudomorphism, which is a generalization of the
morphism in algebra. To demonstrate the expressiveness of the model, we present in

this chapter a total of twelve DC algorithms.

4.1.1 Morphisms

In their excellent textbook The Design and Analysis of Computer Algorithms (3], A.
V. Aho, et al. describe divide-and-conquer this way:

A common approach to solving a problem is to partition the problem into
smaller parts, find solutions for the parts, and then combine the solutions
for the parts. This approach, especially when used recursively, often yields
efficient solutions to problems in which the subproblems are smaller ver-

stons of the original problem.

65
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If we interpret the “partition” as divide operations, and the “smaller version of the
original problem” as recursive application of the function over smaller arguments as
one would do in functional notation, then the above informal notion can be expressed

in the notation we developed as
f=c:lf:d

or back in English: to compute a function f applied to an argument, we apply a
divide function d, then apply f recursively to each of the subarguments from the

division, and finally apply a combine function ¢ to get the result.

Functions that are subject to this approach are called morphisms in algebra [16].
Formally, a function f from one algebra (X, c;) to another (Y, ¢,) is a morphism (see

Figure 4.1 (a)) if the equality

friea(zoy...szk) = ¢y : (f zoy.-., f Tk)

holds whenever c;(zo,...,zx) # nil. With our Divacon notation, the above can be

rewritten more concisely as
fiecz=0¢,:!f

To see how this equation is related to what we derived from the informal notion
of divide-and-conquer, let d be a divide function such that c, is a left inverse, apply
d to both sides of the above equation from the right, and note that ¢, : d = id. Then

we have

fiezid =¢,:1f:d
= f =c,:!f:d
As an example, let us consider the function reduce (as defined in APL), which
takes an associative binary operator @ and a vector v as arguments, and returns a
scalar which is the sum of all the vector entries with respect to @, i.e.

v]-1

reduce ® v= P v()

=0
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Let V be the domain of regular vectors of type U. Then the function (reduce @)

is a morphism from (V, ¢;;) to (U, ®), since we have (as can be proven easily)
(reduce @) : cir = @ :!(reduce @)

For example,
(reduce +) : cr ([1 2], [3 4])

=+ : l(reduce +) ([1 2], [3 4])
= + : (reduce + (1 2], reduce + [3 4])
=+(37)
=10
which is the reduction of vector [1 2 3 4] with respect to the operator +.

Morphisms constitute a fairly broad class of functions encountered in mathematics
and engineering. Differentiation, integration, convolution, and Fourier transformation
are classic examples. Morphisms capture the notion of divide-and-conquer since the
application of a morphism to an argument can be reduced to more than one applica-

tion to the sub-arguments by definition.

4.1.2 Postmorphisms

Given a binary associative operator @, the function (scan @) when applied to a
vector returns a new vector which is a vector of partial sums with respect to @. More
precisely, .
scan @ v = v', wherev' i = éBv J
i=0

e.g. scan +([1234] =136 10].

The function scan is related to reduce in that the the last entry of scan gives the
result of reduce given the same binary operator and same input. Reduce has been
successfully shown to be a morphism, one might think that scan also is. Now let us

examine whether this is true. In order to do so, we first need to identify the associated
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algebras. The only natural choice in the case of scan is to use (V,cat) both as the
domain and co-domain algebra. Were scan a morphism, the following equation would
hold:

(scan @) : cat = cat : |(scan ®))

This is unfortunately not the case, as can be shown by the following counter-

example
(scan +) : cat([1 2], [3 4])

= cat : !(scan +))([1 2], [3 4])
= cat : (scan + [1 2], scan + [3 4])
= cat ([1 3], [37])
=[1337] (# (the correct result of) [1 3 6 10])
However, the incorrect result [1 3 3 7] contains much of the information about the
proper result (1 3 6 10]. First of all, the left half [1 3] completely agrees with the
correct result. Secondly, the right half can be made correct by adding the last entry

on the left to each entry on the right.

This motivates us to define the function
Pycan ® = (id, 1®) : #(nil, last 0)

which, when applied to two vectors, will leave the left vector untouched, but will add

the last entry on the left to each entry on the right. For example,
(hsean +) ([1 3], [37])

(¢d, +): #(nil, last 0) ([1 3], [37])

(id, +) ([13], [(3, 3) (7, 3)])

(

(

id [13], '4((3,3) (7, 3)]
[1 3], [6 10])

Although scan is not a morphism, once the above function is defined, we can show

that scan satisfies an equation similar to that for morphisms, which is

(scan @) : cat = cat : (hyean D) : !(scan @)
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This equation tells us that despite the fact that scan is not a morphism, its ap-
plication to an vector can also be reduced to mor;e than one application over the
subvectors, and therefore can be computed in a divide-and-conquer fashion. To de-
scribe functions of this nature, we introduce the notion of postmorphism.

A function f : (X,¢;) = (Y,¢,) is a postmorphism if there exists a postadjust
function (see Figure 4.1 (c)) h: Y* — Y* where k is the arity of the algebra (Y, c,),
such that

fiez=cyth:lf

The name “postadjust function” reflects the fact that postadjust function is to be
applied only after the function f has been recursively applied to the subargument.
Morphisms obviously can be regarded as special cases of postmorphisms, where the

postadjust functions happen to be the identity function.

4.1.3 Premorphisms

The function reverse reverses the order of the entries in vectors; for example,

reverse [123 4} =[4321]

The function reverse is not a morphism from the algebra (V, ¢;) to itself; since if

it were, we would have

reverse : ¢ ([1 2], [3 4])
= ¢y : lreverse ([1 2], [34))

= Cir ([2 1}’ [4 3])
= [2 14 3]

which is not correct.

Let us define a function !

Greverse =!0th67' : #!COTT

'Recall that in Chapter 3 we defined other(a, b) = b, corr = id.
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which, when applied to two vectors of the same size, will exchange the entries in the

correspondent position, for example:

Greverse ([1 2], [3 4]) = ([3 4], [1 2])
Now we can show that the following equation holds for the function reverse:

reverse := cj : |T€VETSE i Greyerse

For example,
reverse : cat([1 2], [3 4])

= ¢y ¢ lreverse : greverse ([1 2], [3 4])
= ¢, : !reverse ([3 4], [1 2])

=cr ([43], [21))

=[4321]

The presence of !reverse in the above equation means that reverse can be com-
puted in a divide-and-conquer fashion. To describe functions with this nature, we
introduce the notion of premorphism.

A function f : (X,¢;) — (Y,¢,) is a premorphism (see Figure 4.1 (b)) if there
exists a preadjust function g : X¥ — X*, where k is the arity of the algebra (X, Cz),
such that .

fieco=cy:lf:g

In premorphisms, the preadjust functions are always applied before the function
[ is recursively applied to the subarguments: hence the name “preadjust” function.
Morphisms are obviously special cases of postmorphisms, where the preadjust func-

tions happen to be the identity function.

4.1.4 Pseudomorphisms

We have shown how the class of functions called morphisms in algebra is subsumed by

either the premorphism model or the postmorphism model. A natural question that
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S f
o >0 0
T n T1
o >0 o
T2 Y2 T2
o o o »0
cz(T1, T2 cy(¥1,Y2) cz(Z1, T2 cy (Y1, ¥5)
(a) Morphisms (¢) Postmorphisms
S f
o >0 [ o -2 1 o
9| = Y2 I 2 Y2
o >0 o >0 °
Z2 h T h ¥
(21, Z2) coly1, ¥2) ° >0
A 22 w1, 42 ¢z(T1,2) cy(¥1,93)
(b) Premorphisms (d) Pseudomorphisms

Figure 4.1: Different types of pseudomorphisms (k=2)

can be raised is whether these two generalized models can be unified. The answer is
quite obvious: we can define a model which has both pre- and post- adjust functions,
and then premorphism and postmorphism become special cases of the new model.

Formally, we say a function f: (X,c;) = (Y,¢,) is a pseudomorphism (see Figure
4.1 (d)) if there exists a preadjust function g : X* — X*= and a postadjust function
h:Y* — Yk where k, and k, are respectively the arity of the algebras (X, c,) and
(Y, ¢y), such that

fiez=c:h:lf:g

Obviously, pure morphisms, premorphisms, and postmorphisms are all special
cases of pseudomorphisms, where one or both of the adjust functions happen to be
the identity function.

It should be pointed out that although pseudomorphisms have fewer algebraic
properties than morphisms due to the generality of the model, the key property

we are interested in in morphisms is not lost: pseudomorphisms by definition can be
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computed recursively over the subarguments just like morphisms (since f = ...If...).
This is why we say the pseudomorphism model captures the notion of divide-and-
conquer. Moreover, there is no order imposed by the definition on the recursive
applications over the subarguments, which means that the recursions can be carried
out in parallel. Pseudomorphism is therefore a model for what we call parallel
divide-and-conquer (PDC) algorithms. In Chapter 5, we will see a different class of
algorithms called sequential divide-and-conquer (SDC).

We have developed our discussion on general grounds. We have not assumed the
arities of the algebras are always two, nor have we assumed the equality of the arities
of the domain and co-domain algebras. Our experience has shown that the generality
is indeed demanded in applications of the models to real problems — in particular,
when dealing with higher dimensional arrays. However, in all the examples of this
section, the algebra arities are two and equal. This will also be the case with most

but not all the problems that we will study in this dissertation.

4.2 Computation of Pseudomorphisms

4.2.1 Some Related Notions

A predicate p over a space domain S is a mapping from S to the boolean set Boolean=
true, false.? It follows that a predicate p over a domain S partitions it into exactly

two subdomains,

S, = {s]|s€ S and ps}

S» = {s]|s€ Sand —p s}

We call the spaces in S, base spaces, and the predicate will sometimes be called the

base predicate.

2Note that the set Boolean does not contain nil as an element.
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One base predicate we frequently use for the array space domain is atom?, which

returns true if and only if an array has size one.

Let d be a divide function over S, and S’ a subdomain of S. We say a space s € §
is grounded on S’ by d if either

1. s€ S, or

2. ds#mnil,and if d s = (so,.:.,5k—1) then s; is grounded on S’ for: = 0 to k—1.

Intuitively, a space is grounded on S’ by d if it is either a member of S’ or it is

dividable by d and all the leaves in the recursive division tree are the spaces in S’.

Given a divide function d and a base predicate p over S, we define the restricted

subdomain by d and p, written Sy, to be

Sip={s|s €S, sisbased on S, by d}

Finally, let f be a function over S, and p a base predicate over S. Then a function
fo is called a base function of f with respect to p if f|s, = fo|s,. In other words, a

base function must (and only needs to) agree with f for all the base spaces.

Examples:

1. Let V be the domain of vectors. Then V,;,m2 consists of all vectors of size one.
A vector v is grounded on Vgym? by di, or d,, if and only if [v| = 2™ for m > 0.
The restricted subdomain by atom? and d;. or d., contains all vectors whose

sizes are powers of two.

2. For the function reduce of Section 4.1.1, and the predicate atom?, one of the

identity functions is a base function.
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4.2.2 Higher Order Function PDC

Let us first define the following higher-order function PDC which takes five functions

as argument and returns a function as the result:
PDC(d,c,g,h,p, fb) = fdc
where fo4e=p— fo;eih i lfye:g:d
We can then show
Proposition 4.1 Let f : (X,d™!) — (Y,c) be a pseudomorphism with preadjust

function g and postadjust function h; let p be a base predicate, f, a base function of

f for p, X' the restricted subdomain by p and d, namely X' = X, 4. Then
P,
le’ =1 DC(d,c,g,h,p, fb)

Proof: All we need to show is that fsc * = f z for any = € X'. Since z € X', z is

either a base space or a dividable grounded space.

Case 1 z is a base space. Obviously we have
fiez=frz=fz

Case 2 r is a dividable grounded space. Then by the definition of pseudomorphism,
we have
fz
= f:d7!:dx (since x is dividable))
= f:d Y (zo,...,Tk_1)
=c:h:!f:g(zo,...,zk=1 (by the definition of pseudomorphisms)
=c:h:lf:g:dz

On the other hand, by the definition of PDC,

feex=c:h:fy.:9:dx
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since the above two recursive equations differ only in the names for the recursive
function. It follows that the recursive functions are equal as long as they agree

on the base spaces, which we know to be the case.

Q.E.D.

The significance of Proposition 4.1 is that a pseudomorphism can be computed by
PDC given its constituents, provided the arguments are from the restricted domain.
This, in turn, means that once identified to be a pseudomorphism, a function can be

computed by PDC in the spirit of divide-and-conquer.

PDC is an acronym for parallel divide-and-conquer. We will also (loosely) call
the function defined by PDC a “pa.fa.llel divide-and-conquer”.? but use the lower case
abbreviation pdc to distinguish it when necessary. The argument functions of PDC are
called the constituents of the defined pdc. The functionalities of the pseudomorphism

and its constituents were all given previously, and can be summarized here as
pseudomorphism f: X - Y

divide d: X — X*

combine c: Y - Y

preadjust g: X* — X*

postadjust h:Y* — Y*

base predicate p, : X — Boolean

base function f: X' - Y’ whereX'C X, Y'CY

It should be noted that Proposition 4.1 says nothing about what we can do if

we happen to apply the pseudomorphism to a space which is not in the restricted

3Strictly speaking, the pdc defined by PDC is an algorithm for a function rather than the function

itself; the function itself is the given pseudomorphism.
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domain. Since the restricted subdomain can in some cases be an infinitely smaller

portion of the domain itself, could it mean that it is not applicable most of the time?

To make discussion simple, let us first examine the effect of the restriction on one
dimensional arrays. It should be easy to see that if the unbalanced division d;;, m is
used with the base predicate (size m), then the restricted subdomain coincides with
the original. However (as shown by the example of last section), if we use balanced
divisions d;. or d.,, a vast majority of the vectors in the domain will be lost in the

restricted subdomain, which consists of only the vectors of sizes of power of two.

Fortunately, this problem is not a serious one. Although the restricted subdomain
is small, it spans the entire domain in the sense that for every vector v in the original
domain but not in the restricted domain, there is a unique vector v’ in the subdomain
such that |v'| is the smallest power of two, equal to or greater than |v|. It is therefore
always possible to embed a “lost” vector into a vector in the subdomain by padding
it with some “dummy” entries. To compute a pseudomorphism on v, we can then
compute f on v’ by PDC by embedding v into v’; the result for f v should be an

easily separable portion of f v’.

