Abstract An algorithm based on hyperbolic rotations is presented for the solution of linear systems

of equations,
Az = b,

with symmetric positive definite coefficient matrix A. Forward elimination and backsubstitution
are replaced by matrix vector multiplications, rendering the method amenable to implementation

on a variety of parallel and vector machines.

The method can be simplified and formulated without square-roots if A is also Toeplitz; a
systolic (VLSI) architecture implementing the resulting recurrence equations is more efficient than
previously proposed pipelined Toeplitz system solvers. The hardware count becomes independent
of the matrix size if its inverse is banded.

Parallel Solution of Symmetric Positive
Definite Systems with Hyperbolic Rotations

Jean-Marc Delosme!, Ilse C.F. Ipsen?

Research Report YALEU/DCS/RR-341
September 1985

! Department of Electrical Engineering, Yale University
2 Department of Computer Science, Yale University

The work presented in this paper was supported by the Office of Naval Research under contracts
N000014-82-K-0184 and N00014-84-K-0092.

Abstract An algorithm based on hyperbolic rotations is presented for the solution of linear systems
of equations,

Az = b,
with symmetric positive definite coefficient matrix 4. Forward elimination and backsubstitution
are replaced by matrix vector multiplications, rendering the method amenable to implementation

on a variety of parallel and vector machines.

The method can be simplified and formulated without square-roots if A is also Toeplitz; a
systolic (VLSI) architecture implementing the resulting recurrence equations is more efficient than
previously proposed pipelined Toeplitz system solvers. The hardware count becomes independent
of the matrix size if its inverse is banded.

Parallel Solution of Symmetric Positive
Definite Systems with Hyperbolic Rotations

Jean-Marc Delosme!, Ilse C.F. Ipsen?

Research Report YALEU/DCS/RR-341
September 1985

! Department of Electrical Engineering, Yale University
2 Department of Computer Science, Yale University

The work presented in this paper was supported by the Office of Naval Research under contracts
NO000014-82-K-0184 and N00014-84-K-0092.

1. Introduction

This paper presents the derivation and discusses parallel implementations of an algorithm for
the solution of linear systems of equations,

Az =b, (1.1)

with symmetric positive definite coefficient matrix A.

In order to solve (1.1), the Cholesky factor of A is first determined by essentially premultiplying
A with appropriate hyperbolic rotations, whose product will be called Q (succinct descriptions of
this step and of a possible concurrent implementation appeared earlier in [1, 17]). Next, simple
matrix vector multiplications, involving @, applied to the righthand side of (1.1) provide a novel
way of solving the system. The ensuing avoidance of forward elimination and backsubstitution is
a very desirable feature for implementation on a variety of parallel architectures.

Our method for the solution of (1.1), related to the one in [11], is particularly appealing.since.
it does not impose as much sequentiality in its solution of linear systems as standard methods.
The matrix A, rather than its inverse [11], is factored. Thereby the potential for parallelism in
the method of [11] is exploited, yet at the same time its difficulties with pipelining of successive
operations are eliminated. When A is in addition a Toeplitz matrix the algorithm in [11] reduces
to the classical Levinson algorithm [16] and similarly, our algorithm simplifies to a more easily
pipelinable procedure whose first, Cholesky factorization, step is essentially an old algorithm due
to I. Schur, see [10].

Several highly concurrent systolic architectures for the solution of Toeplitz systems have re-
cently been presented [3, 4, 8, 14, 18] (for an introduction to systolic architectures the reader is
referred to [15]). All the proposed implementations start with the pipelined factorization of A via
variants of Schur’s algorithm (cf. [1, 17]). They differ, however, in the way the results of the first
step are used to determine the solution vector. This paper demonstrates that substantial savings
in the number of processing units and amount of memory are possible if full advantage is taken
of the parametrization in terms of the intermediate quantities which are computed by the Schur
algorithm. Systolic architectures with high processor utilization will be presented, for matrices A
of bounded dimension and for arbitrarily sized A with banded inverse.

Since the algorithms proposed for the solution of (1.1) are based on hyperbolic rotations, one
might be concerned about their numerical behavior. Stability analyses of Schur’s and Durbin’s
algorithms, the latter being a special case of Levinson’s algorithm, have been presented in [5, 6,
7]. According to A. Bultheel [5, 6], Durbin’s and Schur’s algorithms are stable for matrices with
bounded condition number; the analysis further suggests a slight preference for Schur’s method
over Durbin’s. G. Cybenko reaches the stronger conclusion that the Durbin [7] and Levinson [12]
algorithms are essentially as stable as the Cholesky factorization algorithm. Work is in progress to
refine these results and extend them to the general non-Toeplitz case.

2. The Hyperbolic Cholesky Factorization
The computation of the Cholesky decomposition,

A=UTU, U is n X n upper triangular, (2.1)

of a real symmetric positive definite (spd) n X n matrix A = (a;;) by means of hyperbolic rotations
is called ‘hyperbolic Cholesky factorization’. Its derivation is based on a particular decomposition

of the matrix A : ”
A= Z AR)
k=1

where A(*) has elements)
a(k)z aij z=k,szor]=k,12]
3 0 otherwise ’

i.e., its nonzero elements form a ‘composing stick’ with vertex at the kth diagonal element. Since
A is spd, agy is strictly positive and AX*) can be written as the difference of outer products

AK) — v,:ka - w,'fwk,

where v and wy, are row vectors with elements

=12 vkj JFKk
Vs = Ok ki J >k y Wgs = { J . . 2.2
! { 0 otherwise ! 0 i=k (22)

That is, v consists of the nonzero row of A¥) scaled by the square-root of the diagonal element,
while wg differs from v only in its kth entry. Stacking the vt and wyg, respectively, in upper
triangular matrices

U1 wy
V = , W= .
Un Wn
one has
A=VTv -wTw. (2.3)

Identification of equations (2.1) and (2.3) yields

ol) () -0m w(E 5) ().

I being the n x n identity matrix.

Definition 2.1. A 2m X 2m matrix © is called pseudo orthogonal if it satisfies

r(I 0\, (I o
e(0—16”0-1’

where I is the m X m identity matrix.

It will be shown, that there exists a 2n X 2n pseudo orthogonal matrix @, obtained as a product
of hyperbolic rotations acting on pairs of rows, so that :

o(5)-(2).

Before construction of @ (in Theorem 2.1), the next two lemmata assure that the hyperbolic
rotations to be applied to (VT WT)T exist and are well defined.

2

Lemma 2.1. If R and S are upper triangular n X n matrices such that RTR — STS is positive
definite then R is invertible and

lskerie] <1, 1<k<n.

Proof. Assume RT R—STS were positive definite and R singular. Then there would exist a non-zero
vector z with Rz = 0 and
T (RTR - 878)z = —(S2)TSz <0,

which would contradict the assumption. Thus R is invertible.
Now, to establish the inequality, consider the matrix P = I — TTT with T = SR™!. Since T
is upper triangular,
thk = SkkTrp s 1<k <n,

and
Pre=1- Ztk =1- Zt:k (skkrie)’
i=1

Since P is congruent to RTR — STS, it is spd. Hence pgy is strictly positive, implying

k-1
(skrrge)? < 1=t} <
i=1

Lemma 2.2. Let R and S be upper triangular n X n matrices such that RTR — STS is positive
definite, and let py = skkrkk ,1<k<n If

(§)=0(5) where@=qm..q0

and L .
t=j3#kori=j53#n+k
~(k) _ (1-p32)~1/2 t=j7=kori=j=n+k

BT~ -)2 (5,5) = (kym 4 k) or (i) = (n+ k, k)’
0 otherwise

Then C} is pseudo orthogonal, R is upper triangular and S is strictly upper triangular (upper
triangular with zero diagonal).

