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ABSTRACT
This  paper  discusses  the  design  and  implementation  of  a  tool  for  SPARQL  to  SQL  conversion.
The converter receives a SPARQL query which is then parsed and analyzed. All three current approaches 
to storing RDF data in RDMS (triple store, property tables, and vertical partitioning) are supported in this 
paper. Depending on the tool's configuration one of these methods is chosen and a proper SQL query
is generated. After executing the SQL query and getting rows back from the database, the tool converts 
the result into SPARQL XML format. In the end this result is returned as an answer to the initial SPARQL 
query. 

The converter was evaluated using UniProt data (16.6 million triples) and real world SPARQL queries. 
The performance study included both the comparison of all RDF storing approaches and the analysis
of the overhead of the conversion between SPARQL and SQL.

1. INTRODUCTION
RDF [1] data are usually stored in RDBMS and there are several approaches to improving the efficiency
of  querying  these  data.  Users  who  want  to  retrieve  RDF  data  should  not  be  burdened  by  storage 
implementation  details  and  by  the  necessity  of  constructing  proper  SQL  queries.  SPARQL  [2],
the  language  which  became  officially  the  W3C  recommendation  in  January  2008,  is  well  suited
to querying RDF data because it reflects the concepts of the Semantic Web. Hence, a SPARQL to SQL 
converting  tool   is  needed.  The conversion ought  to  take place  behind  the scenes  in  order  to  hide
the complexity of the process from the user.

A SPARQL to SQL conversion tool should support all three current RDF to DB mappings: single triples 
table, property tables, and vertical partitioning (one predicate per table) [3]. To increase the ease of use 
and deployment, the converter should be customized by changes in its configuration files. I envision the 
SPARQL to SQL converter running on a server and processing requests coming from the Internet via web 
form or webservices. Thus, I would opt for using technologies that can be easily integrated with the web 
environment.

To evaluate the converter one needs to use real SPARQL queries over a large RDF dataset. The evaluation 
consists of assessing the overhead of SPARQL to SQL conversion and of comparing the three approaches 
to storing RDF data.

The  remainder  of  this  paper  is  organized  as  follows.  In  section  2,  I  describe  the  design
and implementation of the SPARQL to SQL converter. In section 3,  I evaluate the tool using real world 



RDF data and a few SPARQL queries. Finally, in section 4, I conclude and propose further development 
and research related to the discussed conversion.

2. DESIGN AND IMPLEMENTATION
The overall architecture of the system is shown on the diagram below.

Now, I will describe each component in detail and present the way it was implemented. My analysis will 
follow the way a SPARQL query is processed.

2.1. SPARQL Processor
This  component  follows the Facade design pattern.  It  hides  the complexity of  the whole conversion 
process by providing an execute() method that accepts a SPARQL query in string format as an argument 
and returns an XML result (also in string format). The SPARQL Processor passes on the query to the next 
component.



2.2. SPARQL Parser
This  component  is  responsible  for  parsing  the  SPARQL query.  The  component  delegates  this  task
to the ARQ module [4] which belongs to the Jena Framework [5]. Although Jena and ARQ constitute
a complete system supporting RDF storage and SPARQL execution, I use only their SPARQL parsing 
function.

2.3. SPARQL Analyzer
This component takes the SPARQL query parsed earlier and traverses its object representation using the 
Visitor design pattern.  During this  process a new data structure is  built  to represent  the query.  Only
those elements of the SPARQL syntax which I currently support are reflected in the new data structure. 
These elements include SELECT, WHERE (triples patterns only, no FILTER nor OPTIONAL), ORDER, 
OFFSET  and  LIMIT.  The  new  query  representation  is  better  suited  to  translation  into  SQL than
the original one coming from the SPARQL Parser and ARQ.

2.4. SQL Generator
This component is responsible for producing a SQL query based on the SPARQL query and on selected 
RDF to DB mapping. The Factory design pattern is used here. During the initialization of the converter 
the appropriate implementation (specified in the configuration) of the SQL Generator is loaded and run. 
Each of the three available implementations has its own configuration file which describes the details
of  the  tables  containing  RDF  data.  This  solution  allows  quick  deployment  and  changes  without 
modifying/recompiling the source code.