The above discussion can be easily generalized to higher arity divisions on vectors
and divisions on higher dimensional arrays when the balanced division(s) is (are) ap-
plied to one or more dimensions of arrays. Some details can be found, for example,
in {3, 57]. This justifies the convention we will use from now on: instead of mak-
ing the restricted subdomain an issue, we will simply say that a PDC computes a

pseudomorphism.

4.2.3 First Example — Postmorphism PDC Algorithm for

Scan

Scan (also called prefiz) was first identified as a useful programming construct in APL

back in 1962 [26]. Since then it has been introduced in a number of programming
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languages such as FP [4], and *Lisp of the CM [53]. While scan appears to be
inherently sequential, many efficient parallel algorithms have been proposed on a

number of data structures [31, 23, 39].

In Section 4.1.2, we gave a definition for scan on vectors, and showed that scan is

a postmorphism. In this section, we will give the PDC program.*

We learned from Section 4.1.2 that (scan @) is a postmorphism from the algebra

(V,di,™") to itself, where the postadjust function is
hacan b= (2d, '@) . #(nzl, Iast 0)

Therefore, we know all the core constituents of the pdc: the divide function is dy,,
the combine function is ¢, and the preadjust function is id, the postadjust function
is given above. All we need to do now is to identify the base predicate and base

function.

Although we have many (in fact an infinite number of) choices about the base
predicate and base function, the simplest and most intuitive ones are atom? and
id respectively. It is easy to verify that these two functions satisfy the constraints
imposed by the definition of base predicate and base functions. This leads us to define

the following PDC, which computes scan correctly by Proposition 4.1:

Algorithm 4.1 Postmorphism PDC algorithm for scan.

scan @ = PDC(di, ciry 1d, (hycan D), atom?, id)
where h,en @ = (id, @) : #(nil, last 0)

The above algorithm says that, to compute scan with respect to a binary asso-
ciative operator @ over a vector v, we first test whether vector v is atomic, and if

it is we return the vector itself; otherwise, we apply the divide function d;., apply

4The PDC algorithm for scan given here is a naive one. A better PDC algorithm will be given
in Section 4.3.2.
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scan recursively over the subarguments, postadjust the results, and then apply the
combine function ¢;. The key component of the algorithm is the postadjust function
P scan, Which when applied to two subvectors will fetch the last entry of the left for
each entry of the right, and add (@) the fetched value to its own value. The adjust

function A, thus will only affect the value of the right subvector.

Example 4.1 Computation of scan by PDC

scan + (12345678
(hocan +) : (scan +):id :di, (1234567 8]
(Pocan +) : scan +) :id ([1234),[5678])
=Clr : (hscan +) : W(scan +) ([123 4], [567 8])
( )
( )
(

=cp
=Cp !
= Cir t (Roean +) ([1 3 6 10], [5 11 18 26])

Rycan +) ([1 3 6 10], [5 11 18 26])

id, 1®) : #(nil, last 0) ([13 6 10],[5 11 18 26])

= ¢, : (3d, '®) ([1 3 6 10], [(5,10) (11,10) (18,10) (26,10)))
= ¢, ([1 3 610], [15 21 28 36))

=[136 10 15 21 36]

=Cir

=Cr:

4.2.4 TIllustrations

The computation process of a PDC on a given argument can be depicted by a divacon
"graph [36]. A divacon graph consists of two trees connected back-to-back by crossing

edges, where these components are:

1. Divide Tree (on the top): Corresponds to the repeated application of the divide

function and preadjust function, until the base spaces are reached at leaf level(s).

2. Combine Tree (at the bottom): Corresponds to the repeated application of the

postadjust function and combine function until the “root” is reached again.

3. Crossing Edge: Corresponds to the application of the base function.
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( 12345678 )

(136 10] [51118 26
13610 15 21 28 36

([1361015 21 28 36])

Figure 4.2: A Divacon graph for scan

Note also that the input and output of the PDC are represented by the roots of

the divide and combine trees respectively.
In Figure 4.2, we give the divacon graph for (scan +) (123456 7 8§].

Divacon graphs give us sﬁapshots of the entire computation process, showing the
result of each application of each constituent function. Although there are occasions
when this much detail can be appreciated, we often do not need so much detail to
understand the process. A simplified divacon graph is different from a divacon graph

in the following aspects

o If the pdc is a postmorphism (premorphism), only the combine (divide) tree is

shown because the adjust function shown in the divide tree is always identity.

o There are no directed edges in the graph because the subspace relation indicated

by the edges can often be easily inferred.
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Figure 4.5: Premorphism PDC algorithm for broadcast

preadjust function:”

Gbroad = (id,lother) : (nil, #£corr)

The above adjust function can be used to compute broad with any balanced divi-

sion on vectors, including dj, or d,,, in a premorphism PDC algorithm.

Algorithm 4.3 Premorphism PDC algorithm for broad. See Figure 4.5.

Note: the divide and combine functions can be replaced by respectively d,, and c.,.

broad = PDC(di;, ¢iry Gbroad, td, atom?, id)

The function broad also has the interesting property that we can compute it by

postmorphism with the same adjust function and the same divide function.

Algorithm 4.4 Postmorphism PDC algorithm for broad. See also Figure 4.6.

Note: the divide and combine functions can be replaced by respectively d., and c,,.

broad = PDC(dy,, ci, td, Gbroad, atom?, id)

"This adjust function assumes balanced division. In fact, it brings all entries from the first
subvector to the second, and thus does more than absolutely needed. On the other hand, it is a
correct adjust function for broad. Moreover, we can show that it will not cost more time on hypercube

machines.
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Figure 4.6: Postmorphism PDC algorithm for broadcast

4.3.2 A Better Scan Algorithm

The (last 0) communication in Algorithm 4.1 implies O(n) fan-out, which, even if we
implement it with the broadcast PDC algorithm will cost O(logn) (parallel) time.
The complexity of Algorithm 4.1 therefore is O(log? n), which is not very good since

there are known parallel logarithmic algorithms.

This, however, is not difficult to overcome by replacing the broadcast communi-
cation by correspondent communication. It is obvious that we could do so if and only
if we can make the value of the last entry of each subvector available at all entries.
Initially, when the subvéctors are atomic, every one indeed has the value of the last
entry, which happen to be identical to its own value. Inductively, suppose each entry
in two subvectors has the last entry value in addition to its own, each entry can then
be updated by correspondent communication followed by some local computation to

reflect the last entry value of the combined vector.

The above discussion leads to Algorithm 4.5, which assumes the input vector has
been transformed into vectors of pairs of identical elements. The output is also a
vector of pairs, where the second elements reflect the scanned values of the vector

entries.

Algorithm 4.5 Scan PDC Algorithm without Broadcast (Figure 4.7).
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0:0 1:1 2:2 3:3 4:4 5:5 6:6 7:7
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Figure 4.7: Scan PDC algorithm without broadcast

scan @ = PDC(dy, cir, id, (hscan D), atom?, id)
where f, z = (z, 1)
hscan = (Nocl @,oc2 @) : #!corr
locl @ ((x1,suml),(z2,sum2) = (z1, suml @ sum2)
loc2 @ ((z1,suml), (z2, sum2) = (z1 ® sum2, suml G sum?2)

As will be shown in Chapter 6, the complexity of Algorithm 4.5 indeed improves
by a logarithmic factor in comparison to Algorithm 4.1 on hypercube machines. We
call the technique used in Algorithm 4.5 broadcast dissolving, which in fact can be

applied to many other problems.

4.3.3 Polynomial Evaluation

Assume that a polynomial of order (n — 1)
P'=a+az' +... 4+ ap gz

is represented by two vectors A and X, where

A=lag...a,-1]

X=[1z...17]
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Let us define the following function poly
poly P* = VP, where VP i =X a; * &'

Clearly, the function poly subsumes the ordinary polynomial evaluation since the last

entry of its result gives the value of the entire polynomial.

Quite obviously, the function poly can be computed by the following program:

Algorithm 4.6 Polynomial Evaluation by PDC Composition.
poly(A, X) = (scan +) : [x]A: (scan x) X)

where the (scan x) computes the powers of z, and the (scan +) computes the partial
sums of the terms. The above program is asymptotically optimal since it has O(log n)
time complexity on hypercube machines. However, it goes through two phases of

divide-and-conquer which in fact can be merged.

Given a polynomial P", let us define

P,"/2 =aptar*xT+...+ a2 * g2

Pr"/2 =an2tan2*xT+...+angxz"

Then evidently we have

Pt = f)ln/Z +$n/2 " Prn/2

which immediately leads to the following one-phase DC algorithm:
Algorithm 4.7 One Phase PDC Algorithm for Polynomial Evaluation®.

poly = unzip.0 : poly,, : zip
where

poly,, = PDC(di, ¢, id, (id,)oc): #(nil, (last 0), atom?, poly,)

8The zip and unzip operations used in this and the following algorithm are defined in 3.6.5.
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poly,(a, z) = (v =a x z, pwr = z)

loc((v1, pwrl), (v2,pwr2)) = (vl + v2, pwr?)

The (last 0) communication used above implies broadcast. It can, however, be
replaced by correspondent communication with the broadcast-dissolving technique
that we used for scan by introducing a new variable and making the broadcasted |

value available at all entries:

Algorithm 4.8 Polynomial PDC without Broadcast Communication

poly = unzip.0 : poly,, : zip
where
poly,. = PDC(d., ci, id, loc: #lcorr, atom?, poly,) : zip
poly, (a,z) = (me = a * z,last = a * z, pwr = )
loc = (lleft, Iright) )
left((mey, lasty, pwr,), (mes, lasty, pwr,)) = (mel, (last, + pwry * last,), pwr?)

right((mey, lasty, pwr,), (me2, lasty, pwr,)) = (last, + me; * pwr,, (last, + pwr,  last,), pwr?)

4.3.4 Matrix Multiplication

Given two arrays, A(m x n) and B(n X k), the product C = AB is defined to be

Ci,5) = k}: a(i, k) * b(k, )

There are clearly two levels of parallelism implied by the definition: firstly, all
entries can be computed in parallel; secondly, each entry is an inner product between
two vectors, which can be efficiently computed in parallel, for example, by divide-

and-conquer.
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Ao A Bo B AoBot+ | AoB1+
Ay By A1 B3
A Az B, By ABp+ § A2B1+
A3 By A3 B3
Ao Ap BofAp By
x By B
A A1 BolA By
By
Ag Ay X = Ap Bg + Ay By
By

Figure 4.8: Three matrix block multiplications
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Our interest is however in direct divide-and-conquer algorithms for matrix mul-

tiplication. A basic fact from linear algebra is that: the definition of matrix multi-

plication applies not only to matrix entries, but also to matrix blocks provided the

matrices are properly divided (partitioned). Figure 4.8 gives three equations about

matrix block multiplication, each of which suggests a divide-and-conquer algorithm

for matrix multiplication.

Corresponding to the first equation, Algorithm 4.9 employs an 8-ary division which

is defined by the selected outer-product (Section 3.4.4) of block matrix divisions. The

postadjust function performs pair-wise matrix additions on eight pairs of submatrices,

and thus reduces the number of pairs by half. The base function is simply the identify

function.
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Algorithm 4.9 PDC Algorithm for Matrix Multiplication (8-ary Division).

mm = (d, ¢, id, hpm, atom?, id)
where
d = sel (1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1) : d; - .
c= ¢’

hmm(Po,Px,Pz,Ps,Pq,Ps,Ps,P7) = (p0[+]p2, p1[+]p3’ p4[+]p6’ p5[+]p7)

Corresponding to the second equation, Algorithm 4.10 employs a 4-ary division

which is defined by the (unselected) outer-product of block matrix divisions. Since ‘
both the adjust functions are identity functions, this is a pure-morphism PDC algo-
rithm. The base function is the dot-product of two vectors, which can be computed

by a pair-wise multiplication followed by a reduction with respect to addition.

Algorithm 4.10 PDC Algorithm for Matrix Multiplication (4-ary Division).

mm = (d, ¢, id,id, atom?, mm,)

where
d=dy - dy
c=cy,?

mmy = reduce : [¥]

Corresponding to the last equation, Algorithm 4.11 employs the binary division
defined by the selected outer-product of block matrix divisions. The postadjust func-
tion performs pair-wise matrix additions on two matrices and reduces them into one.
The base function is the outer-product of two vectors, denoted by x, and maps two

vector of size n into a matrix of size n by n.
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Algorithm 4.11 PDC Algorithm for Matrix Multiplication (Binary Division).

mm = (d, id,id, [+], mm)

where
d = sel (1,0,0,1) : (diy 1) - (dir 0)
hom = [+]

mmy, (A,B)=Ax B

Observe that the divide functions in both Algorithm 4.9 and Algorithm 4.10 are
dynamic divide functions with expanding factor two (Section 3.4.4), while the divide
function in Algorithm 4.11 is static. On the other hand, the base functions in the
three algorithms respectively preserve, shrink, and increase the sizes of the arguments.
These characteristics will be shown to have great impacts on the time and process

complexities of these algorithms when computed on parallel computers (Chapter 6).

4.3.5 Monotonic Sort — A Second Order PDC

PDCs can not only be composed together as shown in Section 4.3.3, but can also be
nested into other PDCs to compute more complicated problems. A higher order PDC
is a PDC that uses other PDC in its constituent(s). The number of nesting levels is
called the order of the PDC. In this section, we will show a second order sorting PDC

algorithm.

Different from the well-known bitonic sort algorithm, the following PDC program
always arranges entries in a monotonic ascending order. It should be observed that
the program is a second-order pseudomorphism, where a premorphism is nested inside

a postmorphism.

Algorithm 4.12 A Second Order PDC Sorting Algorithm.

sort = PDC(dy, ¢, id, loc: #!mirr, atom?, id)
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Figure 4.9: Monotonic sort — a second order PDC algorithm

where loc =Inest : (!min,!max)

nest = PDC(d}, ¢, (!min,'max): #lcorr, id, atom?, id)

The algorithm is illustrated in Figure 4.9, in which computation corresponding to
the top level is indicated by the circles, and computation corresponding to the second

level is indicated by the solid dots.




Chapter 5

Sequential Divide-and-Conquer

In all divide-and-conquer algorithms, we divide a problem into several subproblems
and then recursively solve the subproblems. The pseudomorphism model introduced
in the last chapter corresponds to the class of DC algorithms in which the order of
the recursive computations over the subproblems is left unspecified. The subproblems

therefore can be computed in parallel by the PDC programming construct.

There are also problems which can be solved by recursively reducing them to sub-
problems whose computations have a particular order imposed upon them. Problems

of this nature are the subject of this chapter.