Proof. According to Lemma 2.1, p; is defined and satisfies lox] < 1,1 < k < n, so that Q is well
defined. Since the Q) in the product Q are disjoint (each of them operates on a different set of
rows) it is sufficient to prove that Q (¥) is pseudo orthogonal and that 7x; = 0, 7 < k and &; =0,
1<k .

Checking that Q(¥) is pseudo orthogonal reduces to checking that

Hy=(1-p0)7? (_l _fk>

Pk

is pseudo orthogonal, i.e.,

which is easily seen. In fact, Hy is just a hyperbolic rotation

__ [cosh ¢p sinh ¢ _ —1
Hi = (sinh ¢r coshgr /° ¢r = —tanh™" pg.

Rows k of }~2, S are related to rows k of R, S via

<f’°f) =Hk(”°f), 1<j<n.
Skj Skj
Therefore one has

ik \ _ (g — ,2\-1/2 (The = PkSkE sign (rik) (e — sti) Y/
<~) =1-p)” 0

Skk Skk — PkTkk

as well as 7; = 8x; = 0 for j < k, since rg; = sg; = 0 for j < k, thus proving that Ris upper
triangular and S is strictly upper triangular.
|

Remarks

e Since the matrices Q(") constitute disjoint rotations they commute and can be applied in any
order. Their product Q has a very simple expression :

bk = Gnkork = (1 — p3)~12, 1<
1

Gk ntk = Gnik e = —(1— pf)~ 1/2/%,
Gij=0 14 j(modn)

e The diagonal elements of R have the same sign as the corresponding diagonal elements of R,
thus if R has a positive diagonal, R also has a positive diagonal.

Theorem 2.1. The Hyperbolic Cholesky Algorithm
Let A be an X n spd matrix and V and W be upper triangular matrices as defined in (2.2) so that

A=VTV —WTW. Set
RO 14
SO)= \w /-
and apply the sequence of operations

R(+1) I 0\ an /(RO
(S(’+1))=(O P>Q(l)(s(l)>, l-—-—O...n—l,

where QW) is obtained from R(") and SU) the same way Q is constructed from R and S in Lemma 2.2,
and where P is the n X n circular permutation matrix with p;, = 1 and p;;_1 = 1,2 < ¢ < n.
Then RM = U, the Cholesky factor of A, and s =90

Proof. The proof proceeds by induction. Define the following property (P) :

(P.1) ROTRO — s0Ts() = 4
(P.2) R® is n x n upper triangular with positive diagonal elements,

4

(P.3) S Oisnxn upper triangular with [leading zero rows.

(Po) is easily shown to hold. If the inference (Py) is true implies (P41) is true is correct then (P,)
will be true, i.e., S = 0and R(W = U » by uniqueness of the Cholesky decomposition. It remains
to be demonstrated that if R() and SO satisfy (P) then QU) exists, and R(+1) and SU+Y) satisfy

(Prt1)-
Let
¢ RO o (RO
50)=@"{sm |-
Since R(®) and SO are upper triangular and (F;.1) holds with A spd, it follows from Lemma 2.2

that a pseudo orthogonal QA(Q exists, that R is upper triangular with positive diagonal elements
(because of (F;.2)) and that S () is strictly upper triangular. Now the following properties hold :

(Pr41.1) Since QU is pseudo orthogonal,

T Ty (I O RO T (I 0 RO
(RO" 50)(0 _I) (g(t))=(R(’) sO) o _1 s(z))’

thus
ROTRO _ 50750 = 4,
From R("*1) = R(), s(0+1) = PS() and P orthogonal one obtains (Pr41.1).
(Pr41.2) Since R(+1) — 1~2('), R(+1) is upper triangular with positive diagonal elements.

(P41.3) As SO is strictly upper triangular, SU+1), obtained by moving the last row of S
into the topmost position and moving down the other rows by one position, is upper
triangular with first row identical to zero. Now, since () has [leading zero rows, the

associated pg) = sgg/rilk) are zero, 1 < k < I, so that rows 1 to [of SO are identical
to rows 1 to ! of SU, i.e., they are zero. Hence, rows 2 to I + 1 of S(+1) are zero.
Therefore S(+1) is upper triangular with [+ 1 leading zero rows.

Remarks

o Since (9 is strictly upper triangular, Q(® is the 2n x 2n identity matrix.
e In step [QO removes the diagonal of S,

e The further the reduction of S to zero progresses, the more rotations H ,(:) are identities (pg) =

0). That is, in step { rows 1 to ! and n+ 1 to n+ 1 of QO are equal to the corresponding.rows.-
of the identity matrix. This implies that rows 1 to [of R®) are identical to rows 1 to [of U.
In other words, step [determines the (I + 1)st row of U, equal to the (I 4+ 1)st row of R(+1),

The transformation performed by the hyperbolic Cholesky algorithm will be denoted by

I 0\ A(me I 0) 4 I 0\ am /I 0\ 4
Q=<0 P)Q(1)_,,(0 P>Q(t),,,(0 P)Q(l)(o P)Q(O)’

The matrix @ is pseudo orthogonal since it is the product of pseudo orthogonal matrices.

3. An Explicit Expression for Q

In the next section it will be shown how to avoid backsubstitution as well as forward elimination
by performing matrix vector multiplications with the matrix @. To this end, it is necessary to derive
an explicit expression for Q.

Given a n X n spd matrix A, the 2n X 2n pseudo orthogonal matrix @ is uniquely defined since
it is constructed in a unique fashion by the hyperbolic Cholesky algorithm. Thus one could expect
that there exists a closed form expression for @ in terms of A. Before being able to exhibit such
an expression however, another characterization for A of the same type as (2.3) is needed. Write

A=Y AW,
k=1

where A() has elements

5(@)={a,‘j z'=k,j§z'orj=k,,‘_<_j.
Y 0 otherwise

Since A is spd, aky is strictly positive and analogously to (2.2) A® can be written as the difference
of outer products _
AR = mimy — nlng,

where my and nj are row vectors with elements

-1/2 . .
0 otherwise 0 1=k

Again, my consists of the nonzero row of A(¥) scaled by the square-root of the diagonal element,
while ny differs from my only in its kth entry. Stacking the my and ng, respectively, in lower
triangular matrices
mi ni
M= , N=)
My Nn

one has
A=MTM - NTN.

The Cholesky decomposition of A into A = UTU, where U is a n X n upper triangular matrix
with strictly positive diagonal elements may be called more specifically a lower-upper Cholesky
decomposition (i.e., the decomposition consists of a lower times an upper triangular matrix). The
upper Cholesky factor U is unique. It is easily seen (e.g., by regarding the matrix JAJ where J
is the permutation matrix with ones on the antidiagonal) that A also admits to an upper-lower
Cholesky decomposition as A = LT L, L being a n x n lower triangular matrix with strictly positive
diagonal elements that is also unique. The following two lemmata are needed in order to derive the
expression for @ given in Theorem 3.1.

. voyr —wu-y)T
@ = (_((NL_2)T (gwrl))T)

@ (w)=(0)

6

Lemma 3.1. The matrix

satisfies

and Q*T is pseudo orthogonal.

