Yale University
Department of Computer Science

Routing Multiple Paths in Hypercubes
David S. Greenberg Sandeep N. Bhatt*

Department of Computer Science
Yale University
New Haven, CT 06510

YALEU/DCS/TR-768

*Currently visiting the Computer Science Department, 256-80 California Institute of Technol-
ogy, Pasadena, CA 91125.

Abstract

We present new techniques for mapping computations onto hypercubes. Our
methods speed up classical implementations of grid and tree communications
by a factor of ©(n), where n is the number of hypercube dimensions. The
speed-ups are the best possible.

We obtain these speed-ups by mapping each edge of the guest graph onto
short, edge-disjoint paths in the hypercube. These multiple-path embeddings
can be used to reduce communication time for large grid-based scientific com-
putations, to increase tolerance to link faults, and for fast routing of large
messages.

We also develop a general technique for deriving multiple-path embeddings
from multiple-copy embeddings. Multiple-copy embeddings are one-to-one
maps of independent copies of the guest graph within the hypercube. We
present an efficient multiple-copy embedding of the cube-connected-cycles net-
work within the hypercube. This embedding is used to derive efficient multiple—
path embeddings of trees and butterfly networks in hypercubes.

Key words: Graph embedding, hypercube, multi-dimensional grids, binary
trees, FFT, multiple-path embedding, multiple-copy embedding.

1 Introduction

Standard embeddings [5, 7, 11, 12] of computational structures into hypercube net-
works [13, 25] suffer one weakness: they use only a tiny fraction of the available
communication links. We present techniques to utilize all the communication links at
every step. Besides speeding up the transfer of large amounts of data, our techniques
can also be used to incorporate fault-tolerant transmission schemes and to facilitate
bit-serial, wormhole routing [1].

Consider the classical binary reflected gray code mapping of cycles in hypercubes.
Each edge of a directed cycle is mapped to a unique hypercube link. Of the n directed
links out of each hypercube node, exactly one is used, and the remaining n — 1 are
idle. If each node is to send m packets to its successor along the cycle then m/2
communication steps are necessary (see Section 2).

We present new techniques to reduce the communication time to ©(m/n). The
resulting ©(n) speedup over classical techniques is the best asymptotically possible.
Our techniques also speed up communication for multi-dimensional grids, FFTs, and

binary trees. These structures arise frequently in scientific and signal processing
applications.

Our main technical tool is the notion of a multiple-path embedding, one which
maps each edge of the computation graph onto edge-disjoint paths in the connection
network. The multiple paths can be used to increase the effective throughput. Alter-
natively, if communication links are unreliable multiple paths can be used to increase
fault-tolerance. For example, Rabin’s IDA scheme [22] can be implemented along the
independent paths.

Multiple-path embeddings also lend insight into the assembly of large systems.
The assembly of large systems is severely constrained by the number of pin connec-
tions available per node (chip or board). With W pins per node, there is a simple
tradeoff in the choice of network between the number of communication channels
and their width. For example, N nodes may be interconnected as a hypercube with
O(N log N) channels, each of width O(W/log N). Alternatively, they may be con-
nected as a two-dimensional grid with O(N) channels, each of width O(W). This
constant pinout model is analogous for multi-chip assemblies to the constant wire-
density model of Dally and Seitz [9] for networks laid out on a single chip or wafer.

One might suspect that a network designed for one particular communication
pattern would outperform a more general interconnection using narrower channels.
Our multiple-path embedding results show that this need not be true; the narrow
hypercube can simulate the wide grid with O(1) slowdown (assuming unit delay on
all wires). At the same time the narrow hypercube retains the flexibility to service
low diameter patterns such as binary trees or FFTs considerably faster than the wide
grid.

We also investigate two other methods of using the hypercube edges efficiently,
multiple-copy embeddings and large-copy embeddings. In a multiple-copy embedding
several independent copies of a computation graph are embedded one-to-one into
the hypercube. Both Ho and Johnsson [14] and Stout and Wager [26] have studied
multiple-copy embeddings of the spanning binomial tree. We present multiple-copy
embeddings of cube-connected cycles (CCCs) and FFTs. We then develop a general
method for transforming a multiple-copy embedding of one graph into a multiple-
path embedding of another.

The remainder of this paper is organized as follows. Section 2 illustrates one use
of multiple-path embeddings. Section 3 reviews basic definitions. Section 4 presents
multiple-path embeddings of grids. Multiple-copy embeddings of CCC networks are

given in Section 5. Section 6 derives a general framework for converting multiple—copy
embeddings into multiple-path embeddings. The general framework is used to create
multiple-path embeddings of complete-binary trees. Section 7 explores applications of
the general technique to bit-serial routing. Section 8 discusses large-copy embeddings
and compares multiple—path, multiple-copy, and large—copy embeddings. Section 9
concludes with some unresolved problems.

2 An Illustration

Figure 1 shows the classical binary reflected gray code embedding of the directed
cycle in the hypercube. The label on an edge (u,v) corresponds to the dimension of
the image of (u,v) in the hypercube. In one step the image of u can send one packet
to the image of v along the image of (u,v). However, when u has m packets to send,
they must be sent sequentially, requiring m steps. A more efficient method would
use the idle edges incident to the image of u to allow packets to be sent concurrently
along multiple paths.

Figure 1: The binary reflected graycode embedding

Unfortunately, with the classical gray code the idle edges cannot be employed to
speed up transmission. To see this, consider the total number of packets whose paths
must cross dimension 0, the most frequently used dimension. There are m2"~! such
packets, but only 2" directed edges in dimension 0. Since only one packet can cross
an edge in one step, m/2 steps are necessary.

Section 4 gives an embedding which allows n/2 packets from each node to be sent
in just 3 steps. To avoid congestion our embedding uses all dimensions uniformly
and, furthermore, maps each cycle edge to n/2 edge-disjoint paths of length 3. Thus
with m packets per node, our strategy requires ©(m/n) steps, the best achievable.
In fact, by mapping a cycle of length 2"*! optimal throughput is achieved.

Grid relaxation methods for solving differential equations can be speeded by us-
ing multiple-path embeddings. Consider a large two-dimensional grid relaxation per-
formed on a hypercube. Suppose that the grid has dimensions M x M while the
hypercube has N* < M? nodes. The grid is partioned into M/N x M/N subgrids,
with one subgrid mapped to each hypercube node. This evenly balances the load
and minimizes the total communication. Each node has to communicate M/N pack-
ets from the perimeter of its subgrid to each of the four nodes containing adjacent
subgrids.

The multiple-path embedding guarantees that the communication in each relax-
ation step can be performed in ©(M/(N log N)) steps, instead of the ©(M/N) steps
required by the traditional gray code methods.

3 Preliminaries

This section presents basic definitions used in the remainder of this paper.

Graph Embeddings

An embedding of a guest graph, G = (V, E), into another graph, the host graph,
H = (W, F), is a one-to-one mapping n : V — W along with a map u which assigns
each edge (u,v) € E to a path in H from n(u) to n(v). When |V| > |W| we allow
many-to-one mappings, but restrict the mapping so that each host vertex is the image
of no more than [|V|/|W|] guest vertices. The quantity [|V|/|W]] is called the load
of the embedding.

The dilation of an edge e € E is the length of the path u(e), and the dilation of
an embedding is the maximum dilation of any edge in G.

The congestion of an edge f € F equals the number of edges in G whose images
contain f. The congestion of an embedding is the maximum congestion of any edge
in H.

Throughout this paper the host graph models a parallel computer — its vertices
represent the processors and its edges represent communication links between pro-
cessors. Similarly a guest graph represents a parallel computation — its vertices
represent processes and its edges connect processes which must communicate. We
assume that the guest, or communication, graph does not change over time. In one
phase of the computation each process sends a message to each of its neighbors in

4

the communication graph. Furthermore, during one time unit in the network, each
processor can send one message packet over each outgoing link.

The one-packet cost of an embedding of G into H is the number of time units
necessary for H to complete one phase of G when each message contains one packet.
It is easily seen that the cost is no less than the maximum of the dilation and the
congestion. Similarly, the one-packet cost is no greater than the product of the
dilation and the congestion. Leighton, Maggs, and Rao [19] show that the one-packet
cost can be reduced to no more than a constant factor times the sum of the dilation
and the congestion.

The p-packet cost of an embedding of G into H is the number of time units
necessary for H to complete one phase of G in which each message contains p packets.
When packets can be pipelined along the paths in H or if there are multiple paths in
H per edge of G then the p-packet cost can be less than p times the one-packet cost.