5.1 Basic Notions

Let (X,c;) and (Y,cy) be two k-ary algebras. We say a function f : X — Y is a
crossmorphism if there are (k — 1) crossadjust functions i = (po,. .., lk-2), Where

pi: X xY — X for i =0 to (k — 2) such that!

frez=cy: fufi

"Recall that “::” is the sequential tuple distribution (between a function and a vector of functions).

See 3.6.4.

91
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By definition, a pure morphism is a special case of the crossmorphism, where each
of the cross adjust functions happens to be the projection function that returns the

first element of pairs.

The scan function over vectors with respect to a binary associative operator, which

we studied in the last chapter in fact is (also) a crossmorphism. Let us define
Lscan D = (eq? 0) = (1 : #(last 0))

Then it is easy to verify that the following equation holds for the function (scan ®):
scan @ : ¢ = ¢ & (scan @) it Pyean

The function (scan @) has been shown in Chapter 4 to be a pseudomorphism. The
above example therefore shows that crossmorphisms and pseudomorphisms are not
mutually exclusive. From now on, we will extend the meaning of pseudomorphism so

that it includes crossmorphisms.

5.2 The Programming Construct SDC

5.2.1 SDC

Let us define the following higher order function SDC, which takes functions and

tuples of functions, and returns another function as the result:
SDC(da ¢, ﬁ) o fb) = fdc
where fioe =p — fo;¢: fac i fi: d
We can then show
Proposition 5.1 Let f : (X,d"!') — (Y,c) be a crossmorphism with crossadjust

functions g, let p be a base predicate, f, a base function of f for p, X' the restricted
subdomain by p and d, namely X' = X, 4, then

le’ = SDC(da c, ﬁap, fb)
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Proof: Similar to that of Theorem 4.1.
Q.E.D.
In other words, let

f = SDC(da c, .[[1 D, fb)

and let z € X, 4, then we can compute f z by

1. if p = then return f, z;

2. else, return ¢y (yo,¥1,--.,Yk—1) Where

Yo = fzo
n=[: Ko (551,3/0)

Y1 = [ pi—2 (-Tk—layk—2)

(zoy.. . Tp—1)=d z

Due to the imposed order, SDC must apply the recursive applications of the
defined function in a sequential order. This is to be contrasted with PDC where the
recursions can be (but do not have to be) performed in parallel. This is the reason
we call the construct SDC, standing for sequential divide-and-conquer. The function
arguments to a SDC are called the constituents of the defined crossmorphism. The
significance of Proposition 5.1 is that once the constituents of a crossmorphism are
identified, the crossmorphism can then be computed by SDC. Similar to what we did
in Chapter 4, we will loosely speaking of a crossmorphism as a “sequential divide-

and-conquer”, or a sdc.

We summarize the functionalities of a crossmorphism and its constituents

crossmorphism f: X =Y

divide d: X — X*
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combine c:Y* > Y
crossadjust g : X*¥ — X*
base predicate p, : X — Boolean

base function f: X' — Y’, where X'C X, Y'CY

5.2.2 An Example

From Section 5.1, we learned that scan is a crossmorphism from the algebra (V, ¢;,)

to (V,cir) with the crossadjust function
Pscan D = (€q?0) = (1@ : #(last 0))

By Proposition 5.1, the function (scan @) can then be computed by the following
SDC algorithm

Algorithm 5.1 Crossmorphism PDC algorithm for scan.

scan @ = SDC(dir, ciry(Bscan D), atom?, id)
where p,can @ = (eq? 0) = (1@ : #(last 0))

Algorithm 5.1 means that to compute scan with respect to a binary associative
operator @ over a vector v, we first test if vector v is atomic, if it is, the result is
the vector itself; otherwise, we apply the divide function dj,, apply scan recursively
first over the left subvector, the crossadjust function g,y is then applied to the right
subvector and the result of the left subvector, we then apply scan recursively over
the adjusted right subvector, and finally apply the combine function ¢;. The key
component of the algorithm is the crossadjust function p,c.y, which when applied to
two vectors will fetch the last entry of the left subvector and add it (6) it to the first
entry of the right subvector. The crossadjust function Kscan thus will only affect the

value of the first entry of the right subvector.




5.3. CASE STUDIES 95
Example 5.1 Computation of (scan +) by SDC

scan + [12345678]
=cp: (scan +) i (fscan +) :dir [1234567 8]
=cir i (scan +) it pryean +) ([1234], (567 8])
= ¢ (scan[l 2 3 4], scan : pyean ([65 6 7 8], scan(l 2 3 4])),
=cpr: ([1 36 10], (scan +) : pycan ([5 6 7 8], scan[l 3 6 10])),
=cpr: ([1 3 6 10], (scan +) [15 6 7 8])
= ¢, ([1 3 6 10], [15 21 28 36))

=[1361015 21 36]

5.3 Case Studies

5.3.1 Gaussian Elimination

Let A be an n by n matrix, X a column vector of n unknowns, B a vector of size n,

a linear system with n unknowns then has the form
AX =B
Gaussian elimination is a reduction of the above to an equivalent system [12]
AX =B

where A’ is a lower triangular matrix.

A common approach to Gaussian elimination is to do it in n steps; at the ¢th
step the ith diagonal element is used as the pivot element, and the entries in the
ith column below the diagonal element are reduced to zeros [19]. In this section, we
show that Gaussian elimination is a crossmorphism, and give an SDC algorithm by
identifying the constituents.

We will represent a linear system by by a matrix M of shape (n,n + 1), where

M's first n columns correspond to the matrix A, and the last column corresponds to
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the vector B. For a matrix of shape (n,m), where n < m, there is always a square
submatrix of shape (n,n) consisting of the columns with indices from (m —n —1) to
(m —1). This square matrix in the following discussion will be referred to as main

square submatriz of M.

Instead of Gaussian elimination, we define the function ge which takes a matrix P
of shape (n,m) where n < m as argument, and returns a matrix P’ of the same shape
but from which all the entries under the main diagonal of the main square submatrix
of P are eliminated. Hence, the function ge subsumes Gaussian elimination since
when given a matrix of size (n,m + 1) representing a linear system, the function ge

will return the result of Gaussian elimination.

Follows the definition, it is easy to see that

ge : (cir 0) # (cir 0) : lge

In other words, for the algebra induced by the unbalanced division that divides a
matrix into two submatrices R and @, where R consists of the first row, Q the rest,
the function ge is not a pure morphism. The reason is simple, in comparison with the

left-hand side, the right-hand side has an extra non-zero column.

Now let R be a row matrix of shape (1, m), where the first k entries are zeros,

R=[0 o 0 Ry Ry - Rm-l]

and let ) a matrix of shape (k,m), where all the entries in the first £ columns are

zeros, namely

: ;
0 -+ 0 Box Bow+y - Boim-1
{0 - 0 Bur Buwk+n: Bim-
Q=
i 0 --- 0 B(k,k) B(k,(k+1) o+ Bim-1) d

We define the following function x, which will eliminate entries B(z, k) for i = 0 to
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(n — 1) using Ry as the pivot.

(@, R) = loc : #(rowbr k) : #(colbr 0)(Q, R)

where
loc ((z,y), (u,v))=z*vfu—y
k=m-—n

(m,n) = $Q

Observe that when the communication function #(colbr 0) is applied to (@, R),

a matrix, say @', is returned, where
Q'(4,7) = (Q(4,5), R(0, 1))

the intra-array communication (rowbr k) is then applied to @’ another matrix, say

Q@", is applied where

Q"(4,5)
= (Q'(5,4), @'(5, k)
= (Q(%,5), £(0,7), (Q(, k), R(0, k))

The function loc defined by pattern matching then performs local computation

within each entry, and maps Q" to @, where
Q"(i,3) = Q(:,) * R(0, k)/Q(s, k) — R(0,7)
For entries on the kth column, since j = k, the above becomes
Q"(i k) = Q(i, k) = R(0, k)/Q(i, k) — R(0,5) =0

Therefore, given @ and R, the function p eliminates the kth column of ) using R

as the pivot row.

With the function g defined, it is easy to verify that

ge:cyr=cyp:geip
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Ao Xo By
—— f—
s Ay X1 By

Figure 5.1: Division of a linear triangular system

in other words, the function ge is a crossmorphism with the crossadjust function p.
It is also a simple matter to verify that (atom? 0) and id can serve respectively as the
base predicate and base function for the function ge, we therefore have the following

SDC algorithm for Gaussian elimination.

Algorithm 5.2 Gaussian Elimination by SDC

ge = SDC((dn 0), (cat 0), pge, (atom? 0), id)

where u as defined above.

5.3.2 Linear Lower Triangular System

A linear lower triangular system (LLTS) has the form
AX =B

where A is a lower triangular matrix of size n, X is a column vector of » unknowns

to be solved, B is a column vector of size n.

In Figure 5.1, we show how the lower triangular matrix can be divided into two

smaller triangular matrices Ay and A;, and a square matrix S. Also in the same
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figure, we show how the vector X can be divided into X, and X, the vector B into

By and B,. Now we have two smaller triangular systems derived from the original

AoXo = Bo
A]X] = B1

Can we solve the original system by solving the two smaller systems recursively
and catenating the solution vectors? The answer is no. The reason for the answer is
simple: the solution of the original system depends on the entire triangular matrix
A, including the entries in the square submatrix S in Figure 5.1; the solutions to the

two smaller triangular systems on the other hand are independent of S.

It can be observed, however, that the solution to the first subsystem A¢Xo = Bp
indeed coincides with values of the first half unknowns in the system AX = B. The

correct second half of the solution can be found by solving

A]Xl = B',where BI = B1 — XOS

The above discussion points to a SDC algorithm for linear lower triangular system
solver: we first divide the system as shown in Figure 5.1; then solve the top sub-LLT'S;
then use the solution and the square submatrix to adjust the right hand side of the
bottom LLTS; then solve the adjusted bottom LLTS; finally, catenate the two sub-

solutions.

Since triangular matrix is a special case of matrix, the divide function over tri-

angular systems can be defined in terms of divide functions over matrices. We thus

define the divide function for LLTS by

drirs(A, B) = ((Ao, Bo), S, (A1, B1))
where
(Ao, Zeros, S, A1) = d% A
(Bo, B1) = (dir0)B
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If we choose to divide the LLTS recursively all the way to LLTS of size one, the

base predicate can be defined as
atomrrs(A, B) = atom? A

The base function for LLTS then obviously can be defined as?

LLTSy(A, B) = B(0,0)/A(0,0)

Note that although the divide function has arity of three, the final vector is only
the concatenation of two sub-solution vectors. We therefore must also define a special

combine function for LLTS

crirs(Vo, Xu Vi) = eir(Vo, V1)

From the above discussion, clearly we need two operations for adjustment. The
first one is to perform multiplication between a square matrix and a column vector,
which can be computed by the PDC mm of the Section 4.3.4. The second one is
to perform the pair-wise subtraction, which can be computed by a correspondent

communication followed by an array distribution (Section 3.6.3).

We therefore have the following SDC algorithm for LLTS:

Algorithm 5.3 Linear Lower Triangular System (LLTS) by SDC

LLTS = SDC(diirs, crirs, (Yopo,p1) atompprs?, LLTS,)
where
o(S, X) = mm(S, X)
m(X,V)=X[-V

2In this discussion, we have treated column vectors B and X as one column matrices, this is why

B in the following is indexed by pairs.



5.4. PARALLELISM IN SDC ALGORITHMS 101

Note that the “%” in front of uo is to prevent recursive application of LLTS to
the result of po (which would be an error) (see Section 3.6.4). The “[-]” in the above
program is the entry-wise subtraction between two vectors (and higher dimensional
arrays), which, as discussed in Section 3.6.3, can be decomposed into a correspondent

communication and an array distribution in Divacon notation.

Algorithm 5.3 is a second order divide-and-conquer since one of its adjust functions
calls for another (P)DC algorithm (mm). It is also an example showing how SDC

and PDC algorithms can interact with each other.

5.4 Parallelism in SDC Algorithms

Parallelism in the PDC algorithms we studied in Chapter 4 is apparent: the recursive
computation over the substructures can be done in paralle]l because there is no a
dependency imposed over the recursions. This is no longer true with the case of SDC
algorithms we study in this chapter.> One may ask if the crossmorphism model and

SDC construct have any significance for the purpose of parallel computation.

To answer the question, let us first consider the time used by DC algorithms on
sequential computers. Suppose f is a function computed by a DC algorithm where
binary balanced division is used, Ts(n) is the time used to compute f on data of size

n, then Ty(n) is given by the following recurrence regardless of whether f is a PDC
or SDC

Ty(n) = 2% Ty(n/2) + Tace(n) + Tagjust(n) + Tp(n)

Ty(C)=To

where

Ty.: time used by divide and combine operations.

3In fact, it can be proven formally that there is a total order over the SDC constituents due to

the data dependency relation over the constituent functions. See [37].
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Tagjusi: time used by (pre, post, cross) adjust function(s)
T, : time used by the base predicate.

C,To : some constants representing the size of base space, and time used to compute

the base function respectively.

From mathematical point of view, the solution of the above recurrence can be

reduced in two different ways:

e Eliminate the factor of two in the recursive term 2 * T}.

o Reduce the values of other non-recursive terms: T, Tadjust, and T,

Now let us consider computing f on parallel computers.

In the case of PDC, the recursive applications of f can be computed in parallel.
It follows that the factor of two disappears in the recurrence equation. A speedup

therefore can be expected when f is computed by parallel computer.

In the case of SDC, the factor of two cannot be eliminated because the recursive
applications of f must be computed sequentially even give a parallel computer. A
speedup however can still be expected assuming that we can reduce the time to

compute other constituents by computing the constituents in parallel.

Let us consider Algorithm 5.3 as an example. Since the adjust function yo has
the dominating cost among the constituents, the recurrence for the time complexity

can be written as

Tiirs(n) = 2 * Trrrs(n/2) + O(T e (n))
T;(1) = To

Since we know that g is the multiplication between a square matrix and a vector,

it can be computed sequentially in O(n?) times. On the other hand, we will see that
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the same multiplication can be computed in parallel in O(log(n)) time. This gives

2x Trirs(n/2) + O(n?) = O(n? *log(n)), sequential case

T s\n) =
vl { 2 x Trrrs(n/2) + O(log(n)) = O(n), parallel case

Thus, the SDC Algorithm 5.3 can gain a O(n * log(n)) speedup when computed on

parallel computers despite its sequential nature.

The speedup of SDC algorithms on parallel computers showed us that there can
be parallelism in SDC algorithms. Clearly, the parallelism can only be explained by
the parallelism inside of the constituent functions. We call this type of parallelism
additive parallelism since it reduces the complexity of a DC algorithm by reducing
the additive terms in the recurrence. In contrast, we call the parallelism obtained by

computing two or more functions in parallel multiplicative parallelism.