Proof First observe that U and L are nonsingular, since A is spd and hence nonsingular. Thus Q*
is well defined. Application of @* to (VT WT)T yields

@ ()= (ZrGn i)

vIv -wTw = a=U0"U,
the top n X n block is U. On the other hand, letting

Since

D = diag(al{?...all?), (3.1)

one has
MW — NV = (D+ NT)W - NT(D+ W) =DW - NTD,

and, since DW = NTD is the strictly upper triangular part of A,

MTw - NTv =o.

(VY _ (U
@ (w)-(5):
The pseudo orthogonality of Q*T follows frdm

o (1 o T = (UTWVIV -wImut UT(-VIN + WTM)L
0 L T(-=NTV + MTW)U~! L-T(NTN — MTM)L""

(U TAU ! 0
- 0 —-L7TAL)

and the factorizations A = UTU = LTL.

Hence,

|
Lemma 3.2. Let E() and F(Y) be n x n diagonal matrices and define E®) and F() recursively :

EU+1) I 0\ am /[EW
(17,(1+1))=(0 P)Q()(i.,(l)), l=1...n-1,
where F) = P'F(). Denote by e() and f,,(p the (co-)diagonals of E®) and F®), respectively,

—(n—1) < m < n— 1. That is, the mth subdiagonal has subscript —m, the main diagonal
subscript 0 and the mth superdiagonal subscript m. Then, forl=1...n,

{ (l)—O m<—-lorm>0
(l)—O m<0orm>1

Proof. The proof proceeds by induction. The above is true for [= 1. If it is true for some [,
1<l < n-—1,show that it holds for [+ 1 and the lemma is proved. According to Lemma 2.2,

R DO A0
QY= (Au) D(z)),

7

where D@ isanxn diagonal matrix and A® isan x n diagonal matrix with its first / diagonal
entries equal to zero. Thus,

EW+) — pOp® 4 AOFO = pOEO 4 AOptp®),

d
an F(l+1) _ Pn—l IF(1+1) Pn—l l(PA(l)E(I) + PD(I)F(I))

_ Pn-—lA(l)E(l) + Pn-—-lD(l)PlF(l)

Row i of AOPIF() equals zero for ¢ < | and equals row ¢ — I of F() for 5 > . Therefore, AW P F)
has zero diagonals for m < —I or m > 0. Since DWEW® has zero diagonals for m < —l orm >0,

e = 0 for m < —(+1) or m > 0. Row i of P*'ADEW equals row ¢ +1 of E for s < n —1
and equals zero for i > n — I. Hence, P* ' AW E® has zero diagonals for m < 0 or m > I. On the

other hand, P* ' DO P'F() has the same zero pattern as F(), Therefore, f(IH) =0 for m < 0 or
m>1+1.
|

Theorem 3.1. The matrix Q satisfies

. vU—YhT —(wu-1\T
Q=Q" = <_¥(NL-—2)T (g\lL—l);’)

Proof. Since Q and Q* have full rank, one can write
Q=GQ",
and it will be shown that G is the identity. Let
_(G1 G2
¢= (Gs G4>

be the decomposition of G into n X n blocks. Since

o(5)-(5) = @ (n)-(3).
im0

In order to determine G2 and G4 the pseudo orthogonality of G is proved next. Indeed, since

G=Q@)™,
6" (5 O)e=@rmer (5 °)ew@) = @ (5 %)@

=(Q*(0 —I)Q*T)_lz(é —OI)

where the second and fourth equality, respectively, follow from the pseudo orthogonality of @ and

of Q*T. Consequently, ,
GTe,-6Ies=0, GIGy-GTGy=-1,

8

and, since G; = I and G3 =0,
G;=0 and GIGy=1
I 0
G= (0 G4>
with G4 orthogonal.

Now Lemma 3.2 is employed to prove that G4 is the identity. Let
EMY (o
FO)= \1)°
B0 (), wim @=(°)gr
Fm) J=%\1)> “\0 Gy) ¥

FOV = gy(ML™)T.

Since E() and F(1) are diagonal matrices, Lemma 3.2 applied to the case [= n shows that the
subdiagonals of F(") are zero, i.e., F(® = F() is uypper triangular. Since (ML™1)T is upper
triangular as well and M is nonsingular,

Therefore,

then

so that

Gy=FM(ML)T

is upper triangular. But Gzl = G7, so that G4 must be diagonal and its diagonal entries must be
+1.

Since the main diagonal of P*'AWE® is zero, the diagonal of F(is just
pD(=1) . PDMP. Now, the diagonal entries of DO are (1 — pg))‘l/2 > 0, so that the diag-
onal entries of F(") are strictly positive. Since the diagonal entries of M and L~! are also strictly
positive, the diagonal entries of G4 must be strictly positive. Consequently, G4 = I.

|

4. Application of Hyperbolic Rotations to the Solution of Linear Systems
The Hyperbolic Cholesky algorithm determines simultaneously the Cholesky factor U of a

spd matrix A and a set of n(n — 1)/2 parameters pg), 1<1<n-1,1 < k < n, which define
the hyperbolic rotations that make up the matrix Q. For the solution of a spd system Az = b,
the above algorithm could be used to find U followed by forward elimination to solve the system
UTy = b and by backsubstitution to solve Uz = y. Instead, the above algorithm can also be used

to find the parameters pg) followed by the application of the hyperbolic rotations to the righthand
side b in a particular way, described below, to get the solution vector z.

It is already known that
|4 U
Q<W)=(O). (4.1)

@(ar) = (Zr v

Since MTW — NTV =0 and MTM - NTN=A=L"TL,

o(2)-(2)

Thus, the same hyperbolic rotations which are used to compute the upper Cholesky factor U can
be applied to compute the lower Cholesky factor L. Adding up equations (4.1) and (4.2) yields

o(ariw)=(1)

Now N+V =M+ W = D71 A, where D is specified in (3.1), so that with

Dt o0
A=< 0 D_1>’

(1)-(2)

Postmultiplying both sides by A™! = U~1U"T = L-1L-T, results in

QA (f) - (gj) : (4.3)

Equation (4.3) demonstrates a novel way of solving UTy = b (and simultaneously LTz = b) : to

the vector (5T b7T)7 apply QA, in other words, scale it by the d;.l/ 2 and then multiply it by the
rotations determined in the hyperbolic Cholesky algorithm,

<Z) =ea <2) N (gj‘w (4.4)

Now consider the transformation Q7. Because the matrices Q(’), 1<l <n-1,are symmetric
and P is orthogonal, premultiplication by

so (I 0\ 4 I 0134 L0)gwn (I 0
QT=Q(O)<O P-l)Q(l)"’(O P_I)Q(I)..-<O P_1>Q(1) (0 P—1>

10

Now consider the product

O]

is readily implementable once the parameters p;’, i.e., the matrices Q(l), have been computed. Let
y and z be two column vectors of length n,

QT v\ _ vUu-! —-NL71 y
z -wUu-! ML™! z)
AQT vy _ D WU ly—DINL !z
z) \-D'WU ly+ DML'z

(I I)AQT (Z) =D YWV -W)WUly+ DY (M- N)L'2=U"1y+ L2

Consequently,

and

Therefore,
T ay — 4-1
(I I)AQ ((l—a)z>—A b

if
y=U"Tb and z=L"Tb.