Multiple-copy embeddings

A k-copy embedding of G into H is a collection of k one-to-one embeddings of G into
H. Since each embedding is one-to-one, each node of H can host up to k nodes,
one from each copy of G. The congestion of an edge f € H in a k-copy embedding
equals the sum, over all embeddings, of the congestion on f. The edge-congestion of
a k—copy embedding is the maximum congestion on any edge in H.

Multiple—-path embeddings

A width-w embedding of G into H is a one-to-one embedding in which each edge of
G is mapped to w edge-disjoint paths in H. The congestion of an edge f € H equals
the number of edges e € G, one of whose image paths contains f. The congestion of
the embedding equals the maximum congestion among all edges in H.

Boolean Hypercubes and Graycodes

The k-dimension hypercube, Qy, consists of 2% nodes with distinct k-bit addresses.
There is a directed edge (u,v) if and only if the addresses of u and v differ in exactly
one bit position. An edge between two nodes that differ in the ith bit is said to lie in

the :th dimension.*

The binary reflected graycode transition sequence, Gj, is defined as G = 0 and
Giy1 = Gioi0oGY, 0 < ¢ < k. Further, define Gt = G} 0ok — 1 and let Gi(j) denote
the jth element of G, 0 < j < 2. (Here o represents sequence concatenation.)

We let H; denote the following sequence of nodes of Q: H(0) = 0%, and H(: +
1) is the neighbor of Hy(t) across dimension Gi(i). It is well-known that Hj is a
hamiltonian cycle [24].

Cross Products

The cross-product of two graphs G = (V,E) and H = (W, F) is denoted G x
H and consists of vertex set V. x W = {{v,w) | v € V,w € W} and edge set
{({0, 01, (v,02)) [v € V, w1 € Wy, € WU {((tn,), (03,) |01 € V,z € Vyw €
W}. By analogy with multiplication, the graphs G and H are referred to as factors
of G x H.

The cross-product of the length L path (resp. cycle) and the length W path (resp.
cycle) is the L x W grid (resp. torus). Similarly, the cross product @, X @, is equal

to Qn+m .

3.1 Multiple-Copy Embeddings of Cycles in Hypercubes

Hypercubes can be decomposed into edge-disjoint hamiltonian cycles (see [3] for a
survey). In particular, Alspach, Bermond, and Sotteau [3] show that the edges of every
(undirected) hypercube with 2n dimensions can be partitioned into n (undirected)
hamiltonian cycles. Furthermore, if the number of dimensions is 2n + 1, then the
edges can be partitioned into n cycles and one perfect matching.

These results are easily extended into multiple-copy embeddings of directed cycles
in directed hypercubes. For an n-dimensional cube, we orient each of the |n/2]
undirected cycles in either direction to obtain the following lemma. When n is odd
it is not, in general, possible to partition @, into n directed cycles.

Lemma 1 For n even (odd), n (n — 1) copies of the 2"-node directed cycle can be
embedded into Q, with dilation 1 and congestion 1.

*We define the hypercube as a directed graph, thus each communication link is modeled as a
directed edge.

3.2 Moments

We now introduce the notion of the moment of a node in the hypercube. The moment
of a node in @, is an logn-bit label which has the property that all the neighbors
of a node have distinct labels. This simple property underlies all the multiple-path
embeddings presented in this paper. In the following, b(z), 0 < z < n denotes the
log n-bit binary representation of the number z. Also, @ denotes the bitwise xor of
log n—bit numbers.

Definition 1 The moment of an n-bit number v = v,_1,Vn_2,...,v0 is defined by

M(0) = b(0) and M(v) = oo b(i).
Lemma 2 FEach hypercube neighbor of a given node, u, has a distinct moment.

Proof: Let v and w be the neighbors of u in dimension ¢ and j. Then M(v) =

M(u) @ b(i) £ M(x) ® b(j) = M(w)

4 Multiple-path Embeddings of Grids

In this section we show that grids have efficient multiple-path embeddings in hyper-
cubes. We present the technique for cycles; the extension to multi-dimensional grids
is noted at the end of the section.

4.1 Multiple path embeddings of cycles

We present two multiple-path embeddings of cycles. The first embedding maps the
2"-node cycle into Q,, with load 1, width |n/2] and cost 3. Roughly speaking, half of
all hypercube edges transmit a packet at each of the 3 steps. The second embedding
attempts to keep all hypercube edges busy at each step; it maps the 2"*!-node cycle
into @, with load 2, width |n/2|, and cost 3.

A key idea in both multiple-path embeddings of cycles will be the conversion of
the multiple-copy embedding of Lemma 1 into a multiple-path embedding. In Section
6 this idea will be generalized to allow the construction of additional multiple-path
embeddings.

4.2 Embedding Cycles with Load 1

Theorem 1 The length-2" directed cycle can be embedded in Q, with width |n/2]
and [n/2]-packet cost 3.

Proof: Suppose that n = 4k +r, 0 < r < 4, k > 0.t Thus for r = 0,1 we have
|n/2] = 2k and for r = 2,3 we have |n/2]| = 2k + 1.

First we partition @, as the product Q2r X Q2x4-. The product can be visualized
as a grid with 22* rows and 2%**" columns. Each row is connected as Q14 and each
column is connected as Q2x. The most significant 2k bits of the addresses in @, name
a grid row while the least significant 2k + r bits name a grid column.

Furthermore we partition the columns into 2" blocks by letting the least significant
r bits of the column name be the name of a block and the most significant 2k bits
be the name of a position within a block. Note that within each block each row and
column is connected as @,x. Thus if each column is treated as a coarse node it has
2k neighboring columns within the block. (See Figure 2)

Row name Column name
Position | Block
2k bits 2k bits r bits

Figure 2: Dividing addresses into three fields

Next we number the k edge-disjoint undirected cycles and the 2k edge-disjoint
directed cycles of Q2 provided by Lemma 1. The undirected cycles are numbered
arbitrarily. Then for 0 < ¢ < k let directed cycle 2i be the :th undirected cycle
oriented in one direction and directed cycle 2i + 1 be the 7th undirected cycle oriented
in the other direction.

Now we can choose a special cycle within the subcube associated with each column.
For column c at position z in block b we select the edge-disjoint directed cycle number
M(z)} as the special cycle. Observe that each node of @, lies in exactly one special
cycle, and we have selected 22*+" special cycles.

We now use these special cycles, plus a few edges in the rows to form our length-
2" cycle, C. (See Figure 3.) The cycle C consists of 28 — 1 consecutive edges from

tk = 0 is trivial
{Recall that M(z) denotes the moment of z.

each special cycle and 2%+ row edges; each row edge connects one column’s special
cycle to the special cycle in the next column. The order in which C visits columns is
specified by the gray code Gai,, defined in Section 3.

Block
Position: 0 1
Moment:0 0

Block

oo O—0O—"C0C——=0
=2 O . O—0O0—0
e O—0O—0—0

@
@
@
9
3
1

=" O . O—0O0—0

O

Figure 3: Forming the length-2" cycle, C, from column special cycles

Formally, the first vertex of C is the hypercube node at row 0 of column 0. The
first 28 — 1 edges of C follow the special cycle in column 0 (until the special cycle is
about to return to row 0). The next edge of C is the row edge in the first dimension of
Gok+4r. In the new column reached, and each successive column thereafter, C follows
2F —1 edges of the special cycle and then leaves via the row edge in the next dimension
listed in Ga4-. Upon returning to column 0 the cycle C is complete.

By construction the dimensions of Gy, will cause C to visit all 22*7 columns
exactly once and the traversal of special cycles will ensure that each node in each
column is visited once. It remains to show that when C returns to column 0 it is in
row 0.

Starting with column 0 group the columns, in the order they were visited, into
sets of four. Between columns within each set the dimensions specified by Ggry, for
row edges are always 0, 1, and 0. Thus within each set the moments of the first two
columns are the same (@0 = z) as are the moments of the last two. Furthermore the

cycle associated with the moment of the first two columns is the reverse orientation
of the cycle associated the moment of the last two. (The names of the cycles were
chosen so that names differing in the least significant bit corresponded to opposite
orientations of the same undirected cycle.) Thus the path taken by C in the first
two columns is reversed in the next two columns thereby returning C to row 0. Since
the number of columns is divisible by four C must end in row 0 after visiting all the
columns.

We are now ready to make the edges of C wide. Our main tool will be the
following observation about the special cycles. Consider column ¢ in block b, and its
2k neighboring columns within block . By Lemma 2 each neighbor has a distinct
moment and thus a distinct special cycle. Therefore when the special cycles of all
the neighbors are projected onto column c their images are edge disjoint. We use
this property by replacing each special edge with length-three paths which cross into
neighboring columns, follow the projection of the edge in the neighboring column,
and then cross back into the original column. (See Figure 4.)