For example, the TripleSQLGenerator reads the following configuration file:
<simple_triple>

<triple_table>uniprot_triples</triple_table>
<subject_field>subject</subject_field>
<predicate_field>predicate</predicate_field>
<object_field>object</object_field>
<table_alias_prefix>t</table_alias_prefix>

</simple_triple>

The implementation of vertical partitioning requires mapping between predicates and database tables.
[...]
<table predicate="http://purl.uniprot.org/core/organism">uniprot_v_organism</table>
<table predicate="http://purl.uniprot.org/core/name">uniprot_v_name</table>
<table predicate="http://purl.uniprot.org/core/mnemonic">uniprot_v_mnemonic</table>
<table predicate="http://purl.uniprot.org/core/existence">uniprot_v_existence</table>
[...]

The implementation of property tables requires more detailed information about the tables:
[...]
<property_table name="uniprot_p_protein" subject_field="subject">

<field predicate="http://purl.uniprot.org/core/organism">organism</field>
<field predicate="http://purl.uniprot.org/core/name">name</field>
<field predicate="http://purl.uniprot.org/core/mnemonic">mnemonic</field>
<field predicate="http://purl.uniprot.org/core/existence">existence</field>

</property_table>



[...]

The result of the SQL Generator's execution is a string containing a valid SQL query.

2.5. SQL Executor
This  component  takes  the  generated  SQL query and  executes  it  against  a  database.  The  connection 
credentials are stored in a configuration file.
<db>

<driver>org.postgresql.Driver</driver>
<url>jdbc:postgresql://localhost:5432/sparql</url>
<user>sparql</user>
<password>sparql</password>

</db>

If the query returns a result set, rows are fetched from the database and added as objects to a result list.

2.6. SPARQL XML Result Generator
This component builds an XML tree from the result list according to the SPARQL XML Result standard. 
The  XML tree  is  then  serialized  to  string  format.  The  SPARQL Processor  execute() method returns
the result. This ends the processing of the SPARQL query.

2.7. Tools and libraries
The converter was developed with Java [6] 1.5 technology using open source tools and libraries such as 
Eclipse [7],  Apache Ant  [8] and Log4j  [9].  The XML configuration files are  parsed by JDOM [10].
The SPARQL XML results are created using Apache Xerces [11]. Jena's ARQ module is also a Java-based 
project – a fact which significantly simplified integrating it into my codebase. PostgreSQL [12] 8.3 was 
chosen as the database server.

3. EVALUATION

3.1. RDF Data
In the evaluation of my converter I used UniProt [13] data. The original file consisted of over 18.8 million 
RDF triples  (2.7 GB raw text  data)  0.4% of which was skipped (because of particularly long string 
literals). Next, the elimination of duplicates reduced the dataset  to 16.6 million triples. Uniprot data 
contained 64 unique predicates of which 31 were multi-valued (they appear more than once for some 
subjects).

3.2. SPARQL queries
I used five SPARQL queries developed by an expert. In some cases the queries were slightly changed
in  order  to  eliminate  currently  unsupported  elements  of  SPARQL's  syntax  (i.e.  FILTER,  REGEX, 
CONSTRUCT). The queries below are shown in an abbreviated form (all URIs are stripped out).



Query1
Find in the Human organism all proteins the existence of which is not certain.
SELECT  ?prot ?name ?mnem
WHERE
  { ?prot  <organism>  <9606> ;
           <name>  ?name ;
           <mnemonic>  ?mnem ;
           <existence>  <Uncertain_Existence> .
  }

Query 2
Return all items labeled "Pheochromocytoma" with their types.
SELECT  ?class ?type
WHERE
  { ?class  <type>  ?type ;
            <label>  "Pheochromocytoma" .
  }

Query 3
Find all alternative products for Tyrosine Kinases with their masses.
SELECT  ?prot ?name ?alt_prod ?mass
WHERE
  { ?prot     <classifiedWith>  <829> ;
              <name>  ?name ;
              <annotation>  ?alt_prod_anno .
    ?alt_prod_anno <type> <Alternative_Splicing_Annotation> ;
                   <sequence>  ?alt_prod .
    ?alt_prod  <mass>  ?mass .
  }