The algorithm for the solution of Az = b can be summed up as follows : let A4 be the
upper triangular part of A and Ay its strictly upper triangular part (A4 = D? + Ag). Using the
hyperbolic Cholesky algorithm as specified in Theorem 2.1, express the matrix @ as a product of

hyperbolic rotations such that
Ay _ (U
QA(A#)_ <0)° (45)

b) to obtain

b
b U-Tp
0s ()= (4, "
Then apply these operations essentially in reverse order to get x from

r= (1 1207 (%) n,).

Apply the same operations to (

(4.7)

where « is an arbitrary real number, which can be selected equal to O or 1 for convenience.

Remark
If pg) =0forl > p, Q(’) is the identity matrix for [> p and the number of operations performed

by the algorithm becomes proportional to n2p instead of n3. This property of the parameters pg)

has a simple interpretation in terms of the original matrix A. Let EM = (1) = D=1 and use the
definitions and notations of Lemma 3.2. Clearly,

E(®) I v-T
() -e2(2) = (Zr)-
Since EMW) and FO) are diagonal, Lemma 3.2 applies and, for | = p,

{e,(,’{)=0 m< —porm>0
f,(rf)=0 m<Qorm2>p

11

Now, for I > p, DU = I and AY = 0 so that E(+)) = () and FO+) = pO), Therefore,

{es,':)=0 m< —porm>0
,(,f)=0 m<Qorm>p ’

i.e., U"! and L~! are banded with upper and lower, respectively, bandwidth p. Hence the inverse
of the coeflicient matrix A has bandwidth p.

12

5. Specialization to Toeplitz Matrices - Square-Root Free Algorithm

When the spd coefficient matrix A is Toeplitz (a;; = a;—;) the algorithm described in Section 4
simplifies considerably as a result of the following property.

Lemma 5.1. With the definitions and notations of Theorem 2.1, if A is Toeplitz then the matrices
Rg) and S,Sl), defined to be rows l+1 to n of R®) and SO, respectively, are Toeplitz for0 <1 < n—1.

Proof. The proof proceeds by induction. The lemma is valid for { = O since V and W are easily
seen to be Toeplitz. It will now be shown that if it is true for some [, 0 <[< n — 1, then it holds
for I + 1. Recall that

RU+1) I 0 10} . RO N Rr®
(509) = (5) (S0). v (S0)=4"(50),
and furthermore, - 0
AUl DU Al
Q()= <A(l) D(l)) ’

where D(®) and A(’)~ are n X n diagonal matrices. Denote by izﬁ’) , Dg), etc, the matrices formed by
rows [+ 1 to n of RO, DO, etc. Clearly,

FO\ _ (D A (RO
(éi’)) B (ASJ’ Dﬁ”) (S"’>
and, since the first [columns of Dg) and Ag) are identically zero,
EO\ _ (DO A0 (RO
(&) (&0 B0) ()
where D) and A® are the diagonal matrices formed by columns I + 1 to n of Dy) and Ag). By
assumption, Rg) and S,(.') are Toeplitz, so rg,z and sglz do not depend on k for [< k < n. Therefore,
pg) = sgz / rg,z is independent of k for I < k < n and D® and A(®) are diagonal Toeplitz matrices.
The products of D®) and A® with the Toeplitz matrices Rg) and S,Sl) are Toeplitz and so are fz,‘.’)
(1+1)

and g.g) which are sums of such products. Finally, since Rgﬂ) and S are obtained by omitting

the first row of Ri’) and the last row of ,S~'£I), respectively, they are Toeplitz matrices, too.
|

Because the matrices Rg) and Sg) are upper triangular Toeplitz, they are fully determined
from their first row by a trivial extension. Thus, the computation of matrices R,g"'l) and S,SH'I),
given R*(.l) and .S',,(‘l), reduces to updating only the first row of R,g) and S,.(.l).

The hyperbolic Cholesky algorithm thus simplifies to a Toeplitz-specific algorithm, the so-
called ‘Schur algorithm’, with an operation count proportional to n? instead of n® and, in case A™!
has bandwidth p, to np instead of n2p. The matrix vector products involving Q or QT that replace
forward elimination and backsubstitution in the solution of Az = b require as many operations for
a Toeplitz matrix as for an arbitrary coefficient matrix. However, the transformations Q(’) depend
on only one parameter p(’) = pg), l < k < n, determined by the Schur algorithm. Thus, given a
Toeplitz matrix A, multiplication by QA and AQT involves storage of merely n parameters instead
of n(n + 1)/2 when forward elimination and backsubstitution are used. Moreover, in contrast to
the general case, the three steps

13

(1) hyperbolic Cholesky factorization
(2) matrix vector multiplication with QA
(3) matrix vector multiplication with AQT

now require the same number of operations, and the factorization does not constitute the major
part of the computation anymore. A detailed description of these three steps is given next.

Step 1 : Schur Algorithm

The relationship between the first row of fz,ﬁ"l) , §£l_1) and the first row of R,g_l) and S,g—l),
1 <[< n, follows directly from the hyperbolic Cholesky algorithm :

0o ... 0 #A0 F-
(0 ... 0 gf’,‘l) ~(1 1))
= (1 p-D% 172 1 =Y (o ..oo0 A5 L L0
' - 0 ... 0 &N (z)

with p(l 0 s,ll 1 / l(ll 1. The first row of R() is the second row of R(l 1 while the first row of S()

is the first row of S’,S b, Hence, exploiting the Toeplitzness of R(l Y and noting that s(l -
l l ~l—-l ~l 1
= ~l 1 ~l 1
o ... 0 31+1,l+1 sH_l" 0 ... 0 5,4y -

The matrix possessing as [th row the first row of fzﬁ"‘), 1 <1 < n,is the Cholesky factor U of A.

Having completed this derivation, one can now employ the more compact notation rf-l_l) =

(0, oD = i1, 10D = e, -0 = e

T s S and pt-1) = pfl_l) to summarize the algorithm.

(0) 7‘,(;0) ___a—1/2 a air ... Qp-1
(0) s T% 0 g ...
p(l—l) _ 3(1_1)/7',('_1)
- G 12— 1 —pt-1) AN
(~(1 -1) o gﬁ‘”) = (1 ——p(‘ 1)) 1/2 <_p(l—1) 1) sll(l—l) o sg_l)
N N
O)= e

Note, that p(o) = 0 and §§1_1) =0, 1< < n. The algorithm determines the sequence of ‘Schur
parameters’ p(’), 1 <1< n-1,as well as the Cholesky factor U,

0 j<t
Uiy = ;5}—1)] >

14

Initialization :

Forl=1tondo

Step 2 : Evaluation of y = U~ Tband 2= L~ Tp
Let y© = 200 = D=1p and

(1+1) I 0\ - U}

Yy Yy
(z(’“)) = (0 P) Q® (z(z)>)
A U-Tp\ y()

2) = \LTp) " \z0)"

Some easy manipulations and the fact that D) and A(® are scalar matrices lead to an algorithm
for evaluating y and .