Figure 4: The length-three paths

Formally, we choose the first 2k edge-disjoint paths for edge (u,v) along a special
cycle (suppose u and v differ in dimension ¢, 2k + r < i < 4k + r) as follows. The
Jth path, 0 < j < 2k, from u to v is of the form u,u @ 2™, u @ 2™+ @ 2¢, v. In other
words the jth path crosses into the column adjacent via the edge in dimension r + j
(one of the dimensions used within block row subcubes), crosses the ith dimension
while remaining in this new column, and then crosses back to its original column via

10

an edge in dimension r + j.

We add a 2k + 1st path of length one which goes directly from u to v via the edge
in dimension .

For the edges in the rows we similarly pick 2k + 1 edge-disjoint paths. The
first 2k paths for row edge (u,v) (where the dimension i between u and v is now
such that 0 < i < 2k 4 r) are chosen so that path j, 0 < j < 2k, is of the form
u,u @ 22k+7+5 y @ 2247+ @ 2¢ v, Again we add a 2k + 1st path which goes directly
across dimension z.

We claim that this multiple-path embedding of the special cycles has cost 3. First
observe that each first edge of the paths corresponding to a single edge of C is in
a different dimension. Thus all first edges emanating from each node are disjoint.
Similarly, the set of final edges is also disjoint. Next, we argue that the middle edges
are disjoint from one another.

All the middle edges of paths for column edges are projections of special cycle
edges onto neighboring columns within a block. But, as we observed earlier, the
projections of all special cycles onto any column are edge-disjoint. Therefore these
middle edges are disjoint from one another. The middle edges of paths for row edges
are projections into neighboring rows and thus disjoint from the column path’s middle
edges. Furthermore each row edge in C, and all its projections, connects a unique
pair of columns and thus its projections are disjoint from those of any other row edge
in C. Thus all the middle edges of all the paths are disjoint.

Thus a packet may be sent along all paths including the direct path on step one
and forwarded along all the length-three paths on steps two and three. Furthermore
an additional packet can be sent along the direct path on step three. Thus the
embedding yields (2k + 2)-packet cost 3 which is always better than that required by
the theorem.ll

Since this first embedding only uses only about half the hypercube edges a natural
question is whether the idle edges can also be put to use. We do not know how to
do so by increasing the width. However, by increasing the load to two and thereby
doubling the number of guest (cycle) edges the embedding in the next section uses
nearly all the hypercube edges.

11

4.3 Load 2 Embeddings which Fully Utilize the Hypercube
Links

Theorem 2 The length-2"t! directed cycle can be embedded in Q, with width w(n)
and w(n)-packet cost c(n), where:

For n=0,1 (mod 4) w(n) = [n/2] and ¢(n) =3.
For n=2,3 (mod 4) w(n)=|n/2] —1 and ¢(n)=3, or
w(n) = |n/2] and ¢(n) =4.

Proof: Of the four cases, n =3 (mod 4) requires the most general argument. Thus
we start with a proof for the case n = 4k + 3, w(n) = |n/2] — 1, and ¢(n) = 3. The
remaining (simpler) cases will be discussed at the end.

As in the proof of Theorem 1 partition @, as the product Q2 X Q2k43, by dividing
the address of each node into two parts. Also partition the 22¥*3 columns into eight
blocks by letting the least significant three bits of the column name be the name of a
block and the the most significant 2k bits be the name of a position within a block.

The product can be visualized as a 2% by 2%%*3 grid of nodes with each row
connected as Q2x+3 and each column connected as Qqx. The most significant 2k bits
of the addresses in @), name a grid row, the next 2k bits name a grid column’s position
within a block and the least significant 3 bits name the column’s block. The rows
and columns within a block each form a subcube of dimension 2k as do the columns
when considered as coarse nodes.

We number 2k of the edge-disjoint directed cycles of both Q. and Q43 arbi-
trarily. Within each column in position z we choose cycle M(z) of Q2 as the special
cycle while in row r we choose cycle M(r) of Q2k4+3. Thus each node of @, is on two
special cycles and the subgraph of @, induced by the special cycles spans Q,, and has
indegree and outdegree equal to 2 at every node.

By choosing the Eulerian tour of the induced spanning graph as our length-2"+!
cycle we need only show that each edge of the special cycles can be given width w(n)
with cost ¢(n).

Each special cycle is given width 2k by choosing 2k edge-disjoint paths in the
following manner. If edge (u,v) is along a column special cycle (and thus u differs
from v in dimension i, 2k + 3 < ¢ < 4k + 3) then the jth path, 0 < j < 2k, from u
to v is of the form w,u @ 2%/, u @ 23%7 @ 2',v. On the other hand if edge (u,v) is
along a row cycle (and thus traverses dimension i, 0 < 7 < 2k + 3) then the jth path,

12

0 < j < 2k, from u to v is of the form u,u @ 23+2+7 y @ 23+2k+i @y 2¢ ». (Note that
we could not add the direct path as a 2k + 1st path because for columns edges the
direct edge is used by row paths and vice versa.)

We claim that this width-2k embedding of the special cycles has 2k-packet cost
3. Observe that the set of first edges on all the length 3 paths for column edges are
in dimensions less than 2k + 3 while the set of first edges on paths for row edges are
in dimensions greater than or equal to 2k + 3. Thus the first edges emanating from
each node, and therefore all the first edges, are disjoint. Similarly, the final edges are
also disjoint. Next, we argue that the middle edges are disjoint.

All the middle edges of paths for column edges are projections of special cycle
edges onto neighboring columns within a block. But, as we observed earlier, the
projections of all special cycles onto any column are edge-disjoint. Therefore these
middle edges are disjoint from one another. Similarly middle edges of paths for row
edges are projections onto neighboring rows and are disjoint. Since the row edges are
disjoint from the column edges all the middle edges are disjoint.

Since the sets of first, middle, and last edges are each disjoint packets can be sent
down each path in three steps without interference and the 2k-packet cost is indeed
3. Having concluded the proof for n = 4k + 3, w(n) = [n/2] — 1 = 2k, and ¢(n) = 3
we now sketch how for n = 4k + 3 to achieve w(n) = |n/2] = 2k + 1 with ¢(n) = 4
and then how to handle other values of n.

To obtain width |n/2] = 2k + 1 we partition Q443 into Q41 X Qary2. Since
every cycle must have width 2k+ 1, we must have 2k+1 special cycles within the rows
and the columns. The rows have 2k + 2 disjoint cycles, so any subset of 2k + 1 cycles
can be chosen as the special cycles. However, the columns have only 2k disjoint cycles
(by Lemma 1) so one cycle must be chosen twice as a special cycle. This adds one to
the congestion on middle edges, and to the cost as well. Therefore, the |n/2]-packet
cost is 4. (Note that if each node sent 2k batches of 2k + 1 packets and a different
edge-disjoint cycle were used twice in each batch then the 2k(2k + 1)-packet cost
would be 3(2k) + 1 and not 4(2k)).

The other cases for n are proved in almost identical manner. The cases n = 0,1
(mod 4) do not require a cycle to be used twice since |n/2] = 2k. In the case n = 2
(mod 4), cost 4 and width 2k + 1 is obtained by partitioning Q42 = Q2k+1 X Q2kq1-
The partition into Qak X Qak42 yields cost 3 and width 2k. When n = 0 (mod 4)
all the hypercube edges are in use during each of the 3 steps. I

13

4.4 Bounds on Width and Cost

We next show that the multiple-path embedding of Theorem 2 is the best possible
for the cases n =0,1 (mod 4).

Lemma 3 For w > 2, every width-w embedding requires dilation (and therefore p-
cost, p > w) at least 3. There is no p-packet cost 3 embeddings of length-2"*1 cycles
in Q, with p> |n/2].

Proof: In order to have w > 2 edge-disjoint paths between two distinct hypercube
nodes, one of the paths must have length 3 or greater. Therefore, for all width-w
embeddings, w > 2, the cost must be 3 or greater.

The number of edges traversed by all the paths in the embedding equals the sum,
over all edges, of their dilation. Since, to achieve cost 3, at least w—1 edges must have
dilation 3 this sum is greater than 2"*! x (w —1) x 3. On the other hand the number
of hypercube edges available during three steps is simply three times the number of
directed hypercube edges or 3n2™. Thus in order for the number of edges used to be
no greater than the number of edges available, we have that 6 - 2"(w — 1) < 3n2"
which implies that w < |n/2] 1

4.5 Multiple-path embeddings of grids

In Section 3 we mentioned that grids/tori are cross-products of paths/cycles and
that hypercubes are cross-products of smaller hypercubes. These two facts lead to a
natural technique for extending embeddings of paths into embeddings of grids. Each
axis of the grid is embedded in a hypercube via the cycle embedding and then the
cross-product of the hypercubes inherits the embeddings of the axes and thus an
embedding of the grid.