Query 4
Find all proteins (and their clusters) that are associated with diseases.
SELECT  ?dis ?cluster
WHERE
  { ?prot  <memberOf>  ?cluster ;
           <annotation>  ?dis .
    ?dis   <type>  <Disease_Annotation> .
  }

Query 5
Find all proteins that interact with protein Endofin.
SELECT  ?assoc_prot
WHERE
  { <Q7Z3T8> <interaction>  ?interaction .
    ?interaction  <participant>  ?assoc_prot .
  }

3.3. SYSTEM SPECIFICATION
All the tests were performed on a machine with Intel Core 2 Duo 2.2 GHz (4MB L2 cache), running 



Microsoft Windows Vista, with 3 GB of RAM and a 100 GB hard drive (7200 rpm, 8 MB cache).

3.4. STORES IMPLEMENTATION

Triple Store
In this case all RDF data are stored in a single table in which each row represents one triple.

CREATE TABLE uniprot_triples (
subject VARCHAR(255),
predicate VARCHAR(255),
object VARCHAR(255));

There  are  three  B+tree  indices  on  the  table:  one  clustered  on  (subject,  predicate,  object)  and  two 
unclustered on (predicate, object, subject) and (object, subject, predicate).

Vertically Partitioned Store
Here, triples with the same predicate are grouped into a separate table. Consequently, one table is created 
per predicate. Every one of these tables stores one subject-object pair per row. A definition of one vertical 
table is shown below (other differ only in their names).

CREATE TABLE uniprot_v_name (
subject VARCHAR(255),
object VARCHAR(255));

There is a clustered index on the subject column and an unclustered one on the object column.

Property Table Store
In this case, subjects described with a similar set of predicates are grouped together to form one table. 
Every one of these tables contains a subject attribute and a number of attributes that represent different 
predicates. The values of some predicates may be unknown, and then NULLs are stored in their place 
(there are no corresponding triples in RDF data). One of my property tables looks as follows:

CREATE TABLE uniprot_p_protein (
subject VARCHAR(255),
organism VARCHAR(255),
name VARCHAR(255),
mnemonic VARCHAR(255),
existence VARCHAR(255));

There exists a clustered index on the subject column and unclustered indices on all other columns.

3.5. Test procedures
Each of the five SPARQL queries was executed three times against each of the three implementations. 
After each run the database server was restarted and large files were copied in order to reset any internal 



and disk buffers; in some cases a reboot of the system was required. Establishing a database connection 
via  JDBC and  reading  the  converter  configuration  did  not  affect  time  measurements  because  these 
operations were done during the application startup. All time measurements were taken during program 
execution  by  calling  System.currentTimeMillis().  All  distinct  query  processing  steps  (parsing
the SPARQL query, analyzing it, generating the SQL query, executing it against DB and creating an XML 
result) were timed separately during each run.

While comparing the different stores I took the average of three SQL query execution times. Executing
a  query  against  the  DB  includes  fetching  result  rows,  converting  them  into  object  representations,
and adding these objects to the result list. The times of all other operations did not differ between the 
implementations. 

3.6. Comparison results
The results (in milliseconds) of executing all five SPARQL queries against the three stores are presented 
in the table below.

Triple patterns Result rows Triple store Vertical store Property table
Query 1 4 235 2,466 1,466 531
Query 2 2 37 1,641 1,360 463
Query 3 6 253 31,645 9,975 15,381
Query 4 3 16,687 126,978 84,050 85,252
Query 5 2 4 439 213 -

The table includes information about the number of triple patterns in each query and the number of rows 
returned as  a  result.  Irrespective of  the RDF storage method chosen,  both of  these factors  influence
the length of time needed to  process a  query.  If  the number of patterns  is  n,  n-1 joins are  required
in triple store and vertical partitioning. The number of joins is usually smaller for property tables since 
one property table can store more than one predicate value per row. Self-joins over a huge triples table are 
more expensive than joins between smaller tables; joins on subjects are faster than joins on subject-object 
since the former are clustered in each table.

The fact that triple store performance is always the worst is immediately apparent. A careful analysis 
reveals that for some queries the ideally designed property table can give a 3-5x speedup (see Query 1 
and 2). The key advantage here is that no joins are required because all triple patterns match the same 
subject. This means that a single property table is sufficient to answer a particular query.