W e\ _ cya b by

(0) U Ol B by ... by
Forl=1tondo

oy) (-1 (1-1) (1-1)
— (1 _ A1-1)2y-1/2 1 —p Y cee YUn
(~(z o ~(l 1)) = (1=t (—P("l) 1) (4(1-1) zﬁ."”)
(y,(_?l yﬁ,l)> _ (3(;11) gS{‘i)) .
31(4)1 z,(,) ~l() . 55,_1)

The algorithm determines y; = ﬂ,(i—l) and z; = E,(,"-i), 1<i<n.

then, according to (4.4),

Initialization :

Step 3 : Evaluation of z = A™1b

The solution vector z is computed from the expression

o= Dag” (i),

where
y=UTb, z=L7Tb. (5.1)

Thus,
= D™ +¢™),

with f(O = ay, ¢ = (1 - @)z and

fO A(n—1) 0 fu=1
(0) =9 o pu g1) -
Straightforward reorganization of the equations results in the following algorithm.

Forl=1tondo

(f'('l-ti)l f:(ll_l)) = (ayn—lﬂ e 11+)2 o o) Y)

gr(zl—ll-lzl @Y 91(11-11422 gf(ll—ll-|23 S G ¢)Zl

_ -1) 71-1)
(psi ==Y e ~('—5 gy

l
gn-—l+1 .- g,(,) In-i1+1

15

(n) (n)
(21 ... zn)= 1/2(1 1) (‘;%n) f?n))'
1 . e 0 gn

Now this algorithm can be modified to do without the divisions by square-roots in all of its
three steps. To begin with step 1, the parameters p{) are still correctly computed even if the

divisions by a3/2 and (1 — p0=1?)1/2 are omitted.

Step 1

Initialization :
0 0 a
1 n _ 0 air ... Qp-1
sgo) s,(,o) _(0 ay ... an—l)
- 1-1), (I-1
-0 =5 ()/7.1()
e U A N A T W A A
I) Rl G T A O S NN
(m rsp):(;,v-l) L n)
RO) Rl B R !
Observe that while the parameters p(*) are precisely the ‘Schur parameters’, the variables (),

s, #1) and 50 differ from the ‘normalized’ ones computed above. In particular, it is easily seen
that

Forl=1tondo

;5:‘—1) _ aOH (1- p(1—1)2).

=1

As in step 1, divisions by quantities under a square-root are avoided in step 2. The algorithm
now computes scaled versions of the vectors y = U~Tb and z = L~Tb.

Step 2

Initialization :

ygo) y.(zo) :<b1 bn)
Z{O) ve Z,(zo) bl see bn
Forl =1 to n do
~(l 1) o gg—l) _ (1 _p((_1)> yl(l-l) . yr(ll—l)
~(1 1) o g,(,"l) _ (1—1) 1 zl(l—l) o z,(ll—l)
y1(21 e yr(zl) _ g(:.ll) e 3751_1)
0 o) =\ 500 ~(-1) | -
gy eee Zn cer Zp_q

The algorithm determines
~(:—-1) (~(t 1))1/2 and g'(ln—i) — (;55—1))1/22,'_, 1<i<n.

16

In order to compensate for the absent ‘normalization’ factors (F'('._l))l/ 2 in step 2 of the square-
root free version, one could in step 3 divide by ap and (1 — p("“')Z) instead of their square-roots.

However, this is equivalent to an even simpler procedure : merely divide by Ff,":,_?l the unnormalized

values g}fl"__,:_)l and 2,(.”_1), and no other divisions are required.

Step 3

Forl=1ton do
(f,&':,?l 2‘."”) _ (ay.,_z+1/f£,"_",£31 f,(,::,ﬁ,)z f(:_'f) i ,)
~(1-1 ~(1-1 -1 -1 -1 <(n—-
gf,_:ll 9'(1) 95.—1422 9,(1—:+)3 9'(1) (l_a)zl/rr(zn—l-l?l
(f,(,'_)z+1 é”)=(by) (f,g':,izl f,g-n)
P BN Lo/\aoh @

()= ()(fl(n) (n))
1 ... za)=(11 n o |-

17

6. A Systolic Array for Dense Toeplitz Matrices

This section presents a n-processor linear systolic array which solves a linear system with
Toeplitz coefficient matrix in 5n time steps and can pipeline different problems with a period as
low as n. The square-root free algorithm of the previous section, with the parameter « set to one,
can be rewritten as follows

Step 1 :
1<i1<n, rip=ai—
2<1<n, sip=ai
1<3<n—1, pj=sj11,-1/7jj-1
J+1<i<n, rij=ri1j-1— pjSij-1
Sij = —PjTi-1,j—1+ Sij-1
Step 2 :
1<i<n, yo=b
zip = b;
1<j<n-1, j+1<4i<n, ¥%ij=yij-1— pjZi-1,j-1
Zij = —Pi¥ij-1t Zi-1,j-1
Step 3 :

1<5<n, fin-j=yji-1/7jj-1
In+1n—j =0
1<j<n-1, n—j+1Zi¢<n, fi;j=/fij-1— Pn-jgi+1,j-1
9ij = —Pn—jfij-1+ giv1,j-1
1<:1<n, 2= fin-1+Ggit1,n-1

The variables pj, 7, Si j, Yi,j> 2> fij» 9ij and z; correspond to the variables p(/), ?g’), §,(.’),
17,(’), 2,(’), f,-(’), 5,(’), and z; in Section 5.

6.1. Description of the Array

The systolic array that computes the above equations consists of n identical processors, each
of which simultaneously performs in one time cycle either two multiply-and-accumulate operations,
or one divide and one multiply-and-accumulate operation. The processors are numbered consec-
utively from Py to P,. This linear array is physically folded as shown in Figure 1(a). From each
processor Pj, 1 < j < n, there is a data link towards Pj;;. Additionally, there are two one-bit
lines, in opposite directions, between processors Pj and P,_j41.

The equations are mapped into a space-time representation by applying affine transformations
to the indices of the variables. The execution trace in Figure 2 for the solution of an arbitrary
Toeplitz system of order n = 8 illustrates this mapping. There, the indices of the quantities r and
s in Step 1, y and z in Step 2, and f and g in Step 3 are displayed at the location and time of
computation of these quantities. The horizontal axis represents the processors while the vertical
axis indicates consecutive time cycles.

Step 1 : The matrix elements a; are input to processor P; at the beginning of cycle t = ¢ + 1. r;;
and s; ; are computed in processor Py during cycle £ = 7, where 7 and 7 are given by

(2)=G) () (G)

18

(a) Systolic Array for Arbitrary Toeplitz Matrix of Order n = 8

—_— P{ Pé Pé P‘i

po P1 P2 P3

- P]_ P2 P3 P4
P0,710 P1,721 P2,732 P3,743

(b) Systolic Array for Toeplitz Matrix with Inverse of Bandwidth p = 4

Figure 1: Systolic Arrays for Toeplitz Matrices.

pj is computed during the same cycle, ¢ = 25+ 1, and in the same processor, Pj11, as rj41 ;. During
cycle 27+1 < ¢ < 2n+ 3+ 1, processor Pj4; contains pj and 7;41,;. 745 is stored in processor Pjiq
during cycle t = 4 + 5 + 1 and moved to processor Pj;2 to be available for cycle ¢t = ¢ + j + 2
(alternatively, r; ; could be moved to Pj, right away, and stored there during cycle t = ¢+ 5 + 1).
si,j is ‘directly’ sent to processor Pj;9 to be available for cycle t =144 5+ 1.

Note, that the computation of p; can be performed simultaneously with the evaluation of ;41 ;
if the processors implement an algorithm based on non-restoring division [20]. In that case, p; is
determined bit-by-bit. During cycle ¢ = n + 5 a copy of p; is sent, bit by bit, from processor Pjy;
to the processor ‘across’, P,_j, so that at ¢ = 2n P;;; contains both, p; and p,_j_;,1 <7< n—1.