It should be pointed out PDC algorithms can contain both types, not just multi-
plicative type, of parallelism. The SDC algorithms, on the other hand, only contains

additive parallelism.

5.5 Balanced Division in SDCs

In a PDC algorithm, a constituent function can be applied to all the subspaces at
a given level of the divacon graph. It follows that smaller depth of the divacon
graph takes shorter time to compute. Balanced division therefore is crucial to the
performance of PDCs computed on parallel computers. In a SDC algorithm, however,
a constituent function can never be applied to more than one subspace simultaneously.
In other words, the nodes of a divacon graph must be traversed by a SDC process one
by one in a linear order. It is therefore not clear if the balanced divisions, which will
only reduce the depth, not the size, of the divacon graph, can contribute to a better
speedup for parallel SDC algorithms. In this section, we will make an investigation

of the question by studying some examples.
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Figure 5.2: Unbalanced division of a linear triangular system

Algorithm 5.3 is a SDC algorithm using balanced division. It in fact can be
smoothly converted to unbalanced versions. In an extreme case, we can divide the
triangular system of size n to two smaller triangular systems with size one and (n—1)

respectively. The division is illustrated in Figure 5.2, and can be defined as

drirs,(A, B) = ((Ao, Bo), S, (A1, Bi))
where
(Ao, Zeros, S, A1) = dn® A
(Bo, B1) = (d: 0)B

Corresponding to the above unbalanced division, we will use the following unbal-

anced combine operation

crrrs, (Vo, X, V1) = en(Vo, i)

Now, we can simply substitute the above unbalanced divide and combine opera-
tions into Algorithm 5.3 to have an unbalanced SDC algorithm for linear triangular

systems.
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Algorithm 5.4 Linear Lower Triangular System (LLTS) by SDC (Unbalanced)

LLTS = SDC(dprts,, ciits,, (Yopo, 1) atomprrs?, LLTS)
where
po(S, X) = mm(S, X)
i(X,V) = X[V

It should be pointed out that the adjust function uo is now degenerated to the
matrix multiplication between a column vector and a matrix of size one. If one
prefers, it can be rewritten as a broadcasting (singleton matrix entry) followed by
local multiplication (each entry of the column multiplies itself to the broadcasted

value).

The time complexity for the above algorithm clearly can be given by the following

recurrence: :

Torrs.(n) = Torrs(n — 1) + O(T (n))

I;(1) =To
On parallel computers, the time T,, = Q(log(n))*because of the broadcast required
by po. By a simple induction, we can show that Trirs, = O(n * log(n)). This is to
be contrasted to the O(n) complexity of the balanced Algorithm 5.3. The balanced
division therefore has brought us an additional O(log(n)) speedup.

The above example tells us that balanced division can (but not always) contribute
to speeding up parallel SDC algorithms. For a given SDC problem, whether we can
benefit from balancing can be best decided by comparing the solutions of the two

recurrences, one for the unbalanced, another the balanced.

1Here  means “at least of the order of”.
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Chapter 6
Complexity Analysis

The central issue in the last two chapters can be said to be the specification of DC
algorithms. Our interest in this chapter is however different. What we will study now
is how to measure the resources consumed by DC algorithms with given specifications.

Our approach is to show how the complexity of the functional forms can be given in
terms of their constituents. The complexity of DC algorithms specified hierarchically
by functional forms thus can be analyzed systematically given the complexity of the
primitives. The effectiveness of the methodology is illustrated with a number of full

examples.

6.1 Communications

As first step, we will give an abstract characterization of communication.

Consider a set V = {vg,...,vp-1} of n élements. A communication over V is to
send the value of each element v; to a designated set of elements V; C V associated
to v; for 2 = 0 to (n — 1). Equivalently, a communication can be described by a
binary relation R over V defined by v;Rv; if and only if v; € V;. It follows that a
communication over a set V can be characterized by a directed communication graph

D = (V, R), where R is the relation defined by the communication.

107
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Some notions about communications can then be defined:

fan-in of a vertex the indegree of the node in the communication graph.
fan-out of a vertex the outdegree of the node in the communication graph.

fan-in of the communication the fan-in of the the vertex with maximum fan-in

among all vertices.

fan-out of the communication the fan-out of the vertex with maximum fan-out

among all vertices.

partial permutation communication a communication whose fan-in and fan-out

equal or smaller than one.

permutation communication a communication in which every vertex has fan-in

and fan-out exactly equal to one.

broadcast communication a communication in which one vertex has O(n) fan-
out, all the others have O(1) fan-in in each connected component of the size

n.

Suppose that a set V is embedded into a set P of multiprocessors, the time taken
by a communication over V depends on not only the communication graph, but also
the topology of the interconnections between the processors in P and the mapping
that embeds the V into P. If we restrict our attention to the family of hypercube
parallel computer and those that are equivalent in communication capacities, such as
butterfly and cube connected-cycles, then the communication graph alone provides

information about the communication complexity that is independent to the mapping

from V to P.

For instance, by the work of Valiant [55], Ho and Johnsson [29], we know that on

a hypercube machine
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e a permutation communication takes O(logn) time.

¢ a broadcast communication takes O(logn).

where n is the size of the set V.

Nevertheless, the mapping that embeds V to P does have an impact on the locality
of the communication, namely, the distance that a message has to travel from the
source vertex to the destination. The ideal locality of a communication is such that
every pair of communication partners are direct neighbors in the topology of the host
parallel computer. While ideal locality cannot generally be realized, it can be attained

for certain permutation communications.

Let V =vg,...05_1,Vn,...,V2n_1, Where n = 2™, A correspondent communication
over V has the graph D orr = (V, Reorr), Where v;Reorrv; if and only if i = j(modn).
Similarly, a mirror-image communication over V has the graph Dpnirr = (V, Rmirr),

where v; Rpirrv; if and only if v; + v; = 2n - 1.

Proposition 6.1 The correspondent communication over V in above has ideal lo-
cality by mapping the indices of elements of V with binary coding to processors of a
binary hypercube. Similarly, the mirror-image communication over V of the above
can realize ideal locality by mapping the indices of elements of V with Gray coding

[11] to processors.

Proof

o Correspondent Communication: By definition of R, v;Rv;, if and only if ¢
and j differ only in their most significant bit in their binary representation of
(m + 1) bits. The vertices v; and v; therefore are the (m + 1)th dimensional

neighbors of each other on binary hypercube if binary coding is used.

e Mirror-Image Communication: By definition of Rirr, viRmirrv; if and only if

¢ and j differ in their most significant bit in their Gray code representation of
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Corr Comm. Locality with Binary Coding:

0 1 2 4 5
000 001 010 011 100 101 110 111

Mirr Comm. Locality with Gray Coding:

0 1 2 3 4 5 6 7
000 001 011 010 110 111 101 100
Figure 6.1: Locality of correspondent and mirror-image communications

(m+1) bits. The vertices v; and v; therefore are also the (m 4+ 1)th dimensional

neighbors of each other on binary hypercube if Gray coding is used.

Q.E.D.

The above proposition is illustrated for the case that the set V' contains eight

elements in Figure 6.1.

The above discussion can be applied to the communications defined with our
Divacon notations. Since a communication over array(s) is always defined by a com-
munication function, not a relation, the fan-in of array entries is always one at most.
It is easy to see that broadcast, correspondent, and mirror-image communications
over arrays can be respectively modeled by the broadcast, correspondent, and mirror-
image communication we discussed in above over a set. We therefore can establish the
bounds of the time used by communication functions most frequently used in Divacon
programs. Let n be the size of the (sub)arrays, all the communication generators as

defined in Section 3.6.3, we assume in this chapter that

o The correspondent communication over arrays generated by the generator corr
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takes O(1) time provided binary code mapping.

¢ The mirror-image communication over arrays generated by the generator mirrO(1)

time provided Gray code mapping.

o All broadcast communications takes O(logn) time, including communications

generated by (br D col-br, dia-to-row-br, dia-to-col-br, v-to-m-row, v-to-m-col.

As we will see in the next Chapter that the above claims are sustained by our

implementation of arrays on the Connection Machine.

6.2 Non-Recursive Function Forms

6.2.1 The Time Complexities

Function forms construct new functions with given functions. Consequently, the
time complexity of functions defined by function forms can be given in terms of the

complexities of their constituent functions.

In the following, we use the following notations.

1. T,[fz] : time used to compute function (form) f on argument z on sequential

computers.

2. T,[fz] : time used to compute function (form) f on argument z on (SIMD)

parallel computers.

3. T[fz] : time used to computer function (form) f on argument z on both

sequential and parallel computers.
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Array Distribution

Strong local function !f defined over arrays applied the function f to every entry of
the array. We will focus our attention to the usual cases where the array entries have
sizes of O(1).

On sequential computers, the function f must be applied to each entry of an array
one after another (although the order does not matter). Since the entries have bound

size, each application takes O(1) time. Consequently,
T['f Al = |A]| (6.1)

On parallel computers, the applications of f can be applied to all entries at the

same time. We therefore have
T Al = 0(1) (6.2)

The complexity difference between the sequential and parallel case in above reveals
one of the means of exploiting the additive parallelism found in both PDC and SDC
algorithms (Section 5.4). Additive parallelism is also exploited in parallel computation

by the parallel execution of communication functions.

Function Composition

Function composition is a sequential operation. The time used to compute f com-

posed with g is the sum of the time used by f and g. Or formally,

T(f:92]=T g =]+ T[f(g 2)] (6.3)
Since function composition is associative, the above implies that

- T, if:=0
T (fo: : fami2) =72 T fi z; wherez; =

fii+++, fox, Otherwise

Observe that the above holds for both sequential and parallel computations.
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Function Construction

Function construction applies a tuple of functions to a tuple argument in such a way
that the kth function is applied to the kth component of the argument. Generally,
on both sequential computers and SIMD parallel computers, the time to compute a

construction is the sum of the time used by each function application. This gives,

TI(for- -y fe=1) (oy .- r@k-1)] = T[f xo] + -+ + T[fa-1 Th-1] (6.4)

If-Then-Else

'The time used to compute a if-then-else construct clearly depends on the results of

the predicate on particular data. In other words,
Tlp— fig ] = Tlpz] + T[ha]
where h = if p « then f else g

It is also obvious that the time used by an if-then-else form is in the order of the

most complex one of the three constituents.

Tlp — fi9z] = O(max(T[f z],T[g =], T[p z])

Filter

Unlike the if-then-else form, the relation between a filter and its constituents depends
on the particular given constituents. However, an upper bound of the time used by a

filter can be easily given by

Tlp= fz] = O(T[lp =] + T[S <]) (6.5)

where (Ipz) is really meant to apply p to each index of (the array) z. On parallel
computers, the predicate over the index set can be computed in parallel, and takes

no more than O(1) time assuming the indices have O(1) sizes. Therefore,

Tlp = fol = O(T[f 2l) (6.6)
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Parallel Distribution Over Tuples (PDT)

PDT is a special form of function construction where all the & functions in the function
tuple are identical. On sequential computers, a PDT form still has to be computed
one function application a time, therefore the time used equals to the sum of the time

used by all the applications

le'f(an veey xk—])]] = Zf;(; Zﬂf :L',']]

On parallel computers (both SIMD or MIMD), all the & function applications can

be computed in parallel. Therefore,
7;[[|f($0a s 7xk—l]] = ma,x('];,[[f :L'()]], s 17;|If il,'k..]]])

Obviously, if the arguments have the same size, then the above can be further
simplified to
L1!f(o, .., aka] = OB o)

where z = z;, forany 0 <1< k

The difference between the sequential and parallel cases reveals the fundamental
means of exploiting multiplicative parallelism found in PDC algorithms (Section 5.4).
From the abbve we can also see why balanced divide function is crucial to PDC algo-
rithms: when the k arguments (zq,...,z,-1) are the results of unbalanced division,
the difference between the parallel complexity and sequential complexity will virtually

vanish.

Sequential Distribution Over Tuples (SDT)

Clearly, the constituents of a sequential function mapping function form must be com-

puted in a linear order, regardless of whether the mapping is executed on sequential
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or parallel computers.

T[f = (99, o1 Gk-2) (Tos oy Tho))] = Do TS i) + T3 Tlgi (zigns w0)]

where
Yo=f xo
yi = f 2l fort =1 to (k-1)

z; = g(zi,yi-1), fori=1to (k-1)
We should add that if the adjust function g; is prefixed with the escape symbol “%”,
the function f will not be applied to z}, and the corresponding term in the summation

should be deleted.

In the case that all the variables have sizes of O(n), the above can be simplified

to
T[S = (g0, gk-2) (20, s k)] = kx (T[f] n) + ZE3 T gl m
Again, if b < (k — 1) adjust functions are prefixed by the escape character “%”, then
the coefficient & in the above should be subtracted by b&.
Unlike the PDT form, the relation between the complexities of a SFM form and its
constituents remains unchanged when we move from sequential computer to parallel
computer. We should be reminded, however, SFM can still be speeded up on parallel

computers provided that the individual constituents can be speeded up.

Communication

For the sake of completeness, we also repeat here the result of Section 6.1 with the
new notations.
Let the arguments of the communication functions be of size O(n). On sequential

computers,

T,[#f=]
T,[#f(za, z)] = O(n) (6.7)
T’[[#(fm fb)(xaa 36)“
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Intra-array and one-directional communication on parallel computers have the

complexity of

T(#fz] } _ { 0(1); if f = corr or mirr, (6.8)

T, [#f (za, z)]

The bi-directional communication, on the other hand, can be reduced to the above

TI#(fa fo)(2ar2s)] = BLFIOM), if fo=fo=f
= T,Lfu(zar )] + Tl (@1, 22)] otherwise

O(logn), otherwise

(6.9)

6.2.2 Parallel and Sequential Forms

We saw in the previous section that the time complexity of each functional form
can be expressed in terms of the complexities of its constituents. However, some
functional forms have the same dependency on both sequential computers and parallel
computers, others d? not.

To characterize the difference, we first define the speedup of a functional form to

be the ratio between its sequential and parallel complexities:

T0f (2o, - s Th1]
7;[[f($0, cee amk—l]]

For example, the speedup for array distribution is

Rif(zoy. . zka] =

T f A
RES A= Z2pad = oqan
and the speedup for function composition is
oo Llf:ga] _

Clearly the speedup of a functional form tells us how much it can be computed in

parallel. This naturally leads to the the following definition:

Let f be a functional form with arity k, (zo,...,Zk-1) be the arguments to f, and

|zi| = O(n) for i = 0 to k — 1, we say f is a parallel functional form if and only if

RIS (o, ..., zk-1)] # O(1)
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By this definition, array distribution, parallel distribution over tuples, and all
communications are parallel functional forms. The rest of the functional forms are

sequential functional forms.