The results of Query 3 show the power of vertical partitioning. It performs over 3 times faster than triple 
store solely because of faster joins (and 5 join operations are required here). Even though using property 
tables  requires  fewer  joins  than  using  vertical  partitioning,  the  former  method  is  adversely  affected
by the complexity of the query. The matching of two subject-object patterns precludes the creation of one 
property table to answer Query 3 (unlike in the case of Queries 1 and 2). Moreover, since multi-valued 



attributes  are  represented  as  multiple  rows,  the  size  (and  consequently  the  processing  time)
of the property tables increases significantly. In fact, the property table implementation of Query 3 needs
to perform a few joins with the leftover triples table (the size of which is very large). Still, the presence
of fewer joins than in triple store makes the property table approach twice as fast.

In Query 4, the considerable length of execution time (in all three approaches) is caused by the large 
number of result rows (over 16.6 thousands). Both vertical partitioning and property tables are about 50% 
faster than triple store. 

Vertical partitioning wins with triple store in Query 5 simply because the vertical tables needed here
are small (9K and 18K of rows), so the join between them can be done much faster than self-join on the 
huge triples table. The property table result for Query 5 was omitted because it would be either identical 
with vertical  partitioning or with triple store, depending on how the property table was implemented
(a property table with one predicate is equivalent to a vertical table; a leftovers triples table is equivalent 
to a regular triples table).

3.7. Conversion overhead
In this paragraph I will discuss how much time is spent on SPARQL to SQL conversion. Times obtained 
during benchmarking the implementations of different stores suggested that this overhead may be quite 
significant  (especially for  easy queries,  e.g.  Query 5)  and  can dominate  query processing.  However,
comparing the stores required the restarting of the converter  each time a query was executed,  which 
meant  that  the  time  measurements  obtained  included  the  cost  of  initializing  all  components
and  third  party  libraries  (although  I  loaded  the  converter  configuration  and  established  a  JDBC 
connection before executing a query). Thus, to assess the conversion overhead in a warmed-up system 
(which reflects normal working conditions), I performed another test in which all five queries were run 
one after  another without restarting the converter.  I  measured the times in a few different sequences
of queries, always omitting the result of the first query which included the initializing cost.

Parsing any of the five SPARQL queries by the ARQ module lasts 4 ms (the first time cost is about
400 ms). The typical time required to analyze a SPARQL query and to generate a SQL query does not 
exceed 2 ms (whereas the initializing query falls into the 30-70 ms range). The time needed to create
a SPARQL XML result is correlated with the number of result rows and can vary from 1-2 ms (Query 2 
and 5), through about 20 ms (Query 1 and 3), to almost a second (935 ms for Query 4). A first time run 
adds about 50 ms to the generation of an XML result. All in all, these results show that the conversion 
overhead during normal operation is only a small fraction (typically below 1-2% and less than 5% in the 
worst case) of the cost of executing the SQL query against a database.

4. CONCLUSION AND FUTURE WORK
The performance results clearly show that the simplest approach to storing RDF data (i.e. using a single 
triples  table)  is  the  worst.  Although sometimes  the  efficiency of  the  property table  method may be 
impressive, this happens only when the property table is perfectly suited to a given query. Generally, 



property tables are not easy to design. Some property tables cannot coexist because they contain the same 
predicates. Property tables are not efficient if queries are complicated and when multi-valued predicates 
are ubiquitous. The overlapping of predicate semantics (using the same predicate URIs to express similar 
properties, e.g. <type>, <label>, for different classes of objects) may prevent the creation of effective 
property tables in a real world system (UniProt data would suffer from this limitation).

Vertical  partitioning  is  not  subject  to  the  problems  mentioned  above.  Its  design  is  straightforward
and the more complicated the query, the more visible the performance gains. Therefore, I advocate using 
vertical partitioning instead of triple store.

The SPARQL to SQL conversion overhead proved to be very low and because of this I recommend my 
tool as a useful extension to any system that keeps RDF data in RDBMS and wants to provide a SPARQL 
querying feature. Obviously, some enhancements and tuning, especially for multithreading processing, 
should be introduced to address real world requirements in terms of scalability.