For example, when the k-dimensional grid with each side of length 2% is embedded
in Qg using the cross-product decomposition and the embedding of Theorem 1, we
obtain a width-|a/2| embedding with [a/2]-packet cost 3.

When the sides of the grid are equal, but not a power of 2, the cross-product
embedding may use the hypercube nodes inefficiently. For example the 5 by 5 grid
is the cross-product of two 5 node paths. Each 5 node path can be embedded in
an 8 node hypercube and the cross-product of two 8 node hypercubes is a 64 node

14

hypercube. Thus by embedding each axis into its own independent factor subcube
we obtain an embedding of the 5 by 5 grid into a 64 node hypercube. The 25 grid
nodes could, however, have fit in a 32 node hypercube. The ratio of the size of the
hypercube used to the size of the smallest hypercube at least as large as the guest
graph is often called the ezpansion. In the 5 x 5 grid example the expansion is 2; in
general cross-product decomposition can lead to expansion k + 1 for k-axis grids.

Corollary 1 The k-azis grid with all side lengths equal to L can be embedded in
Qknogr) with expansion k + 1, width |[log L]/2| and [[log L]/2]-packet cost 3.

Proof: : Embed each axis in Qpogz] via the embedding of Theorem 1 and use the
cross-product decomposition.l

For width-1 embeddings it has been shown that using gray codes for the paths
and applying the cross-product technique to k—axis grids causes expansion no greater
than k + 1. Chan [8] has shown that by abandoning the cross product approach and
increasing the dilation to O(k) the expansion can be reduced to one.

Unfortunately Chan’s techniques do not apply immediately to our multiple-path
embeddings. Thus we have no current alternative to the cross-product technique.

When the sides of the grid are not equal (more precisely when the ceiling of
the logarithm of their lengths are not equal) the multiple-path embeddings require
additional work. We cannot just embed each axis in a hypercube large enough to
hold it because the width of the embedding depends on the number of dimensions
in the host hypercube. If one axis of a grid were embedded to a smaller hypercube
than another axis then the width of edges on the first axis would be smaller than the
width for edges on the other.

In order to compensate for the need to have all sides of the k-axis grid be equal
we first square the grid; that is we map the k-axis grid with unequal sides onto a
k-axis grid with with equal sides. Alielunas and Rosenberg [2] show that two axis
grids can be squared with constant dilation and expansion and Kosaraju and Atallah
[18] extend this result to k-axis grids.

Combining the grid squaring with Corollary 1 gives us the following:

Corollary 2 The Ly x Ly ---x Ly grid can be embedded in Qi1 with width | [log L]/2],
O(1) ezpansion, and [[log L] /2] -packet cost O(1), where L = [(TT%, L:)*/*].

i=1

15

We leave to the reader the proof of Corollary 2 and to show that the embeddings
of Theorem 2 can be used to create load-2F embeddings of k-axis grids which more
fully use the edges of the hypercube.

5 Multiple—copy embeddings of Cube-Connected-
Cycles

We now turn from grids to the cube-connected-cycle network (CCC). In this section
we will assume that we are given a CCC and required to embed it in the smallest
hypercube having at least as many nodes as the CCC. Since the m-level CCC has
m2™ nodes by making the number of dimensions in the hypercube be m + [logm]
we achieve optimal expansion. In Section 6 we will be given Q,, and asked to embed
the largest CCC having no more than 2" nodes. When there exists m such that
n = m + [log m] then the expansion will again be optimal. When no such m exists
there will be an m with n — 1 = m + [logm]. Thus though a single CCC embedding
will have expansion 2 we can embed two CCCs, each in a separate copy of @n—_1, so
that each has optimal expansion within its subcube.

Our main result in this section, a multiple-copy embedding, is stated below. Note
that since the directed cube-connected-cycle has degree 2 the edge-congestion is op-
timal. The dilation is also optimal since when n is odd the cube-connected-cycle has
odd cycles and thus dilation 2 is necessary.

Theorem 3 n copies of the n2"-node directed cube-connected-cycles network can be
embedded in Qnynogn) with edge-congestion 2 and when n is even dilation 1 or when
n ts odd dilation 2.

Before we proceed with the proof we introduce a few definitions.

5.1 Terminology

Cube-connected-cycles networks [21]

The nodes of the n—stage directed CCC network are divided into n levels and 2™
columns. Each node has a distinct address (¢,¢), 0 < £ < n and 0 < ¢ < 2". The
edges are divided into two sets: the straight-edges S and cross-edges C. The sets S
and C are defined as follows.

16

S = {((f,c),(é-i-lmodn,c))|05e<n,05c§2"-1}
¢ = {(a oy ose<n o< -1}

The operator @ denotes bitwise exclusive-or. For 0 < £ < n, cross—edges between
two nodes at level £ and straight-edges between nodes at levels £ and (€+1) mod n are
called level £ edges. The n nodes in column c along with the straight—edges incident
to them form a length n directed cycle. The cross edges form pairs of oppositely
oriented directed edges.

Definition A window W C Z; is an ordered subset of the dimensions of the hy-
percube Q. For any node v in Qy, the signature ow(v) is the concatenation of the
address bits of v in the dimensions ordered by W. For example, the signature of node
01001 over the window W = {1,4,3} is 110, the bits in positions 1, 4, and 3.

Definition For any sequence a we denote the prefix of length ¢ by pi(a). For any
two sequences a and b, we define A(a,b) to equal the length of the longest common
prefix.

We recall that Hy is the hamiltonian cycle formed by starting at hypercube node
0% and crossing successively the dimensions listed in the binary reflected gray code
sequence Gf.

5.2 Embeddings of the CCC Network

Greenberg, Heath and Rosenberg [11] have shown that CCC networks can be embed-
ded efficiently within boolean hypercubes. In particular, they establish the following
result.

Lemma 4 [11] The n-level CCC with n2"™ nodes can be embedded in Qninogn) With
dilation 1 when n is even, and dilation 2 when n is odd.

In this subsection we describe the embedding of [11] in an abstract setting which
will be useful later. To embed the n-stage CCC into the hypercube Q4. (Where

17

r = [logn]),} first partition the (n + r) hypercube dimensions into two windows W
and W where |W|=r, [W|=n,and WNW = 0.

The CCC vertex (£, c) is mapped to the hypercube node with signature H,(¢) on
window W and signature ¢ on window W. A nice feature of this mapping is that
level-£ straight-edges are mapped to hypercube edges in dimension G,(£). Similarly,
level-£ cross-edges are mapped to hypercube edges in dimension W (¥).

Observe that the embedding is completely specified by the choice of a length—r
window W, a disjoint length-n window W, and a hamiltonian cycle H,. Recall that
windows are ordered sequences, so the choice of W does not completely specify W.

5.3 The Multiple—copy embedding

In order to embed n copies of the CCC network into Q,.,,, we specify, for each copy,
two disjoint windows and a hamiltonian cycle. In this subsection we show how to
make these choices such that the overall edge-congestion is at most 2. Since each
copy is embedded as described in the previous subsection, the dilation is 1 for each
embedding.

To show that naive choices are insufficient, we consider two extremes. First,
suppose that we choose the same partition of hypercube dimensions for all n copies.
In all n embeddings the straight-edges are mapped to the same set of r dimensions.
Consequently, the edge-congestion is at least n/r.

Next, suppose instead that each copy, ¢, 0 < i < n/r, uses a distinct set of
dimensions for its length-r window W;. The proof that there will again be congestion
n/r typifies the arguments throughout the rest of this section. We pick a dimension
and, among all copies, look at all the CCC vertices which use this dimension for their
cross—edge. If many of these CCC vertices are mapped onto the same hypercube node
then the congestion due to cross—edges is high.

Consider one of the r dimensions, call it d, not contained in any W;. In each copy,
edges in dimension d are images of cross—edges. Furthermore, for a given copy ¢, all
CCC vertices whose cross—edge is mapped to dimension d are at the same CCC level.
It is easily established that all the hypercube images of CCC vertices on one level
under embedding ¢ have the same signature, call it s;, on W;.

$For sake of convenience, we assume in the remainder of this section that n is a power of 2. For
other values of n, the congestion for multiple-copy embeddings is, at worst, doubled and some edges
suffer dilation 2.