6.3 Divide and Combine Operations

Recall that we pointed out the difference between the polymorphic and non-polymorphic
divide operations over arrays in Chapter 3. Since polymorphic divide operations can
be expressed in terms of quotient functions over the array’s index sets, an array entry
can decide which subarray it belongs to and its new relative index in the subarray
without communicating with others. This means on parallel computers, polymorphic
divide operations can be computed in parallel for all entries. In contrast, the same
operations on sequential computer will take the time proportional to the array sizes.
Therefore, let A be an array, $$4 = O(n), d a polymorphic divide function, then
T.[d 4] = O(n)
T,[d A] = O(1)
Division over higher dimensional arrays by projection (Section 3.4.3) of the form
(d 7) is simply applying the division d along the mth dimension of the array, and
therefore has the same complexity as the above:
T[(d ) A] = O(n)
Tl(d7) Al = 0(1)

Division by intersection (Section 3.4.3), however, has slightly different behavior:

T[(do io) X -+ x (diy 1x-1) Al = TiZg T[(ds 7) A]

However, assuming the arity of the intersection k is O(1), the above again reduces

to

T,[(do o) X - - X (dewr ix1)A] = O(n)
Tol(do 7o) x -+ x (di-1 1k-1)A] = O(1)
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Polymorphic combine functions are defined as the left inverses of the corresponding
divide functions, and can be computed with the same number of steps as the divide

functions (see Chapter 7). Therefore, let ¢ = d~1, A,..., Ax_; arrays of O(n) sizes.

ZIIC (Ao, ceay Ak-]]] = O(n)
7;,|IC (Ao, seey Ak-]]] = 0(1)

We conclude that polymorphic divide and combine operation are highly parallel

operations because they both have O(n) speedup.

6.4 Recursive Function Forms

Like other function forms, the time complexity of PDC and SDC forms are also
decided.by their constituent functions. Unlike other function forms, PDC and SDC
are recursive. The complexities of PDC and SDC therefore are related to those of the
constituents by recurrences. The solutions to the recurrence equations, namely their

least fixed points, give us the complexities of these recursive forms.

We will restrict our discussion to DC algorithms with polymorphic divide and
combine functions, and antipolymorphic adjust functions. We therefore can assume
that divide and combine functions can be compute in at most O(1) parallel and O(n)

sequential time; and the adjust functions will never alter the sizes of their arguments.

To simplify the discussion, we also assume the base predicate can be computed in
O(1) time, and the base spaces have O(1) sizes, hence, the base function can always

be computed in O(1) time.

In the following discussion, we use n to denote the size of argument and interme-
diate variable, k the arity of the divide functions, m the division factor of balanced

division, b the subtrahend of the unbalanced division (see Section 2.2.1).
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6.4.1 PDC
Let us consider a function f defined by a PDC
f=PDC(, c, g, h, p, fo)
By unfolding the definition of PDC, we have

fz=(p— foye:h:lf:g:d)z

Balanced PDC

By applying the complexity function 7, to both the left-hand side and the right-hand
side, we get the following recurrence for balanced PDC’s sequential and parallel time

complexity:

o(1), ifpz

T[f o] =
el { T1fIn/m + ldIn + Tl + Tlgln + T[]

Similarly, we can get PDC’s sequential time complexity by applying 7, to both
side of its definition:

T0f 2] = 0(1), ifpz
’ kT n/m+ T[d) n+ Tl n+ Tlgl n + T[k]

Observe that one of the adjust functions in a non-puremorphism PDC takes at
least O(1) parallel and O(n) sequential time, which are respectively the parallel and
sequential time taken at most by polymorphic divide/combine operations. Therefore,

for non-puremorphism PDC algorithms, we can derive from the above

Lifle = { o, e (6.10)
T[fIn/k + Tlgln + T[h]n
Tl = o(1), - ifpz (6.11)
"\ e TR+ Tl + T
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It is easy to show that the solution of the above recurrence for parallel time can

be approximated by
T,[fIn = O(log n * (Ty[g]n + T;[h]n)) (6.12)

Obviously, the approximation of the parallel time complexity of postmorphism or

premorphism PDC algorithms can be further simplified to

O(log n * T,[g]n), if f is a premorphism

T1fIn = { (6.13) ‘

O(log n * T,[h]n), if f is a postmorphism

The approximation for the sequential case depends on the expanding factor of the
division B = k/m. However, when the division is static, namely 8 = 1 (see Section

2.2.1), we have (for a general pseudomorphism)

T,[f1z = O(logn * (Tgln) + T [Aln)

Unbalanced PDC

Following a similar procedure as the above, we can obtain the recurrences of unbal-

anced PDC’s parallel and sequential time complexity, which are respectively

T1f]n = { 0o(1), ifpz
T1f1(n = b) + T,1gln + T,[A]n
0(1), ifpz

T.1fl(n - ) + Tlgln + TA]n

The approximations to the above are respectively

T1fIn = O(n * (Tlgln + T,[A]))
T[fIn = O(n + (T,[g]n + T, [A]))

Observe that unlike the balanced case, the factors on the right-hand sides of the

above have become equal (to n). It means unbalanced PDC cannot effectively exploit
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the multiplicative parallelism even if computed on parallel computers. However, it
does not mean unbalanced PDC cannot have speedup on parallel computers at all.
Just like SDC algorithms, the additive parallelism can still be exploited by computing

the adjust functions (and the divide/combine functions) in parallel.

6.4.2 SDC
Let us consider a function f defined by a SDC
f = SDC(da ¢, I-[, D, fb)

where p = (po, ..., pk-2)
By unfolding the definition of PDC, we have

fe=(p—fucih:fujg:ig:d)z

Again, in the following discussion,we denote the arity of the divide functions by
k, the division factor of balanced division by m, the subtrahend of the unbalanced

division by p.

Balanced SDC

By applying the complexity functions 7, and 7, respectively to both side of the

definition of SDC, we can have

LS ] = 0(1), ifpz
’ mx TLfIn/k + Ty [uoln + - + Tlueesln
0o(1), ifpz

T,If 2] =
vl {m*zﬂfﬂn/ﬂﬁﬂuoﬂ“'“+7’[[*‘k-2""'

We should add that if the adjust function g; is prefixed with the escape symbol “%”,
the ¢th term 7 [[¢;] should then be deleted, the factor m should also be subtracted by
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one for each escaped preadjust function. In the following discussion, this adjustment

for escaped adjust functions will be assumed and won’t be repeated each time.
Observe that in the above, the parallel and sequential complexities have the same

form. This is the reflection of the fact that SDC algorithms have no multiplicative

parallelism.

In the case of static division, therefore k = m, the solution of the above recurrences

can both be approximated by

T[f =] = O(n * (T [uoln + - - + T[ux2]n)) (6.14)

Like approximations we have been using, the bound given in above may not be

tight. An example is the parallel balance SDC algorithms for lower triangular linear
system, which by solving the recurrence we will have T,[f[n = O(n) whereas by

approximation we get T,[f]n = O(n *logn) (see Section 6.5).

Unbalanced SDC

We will directly give the recurrence for unbalanced SDC given in the form shared by

both the parallel case and sequential cases

o(1), ifpz

T[f =] =
{ TUfI(n = p) + Tilpoln + - - - + Tpllpie—2]m

and the approximations

T[f =] =_0(n * (T[poln + -+ + Tpi—2]n))

6.5 Case Studies

The studies made in previous sections provided us a basis to make time complexity
analysis for DC algorithms in a pretty much mechanical manner. In this section, we

will demonstrate the procedure with some concrete DC examples.
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6.5.1 Scan

We have so far encountered altogether three DC algorithms for scan: Algorithm 4.1
is a PDC algorithm using broadcast communication; Algorithm 4.5 is a variation of
Algorithm 4.1 in which the broadcast communication is eliminated; Algorithm 5.1 is
a SDC algorithm. In this section, we will first analyze the parallel complexity of each

of them, and then make a brief comparison with their sequential complexities.

PDC with Broadcast

Recall that Algorithm 4.1 for scan was

scan @ = PDC(dlr, Cir,y id, (hscan @), atom?a Zd)
whereh,cn @ = (id, @) : #(nil, last 0)

To make the complexity analysis, we can apply equation 6.10 to the above and

have

o(1), ifn<C
T[f1n/2 + T.[h]n, otherwise

T,[scan]n = { (6.15)

We will first study the term 7,[A]. Since it is a function composition, we apply
Equation 6.3

T,0(id, '®) : #(nil, last 0)n.= T,[(id,!®)]n + T,#(nil, last 0)n

The first term in the above is function construction of array distributions, we

therefore can successively apply Equations 6.4 and 6.2 to get

Tl(id,'®)ln = T,[id]n + T['®]n
= O(1) + 0(1)
= 0(1)



124 CHAPTER 6. COMPLEXITY ANALYSIS

The second term is a broadcast communication, and by Equation 6.8,

T,#(nil, last 0)n = O(logn)

By substituting these results into Equation 6.15, we have

o(1), ifn<C

T,[scan]n =
T,[fIn/2 4+ O(logn), otherwise

Finally, by applying Equation 6.13 to the above, we conclude

T,[scan]n = O(log®n)

PDC Algorithm without Broadcast
Recall that (Section 4.3.2) Algorithm 4.5 was

scan @ = PDC(dyy, cir, id, (hyean @), atom?, id)
where f; z = (z,z)
hican ® = (Nocl @, !oc2 @) : #!corr

locl ((z1, suml), (22, sum?2) = (z1, suml & sum2)

(6.16)

loc2 ((z1,suml), (22,sum?2) = (z1 ® 22, suml @ sum?2)

This time, we will first concentrate on the complexity of its postadjust function

(hacan @)

T,[(Nocl @®,Yoc2 @) : #!corr]

= T[(Nocl &, loc2 ®)](n,n) + T,[#!corr(n,n)] (Eq. 6.3)
= T,[Nocl ®]n + T,[Hoc2 ®]n + T,[#!corr](n,n) (Eq. 6.4)

= O(1) + OQ1) + T,[#!corr](n,n) (Eq. 6.2)
= 0(1) +0(1) + T [#corrl(n,n) + Ty [#corr](n,n)
= 0(1)+0(1)+0(1)+ 0(1) (Eq. 6.8)

(1)

1

i
S

(Eq. 6.9)
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By applying Equation 6.13, we have
To[scan]n = O(logn * O(1)) = O(log n)

Hence, Algorithm 4.5 is asymptotically faster by a logarithmic factor than Algorithm

4.1 due to the elimination of broadcast communication.

The SDC Algorithm

The SDC Algorithm 5.1 in Section 5.2.2 is
scan ® = SDC(dir, ciry(Bscan D), atom?, id)
wherep,con @ = (eq? 0) = (1@ : #(last 0))

Again let us first determine the complexity of the adjust function (g scan®)

T,(eq? 0) = (‘& : #(last 0))]
= T['®: #(last 0)] (Eq. 6.6)
= T,['@]n + T,[#(last 0))(n,n) (Eq. 6.3)
= O(1) + T,[#!last 0](n,n) (Eq. 6.2)
= O(1) + O(logn) (Eq. 6.8)

= O(logn)
By substituting the above into Equation 6.14, we have
T,[scan]n = O(n * O(logn)) = O(n *logn) .

The above shows that Algorithm 5.1 has very poor parallel time performance in

comparison with the others.!

'We would like to pointed out that the above actually is an over-estimation of the complexity
as a result of applying the approxim;a.tion equation 6.6. Since there is always only one vector entry
that satisfies the predicate of the filter, the (last 0) communication reduces to a partial permutation
communication. The communication function therefore in fact takes O(1) as opposed to O(logn)

time. The algorithm thus can be computed in O(n) time
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Sequential Complexities

The sequential time complexities of the three scan DC algorithms can be obtained by
applying the sequential complexity function 7, to their definitions with the procedures

similar to that of the above. We will omit the detail and simply give the results.

Sequential Time of Scan DC Algorithms:

Algorithm 4.1 (with broadcast) = O(n *logn)
Algorithm 4.5 (without broadcast) = O(n *logn)

Algorithm 5.1 = O(n)

Although Algorithm 4.1 and Algorithm 4.5 PDC algorithms have the same asymp-
totic complexity, the former is obviously faster on sequential computers due to the
less complicated adjust function. We therefore have the following order of the three

algorithms by their absolute sequential time

T,[Algorithm 5.1] < T,[Algorithm 4.1] < 7,[Algorithm 4.5]

Interestingly, the order in the parallel world is exactly reversed as we have shown
in the previous subsection. Moreover, the order is not only true in terms of absolute
time but also true by their asymptotic behaviors. In other words, if we use < to

denote the little oh relation [44] over functions, we can write

T,[Algorithm 4.5] < T,[Algorithm 4.1]7,[Algorithm 4.1] < T,[Algorithm 4.5]

The reversal of the relation on sequential complexities and parallel complexities
can often be observed in other DC algorithms (e.g. polynomial evaluation). It in-
dicates to us the fundamental difference between the sequential world and parallel

world.
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6.5.2 Monotonic Sort

In this section, we will study the parallel time complexity of the second-order PDC

algorithm for monotonic sort given in Section 4.3.5 (Algorithm 4.12).

sort = PDC(dy,, ci, id, loc: #!mirr, atom?, id)
whereloc =!nest : (!min,!max)

nest = PDC(dy,, ci, (!min,!max): #lcorr, id, atom?, id)

We first look into the preadjust function of the nested PDC
(!min, ! max) : #!corr

The communication function takes O(1) time since it is correspondent communication.
The function construction takes also O(1) time since both its constituents are array
distributions. Therefore, the total time of the adjust function is O(1), the total time
of this nested PDC is O(log n).

We next look into the postadjust function of the top-level PDC
loc : #!mirr =lnest : (!min,!max) : #mirr

We have learned the complexity of the left-most constituent of the above function
composition, which is O(log n); the other two constituents also have O(1) time com-
plexity since they are respectively permutation communication and array distribution.

The postadjust function itself therefore has complexity of O(logn).