Step 2 : The elements b; of the right-hand side vector are input to processor P; at the beginning
of cycle t =n+1. y; j and z; j are determined in processor P, during cycle ¢ = 7, where

T 11 v n
(1)=(5 ()=()
yj,j—1 is computed in processor P; during cycle t =n + 25 — 1.

19

© 00 3O U W N Sk

-
— O

GO 00 O O CO GO CO 0O GO CO DD RO B RO DO DO DO DO DO DD bt b e = e e e
O 0O TR XN O©OWOOW=-TO TR WONMH~OWO-TIO0 s W

P, Py P Py Ps Ps Py P
ag
a1
as 21
as 31
ay 41 32
as 51 42
ag 61 52 43
ay 71 62 53
by 81 72 63 54
by 82 73 64
b3 21 83 74 65
by 31 84 75
bs 41 32 85 76
be 51 42 86
by 61 52 43 87
bs 71 62 53
17 / 81 72 63 54
26 / 82 73 64
35 / 83 74 65
43/ | 84 75
53/ | 85 76
62/ | 86
1/ | 87
80 /
81
72
82 63
73 54
83 64 45
74 55 36
84 65 46 27
75 56 37 1
85 66 47 9
76 57 x3
86 67 T4
77 ZIs
87 Te
T7
g

Figure 2: Execution Trace for a Toeplitz Problem of Or-
der n = 8 on the Array of Figure 1(a).

20

n 2n 3n 4n 5n 6n n

(a) Sequencing Different Problems, Period 2n

3a 3b 3c
1 2a 2b 2c 1 2’a, 2’b
n 2n 3n 4n 5n 6n n 8n

(b) Sequencing Different Problems with Several Righthand Sides

Figure 3: Processor Activity Charts.

The following operations are undertaken as preparations for Step 3. During cycle t = 2n + 7,
processor P; performs a division to scale the y; j_i, i.e., to determine the initial values for Step 3,
fin—j (the division is indicated through a ¢/’ in Figure 2, and the associated indices are those for f)-
Again, when using the non-restoring division algorithm, the f; ,—; are determined in a bit-by-bit
fashion. Hence, as soon as the next bit of fj,—; is available, it may be transmitted from. P; to the
processor ‘across’, P,—;+1. This way, the division and the transfer of information between pairs of
processors occur concurrently. Finally, at the end of cycle t = 3n, one finds fn—j4+1,j—1 and Pn—j in
processor P;, 1 < 5 < n— 1. Note that more registers are required for this step than for Steps 1
and 3; they are also needed when pipelining different problems.

Step 3 : f;; and g;; are determined in processor P, during cycle ¢ = 7, where

(2)-G 2 0)+ ()

After their computation in P,—; during cycle { = 4n + ¢ — 3, fi,—1 and gi+1,,—1 are transferred
to processor P, where z; is determined during the next cycle as the sum of those two quantities
(remember that gn41,n-1 is initialized to zero).

Observe, that use of a non-restoring division algorithm makes it possible to overlap different
computations, or to overlap a computation with data transfers. The decision to exchange the pj_;
and f; ,—; between each pair of processors was taken so as to not only maintain uni-directional, as
opposed to bi-directional, data-flow for the three steps but more importantly, so as to be able to
efficiently pipeline different problems on the same array. In order to provide a global perspective
and more easily discuss the pipelining of problems on the array, the compact representation of
the execution trace in Figure 3 is used, which depicts in space-time the activity pattern of the
processors (‘activity’ here means computation, as opposed to mere data transfers). The vertical
axis represents the spatial direction (processors) while the horizontal one denotes time; numbers
inside the triangles indicate the corresponding steps of the algorithm. Figure 3(a) represents the

21

activity pattern when different problems (distinguished through primes) are solved in sequence,
the period is 2n 4+ O(1). The activity pattern drawn in Figure 3(b) corresponds to the pipelined
computation of several solution vectors associated with different right-hand side vectors for each
new coefficient matrix, i.e., for the solution of Az = by, given several right-hand sides b;. Numbers
2a and 3a in Figure 3(b) refer to the application of Steps 2 and 3 to the first vector by, while 2b and
3b refer to the treatment of by. Right-hand sides associated with the same coefficient matrix are
entered in a continuous fashion — without any gaps; the solution vectors are obtained at a period
of n+ O(1).

6.2. Discussion
In order to make meaningful comparisons between previously published designs and the one
proposed here, the following assumptions are made

e the coefficient matrix is symmetric positive definite and neither banded nor with a banded
inverse,

e the processor and time requirements for a division or a multiply-and-accumulate are identical,
e one processing element executes one division or one multiply-and-accumulate per time step.

Given the availability of P = O(n) processing elements, the best O(n) processor array is the
one that allows the solution of the largest number m of problems of given size n in a given time
T = O(n). If a problem of size n can be solved on p processors with latency ! (‘latency’ is defined to
be the time between first input and last output) then this array can solve m = | PT/pl| problems.
Thus one wishes to minimize the processor-latency product pl. In fact, if the array allows pipelining
of problems, one can solve more than | PT /pl| problems. The period then replaces the latency when
evaluating m, as a criterion for measuring the quality of a systolic array. The arrays proposed in
the literature do not attempt to pipeline problems and hence will be compared on the basis of their
processor-latency product. The array presented here has p = 2n and [= 5n, hence pl = 10n2.

Kung and Hu [13] present three arrays (labelled A,B,C); array A is the one worked out with
the most details by the authors as well as by Nash et al. [19]. Designs A and B require O(n?)
storage as compared to O(n) for all the other designs. For design A, p = 3n and the time required
to set up the upper-triangular system to be solved by backsubstitution is 2n. Since in that design
backsubstitution requires time 2n, the latency is I = 4n and pl = 12n? for array A. Array B has
p = 5n. It requires time 2n to perform the Cholesky factorization of the inverse of the coefficient
matrix and the solution is then found via matrix-vector products; therefore pl > 10n%. Array C
has p > 4n; a number of processors in excess of 4n may be used in order to perform faster the four
convolutions called for by this algorithm. Since it requires time 2n to set up the vectors involved in
the convolutions, this array has pl > 8n%+ ¢ where ¢ is the number of operations needed to perform
the convolutions. It may be possible to obtain a processor-latency product that is less than 10n2
for n sufficiently large, but the gain will be marginal and the design complex when compared to
the other ones. Brent and Luk [4] implement an algorithm that consists essentially of our first and
second steps followed by a backsubstitution step where the elements of the triangular matrix U are
generated on-line from the parameters. For this array, p = 5[n/2] and ! = 4n, hence pl > 1022
The authors neglect the extra circuitry and time needed to load in the data and unload the results
from each processor in the array.

Using the square-root free algorithm of Section 5 but allowing fast loading and unloading of
every processor in the array like in [4], the latency of our n-processor systolic array can be reduced
to 3n [9], hence pl > 6n2. More importantly, our array with latency 5n allows pipelining of problems
with a period of only 2n at a very small additional expense in terms of processor storage and control
complexity. Then the relevant processor-period product is only 4nZ.