18

Since the windows are disjoint there exists a hypercube node, v, for which Vi,
ow;(v) = si. Each copy maps a CCC vertex to v and the cross-edges emanating from
each of these n/r CCC vertices are all mapped to dimension d. The congestion on
dimension d edges is therefore n/r.

In the remainder of this section we present an n-copy embedding which avoids

such congestion. In particular, we establish that every hypercube edge is the image
of at most one CCC cross—edge.

Overlapping windows From the preceding discussion we know that the windows
must be chosen carefully to avoid high congestion. We construct the length-r windows
for the n copies as follows: all windows contain dimension 1; half of the windows
contain dimension 2 and the other half contain dimension 3; in general, of all the
windows that contain dimension i, half of them also contain dimension 2: and the
other half contain dimension 2: + 1.

Multiple embedding The length-r window and the length-n window for the kth
copy are denoted W* and W¥; the ith element of these are denoted W¥ (i) and W*(3).
Similarly, let H* denote the hamiltonian cycle for the kth copy, and let H*(z) be the
tth node on the cycle.

We define W*, W*, and H* (0 < k,£ < n,0 < i < logn) formally as follows.
(Again let @ b(k) denote bitwise xor with the log n—bit binary representation of k.)

Wk(O) = 1

W) = 284 pi(k)

ik ‘ if £ ¢ WF
Wil = {n+uogzj if £ € W
HF () = H.(0)® bk)

To show that the above defines n embeddings, we observe that Yk, W nW*F = §
and H* is a Hamiltonian cycle. We leave the reader to verify these and the following
observations.

19

Observations

The following properties of the embeddings will be useful later.

1. Vk, £ the kth embedding maps every CCC vertex at level £ to a hypercube node
whose signature on W* equals H*(¥).

2. Inthe kth embedding, level-¢ straight—edges are mapped to dimension W¥ (G, (£))
hypercube edges.

3. In the kth embedding, level-£ cross—edges are mapped to dimension Wk(f)
hypercube edges.

We will also use the following properties of prefixes.

4. For any two embeddings k; and ko: A(WF , WF) = A(ky, k;) + 1.

5. For any level ¢ and any two embeddings k; and k,:
M(H*R (0), H*2(£)) = MKy, k2).

6. For any two levels {4, £,:

AH (), H(8)) = \(fy, 65).

As mentioned earlier a frequent technique in the proof will be to identify all the
CCC vertices whose cross—edge (or straight-edge) is mapped to hypercube edges in
a particular dimension. We show that the congestion on hypercube edges in this
dimension is small by showing that no hypercube node can be the image of more
than one or two of these CCC vertices.

Observations 2 and 3 are especially useful in identifying groups of CCC vertices
whose images use the same hypercube dimension for cross—edges because they asso-
ciate CCC levels with the hypercube dimension to which the CCC edges are mapped.
For example, observation 3 and the definition of W* together show that all cross-
edges mapped to hypercube edges in dimension ¢, 0 < i < n, are at level :. Thus we
ask how many level-: CCC vertices can be mapped to a single hypercube node.

Lemma 5 For any level i, 0 < 1 < n, and any hypercube node v at most one of the
n embeddings defined above maps a level-i CCC vertez to v.

20

Proof: A dimension separates two sets of hypercube nodes if and only if the value
of the hypercube address bit corresponding to this dimension equals 1 for all the
nodes in one set and equals 0 for all the nodes in the other set. We show that for
any two embeddings there exists a dimension which separates the set of hypercube
images of level-: CCC vertices under one embedding from the set of images of level—:
vertices under the other embedding. Thus there is no hypercube node to which two
embeddings map level-: CCC vertices.

Given any two embeddings, k; and k,, call the images of level-: CCC vertices under
the two embeddings V; and V;, respectively. Observation 1 shows that H* () is the
signature on W* for all nodes in V; and that H*2(3) is the signature on W*2 for all
nodes in V. Observation 5 shows that H*: (:) and H*2(:) differ on their A(k;, k2) + 1st
bit. Furthermore Observation 4 shows that the hypercube dimension in position
M(k1, k3) + 1 is the same for both W and W¥:,

Thus this hypercube dimension in position A(k1, k2) + 1 of both length-r windows
separates V; and V; as desired. 1

Lemma 5 treated CCC vertices whose cross—edge is mapped to a hypercube di-
mension less than n. We next examine all CCC vertices whose cross—edge is mapped
to a dimension greater than n.

Lemma 6 For any j, 0 < j < r and hypercube node v at most one of the n embed-
dings maps to v a CCC vertex whose cross—edge is mapped to a dimension n+ j edge.

Proof: Similarly to the previous lemma let k; and k, be any two embeddings and
V1 be the set of hypercube nodes which are images of CCC vertices using dimension
n+j as cross—edges under embedding k; and V, be the images of CCC vertices using
dimension n+ j as cross—edges under embedding k,. We will show that the hypercube
dimension in position A(ky, k2) + 1 of both length—r windows again separates V; from
Va.

Let the levels at which dimension n + j is used for a cross-edge in the two em-
beddings be ¢; and ¢, respectively. When j = 0 and thus ¢; = £, = 1 we can apply
Lemma 5.

When j > 0 we observe from the definition of the embeddings that ¢, = 27+ p;i (k1)
and ¢ = 27 + p;(k;). From these representations we see that ¢; and £, share 07=7~11

21

as their first r — j bits and then A(k, k2) more bits from the prefixes of k; and k,.
Thus A(4y,£2) = r — j + A(k1, k2) and, since r > j, A(41,£2) > A(ky, k).

Applying Observation 6 to the last equation yields A(H,(¢;), H;(€2)) > A(ki1, k2).
Using the definition of H* to write H* = H, ® k; and H* = H, & k, we then
infer that A(H* (¢,), H*2(€2)) = A(ky, k2). Since A(ky, k) is the length of the longest
common prefix H*!(¢;) and H*2(£,) differ on their A(k;, k2) + 1st bit.

Now since by Observation 1, H* (¢;) and H*2(¢;) are the signatures on the length—
r windows of vertices in V; and V; respectively it follows that the hypercube dimension
in position A(ky, k;) + 1 of both length-r windows separates V; and V;. 1

Putting lemma 5 and lemma 6 together we show that the congestion on cross—
edges is small.

Lemma 7 The congestion due to cross—edges is at most 1, in dimension 1 the con-
gestion is 0.

Proof: The congestion in dimension 1 due to cross—edges is 0 since no cross—edges
are mapped to dimension 1 edges. For dimension 0 or dimension d, 2 < d < n,
Lemma 5 guarantees that at most one CCC vertex using dimension d is mapped to
any hypercube node. Similarly Lemma 6 guarantees that for d > n, at most one CCC
vertex using dimension d is mapped to any hypercube node. The single CCC vertex
mapped to a hypercube node using a given dimension for its cross—edge contributes
congestion of one. I

We next turn our attention to straight-edges. From observation 2 we know that
embedding k¥ maps level-£ straight-edges to hypercube dimension W*(G,(£)). From
the definition of G, we can invert this relation to determine which levels are mapped
to a given hypercube dimension. For example, dimension 1 is always the first element
in W¥ and thus always corresponds to the most significant bit in the gray code. Since
the most significant bit is used only at G,(n/2—1) and G,(n—1) we can conclude that
only straight-edges at level n/2 — 1 and n — 1 are mapped to dimension 1 hypercube
edges.

The remaining dimensions can be divided into r tiers: dimension 7 is in tier
t = |logi]. A tier t dimension will always correspond to bit ¢ in the gray code (with
msb = 0). A simple fact about reflected gray codes is that bit ¢ > 0 is used 2* times
and that for any two levels at which t is used there exists some bit ¢’ < t which is
used an odd number of times between these two levels.

22

Lemma 8 For any dimension ¢, 1 < i < n, and hypercube node v at most one of the
n embeddings maps to v a CCC vertex whose straight-edge is mapped to a dimension—
¢ hypercube edge. Furthermore no more than two embeddings map to v a CCC vertex
whose straight-edge is mapped to a dimension 1 edge.

Proof: Given two embeddings k; and k,, define V; to be the images of all CCC
vertices which use dimension ¢ for straight-edges under embedding k; and V; be
the images under embedding k,. If ¢ is in tier ¢ and both V; and V, are nonempty
then A(W* ,Wk) > t. (From the definition of W* if two embeddings have the
same dimension in position ¢ they must have the same dimension in all positions j,
0<j<t)

Since ¢ is in tier ¢ the nodes in V] and V, can only be the images of CCC vertices
in the 2¢ levels at which tier-t dimensions are used for straight edges. Partition the
nodes of V; and V; into subsets depending on the CCC level of their preimages. Thus
Wi,e, is the subset of Vj containing images of level-¢; CCC vertices and V4, is the
subset of V, containing images of level-£, CCC vertices. By separating each subset
of V; from every subset of V; we will show that V] is disjoint from V5.