By equation 6.13, the parallel time complexity of Algorithms 4.12 is O(log®n)

6.5.3 Linear Lower Triangular System

In Chapter 5, we presented two SDC algorithms for the problem of linear lower tri-

angular systems: Algorithm 5.3 using balanced division and Algorithms 5.4 using
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unbalanced division. To make a point on parallelism in SDC algorithms, we analyzed
the parallel time complexities of the two algorithms, which were respectively O(n)
and O(n *logn), with a method less formal than what developed in this chapter. By
applying the parallel complexity functions recursively over the definitions of the algo-
rithms, these results from Chapter 5 can be easily confirmed. Similarly, by applying
the sequential time complexity functions recursively, we can also show that the two
algorithms take respectively O(n? x logn) and O(n?) sequential time. Observe that
the performance reversal phenomenon pointed out in the end of Section 6.5.1 repeated
here: the better sequential algorithm has worse parallel performance; conversely, the

faster parallel algorithm is slower on sequential computers.

6.6 Processor Complexity

6.6.1 Basic Notions

Besides time, an algorithm executed on parallel computers also consumes another
precious resource — processors. 1o measure the consumption of processors, processor
complezity (PC) is defined to be the number of processors a parallel algorithm uses,
which is a function of the size of the problem. When a parallel algorithm is executed
on a parallel computer, it may use different number of processors at different time
steps. Therefore, processor complexity of a given problem of a given size is actually
a function over time steps. The mazimum processor complezity (MPC) is defined to

be the maximum value of this function.

However, the number of processors taken by a parallel algorithm can vary greatly
if no other constraint is given. Indeed, every parallel algorithm can be computed by
one processor if we choose. We therefore need to first establish a norm to talk about
processor complexities. A natural choice for us is to count the number of processors

with the constraint that one array entry is mapped to one processor at all times. This
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is what we call one-one norm of processor complexity.

As a matter of fact, the one-one norm was implicit in the discussion of previous
sections. In Section 6.2 array distribution and permutation communication were said
to have O(1) parallel time complexity, which is only true if we use the number of
processors equal to the processor complexity under the one-one norm (or within a

constant factor).

With the notion of one-one norm, processor complexity can be studied by calculat-
ing the total size of the active subarrays, namely, subarrays to which the constituent

functions of a DC algorithm are being applied.

6.6.2 Dynamic Division

Processor complexity of PDC algorithms is most obviously influenced by the dynamic
nature of their divide functions. Each time a divide function is applied, the total size
of the subarrays may increase by the expanding factor of the division. The processor
complexity of a PDC algorithm that employs a dynamic division therefore should be
thought of as a non-decreasing function over the division steps during the stage of
division.

The following proposition gives a bound on processor complexity of PDC algorithm
with dynamic divisions by giving the bound of the total size of the subarrays at the

end of division stage.

Proposition 6.2 Let d be a k-ary division of division factor m, then for an input

array of size N, the total size of the subarrays at the leaf level of the division tree is

O(nloem k),

Proof

It is clear that at stage ¢ the total size of the subarrays is

PI=N*IBi
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By Proposition 2.3, the height of the division tree is O(log,, N). The number of
division steps is therefore also O(log,, N). Let P be the total size of the subarrays in

the end of division stage, we then have

P = O(N xglsnN)
= O(N * (K'°8n N [mlogn NY)
= O(kosn V)
= O(klosx N/log, m)
= O(N'snk)

Q.E.D.

Static divisions in fact can be considered as special case where the expanding
factor # = 1. Proposition 6.2 therefore can be applied to static divisions as well.
By setting m = k, the proposition confirms our intuition that the total number of
processors used by a PDC algorithm employing static division under one-one norm
equals to the size of the original input array N. Most of the PDC algorithms we have
studied fall into this category.

In Section 4.3.4, we studied three PDC algorithms for matrix multiplication. The
first one (Algorithm 4.9) uses a 8-ary division with division factor m = 4. By Propo-
sition 6.2, the processor complexity at the end of dividing stage is (note the input
size is O(N?))

P = O((N*)°&®) = O(N?)

The second algorithm uses a 4-ary division (Algorithm 4.10) with division factor

m = 2. Proposition 6.2 thus gives the processor complexity of
P= O((N2)10524 — O(N4)

The above is a correct upper bound but an overestimation of the processor complexity.
By studying the conditions of Proposition 6.2, we can realize that it assumes that

the leaf array spaces in the division tree are of sizes O(1). This condition is definitely
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being violated by the division of Algorithm 4.10, since the division process stops
when the size of subarray has size O(1). In fact, Algorithm 4.10 has exactly the same
processor complexity as Algorithm 4.9 because it has the same expanding factor and

goes through the same number of division steps.

The third algorithm with binary division (Algorithm 4.11) is static, and therefore

has processor complexity of O(N?) during the division stage.

6.6.3 Base Functions

In many DC algorithms, the base spaces have sizes of O(1), and in that case, the base
functions generally do not alter the order of the total size of subarrays, and therefore

have no impact on the processor complexity of DC algorithms.

However, when the base spaces have non-constant bounded sizes, the base func-
tions may have a major effect on the total size of the subarrays. Unlike the divide
function which always have non-decreasing effect on processor complexity, base func-

tions can both increase or decrease the order of the total size of subarrays.

The three matrix multiplication PDC algorithms 4.3.4 again are good examples
in this matter. We can see that the size of the base spaces in the three algorithms
are respectively O(1), O(n), and O(n), which are mapped by the base functions
respectively to O(1), O(1) and O(n?). We summarize this by

Algorithm 4.9 0O(1) & 0(1)
Algorithm 4.10 O(n) L Oo(1)
Algorithm 4.11 O(n) 5 O(n?)

The three algorithms thus respectively maintain, decrease, and increase the total

size of subarrays.
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p p p
ndr it =
n n n2
1 - ¢ ! ¢ 1 -1
divide fb combine divide !jb combine divide .f]b combine
(a) 8-ary division (b) 4-ary division (c) binary division

Figure 6.2: Processor complexity of the matrix multiplication PDC algorithms

6.6.4 DC Algorithms

Just as divide functions never decrease the processor complexity during the division
phase of a PDC algorithm, combine function never increase it during the combine
phase. The adjust functions, since they are antipolymorphic (see Section 3.6), have
no effect on the order of the total size of subarrays. We thus can conclude that
the maximum processor complexity of a PDC algorithm is entirely decided by the
behavior of divide functions and base functions. The processor complexity analysis
of PDC algorithm thus is the fairly simple matter of studying the dynamic natures

of these two constituents, which we have studied in above.

It is interesting to portray the processor complexity as the function of time steps
for PDCs with dynamic nature. In Figure 6.2, we did so for the three matrix multi-

plication algorithms.

SDC algorithms have the characteristic that only one constituent function can be
computed at any given time. The total sizes of the subarrays which is the argument

of the computed constituent therefore should be the measurement of the processor
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complexity at the moment. The processor complexity of SDC algorithms as a function
of computational steps therefore has quite complex curves. However, the maximum
processor complexity is easy to decide and equal to the total size of the largest active
subarrays, which occur in the beginning and ending steps of SDC algorithms. By
this measurement, all the SDC algorithms in Chapter 5 can be shown to have linear

processor complexity.

The above analysis however could have overestimated the processor complexities of
“SDC algorithms with unbalanced division. For example, by computing one column at
a time, Algorithm 5.4 obviously can use O(n) processors rather than O(n?) processors
without loss of time performance despite that the first division is done over arrays of
O(n?) sizes. Essentially, optimization as the above is achieved by delaying the divide
operation on certain array entries. For polymorphic divide and combine operations
the delayed evaluation can be easily arranged. We therefore can generally measure the
processor complexity of SDC algorithms by the total size of the subarrays computed

by the crossadjust functions at a given time.

6.7 Epilogue

In Figure 6.3, we give the time and processor complexities of all the DC algorithms

in this dissertation.

The PT product in Figure 6.3 is simply the product of the time and proces-
sor complexities of a given DC algorithm. The PT product is often regarded as a
measurement of the total resources consumed by a parallel algorithm. Clearly, the
practical lower bound of the PT product equals to the time used by fastest known

sequential algorithms. The ratio
E = PT Product/T, where T : time of the fastest known sequential algorithm

is called the efficiency of the parallel algorithm, which in the ideal case is O(1).
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Problem Algorithm | Type Time Processor | PT Product
scan 4.1 PDC O(log? r) O(n) O(n =log? n)
scan 4.5 PDC O(nlogn) O(n) O(n »logn)
scan 5.1 SDC O(n) o(1) O(n)
broadcast 43 PDC O(logn) O(n) O(n »logn)
broadcast 4.3 PDC O(logn) O(n) O(n =logn)
polynomial 4.6 PDC O(logn) O(n) (n =logn)
polynomial 4.7 PDC O(log? n) O(n) (n = log? n)
polynomial 4.8 PDC Oflogn) O(n) (n=logn)
matr. mult. 4.9 PDC O(logn) 0(n?) (n® #logn)
matr. mult. 4.10 PDC O(logn) O(n?) (n® xlogn)
matr. mult. 4.11 PDC Oflogn) O(n?) (n® xlogn)
mono. sort 4.12 PDC O(log? n) O(n) (n = log? n)
Gau. elim. 5.2 SDC | O(n=logn) O(n) (n? = log? n)
tri. sys. 54 SDC | O(n=logn) O(n) (n? »log? n)
tri. sys. 5.3 SDC O(n) O(n?) (n3)

Figure 6.3: Time and processor complexities of DC algorithms

More often than not, parallel algorithms cannot attain the optimal O(1) efficiency. A
parallel algorithm is said to be sub-optimal if its efficiency is O(1/(log®n)) where c is

some small constant.

With the above notions, the following claims can be verified about the DC algo-
rithms listed in Figure 6.3

o All the PDC algorithms are sub-optimal.

e All the SDC algorithms with the exception of Algorithm 5.3 are sub-optimal.

Another possible measurement of the total resource consumed by a parallel algo-
rithm is the integration of processors over time, which is called PT integration. It can
be shown [34] that the SDC algorithm 5.3 is sub-optimal if the efficiency is calculated
with the PT integration.



Chapter 7

Implemenfation on the CM

The recursive programming style has long been exploited in sequential computing
because it generally yields high-level and efficient programs. In parallel computing,
recursion is still more desirable due to the additional complexity of programming

parallel computers.

Recursion, however, calls for data structures that can be recursively divided and
combined, which we will refer to as recursive data structures. The list structure in
Lisp and other functional programming languages, for example, is recursive; without
the recursive nature of lists and similar data structures, recursion would not play such

an important role in these programming languages [49, 41, 18].

But the development of recursive parallel data structures has not received the
attention it deserves. For example, parallel data structures in all programming lan-
guages on the CM are non-recursive, or, we might say, flat. In particular, the data
structure parallel variable (PVAR) in *Lisp [53] is flat since it can be neither divided
nor combined. Several drawbacks result from the flatness of parallel data structures.
First, recursion cannot be expressed directly in a parallel context. Second, multiplica-
tive parallelism, which is exploited by applying functions over multiple sub-structures

simultaneously (Chapters 5 and 6), is conceptually excluded because the very notion

135
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of “sub-flat-structures” is a contradiction in terms. Finally, communications over the

structures must be specified by global addresses at all times.

To see why communication by global address may cause extra burdens, let us
recall that the communications discussed in Chapter 3 and used in later chapters
can all be expressed essentially by identity and constant functions. That, however,
can no longer be the case if the relative indexing scheme is removed. The same
communications would have to be specified by much more complex communication

generators under a global indexing scheme.

With the divide and combine operations, arrays in Divacon notation are clearly
recursive. Indeed, the conciseness and readability of our DC algorithms are, to a
great extent, the result of the availability of recursive arrays. It should not then be
in question that we do have need of high level interface provided by recursive arrays
(RA). The question is how, and how efficiently, can we implement recursive arrays on

parallel computers where only flat arrays are provided.

This chapter is intended to offer some preliminary evidence that recursive arrays
can in fact be efficiently implemented on parallel computers. Since DC algorithms in
Divacon notation are defined in terms of operations over recursive arrays, this means
that DC algorithms in Divacon can be executed on parallel computers. We will
discuss the representation of recursive arrays by flat arrays, present implementation
algorithms for RA operations, give an introduction to a version of Divacon running on
the CM, make an analysis of the operation complexities, and finally give benchmarks

of the RA operations and benchmarks of some applications DC algorithms.
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7.1 Preliminaries

7.1.1 Bit Operations

Our implementation algorithms make intensive use of bit operations over integers.
These operations can all be expressed by sequences of logical operations over binary
representations of integers such as bit-wise AND, bit-wise LOGXOR, and rotation of
the binary numbers [49]. But the code would be quite difficult to understand if we
presented the implementation with those low level operations. We therefore prefer to
write the code using high-level bit operations such that the thread of thinking behind
the design can be seen more easily. This section describes the high level bit operations

we will use later.

First let us define a coding function ¥ similar to the the coding function @ defined
in Section 3.4.2. It takes two integers w and b as arguments, and returns a tuple of
w binary bits corresponding to the binary representation of 5. We also define the

function ¥~!, which is the inverse of ¥.

U wb= (b, bx1)
gt (bO""abk—l) =b

In the following, we will be using the select operations over the binary tuples
(Section 3.1) produced by the above coding function. These select operations can be
understood easier if we introduce the following mask functions first. Let ¢ and m be

non-negative integers. We define

kliw=(0,...,0,1,...,1)
mas' tw = ( . -

w—t ]

krim=(0,...,0,1,...,1
mask-r i m = ( )

t w—t

The two selection operation over integers we will be using are select-right and
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select-left, defined respectively by

sel.riwb=W"":sel (maskliw):¥b

sellliwb=U"":sel (maskriw): ¥ b

where ¢,m, and b are non-negative integers. For example,

sel.r2415=3
sel.13415=17
Given two tuples, @ = (ao,...,a,) and b= (boy-..,am), their catenation is
cat(d, I-;) = (@gy. ..y amy b0y -+, 0m)

Since the operation is associative, it can be generalized to take more than two argu-

ments.

We can now define the integer catenation operation. Let a and b be two integers.

We define
icat((wq, @), (wy, b)) = D' : cat(Dw,b, Dwsb)

Like the catenation of tuples, integer catenation can be applied to more than two

arguments. As an example,

icat ((2,1), (3,7))
= D':cat ((0,1), (1,1,1))
= D7Y(0,1,1,1,1)
= 15

7.1.2 Flat Vectors

We implement recursive arrays with flat vectors. This means we will represent a RA

in terms of some flat vectors, and we will define RA operations in terms of operations
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on flat vectors. It is therefore helpful to first specify precisely what a flat vector is

and what its operations are.

A flat vector can be viewed as a normalized vector (but one never to be divided).

A flat vector of size n can be created by
mkvn f=V, where Vi=fi fori=0ton

where f is the initialization function of V.