22

7. A Systolic Array for Toeplitz Matrices with Banded Inverse

Toeplitz matrices with banded inverses occur, for example, in maximum entropy spectral
estimation and filtering of stationary time series with auto-regressive models [2]. This section
presents a 2p-processor linear systolic array which solves a linear system involving a Toeplitz matrix
whose inverse has bandwidth p in n + 3p time steps and can pipeline different problems with a
period as low as n. The square-root free algorithm, exploiting the bandedness of the inverse, takes
the following form (again, « is set to one)

Step 1:
1<:<p, rip=a;-1
2<1<p, sip0=ai-1
1<5<p-1, pj=sj+1,j-1/7jj-1
J+1<e<n, rj=ri_1j-1— pjSij-1
Sij = —PjTi-1,j-1 1 8i,j-1
Step 2 :
1<i<n, yio=b
Zi0 = b,'
1<5<p-1, j+1Zi<n, yij="yij-1— PjZi-1,j-1
Zij = —Pi¥ij-1 T Zi-1,j-1
Step 3 :
1<5<p, fin-i = Yjj-1/rij-1
In+ipn—j = 0
P+1<35<n, finp=Yjip-1/Tpp-1
9jin-—p =0

n—p+1<j<n-1, n—jg+1<¢<n, fij=fij-1= Pn-jGit1,j-1
9ij = —Pn—jfij-1+ gi+1,j-1
1<i<n, %= fin-1+git1,n-1 '

7.1. Description of the Array

The systolic array that computes the above equations consists of two linearly connected arrays
of p processors each, see Figure 1(b). As in the non-banded case each processor can, in one time
cycle, perform either two multiply-and-accumulate operations, or one divide and one multiply-and-
accumulate operation. Within each linear array, the processors are numbered consecutively from
1 to p. In the top array, there is a data link from each processor PJ'-, 1 <5 < p, towards PJ' 10
while the bottom array contains bi-directional data links between adjacent processors P; and Pj4;.
Additionally, there is a one-bit line from a processor P; in the bottom array to the corresponding
processor Pj' in the top array, as well as a data link from the last processor P; in the top array to
the last processor in the bottom array.

As in Section 6, the equations are mapped into a space-time representation by applying affine
transformations to the indices of the variables. The execution trace in Figure 4 illustrates this
mapping for the solution of a linear system whose Toeplitz matrix, of order n = 28, has an inverse
of bandwidth p = 4. The top array computes Step 2 of the algorithm while the bottom array
computes Steps 1 and 3. Hence, the indices of the quantities y and 2 in Step 2 are displayed in the

23

© 00 N O O i W N =

€O CO O 0O CO CO O GO GO GO RO DO DD DD DO DO DD KD B B o = b b e e e e e e
©C O AN R DB HRO DX TIOOARE DN OOWOWTO A WN R O

BOTTOM ARRAY

Py Py Py Py
ao
ai
ag 2,1
as 3,1
4,1 3,2
4,2
43
4,24 /
325/ | 4,25/
2,26 /| 326 | 525/
127 /| 227 | 4,26 | 6,25/
Ty 3,27 526 | 7,25/
g 427 | 6,26 | 8,25/
3 527 | 7,26 | 9,25/
T4 6,27 | 826 |10,25/
5 727 | 9,26 |11,25/
T6 8,27 | 10,26 12,25/
x7 9,27 | 11,26 [13,25 /
g 10,27 | 12,26 | 14,25 /
o 11,27 | 13,26 | 15,25 /
z10 | 12,27 | 14,26 | 16,25 /
@y | 13,27 | 15,26 [17,25 /
z12 | 14,27 | 16,26 | 18,25 /
T3 | 15,27 | 17,26 [19,25 /
x4 | 16,27 | 18,26 [20,25 /
zs | 17,27 | 19,26 [21,25 /|
T16 | 18,27 | 20,26 22,25/
z17 | 19,27 | 21,26 23,25/
z18 | 2027 | 22,26 | 24,25 /
z10 | 21,27 | 23,26 [25,25 /
zo0 | 22,27 | 24,26 26,25 /
xo1 | 23,27 | 25,26 [27,25/
T2 24,27 | 26,26 | 28,25 /
To3 | 25,27 | 27,26
T4 26,27 28,26
25 27,27
X926 28,27
To7
Z28

TOP ARRAY

Py i Py Py
b1
by
bs 2,1
by 3,1
bs 4,1 3,2
be 5,1 4,2
b7 6,1 5,2 4,3
bs 7,1 6,2 5,3
bg 8,1 7,2 6,3
b1o 9,1 8,2. 7,3
b1 10,1 9,2 8,3
b1o 11,1 10,2 9,3
bis 12,1 11,2 10,3
b14 13,1 12,2 11,3
bis 14,1 13,2 12,3
bie 15,1 14,2 13,3
b17 16,1 15,2 14,3
bis 17,1 16,2 15,3
b1o 18,1 17.2 16,3
ba2o 19,1 18,2 17,3
ba1 20,1 19,2 18,3
bao 21,1 20,2 19,3
bos 22,1 21,2 20,3
bog 23,1 22,2 21,3
bas 24,1 23,2 22,3
bas 25,1 24,2 23,3
ba7 26,1 25,2 24.3
basg 27,1 26,2 25,3
28,1 27,2 26,3
28,2 27,3
28,3

Figure 4: Execution Trace for a Toeplitz Problem of Or-
der n = 28 and Inverse of Bandwidth p = 4 on the Array of

Figure 1(b).

24

top array, and the indices of r and s in Step 1, and f and g in Step 3 are displayed in the bottom
array.

Step 1 : The matrix elements a;, 0 < ¢ < p — 1, are input to processor P; of the bottom array at
the beginning of cycle t = 2+ 1. 7;; and s;; are computed in processor P, of the bottom array
during cycle ¢ = 7, where 7 and 7 are given by

(1)=0 1))+ ()

Using non-restoring division, the computation of p; and the evaluation of r;41; are performed
simultaneously during cycle ¢ = 25 + 1 in processor P;;;. Moreover, since p; is determined bit by
bit, each bit is sent as soon as determined from processor Pjy; to processor P]’- +1 in the top array,
so computations using p; can be performed in PJ’ 41 already during cycle ¢ = 25 + 1.

7i,;j is stored in processor Pj4; during cycle t = ¢ + j + 1 and moved to processor Pjyo to-bes
available for cycle t = 1 + 5 + 2, while s; ; is immediately sent to processor Pj;2 to be available for
cyclet =1+ 3+ 1. pj and 7j41,5, 1 < j < p, are stored in processor Pj4; to be used in Step 3.

Step 2 : The elements b; of the right-hand side vector are input to processor P| in the top array
at the beginning of cycle t =4+ 1. y; ; and z; j are determined in processor P, during cycle t =7,

e ()-(D) G)+(2):

In particular, y;4+1,5, 0 < 7 < p— 1, is computed in processor PJ"+1 during cycle ¢t = 25 + 1,
and travels to Pj4; via I’J'-+2,. .. ,P,ﬁ,Pp,. .., Pj42, using one time cycle to proceed through each
processor. ¥ip—1, p < ¢ < n, is computed in processor P1; during cycle ¢t = ¢+ p— 1 and sent directly
down to P,.