Now let ¢; and ¢, be two levels at which tier-t dimensions are used for straight—
edges. If {; = {; then by Lemma 5 V;,, is separated from V,4,. On the other hand
if 1 # £, then because some bit ' < ¢ is used an odd number of times between the
two levels it follows that p;(H,(€1)) # p:(H,(¢2)). Since A(ki, k) > t we can use the
definition of H* to infer from the previous equation that p,(H* (1)) # pi(H*2(£,)).
Let 7 <t be one position where the two prefixes differ.

As in the previous lemmas we use Observation 1 to show that the signatures on
the length-r windows of nodes in Vi4, and V,4, are ‘H*(4;)) and H*2(£;)). Then
since A(W¥ ,WFk) > ¢t the dimension in position j of both windows separates V; ¢,
from V5, .

It is also easily verified that dimension 1 is used for straight-edges at level n/2—1
and n — 1 in each embedding. Thus by Lemma 5 at most one embedding for each
of these two levels can map to v a CCC vertex whose straight-edge is mapped to a
dimension 1 hypercube edge. 1

To complete the proof of Theorem 3 we note that edges in dimension 1 are never
used for cross-edges and are used at most twice for straight-edges while edges in
other dimensions are used at most once for straight-edges and once for cross—edges.
Thus the overall congestion of two is established.l

23

5.4 Extensions

If an undirected version of the CCC is desired the straight-edges directed toward the
lower level must also be included. By a variant of Lemma 8 these edges will contribute
an additional congestion of at most two increasing the total congestion to four.

A corollary of Theorem 3 is that every graph which is efficiently embeddable within
a CCC network has efficient multiple-copy embeddings within the hypercube. It is
easy to show that FFTs and Butterflies can be embedded in CCCs with dilation 2
and congestion 2. Thus they also have efficient multiple-copy embeddings into the
hypercube.

6 A General Technique

In this section we extend the techniques of Section 4 to a more general setting. In
particular, starting with an n—copy embedding of a directed graph G into Q, the
general technique produces a width-n embedding of 2"*! copies of G into Q3,. This
transformation has the property that if the cost of the multiple-copy embedding is
¢, and ¢ is the maximum outdegree of any vertex of G, then the n—packet cost of the
multiple-path embedding is ¢ + 24.

For example, in Section 4 we started with a multiple-copy embedding of cycles
and produced an embedding of 2"*! width-n cycles. The cost of the multiple-copy
embedding is 1, the outdegree of each vertex in a directed cycle is 1, and consequently
the n—packet cost of the multiple-path embedding is 3.

At the end of this section we will apply the general technique to the multiple-copy
embedding of the butterfly network. The resulting width-n graph has the property
that it yields a width-n embedding of the complete binary tree. In Section 7 we
discuss how the same width-n graph can also be used for fast bit-serial routing in a
manner similar to the ‘dilated’ butterflies of Aiello, Leighton, Maggs and Newman
[1].

We start with a generalization of the cross-product of two graphs to the cross-
product of two sets of graphs. Let R = {R; | ¢ € Zy} and C = {C; | i € Zx} be two
sets of graphs, such that each R;,C; has vertex set Zy.

The cross product of two sets R and C is the graph (V, E) where V = Zy x Zy,
and the edge set E is defined to be

24

E = {({i, 1), (i,42)) | i € Zn, (j1,52) € Ri} U{({in,), (12,4)) | (21,32) € Cj,j € Zn}

One can visualize the vertices as arranged in an N x N grid. The edges in E
connect rows and columns so that the subgraph induced by row i equals R; and the
subgraph induced by column j equals C;.

We pause for one remark regarding our terminology. We say that graph A =
(Zn, E) equals graph B = (Zn, F) if and only if E = F. That is, the graphs are equal
if and only if they are isomorphic under the identity mapping on vertices. In general,
isomorphic graphs need not be equal.

It is easy to see that if, for all ¢, R; equals G and C; equals H then the general-
ized cross product equals the standard cross product G x H. Note that this is not
necessarily true when “equals” is replaced by “is isomorphic to.”

In our use of the generalized cross product, the sets R and C will each contain
isomorphic copies of the same graph. Before we proceed, we need one more definition.
Let G = (Zn, F) be a graph and ¢ : Zy — Zy be an automorphism on Zy. Then
the graph G, is defined as the graph with vertex set Zy and edge set {(¢(u), ¢(v) |
(u,v) € E}. '

Now, consider an n—copy embedding of some graph G = (Zy, E) in Q,. Number
these copies 0 through n — 1. Each copy is an isomorphic image of G. In other words,
the ith copy defines an automorphism ¢; of Zy, such that ¢;(j) is the address of
vertex j in the hypercube under the :th copy.

Having fixed ¢;, 0 < i < n, let R; = C; = Gy,,,,, where M() is, of course, the
moment of the number :. Finally, define the induced cross product X(G) to be the
generalized cross product of the sets R and C.

Theorem 4 Let G be a graph with mazimum out degree §, and for which there is an
n-copy embedding in Q, with cost c. Then there ezists a width-n embedding of X(G)
into Q2, with n—packet cost c + 26.

Proof: The vertex embedding follows directly from the definition of X(G). First we
divide @5, into the cross product @, x @,. Next, as in the proofs of Theorem 1 and
2 we view the cross product as a grid with a copy of @, on each row and column.
The rows are named by the most significant n bits of their hypercube addresses and

25

the columns by the least significant n bits. Finally we embed R; in row ¢ and C; in
column j via the identity mapping.

Each edge of X(G) embedded in a row is given width n by replacing it with the
following n length-three paths. Suppose the edge is mapped to hypercube edge (z,y)
in dimension d, 0 < d < n. For 0 < k < n the kth path for (z,y) is z,z ® 2"**,z @
27tk @ 24 y. Intuitively it crosses into a neighboring row, follows the projection
of (z,y) in this neighboring row’s subcube, and then crosses back into the original
row. Similarly if an edge of X(G) is embedded in a column it is mapped to some
hypercube edge (u,v) in dimension n + d, 0 < d < n. The kth path for (u,v) is
u,u® 2, @2k @ontd y.

It remains to bound the cost of the embedding. We first note that together the
first edges of all the paths use each directed hypercube edge at most é times. (Each
hypercube node has at most é edges from R; in its row special image and uses each
directed edge in the column dimensions once for each such edge. The edges for the
C; place the same load on the row dimensions.) Similarly the final edges of all the
paths also use each directed hypercube edge at most § times.

To complete the proof we must show that the cost of the middle edges is bounded
by the cost of the n-copy embedding of G. Consider all the middle edges in a
particular row. They are each the projection of an edge of X(G) from a neighboring
row. Lemma 2 and the construction of X (G) guarantee that each neighboring row is
a different automorph of G. Furthermore the isomorphs of G were constructed so that
their combined projections formed the n—copy embedding of G in Q,. Thus together
all the middle edges in this row form the n—copy embedding and can be simulated with
cost c. Similarly the middle edges in each column also form an n—copy embedding.

Thus a simulation of the entire multiple-path embedding takes é steps to simulate
all first edges, ¢ steps to simulate all middle edges, and é steps to simulate all final
edges. 1

6.1 Complete Binary Trees

Theorem 5 For all m and n = m2™ the (2°® — 1)-vertex complete binary tree can
be embedded in Q2, with width n, O(1) n—packet cost, and O(1) load.

Proof: Section 5 shows that m copies of the butterfly can be embedded in Q,, with
O(1) cost. By repeating n — m copies twice the n—copy embedding with O(1) cost

26

required by Theorem 4 is achieved. When Theorem 4 is applied using this multiple-
copy embedding of the butterfly the result is a width-n embedding of a generalized
cross product of butterflies (call the product X') in Q,, with O(1) n—packet cost.

We next show that the 2n-level complete binary tree (CBT) can be embedded
in X with O(1) congestion, dilation, and load. Our main tool will be the fact that
the M—node CBT can be embedded in the M—node butterfly with O(1) congestion,
dilation, and load [4]. The embedding is simplified by the fact that the embedding in
[4] never maps two CBT leaves to the same butterfly node.