Array distribution works for flat arrays the same way as for recursive arrays. Let

V be a flat array. Then its distribution operation is
NfV =V where V'i=f:Vi

Flat arrays are only subject to intra-array communication with absolute indexing.

Let Viources Vyartners @dViestination be three flat arrays. We define 1

comm Vaourcc vﬂartner = Vdcstination where Vdcstinah’on 1= V.source Vpartncr ?

Thus, the communicated values are from V,,yr., the indices of the entries that send

the values are given by Vj4pin.r, the values communicated will be held in Viestination-

7.1.3 Representation of Recursive Arrays

We represent a recursive vector of size n by the Z-structure (Section 3.6.5) of the

following seven flat vectors
A : absolute indices, constant integers, A i =1
R : relative indices, variable integers, R ¢ < 1, initially R ¢ = ¢

W : width of binary number of indices, constant integers, W i = logn = m

1People who are familiar with *Lisp on the Connection Machine will immediately recognize that

this communication operation comm corresponds to the pref operation on parallel variables.
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J : level of division, variable integers, J ¢ < m, initially J : =0

S : side of array entries, S = 0 means left, S =1 right,_ variable, initially undefined
U : indexed value of the recursive vector entries

C : used to hold values obtain from communication

A RV is created by the function mkrv with arguments n and f, where n is the

size, f is the initialization function

mkrvn f = zip(A, R, J, W, S, U)

where
A= mkv n id
R=A
J=mkvn Az 0

W = mkv n Az logn
S = mkv n A.x nil
U=mkvn f C = mkv n M.z nil

An entry of the Z-structure V thus is a tuple of the form
Vi=(a, r,w, 3, 8 u), forit=0to (n—-1)

where a,r,w,j,s, and u are respectively the (indexed value of the) ith entry of

AR W, J S, and U.

For example, let V = mkrv 8 (M. 3 * ), then
VA= [ 0 1 2 3 4 5 6 7 |
VR= [ 0 1 2 3 4 5 6 T ]
VJ=10 0 0 0 0 0 0 0 ]
VW=1[3 3 3 3 3 3 3 3 ]
V.S= [ nid nid nid nil nid nid nid nil |
VU= [ 0 3 6 9 12 15 18 21 |
[

V.C =

nil nil nid nid nd nd nid nd
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7.2 Left-Right Divide and Combine Operations

Recall that the left-right division is associated with a partition over index set, whosé
quotient function projects the most significant bit of the binary representations of
the indices (Section 3.4.2). It follows that the most significant bit of the present
index of an entry tells us to which subvector the entry belongs, and the remaining
bits give us the new relative index of the entry in the subvector. Equivalently, at the
Jth stage of division, the jth most significant bit gives us the side of the entry, and
the least significant (w — j) bits of the absolute index gives us the its new relative
index, where w is the width of the absolute index. This leads to the following simple

implementation of the left-right division.

di =\Dy,
Dyv =17
where

v'.a=u.a

v'ior = sel_r v'.j wu.a
vVg=j5+1
vaw=w
v'.s = ith_bit (w — u.j) u.a

vViu=u
For example, let V be as above, and V' =d;, V. Then

VA=

V'.C=

nid nil nil nid nid nid nil nil

[0 1 2 3 4 5 6 7 |
VVR= [ 0 1 2 3 0 1 2 3 ]
vJ= [ 1 1 1 1 1 1 1 1]
VW= 3 3 3 3 3 3 3 3 ]
viS= [ 0 0 0 0 1 1 1 1 ]
VU= [ 0 3 6 9 12 15 18 21 ]

[ ]
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Note that although the RV V is not physically divided, it can be viewed logically
representing two subvectors: the left one consisting of the first four entries, the right
one consisting of the rest. Each entry’s relative index in the subvector to which it
belongs is given by its R field, whereas the subvector it belongs to is indicated by its
S field.

Now let us observe the effect of applying d;, again to V'. Let V" = d;, V'. Then

we will have

VWA= [ 0 1 2 3 4 5 6 7 |
VVR= [ 0 1 0 1 0 1 0 1 ]
ViJ= [ 2 2 2 2 2 2 2 2 |
Viw=13 3 3 3 3 3 3 3 |
ViS= [0 0 1 1 0 0 1 1 ]
VU= [ 0 3 6 9 12 15 18 21 |
ViC = [ nid nid nid nid nid nid nid ni |

Just as V can be interpreted as a representation of two subvectors of size four, V" can
be viewed as a representation of four subvectors of size two. This can be generalized:
if a RV V is a representation of p subvectors, then the application of d;, returns a RV

that is a representation of 2 * p subvectors.

The left-right combine operation is implemented by a generator called C},, which

essentially is the inverse of D,
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diy =Dy,
Dyv =1
where
v.a=v.a
vir=sel.rv'.j wu.a
vVyi=j3-1
v.w=v.w
v'.s = ith_bit (w - u.j) u.a
viu=v.u

vi.c=v.c

It is easy to verify that ¢, : dj, = id holds for all RVs for which d;, is well-defined.
For example, let V, V', and V” be as above. Then

e, V' =V!
e, V=V

7.3 Communication

Since communications over arrays in DC algorithms are always specified with gen-
erators defined in terms of relative indices (Chapter 3), whereas the target parallel
computer only supports communication given in terms of absolute indices, the cen-
tral issue of implementing communication is the translation of the indexing scheme,

rather than the communication per se.

Since relative indices are caused by divide functions, let us examine the effect of
division on absolute indices. Clearly, at level j of the d, division, the binary number
of the absolute index is partitioned into three fields. From left to right, the three

fields have width j, one, and (w — 7 — 1) as shown below:
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Q B R

(j bits) (1 bit) ((w-j-1) bits)
Let us name the three fields by Q, B, and R respectively. Then the field R
represents the relative index of the entry, B represents the side which the entry belongs
to, and Q contains the bits that are masked at the stage.

The translation algorithm we propose is based on the following observation:

Proposition 7.1 LetV, and V, be respectively the left and right subvectors of an array
V, v and v, any two entries belonging respectively to Vi and V,, Q,, B; respectively
the Q, B fields of vjs absolute indez, and Q,, B, respectively the Q, B fields of Vs
absolute index. Then

Qi =Qr

B, =-B,
Proof By definition of d,,.

Q.E.D.

The above proposition suggests that if we know the relative index of a communica-
tion partner, which is given by applying the communication generator to the relative
index, we can then translate it into absolute index by complementing the B field and
concatenating it with the ) field of its own absolute index. This leads to the following
implementation of the inter-array communication function #(fi, f), where f; and f,

are arbitrary communication generators.

tran f; f, =ITRAN f; f,
TRAN v = partner
where
r=v.s=0 — fior; f,or
neg-b = -w.s
g = sel.l i w(mask_r i w)

partner = icat(q, neq-b,r)
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The function ¢ran therefore returns a flat vector which specifies the absolute indices
of the communication partners for all entries in a RV; the communication is therefore

ready to be submitted to the system.

#(fi, )V =V

where
V'.(A,R,J,W,S5,U)=V.(A,R,J,W,S,U)
V'.C = comm (tran fi f, V) V.U .

Note that in the above V.(A, R, J, W, S, U) denotes respectively the V’s A, R, J, W, 5, U
fields. This implementation of communication therefore has no effect on any fields of |

an RV except for the field C, which will hold the values obtained from the communi-

cation.

For example, let V' be as in Section 7.2, and V) = #(corr, corr) V'. Then

VA= [ 0 1 2 3 4 5 6 T |
VOR= [ 0 1 2 3 0 1 2 3 ]
Ve J= 1 1 1 1 1 1 1 1 ]
VOW= 13 3 3 3 3 3 3 3 |
VveS= 170 0 0 0 1 1 1 1 ]
VU= [ 0 3 6 9 12 15 18 21 ]
Ve C= [ 12 15 18 21 0 3 6 9 ]

The function #(fi, f) actually applies to RVs that represent any number of sub-

vectors. For example, let V" be as in Section 7.2, and V() = $#(corr, corr) V",
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Then .
VWA= [ 0123 4 5 6 7 ]
VOR= [ 0101.0 1 0 1 ]
V= [ 2222 2 2 2 2]
VOW= 133333 3 3 3]
V@sS= [ 0011 0 0 1 1]
VOU= [ 036 9 12 15 18 21 ]
VOC= [ 309 6 18 21 12 15 |

7.4 General Cases

So far we have only showed the implementation of one dimensional recursive arrays,
left-right divisions over such arrays, and communications assuming left-right divisions.
We thus still need to show how the above implementations can be generalized to other

divisions and higher dimensional arrays.

First, let us consider the even-odd division. In Section 3.4.2, we showed that even-
odd division is defined by a quotient function symmetric to that of left-right. Instead
of projecting the most significant bit, the quotient function for even-odd projects
the least significant. This means the even-odd division and combine operations can
be implemented by easy modifications of the code we have for left-right divisions.
We can also prove a proposition similar to Proposition 7.1 about the three fields
produced by even-odd divisions: only the roles of the Q and R fields are reversed. The
communications over recursive vectors recursively divided by even-odd divisions thus

can be implemented pretty much the same way as we showed for left-right divisions.

The unbalanced head-tail divide and combine operations are relatively easy to
implement in comparison with the balanced operations. The mapping from a relative
index to a new relative index defined by unbalanced operations is essentially just

addition and subtractidn.
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Higher dimensional recursive arrays are implemented with flat vectors by main-
taining multiple fields of binary numbers, each representing indices along one dimen-
sion. The divide and combine operations along a dimension are performed by applying
the same algorithms for recursive vectors over the field representing the dimension.
The product of the division and combine operations is performed by applying each
factor operation to the corresponding dimensions. The translation of indices required
by our communication scheme is achieved by applying the translation over each di-
mension. In other words, it requires virtually no new algorithms to implement higher
dimensional recursive arrays, given the implementation for one dimensional recursive

arrays.

Array distribution is another primitive parallel functional form which we have not
shown how to implement. However, this is hardly necessary because array distribution

behaves the same on both flat and recursive arrays.

Finally, let us also point out that the definitions of other functional forms can
be considered as the code for their parallel implementations because they are given

hierarchically in terms of operations discussed above.

7.5 Complexity

Let us assume that flat vectors are distributed on parallel computers, one entry per
processor. It is easy to see that the creation, divide, combine, and index translation
operations of recursive arrays can all be computed with no inter-processor communica-
tions by the above implementation. Moreover, all of them are computed in a constant

number of steps independent of the size of the recursive arrays. We therefore have

Proposition 7.2 The creation, polymorphic divide and combine, and index transla-

tion operations of recursive arrays all take O(1) parallel time.
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This proposition justifies the assumption we made in Section 6.3 on the complexi-
ties of polymorphic divide and combine operations. It also means there is no penalty
associated with the adoption of our relative indexing scheme as far as the asymptotic

complexity of communications is concerned.

7.6 Optimization of PDC Algorithms

There are a few quite obvious optimizations which apply to most PDC parallel algo-

rithms.

First of all, we can convert the recursive definition to an equivalent iterative one.
Take PDC on one dimensional arrays as an example, let the sizes of the array and

the base array be respectively 2" and 2™, k = n — m. Then a PDC

f = PDC(d,C,g,h,P,fb)

can be implemented by
(c:h)¥: fy:(g:d)*

where (¢ : )" is meant to apply the composition (c: k) over all subarray pairs simul-
taneously for k times (similarly for (g : d)¥). Besides saving the overhead associated
with recursion, the above implementation also has avoided the cost of applying the

base predicate p at each level of division.

Secondly, the 2xk iterations implied in the above implementation can be reduced to
k iterations for pre or post morphisms where the adjust function & or g is the identity
function. This is possible because when the postadjust and preadjust function are
identity, we have respectively
(c: h)F =cF

(9:d)f =d*
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and ¢* and d* can be computed by functions written specially for them which do not
actually go through the k steps.?
The above optimizations have been built into the present version Divacon im-

plementation. Other optimization techniques and their theoretical foundations are

discussed in [35).

7.7 Implementation and Performance on the CM

By embedding it into the language *Lisp, an initial version of Divacon is now available
on the Connection Machine. The author and a small group of other users have used
this version of Divacon to develop application programs on the CM for a reasonably
wide range of problems. This includes most algorithms presented in this dissertations
and many others such as Fibonacci sequence, difference equations, banded linear
triangular systems [38], tridiagonal linear systems, and LU decomposition of full and
banded matrices.

Several applications developed with the Divacon package have been benchmarked
on the Connection Machine Model CM-2 [52] at Yale, which is a 4K processor machine.

In the Appendix, we present a number of benchmark graphs, including

Figure A.1 Benchmarks for the PDC broadcast algorithms. There are altogether
five curves appearing in the graph. Three of the five curves plot the timings of
Algorithm 4.3. They are however benchmarked under different terms. The first
one, labelled by “pseudo-morphism”, reflects the time performance of the pro-
gram just as it is; the second one, labelled by “pre-morphism”, is benchmarked
with the optimization of avoiding the logarithmic steps of combine operations
(see last section); the last one, labelled by “pre-morphism(no-coll)” is bench-

marked by using the option argument no-collision when the underlying *Lisp

2The similarity between the optimization of tail-recursion [1] and the optimization for premor-

phism PDC should be observed.
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communication function //pref [53] is called. We can do so because the com-
munication used in Algorithm 4.3 is a perm'uta.tion. The curve labelled by
“post-morphism” is the benchmark graph for Algorithm 4.4, with the optimiza,;
tion of skipping the logarithmic steps of division. As one would expect, this
curve almost overlaps with the one labelled by “pre-morphism”. The last curve
is labelled by by the function (18 % logn), which is intended to be the asymp-
tote of the curve labelled by “pre-morphism(no-coll)”. Note that the horizontal
coordinate has logarithmic scale, a logarithmic function therefore should be a
straight line in the graph. Obviously, despite their difference in real time, each of
the benchmark curves indicates O(log n) time performance of the corresponding

program.

Figure A.2 Benchmarks of Algorithm 4.5 for scan. There are altogether four curves
in the graph, which are labelled and to be interpreted in a way similar to the

above. Again, the time performance is O(logn).
Figure A.3 Benchmark for the polynomial evaluation program, Program 4.6.

Figure A.4 Benchmark graph for Algorithm 4.12, which is a second order PDC algo-
rithm for the monotonic sort. Recall that the top level PDC is a postmorphism
with mirror-image communication, whereas the nested level PDC is a premor-
phism with correspondent communication (Section 4.3.5). When this program
is benchmarked, optimization was applied such that the combine phase of the
premorphism and the division phase of the postmorphism are all avoided. We
did choose to turn on the no-collision option for two, one, and none of the two
types of communications. This is why we have multiple curves in the graph;
each of them, however, seems to confirm the predicated O(log?®n) performance

(Chapter 6). Time performance can be seen to be about O(log?n).