Step 3 : During cycle ¢ = 3p — j, processor P; of the bottom array performs a division to scale
Yj,j-1, i.€., to determine the initial value for Step 3, fjn—j, 1 < j < p (the division is indicated
through a ¢/> in Figure 4, and the associated indices are those for f). Using the non-restoring
division algorithm, f;,—; is determined in a bit-by-bit fashion. Thus, during the same cycle and
in the same processor one manages to compute not only f;,_;, hence fj,_jt1 = fjn—; (since
gj+1,n-j = 0), but also g; n_j41 = —pj—1fjn-j. Similarly, during cycle t =p+ 7, p < j < n, the
initial value f; n—p, and the pair (fjn—p+1, gj,n—p+1), are computed simultaneously in processor P,.
fi,j and g;; are determined in processor Py of the bottom array during cycle ¢ = 7, where

()= 2) ()= (587,

z; is determined in processor P of the bottom array during cycle ¢ = 3p+1¢—1 as the sum of f; 1
and gi+1,n-1-

7.2. Discussion

When the algorithm is consecutively applied to two different problems, see Figure 5(a), com-
putation of the second problem (primed quantities) cannot be started before the first problem is
completely solved, resulting in a period identical to the latency, that is, n 4 3p. This inefficiency is
due to opposite directions of data flow in the bottom array during Steps 1 and 3. Reduction of the
period to n+ p can be accomplished by following the approach of Section 6 and reversing the data
flow of Step 3, so that data flow has the same direction for all three steps. Bi-directional data links
are now avoided but extra control and storage elements per processor are required. For instance,

25

2

n+ 3p

(a) Sequencing Different Problems, Period n + 3p

2 / 2 /

j / 3 / / 3/
1,

n+p 2n + 2p

(b) Sequencing Different Problems, Period n + p
2a / 2b /
j / 3/ 3/
n 2n 3n
(c) Sequencing Several Righthand Sides, Period n
2 / o / - /
% 3/ 3/ 3
1 17 1” 1”’
n 2n 3n

(d) Sequencing Different Problems, Period n

Figure 5: Processor Activity Charts.
26

pj—1 and r; ;1 have to move from processor P; to processor Pp_j4+1 between Steps 1 and 3, and
beside retaining p;_; and r; ;_;, processor P; also has to accommodate p,_; and rp_j41,p—;. The
according activity pattern is depicted in Figure 5(b). Moreover, the slightly modified architecture,
with uni-directional data flow, permits the reduction to n of the period for the solution of Axy = by
for several right-hand sides bg.

The last activity chart suggests an even more efficient way of solving different problems in
sequence, cf. Figure 5(d) (to be compared to Figure 5(b)). The reduced period is now essentially
equal to the problem size, n, instead of n + 3p or n + p as in Figures 5(a) and (b). Even though
control and storage increase again, the number of memory locations per processor is still small and
independent of n and p.

Note that in the inverse banded case, as opposed to the full dense case in Section 6, it is
possible to start Step 3 before the end of Step 2 : Step 3 can commence roughly 2p steps into
computation of Step 2. Hence, for n > p, Steps 2 and 3 take place practically in parallel. This
property is specific to the inverse banded case; if instead the matrix A had bandwidthsp; a directs
method based on a Cholesky factorization of A would not allow overlapping of forward elimination
and backsubstitution. Observe that the algorithm of Section 5 exploits the banded structure of
A and solves the system in time O(n) on O(p) processors. Moreover, this algorithm only requires
storage of the n parameters p; rather than storage of the Cholesky factor, which amounts to np.

Acknowledgement

We are grateful to Professor Martin Morf for having suggested the approach presented in this
paper.

27

References

(1] Ahmed, H.M., Delosme, J.-M. and Morf, M., Highly Concurrent Computing Structures for
Matriz Arithmetic and Signal Processing, IEEE Computer, 15 (1982), pp. 65-82.

[2] Barrett, W. W., Toeplitz Matrices with Banded Inverses, Linear Algebra Appl., 57 (1984), pp.
131-45.

[3] Brent, R.P., Kung, H.T. and Luk, F.T., Some Linear-Time Algorithms for Systolic Arrays,

' Proc. IFIP 9th World Computer Congress, North Holland, Amsterdam, 1983, pp.
865-76.

[4] Brent, R.P. and Luk, F.T., 4 Systolic Array for the Linear-Time Solution of Toeplitz Systems
of Equations, J. VLSI and Computer Systems, 1 (1983), pp. 1-22.

[5] Bultheel, A., Toward an Error Analysis of Fast Toeplitz Factorisation, Technical Report TW
44, Applied Mathematic and Programming Division, Katholieke Universiteit Leuven,
Belgium, 1979.

[6] ————, Error Analysis of Incoming and Outgoing Schemes for the Trigonometric Moment
Problem, Proc. Conf. Padé Approzimation and its Applications, Lecture Notes in
Mathematics, No. 888, Springer Verlag, 1980, pp. 100-9.

[7] Cybenko, G., The Numerical Stability of the Levinson-Durbin Algorithm for Toeplitz Systems
of Equations, SIAM J. Sci. Stat. Comp., 1 (1980), pp. 303-19.

[8] Delosme, J.-M., Algorithms for Finite Shift-Rank Processes, Ph.D. Thesis, Dept of Electrical
Engineering, Stanford University, 1982.

[9] Delosme, J.-M. and Ipsen, I.C.F., Efficient Systolic Arrays for the Solution of Toeplitz Sys-
tems : An Illustration of a Methodology for the Construction of Systolic Architectures
in VLSI, Research Report 370, Dept. of Computer Science, Yale University, 1985.

[10] Delsarte, P., Genin, Y. and Kamp, Y., Schur Parametrization of Positive Definite Block-Toeplitz
Systems, SIAM J. Appl. Math., 36 (1979), pp. 34-46.

[11] ———, A Method of Matriz Inverse Triangular Decomposition, Based on Contiguous Prin-
cipal Submatrices, J. Lin. Alg. Appl., 31 (1980), pp..199-212.

[12] Golub, G.H. and van Loan, C.F., Matriz Computations, The Johns Hopkins Press, Baltimore,
MD, 1983.

[13] Kung, S.-Y. and Hu, Y.H., Fast and Parallel Algorithms for Solving Toeplitz Systems, Proc.
Int. Symposium on Mini and Micro Computers in Control and Measurement, 1981,
pp. 163-8.

[14] ———, A Highly Concurrent Algorithm and Pipelined Architecture for Solving Toeplitz Sys-
tems, IEEE Trans. Acoustics, Speech, and Signal Processing, ASSP-21 (1983), pp.
66-76.

[15] Kung, H.T. and Leiserson, C.E., Systolic Arrays (for VLSI), Sparse Matriz Proceedings; STAM;
Philadelphia, PA, 1978, pp. 256-82.

[16] Levinson, N., The Wiener RMS (Root-Mean-Square) Error Criterion in Filter Design and
Prediction, J. Math. Phys., 25 (1947), pp. 261-78.

[17] Morf, M. and Delosme, J.-M., Matrix Decompositions and Inversions via Elementary Signature-
Orthogonal Transformations, Proc. Int. Symposium on Mini and Micro Computers in
Control and Measurement, 1981.

[18] Nash, J.G., Hansen, S. and Nudd, G.R., VLSI Processor Array for Matrix Manipulation, CMU
Conference on VLSI Systems and Computations, Computer Science Press, 1981, pp.
367-73. :

[19] Nash, J.G., Nudd, G.R. and Hansen, S., Concurrent VLSI Architectures for Toeplitz Linear
Systems Solution, Government Microcircuit Applications Conference, 1982.

28

[20] Waser, S. and Flynn, M.J., Introduction to Arithmetic for Digital Systems Designers, Holt,
Rinehart and Winston, New York, 1982.

29