We start by embedding the top n levels of the CBT into Ry, the butterfly along
the top row of X. Each column of X receives at most one level-n CBT vertex. The
tree is then extended by treating each level-n vertex as the root of a n level CBT.
These subtrees are each embedded in the butterfly corresponding to the column of the
root. Since the leaf level of the row tree and the root level of the column trees is the
same we have an embedding of a (2n — 1)-level complete binary tree. We complete
the embedding by giving each leaf of a column tree two children in its row’s butterfly.
One child is mapped to the butterfly neighbor along the cross—edge and the other
along the straight-edge to the next higher butterfly level.

The mapping of the first n CBT levels has load equal to that of the embedding in
[4] since they correspond to a single CBT embedding. The next n — 1 levels have the
same load since each subtree is embedded in its own column butterfly. In addition
each hypercube may have two CBT leaf nodes mapped to it so the overall load is 2
plus the load due to the embedding of [4]. The edges of X’ are each used at most once
by the first 2n — 1 CBT levels and once by the last level. Thus the overall congestion
on the edges of X is at most twice the congestion of the CBT to butterfly embedding
of [4]. In sum, the n-packet cost and the load of the CBT to hypercube embedding
are both O(1). 1

When a multiple-path embedding of the n-level CBT, where n is not of the form
specified by the theorem, is desired a more complicated construction is necessary. For
these cases the butterflies will not map bijectively to the factor hypercubes. Thus the
embeddings will have larger expansion. In addition the simple approach of embedding
first the top n levels and then the bottom n levels of the CBT may not work since
the level n nodes may not be mapped to the images of butterfly nodes. While O(1)
load and cost is still achievable we omit the proof from this paper.

27

6.2 Arbitrary binary trees

In [6] it is shown that any (2" — 1)-node, constant degree tree can be embedded in
an n-level complete binary tree with O(log n) congestion and dilation. By composing
this embedding with the multiple-path CBT embedding we achieve a width-n em-
bedding of arbitrary constant degree trees into hypercubes with cost O(log n). All our
previous embeddings had given us O(n) speed-ups over standard embeddings while
this embeddings yields only O(n/logn) speed-up.

7 Applications to bit-serial message routing

In the previous section we used the multiple-path embedding of the induced cross-
product of butterflies, X, to produce multiple-path embeddings of trees. In this
section we examine applications to message routing in hypercubes.

There are a number of fast randomized algorithms for permutation routing on the
FFT, CCC and butterfly networks [17, 20, 23]. These are all “store-and-forward”
algorithms, in which each message packet can be forwarded over a link in unit time.
On the n2"-node butterfly network for example, each of the nodes can send a packet
to a unique destination so that, with overwhelmingly high probability, each packet is
delivered in O(n) time steps. This implies that, with high probability, each packet
spends O(n) time steps waiting in queues.

With longer messages and bit-serial routing, “cut-through” or “wormhole” routing
[9, 10] is typically used to forward messages. Rather than being queued at a single
node a message can span several nodes; the entire message is piped along the same
path from source to destination but depending on queuing delays the distance between
the front and rear of the message can grow and shrink. Under this model and with
messages containing M packets, the store-and-forward algorithms mentioned above
may require a message to wait M steps each time it is queued. Thus if each message
is M packets in length, then, with high probability, the algorithms mentioned above
will complete delivery of all messages in ©@(nM) time steps.

The multiple-copy embedding of the CCC network allows wormhole routing to
be speeded on the hypercube. By breaking up each message into n distinct pieces,
and routing n permutations on the n copies of the CCC, the time to completion is

reduced to O(M).
In a recent paper, Aiello, Leighton, Maggs and Newman [1] consider two different

28

switch models for bit-serial routing on the hypercube. In the strong switch model,
each switch can permute n incoming messages onto n outgoing channels in one time
step. In the weak model only O(1) incoming messages can be permuted onto outgoing
channels in one time step although once the connection is established it can be con-
tinued on later steps without counting as a new permutation. They show that, under
both models, M-bit message permutations can be completed bit-serially in O(M)
steps with high probability. This is accomplished via an embedding of the dilated
butterfly onto the hypercube [1]. In what follows we give a simpler embedding of the
same network.

The dilated butterfly is a width n, O(1) congestion embedding of the butterfly in
which all edges (except those at two levels of the butterfly) have O(1) dilation. Edges
in the two special levels can have dilation up to 2n.

The multiple-path embedding of X gives a simple multiple-path embedding of the
butterfly. Butterfly edges between levels n/2 and n/2 4+ 1 and between levels n — 1
and 0 are cut, thereby decomposing the butterfly into two sets of 2"/? independent
n/2-level butterflies. One set is mapped to the rows and the other to the columns of
X. The cut edges are inserted next; while these have width n, they can have dilation
up to 2n. The pairing of endpoints of cut edges forms a partial permutation. We need
to find n disjoint routes for each cut edge in the partial permutation. The partial
permutation can be routed along disjoint paths of length 2n in each of the n copies
of an n—copy embedding of the CCC in the entire hypercube. This gives the desired
embedding.

A better alternative is to use the width-n embedding of X directly to route mes-
sages. Each route takes two phases; in the first phase each message is routed along
a row butterfly into the column butterfly of the destination. In the second phase the
message is routed along the column butterfly to reach the destination. With a fast
randomized routing algorithm, each route suffers delay O(n). By using the multiple-
paths corresponding to each width-n edge of the X', the need to queue messages can
be eliminated and wormhole or cut-through routing in the strong-switch model is
possible.

29

8 Summary and Comparison of Embeddings

8.1 Multiple-path, Multiple—copy, and Large—copy Embed-
dings

Multiple-path embeddings We have presented multiple-path embeddings for
several common communication graphs: cycles, grids, trees, butterflies, FFTs and
CCCs. The embedding for cycles had optimal dilation and cost; grids and complete
binary trees had O(1) cost while arbitrary N-node trees had cost O(loglog V). The
CCC, FFT, and Butterfly embeddings had some high dilation edges but since they
were confined to two levels they still allowed wormhole routing algorithms to be
simulated.

Multiple-copy embeddings We have presented a multiple-copy embedding of
CCCs and noted the existence of multiple-copy embeddings of cycles. Multiple-copy
embeddings of grids can be formed from the multiple-copy embeddings of cycles by
the same squaring technique[2, 18] combined with cross product decomposition used
to convert the multiple-path embeddings of cycles to multiple-path embeddings of
grids. Multiple-copy embeddings of trees are obtained by applying the embeddings
of trees into CCC [5, 4] to the multiple-copy embeddings of the CCC.

Large—copy embeddings If many guest graph nodes are mapped to a single host
node, as with multiple-copy embeddings, there is an alternative method of using all
hypercube edges. A single large copy, (containing n2" nodes), can be embedded into
@~ so that the n2" vertices are evenly balanced over the 2" hypercube nodes and
the O(n2") guest edges are evenly divided among the n2" directed hypercube edges.
We will call such an embedding a large-copy embedding. Johnsson and Ho have used
large-copy embeddings of grids to speed matrix operations[15, 16].

Large-copy embeddings of cycles are easy to construct. A large cycle is embedded
by traversing the edge-disjoint cycles of Lemma 1 in sequence. Each traversal of an
edge-disjoint cycle in the hypercube embeds 2" vertices of the large cycle and no two
traversals use the same edge. Thus we get the following corollary:

Corollary 3 For even n the n2"~!-node undirected cycle and the n2"-node directed
cycle can each be embedded in Q, with dilation 1 and congestion 1.

30

Large—copy embeddings of CCCs, FFTs, and butterflies are also simple to derive.
Standard constructions of each of these graphs expand each node of Q, into an n—
node cycle or path. The n edges associated with each hypercube node are divided
among the n nodes which replace it. Thus the degree is reduced to a constant (three
for the CCC and four for FFTs and butterflies). The new graph has n times as many
nodes as the original hypercube.

When embedding the n2™ node FFT-like graph into Q,, the construction above is
simply reversed. Each n-node cycle or path is mapped to the hypercube node from
which it was expanded. The edges of the FFT-like graph are spread out evenly among
the hypercube edges and an efficient large-copy embedding results.

Lemma 9 The n2"-node CCC, FFT, and butterfly can be embedded in Q, with di-
lation 1 and congestion 1 for the CCC and congestion 2 for the FFT and butterfly.

The embeddings in [4] and [6] can again be applied to yield large-copy embeddings
of trees from the large copy embeddings of FFTs.

8.2 Comparisons

Many problems can be solved via several algorithms, each with a different communica-
tion graph. Thus, though multiple-path, multiple-copy, and large-copy embeddings
apply to, respectively, a single 2"—node graph, n copies of a 2"-node graph, and a
single n2"-node graph, it is often necessary to compare the efficacy of the different
embeddings.