Figure A.5 Benchmark of Algorithm 5.3 - the SDC linear lower triangular system
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using balanced division. Unlike others, this graph is drawn on linearly scaled
horizontal coordinate. The curve in the graph indicates O(n) time performances
of the algorithm on the CM, which confirms what is predicated in both Chapter
5 and Chapter 6.

The primitive operations over recursive arrays were also benchmarked. Figure
A.6 shows the time used by the creation (mkrv), left-right division dj,, and left-right
division dj,. Figure A.7 shows the time used by various communications. What should

be observed is that Proposition 7.2 is quite convincingly confirmed in practice.

Our experience shows that programming in Divacon notation often can improve
the programming productivity drastically. The time to write and debug a Divacon

program for the applications mentioned above, for example, ranged from 5 to 30

minutes.




152

CHAPTER 7. IMPLEMENTATION ON THE CM



Chapter 8

Conclusion

8.1 Ending Remarks

The central subject of this dissertation is the algebraic model for divide-and-conquer
and its parallel realization. There are, however, cross-links to other areas of theoretical

and systems computer science.

~ First of all, this work suggests a new class of parallel programming languages based
on divide-and-conquer. Languages of this class are fundamentally different from other
parallel languages and possess some uni.que features: (1) recursive parallel data types,
(2) parallel primitives and functional forms with mutually orthogonal functionalities,
and (3) powerful divide-and-conquer constructs. Such languages are freed from what
Backus called the von Neumann style for a simple reason - their design reflects the
studies of the mathematical properties of the problems rather than the architecture

of the machines. A prototype of the class is embodied in the Divacon notation.

Second, it puts forward two new programming constructs, PDC and SDC, which
demonstrate at least three significant advantages. First, they are general enough to
subsume many other common constructs such as broadcast, reduction, scan, trans-

pose, sort and FFT. In so doing, secondly, they reveal the inter-relation among these

153
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other constructs, i.e., that they all share a common set of divide, combine and commu-
nications functions. Finally, this clearly causes a reduction in the cost of development
because each of the above constructs can be “assembled” with the DC constructs and

the shared constituents rather than developed independently.

Third, this dissertation introduces the notion of recursive arrays in the design of
parallel languages. Conventional arrays are designed implicitly with the von Neumann
machine in mind. Its primary operation - indexing — assumes the computation is to
be performed by stepping through the array one entry at a time. It follows that
iteration is the dominant style of programming in array processing. Conventional
arrays are also flat in the sense that they cannot be explicitly taken apart and put
together. By contrast, recursive arrays allow array computation specified collectively
over the array entries and support recursive programming style by providing divide,

combine, communication, and distribution operations.

Fourth, a taxonomy of parallel operations is provided. It is highly desirable to
identify a small set of primitive parallel operations through which general parallel
computations can be expressed. This is possible only if the set is orthogonal in the
sense that the primitive functionalities do not intersect. By this principle, operations
acting on array indices and array values are separated, and operations blending local
computation and communication are not primitive. The study of the constituents of
DC algorithms has lead to the identification of such a set, and concurrently provides

enhanced program modularity as demonstrated by the Divacon notation.

Fifth and last, this work helps to identify to the sources of parallelism in parallel
programs. Depending on the impact on the execution time, parallelism in DC algo-
rithms is divided into two types: multiplicative parallelism and additive parallelism.
These two types of parallelism roughly correspond to control parallelism and data
parallelism, discussed by Hillis and Steele in [23]. An underlying assumption made in
[23] is that the two types of parallelism are antithetical — the premise of exploiting

one is the sacrifice of the other. The CM programming languages, in which only
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data parallelism is explicitly exploited, have clearly been designed on this premise. In
contrast, we have seen that both types of parallelism can be exploited simultaneously

and harmoniously under the DC models with the Divacon notation.

To summarize, the work has not only led to the formation of an algebraic model
for the programming paradigm of divide-and-conquer, but also has shed light from
a unique angle on the following general issues: the design of parallel programming
languages, the selection of parallel programming constructs, the nature of parallel

arrays, the taxonomy of parallel primitives, and the sources of parallelism.

8.2 Limitations

Although the DC model presented here is very broad, we have studied only a subset
of DC algorithms under the model. This subset might be termed polymorphic DC
algorithms, categorized by the divisions they employ.

There are good reasons for studying polymorphic divide and combine operations
first — they are conceptually simple, rich in parallelism, shared by many algorithms,
and easy to implement on parallel computers. However, if we restrict ourselves to
polymorphic operations we may fail to find DC solutions in other domains. Many -
graph problems such as minimum spanning tree, connected component, and graph
coloring, for example, have not been known to have efficient direct polymorphic DC

algorithms.!

Non-polymorphic divide and combine operations, therefore, should not be disre-

garded. Some classic examples of non-polymorphic operations include the division in

!Here, direct polymorphic DC algorithms for graph problems refer to those in which the graph
itself is recursively divided and the algorithm is recursively applied. Note that it is well known that
many graph problems can be solved by using a number of programming constructs, for example,
broadcast and reduction. Since these constructs can be computed with polymorphic DC algorithms,

many graph problems can indeed be solved indirectly by polymorphic DC algorithms.
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quicksort [3], the combine operation in mergesort [3], the separators in VLSI layout
algorithms [54], Euler partitioning of graphs [20], used for example in graph coloring
problems, and domain decomposition [7, 17] in numerical analysis problems. Divide-
and-conquer algorithms based on these non-polymorphic operations have been shown
to be parallelizable in many cases. Whether the Divacon programming system can be
extended to gracefully handle non-polymorphic DC algorithms is an open question at

present.

The DC model is defined in terms of algebraic properties of the problems and not
in terms of machine operations; hence, most of the discussion has been independent
~ of the machine architectures. However, the claim that DC algorithms generally yield
optimal or sub-optimal asymptotic performance is true only for the implementation
on hypercube machines or their isomorphs including butterfly, cube-connected cycles,
and perfect shuffle, all characterized by small diameter (logarithmic distance between
any two processors) and rich inter-processor connections. Whether the DC models
can be realized efficiently on parallel machine architectures with different topology is

yet to be investigated.

8.3 Related Work

An in-depth study of divide-and-conquer as programming paradigm can be found in
(3]. Aho et al. showed therein how divide-and-conquer can be applied to a broad class
of problems, including finding the maximum and minimum element of a set, integer
multiplication, permutation, finding the kth smallest element of a set, multiplication
between a Toeplitz matrix and a column vector, matrix multiplication, LU decom-
position, FFT, and Chinese remaindering. More important, they studied the general
structure and complexity analysis of DC algorithms. Although the algorithms were

presented for sequential computing, most of them can be easily parallelized.

Preparata and Vuillemin’s work presented in [43] is, in our opinion, a milestone
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in the studies on DC algorithms. Preparata and Vuillemin not only point out the
significance of divide-and-conquer to parallel computation, but also set forth two op-
erational models for divide-and-conquer — descend and ascend. These models were
applied to many problems including FFT and sort, and it was shown how they can
be implemented efficiently on cube-connected-cycle parallel computers. It should be
pointed out that descend and ascend are instances of our premorphism and post-
morphism DC models where division is left-right and communication correspondent.
Therefore, ascend and descend should be considered as special cases of the DC mod-
els in this dissertation. Nevertheless, these two restricted models were found to be
so general that they applied to “all the interesting algorithms for parallel processing
known to the authors.” Preparata and Vuillemin noted how DC algorithms can be
nested to form what they call “composite (DC) algorithms” or what I call “higher
order DC algorithms”. They are also the only authors, to the best of my knowledge,
who realized the potential significance of “developing a high level, general purpose

language for parallel programming (based on DC models)”.

Preparata and Vuillemin also pointed out in [43] the duality between the two DC
models, which allows a DC algorithm under one model to be transformed to another
by a bit reversal permutation on the input. This duality corresponds to an equivalent
relation over DC algorithms that can be proven under the DC models in this disser-
tation — a premorphism with left-right division is equivalent to a postmorphism with
even-odd division providing that the communication is correspondent, and vice versa
[35]. This equivalent relation allows many DC algorithms with left-right division to be
converted automatically into a DC algorithm with even-odd division, or conversely,
and also establishes a link between the DC models and the so-called odd-even cyclic

reduction used, for example, by Johnsson in his tridiagonal system algorithm [28].
Smith in [46, 47] explored the possibility of deriving divide-and-conquer algorithms
automatically from the formal specifications of the problems, and successfully applied

his method to several problems such as quicksort, mergesort, and maximum sum over
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the matrix regions. The discussion he made therein on divide-and-conquer actually
implied a morphism model for DC. He also used a notation similar to FP and Divacon

to specify DC algorithms.

Stone’s work on perfect shuffle in [50] should be mentioned. The parallel algo-
rithms appearing in [50] including FFT, polynomial, bitonic sort, and matrix trans-
position, are all actually, although not so stated, canonical DC algorithms. Stone
showed how these algorithms can be cleverly computed by perfect shuffle. His work
also implied the separation between the array operations that handle indices and
the array operations that handle the indexed values; this separation is made explicit
in this dissertation by introducing the concept of relational functions and universal
functions. Finally, Stone also observed how the operations over the indices can be
easily performed on the binary representations of the indices, which can in fact be

translated into our implementation of balanced divisions over recursive arrays.

Iverson showed us with the language APL how computation can be specified in
terms of a collection of programming constructs including reduction, scan, transpose,
and inner-product [26, 42]. APL thus opened a new avenue to computing which de-
viates from the one-word-at-a-time von Neumann style. The success of APL suggests
that parallel computation may be harnessed by providing efficient parallel imple-
mentations of certain programming constructs. And this idea has been intensively
pursued. Ladner and Fischer in [31] showed how prefix (scan) can be computed ef-
ficiently by boolean circuit and how to simulate a finite state transducer with their
solution; Huang in [25] showed us the parallel solution to some graph problems, such
as minimum spanning tree and connected components, by implementing broadcast
and reduction on mess-of-trees. The hypercube implementation of broadcast, which
can be viewed as a special case of scan, is well studied by Johnsson and Ho [29, 30]. Mu
and Chen studied how broadcast, reduction, and scan can be performed on dynami-
cally linked data structures on iPSC {39]. Hillis and Steele illustrated the application

of scan to problems inéluding parsing of regular language and region labelling [23].
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Blelloch in [8, 9] stressed the generality of scan and discussed its application to prob-
lems from the areas including graph theory, numerical analysis, and computational
geometry. The PDC and SDC higher order functions proposed in this dissertation
can be considered as new parallel programming constructs. The viability of the
DC constructs is rooted in their generality — they subsume all the abovementioned
constructs, and is also supported by the fact that DC constructs, like other paral-
lel programming constructs, can be implemented efficiently on hypercube machines

despite the generality.

Related to the above is a general programming technique called recursive dou-
bling (also called pointer jumping) (25, 8, 20]. Recursive doubling can be shown to
compute exactly the function scan and therefore has the same power and weakness
(one directional dependency) that scan has in terms of functionality. It follows from
the previous discussion that recursive doubling can also be computed by the DC con-
structs assuming random accessible data structure like arrays. (Recursive doubling

might still be a better choice than DC to perform scan over linked data structures

like lists.)

Hillis and Steele’s model of data parallel computation [23, 24] is related to this
work in several ways. First of all, both the data parallelism model and the DC model
encourage the perception that a piece of data is a processing unit. Secondly, our
implementation of the DC model is erected on top of data parallelism programming
systems. Finally, the CM languages based on the notion of data parallelism, in

particular *Lisp, provide an excellent environment for the CM implementation of the

DC models.

So much work has been done in the development of sequential or parallel divide-
and-conquer algorithms that it is impossible to enumerate. I would however like to
mention Danielson and Lanczos’s FFT [19], Ladner and Fischer’s prefix [31], Batcher’s
bitonic sort [6], and Strassan’s matrix multiplication algorithms [3]. Without the

insight gained in the study of their DC algorithms, the formation of the models
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presented in this paper would be impossible.

Backus’ work on FP [4, 5] has a sound impact on the design of Divacon notation.
Backus’s notion of functional forms has been adopted; his penetrating comments
on von Neumann style programming provided crucial guidance in selecting the con-

stituent parallel operations of the DC models.

8.4 Future Work

A complete programming system, according to Hoare [10], should include methods by
which one can reason about programs and by which they can be transformed from one
form to another to achieve higher efficiency. On the one hand, this work on DC mod-
els does not constitute such a complete system owing to the absence of these methods.
On the other hand, the formality associated with the DC models and Divacon no-
tation has provided a solid basis for their development. In fact, effort and progress
have been made in this respect since the first draft of this dissertation was written.
The preliminary results of this effort already enable us to automatically eliminate
broadcast communication, transform premorphism to postmorphism algorithms and
vice versa, and transform the composition of a premorphism and postmorphism into
one pseudomorphism under certain conditions [35]. New and more general equivalent

relations between DC algorithms, however, are still to be discovered.

As a programming language, the Divacon notation is yet to be given its formal
syntax and semantics. A compiler for Divacon is being developed at Brandeis Uni-
versity. The performance of Divacon applications is expected to improve significantly
once the compiler is developed. The equivalent relations between DC algorithms will
be used for code optimization during the compilation. A project aimed at performing

automatic complexity analysis of Divacon programs is also under way.

Applications of the DC models to more and broader range of problems are ex-

pected. These applications should yield asymptotically optimal or sub-optimal par-




8.4. FUTURE WORK 161

allel time performance. What remains to be seen is whether they can compete with
applications developed under other models in terms of megaflops delivered on given

parallel computers.
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Appendix A

Benchmark Graphs

This appendix includes the following benchmark graphs showing the time performance
of several Divacon programs presented in the document and the time performance of

primitive recursive array operations:

Figure A.1 Broadcast. Algorithm 4.3 and Algorithm 4.4.
Figure A.2 Scan. Algorithm 4.5.

Figure A.3 Polynomial evaluation. Algorithm 4.6.
Figure A.4 Monotonic sort. Algorithm 4.12.

Figure A.5 Triangular systems. Algorithm 5.3.

Figure A.6 Primitive recursive array operations.

Figure A.7 Communications over recursive arrays.

These benchmarks were collected by the author on the 4096 processor Connection

Machine Model CM-2 at Yale between 12th April and 28th April 1989.
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