In order to handle more sophisticated SPARQL queries the converter needs to support more elements
of  SPARQL's  syntax.  I  consider  FILTER  (including  REGEX)  and  OPTIONAL the  most  important
of  these  elements.  The  former  provides  the  possibility  of  filtering  results  using  logical  expressions
and pattern matching. The latter lets users add triple pattern conditions that are not mandatory.

The  next  version  of  the  SPARQL  to  SQL  converter  should  also  add  dictionary  string  encoding
to all approaches to storing RDF data in DBMS. String encoding saves space required to store triples 
because integer identifiers replace string values. It also reduces query execution time despite the fact that 
additional joins are required to retrieve strings from a dictionary table. Taking into account the fact that 
efficient REGEX implementation requires pattern matching at the SQL level, special text-oriented indices 
should be introduced (a regular b+tree index is useless in this case and a sequential scan of the entire table 
is performed).

Although most RDF data are URIs and string literals which map onto SQL's varchar datatype, there
are some predicates the values of which would be better served if stored as date, integer or other non-
string datatypes. This enhancement would be beneficial for ordering and filtering operations. Supporting 
various datatypes seems to be particularly well suited to property tables and vertical partitioning. Unlike 
strings, other datatypes should not be dictionary encoded but rather stored explicitly in tables.

Another interesting thing to investigate would be the possibility of mixing all three approaches to storing 
RDF data. During the conversion from SPARQL to SQL the best option for a particular query would
be chosen. In some cases all three methods may be complementary (e.g. the best matching property table 
is taken together with a few vertical tables). If the query asks for all properties of a given subject, a simple 
triples table may still be the best choice.
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APPENDIX 1
SPARQL XML Result generated for Query 1 (only one result row included for brevity)

<?xml version="1.0" encoding="UTF-8"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
    <head>
        <variable name="prot"/>
        <variable name="name"/>
        <variable name="mnem"/>
    </head>
    <results distinct="false" ordered="false">
        <result>
            <binding name="prot">
                <literal 
datatype="string">http://purl.uniprot.org/uniprot/A6NGE7</literal>
            </binding>
            <binding name="name">
                <literal datatype="string">EC 4.-.-.-</literal>
            </binding>
            <binding name="mnem">
                <literal datatype="string">URAD_HUMAN</literal>
            </binding>
        </result>

<!-- MORE RESULTS HERE -->

    </results>
</sparql>



APPENDIX 2
SQL queries generated by SPARQL to SQL converter for Query 1 for all three implementations

Triple store
SELECT t0.subject AS prot, t1.object AS name, t2.object AS mnem 
FROM uniprot_triples AS t0, uniprot_triples AS t1, uniprot_triples AS t2, 
uniprot_triples AS t3 
WHERE 1=1 
 AND t0.subject = t1.subject
 AND t1.subject = t2.subject
 AND t2.subject = t3.subject
 AND t2.predicate = 'http://purl.uniprot.org/core/mnemonic' 
 AND t3.object = 'http://purl.uniprot.org/core/Uncertain_Existence' 
 AND t3.predicate = 'http://purl.uniprot.org/core/existence' 
 AND t1.predicate = 'http://purl.uniprot.org/core/name' 
 AND t0.object = 'http://purl.uniprot.org/taxonomy/9606' 
 AND t0.predicate = 'http://purl.uniprot.org/core/organism'

Vertically Partitioned Store
SELECT t0.subject AS prot, t1.object AS name, t2.object AS mnem 
FROM uniprot_v_organism AS t0, uniprot_v_name AS t1, uniprot_v_mnemonic AS t2, 
uniprot_v_existence AS t3 
WHERE 1=1 
 AND t0.subject = t1.subject
 AND t1.subject = t2.subject
 AND t2.subject = t3.subject
 AND t3.object = 'http://purl.uniprot.org/core/Uncertain_Existence' 
 AND t0.object = 'http://purl.uniprot.org/taxonomy/9606' 

Property Table Store
SELECT t0.subject AS prot, t0.name AS name, t0.mnemonic AS mnem 
FROM uniprot_p_protein AS t0 
WHERE 1=1 
 AND t0.existence = 'http://purl.uniprot.org/core/Uncertain_Existence' 
 AND t0.organism = 'http://purl.uniprot.org/taxonomy/9606'
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