Multiple-copy embeddings of cycles and the large-copy embeddings of cycles and
of CCCs have unit dilation and congestion. Thus the communication speed-up is
dependent only on the ability of each hypercube node to process messages on all its
links at once. No forwarding of messages is necessary. On the other hand each host
node must time-slice the computation for n guest nodes.

In comparison, the multiple-path embeddings require little or no time-slicing of
computation but the paths are of length at least three. Thus the hypercube node
must be able to forward messages. The distance three paths also result in the cost
of the multiple-path embeddings being larger than the cost of the large-copy or
multiple—copy embeddings.

In general the relative benefits of one method against another depend on the
relative speed of communication versus computation, on the speed and sophistication

31

of the routing circuitry within a node, and on the efficiency with which algorithms
can be designed to use each method. We conclude this section with one example of
the algorithmic issues in choosing an embedding.

8.3 Mapping Large Grids

We return to the example of a large grid relaxation from Section 2. We assume that
there are many more grid points than there are available hypercube processors and
that the relative speed of computation and communication makes it efficient to use
all the hypercube processors. We must determine how to map the grid points to the
processors.

Suppose the grid has M? points and there are N? processors. A first approach
is to treat each grid point as a process and use the large-copy embedding. Each
hypercube processor is the image of M2/N? grid points, each hypercube link is the
image of O(M?/(N?log N)) paths, and each process sends the data for one point per
communication phase.

A second approach is to divide the grid up into N? blocks by grouping the points
into M/N x M/N squares. Now each process corresponds to the updating of a
M/N x M/N region of grid points and the communication graph for the processes is
a N x N grid. If a multiple-path embedding is used then each hypercube processor
is the image of one process, each link is the image of O(1) paths, and each process
sends, during one communication phase, data for the O(M/N) grid points along the
sides of its region.

A third approach is to divide the grid up into a Nlog N X Nlog N grid of
M/(Nlog N) x M/(N log N) squares. The large-copy embedding can then be used;
resulting in log? N processes per hypercube processor, log N paths per hypercube
link, and data from M/(N log N) points sent per communication phase.

Computationally all three approaches are equivalent; each must compute the new
value of M?/N? grid points at each hypercube processor for each phase. The amount
of communication necessary is not, however, equal. The first approach requires the
value of O(M?) grid points to be communicated to neighboring hypercube nodes. The
latter two approaches reduce the communications traffic by mapping neighboring grid

points to the same processor, thus they require the communication of, respectively,
O(MN) and O(MN log N) grid point values.

Thus the multiple-path embedding allows the total communication to be min-

32

imized. However, for small values of N the increase of total communication by a
factor of log N for the third approach as compared to the second may be smaller
than the decreased cost of using a large-copy embedding instead of a multiple-path
embedding. Asymptotically the multiple-path approach is best but in practice the
blocked large—copy approach may be competitive.

9 Open Questions

We have shown how to use the communication resources of hypercubes more effi-
ciently. In particular, if a computation is communication limited and employs a grid,
binary tree, or FFT-like graph as its communication pattern then a savings of a fac-
tor of O(n) can be realized. The multiple communication paths can also be used to
increase tolerance of communication faults and to allow fast bit-serial routing.

Although the multiple-path embedding of the cycle has optimal efficiency the em-
beddings of multi-dimension grid and arbitrary tree embeddings could be improved.
For the grids two open questions are unresolved. What is the best way to implement
grids whose sides are (1) unequal, or (2) not equal to powers of 27 Are there embed-
dings which use all links even when communication proceeds along one grid axis at a
time? Similarly, for arbitrary binary trees it remains unknown whether the speed-up
is necessarily a factor log n worse than for complete binary trees.

Acknowledgements

Charles Leiserson helped simplify an earlier, and weaker, version of Theorem 1. We
thank him for his suggestions. We thank Arny Rosenberg and Lennart Johnsson for
helpful discussions and for pointing out fruitful avenues. We also thank Ajit Agrawal

and Ching-Tien Ho for illuminating discussions. The authors were supported by

the NSF/DARPA grant CCR-8908285, NSF grant CCR-8807426, and AFOSR grant
89-0382.

References

[1] W. Aiello, F.T. Leighton, B. Maggs, and M. Newman. Fast algorithms for bit-
serial routing on a hypercube. MIT typescript 1990.

33

[2] R. Aleliunas and A. L. Rosenberg. On embedding rectangular grids in square
grids. IEEFE Trans. Comp., 31:907-913, 1980.

[3] B. Alspach, J-C. Bermond, and D. Sotteau. Decomposition into cycles i: Hamil-
ton decompositions. Technical Report 87-12, Simon Fraser University, 1987.

[4] S.N. Bhatt, F.R.K. Chung, J.-W. Hong, F.T. Leighton, and A.L. Rosenberg.
Optimal simulations by butterfly networks. In 20th Annual ACM Symposium on
Theory of Computing, pages 192-204, 1988.

[5] S.N. Bhatt, F.R.K. Chung, F.T. Leighton, and A.L. Rosenberg. Optimal simula-
tions of tree machines. In 27th Annual Symposium on Foundations of Computer
Science, pages 274-282, 1986.

[6] S.N. Bhatt, F.R.K. Chung, F.T. Leighton, and A.L. Rosenberg. Universal graphs
for bounded—-degree trees and planar graphs. SIAM J. on Discrete Math, 2.2:145—
155, 1989.

[7] M.Y. Chan. Dilation-2 embeddings of grids into hypercubes. In Int. Conf. on
Parallel Processing, pages 295-298, 1988.

(8] M.Y. Chan. Embedding of d-dimensional grids into optimal hypercubes. In
ACM Symposium on Parallel Algorithms and Architectures, pages 52-57, 1989.

[9) W. J. Dally. A VLSI architecture for concurrent data structures. Technical
Report 5209, California Institute of Technology, 1986.

[10] W.J. Dally and C.L. Seitz. Deadlock-free message routing in multiprocessor
interconnection networks. IEEE Trans. Comp., 36:547-553, 1987.

[11] D. S. Greenberg, L. S. Heath, and A. L. Rosenberg. Optimal embeddings of
butterfly-like graphs in the hypercube. Math. Syst. Th., to appear, 1990.

(12] 1. Havel and P. Liebl. Embedding the polytomic tree into the n-cube. Casopis
pro Péstovdn @ matematiky, 98:307-314, 1973.

[13] D. Hillis. The Connection Machine. MIT Press, 1985.

[14] C.-T. Ho and S.L. Johnsson. Spanning balanced trees in boolean cubes. SIAM J.
Sci. Statist. Comput., to appear, 1990. also as Yale University Technical Report
508, 1987.

34

[15] S. L. Johnsson. Communication efficient basic linear algebra computations on
hypercube architectures. J.Par. and Dist. Comp., 4:133-172, 1987.

[16] S. L. Johnsson and C.-T. Ho. Multiplication of arbitrarily shaped matrices on
boolean cubes using the full comunications bandwidth. Technical Report 721,
Yale University, July 1989.

[17] A.Karlin and E. Upfal. Parallel hashing — an efficient implementation of shared
memory. In 18th Annual ACM Symposium on Theory of Computing, 1986.

[18] S. R. Kosaraju and M. J. Atallah. Optimal simulations between mesh—connected
arrays of processors. Technical Report 561, Purdue University, September 1986.

[19] F. T. Leighton, B. Maggs, and S. Rao. Universal packet routing algorithms. In
29th Annual Symposium on Foundations of Computer Science, pages 256-269,
1988.

[20] N. Pippenger. Parallel communication with limited buffers. In 25th Annual
Symposium on Foundations of Computer Science, pages 127-136, 1984.

[21] F.P. Preparata and J. Vuillemin. The cube-connected cycles: A versatile network
for parallel computation. CACM, 24.5:300-309, 1981.

[22] M. O. Rabin. Efficient dispersal of information for security, load balancing and
fault tolerance. Technical Report 02-87, Harvard University, 1987.

[23] A. G. Ranade. How to emulate shared memory. In 28th Annual Symposium on
Foundations of Computer Science, pages 185-194, 1987.

[24] E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms: Theory
and Practice. Prentice-Hall, Englewood Cliffs, NJ, 1977.

[25] C.L. Seitz. The cosmic cube. CACM, 28.1:22-33, 1985.

[26] Q.F. Stout and B. Wagar. Intensive hypercube communication, I: Prearranged
communication in link-bound machines. Technical Report 9-87, University of
Michigan, 1987.

35

