Bulldog:
A Compiler for VLIW Architectures

John R. Ellis

YALEU/DCS/RR-364
February, 1985

A dissertation presented to the faculty of the Graduate School of Yale University
in candidacy for the degree of Doctor of Philosopy.

©Copyright by John R. Ellis, 1985.
All rights reserved.

Abstract

Very Long Instruction Word architectures are reduced-instruction-set machines
with a large number of parallel, pipelined functional units but only a single thread
of control. These machines offer the promise of an immediate order-of-magnitude
speed-up for general-purpose scientific computing. But unlike previous machines
such as the Cray and the FPS-164, it is impossible to program VLIW machines in
machine language—only a compiler for a high-level language (Fortran?) makes
these machines feasible. My thesis demonstrates, via a working compiler, that
this symbiosis of new architecture and new compiling technology is practicable.

A traditional compiler couldn’t find enough parallelism in scientific programs
to utilize a VLIW effectively. The Bulldog compiler uses several new compilation
techniques: trace scheduling to find more parallelism, memory-reference
and memory-bank disambiguation to increase memory bandwidth, and new
code-generation algorithms.

My dissertation includes the results of preliminary experiments testing both
the Bulldog compiler and various aspects of VLIW architectures. I’ve successfully
compiled and simulated a respectable set of numerical subroutines, including
simple matrix operations, FFT, LU decomposition, singular value decomposition,
tridiagonal solvers, routines from SIMPLE, and adaptive quadrature. The results
show that, at least for many scientific applications, VLIW architectures buildable
today can achieve order-of-magnitude speed-ups over current machines.

Though originally developed for VLIWs, many of the ideas in Bulldog could
be applied to pipelined reduced-instruction-set architectures such as the MIPS.
My experiments indicate that speed improvements of perhaps 30-80% are possible
for scientific code on such machines.

Acknowledgements

Josh Fisher, my advisor, rescued me from the thesis tarpit and suggested I work
on the Bulldog compiler. I finished only because of his leadership of the ELI
project.

John Ruttenberg, Charles Marshall, Alex Nicolau, John O’Donnell, Abhiram
Ranade, Mark Sidell, Joe Rodrigue, and Richard Kelsey all contributed to the
ELI project; their efforts were indispensable.

Bill Gropp, Jack Dongarra, and Alan Perlis diligently read and corrected
my lengthy manuscripts. Bill answered innumerable questions about scientific
computing and provided several of the benchmarks; he was also the local Tex
wizard, and he kept our printers working.

Tom Karzes read two difficult chapters very closely, and his suggestions
resulted in clearer prose and better notation.

Faisal Saied provided the TRID benchmarks. Dennis Gannon sent me the
SIMPLE benchmark. Paul Dubois helped me make SIMPLE more realistic.

Stan Eisenstat and Martin Schultz answered many questions about scientific
computing.

Charles Hedrick supplied us with ELISP, the DEC-20 Lisp we used for most
of our programming, and he quickly fixed several of its bugs as we found them.

Steve Wood, Nat Mishkin, Bob Nix, Mary-Claire van Leunenen and I worked
together as the Tools group for several years. From our systems hacking I learned
more about computer science than by any other means, and our long-term friend-
ship made Yale bearable. Mary-Claire showed me that writing prose is harder
than writing programs. Nat shamed me into finishing my thesis by finishing
before me (Bob shamed Nat into finishing (Udi Shapiro shamed Bob into finish-
ing)).

Alan Perlis taught me there is more to life than Algol. He encouraged me to
learn about APL, Lisp, and Smalltalk at a time when most systems researchers
were embedded in C-Pascal-Mesa-Clu-Ada.

Janet Cowan proofread the final draft. Most graduate students have dark,
depressed moments at some point in the game, and Janet helped me persevere
through mine.

Contents
1 My Thesis @ ¢« v i i v i i i i e e v e v 1
Introduction

. 1
Previous Archltectures . 1
LIW Machines . e e e e e e e e e e e e s s s 2
VLIW Architectures 4
Compilers for VLIWs 6
Trace Scheduling . c e . .. 6
Memory-reference Dlsambltruatlon . (0]
The Global-memory Bottleneck12
The Conditional-jump Bottleneck13
Code Generation15
The Bulldog Compiler16
Experiments18
WhoDidWhat19
Previous Work2

2 TheFront End ¢ o v v v v v v v v v v v .. 23
Tinylisp23
Intermediate Code7

Intermediate-code Optumzatlons and Transformatlons .
The Costs of Optimization35

3 The MachineModel e e e e e e e e 37

Data Types37
Register Banks38
Functional Units38
Constant Generators40
Resources . . . - [
Connecting Machlne Elements " § |
Shortest-path Table42
Hot Spots . . . " 1]
Multicycle Machxne Operatxons e & |
Multiple Conditional Jumps45
Pipelined Memory Operations46
Simulation46
Usefulness4

4 TraceScheduling 49

Picking Traces49
LoopBackEdges53
Execution Estimates . . . O 7 |
Performance of the Trace chker R 14

vi

Bookkeeping

Jumps .

Buffering the Trace .
Multiple Conditional Jumps
Multicycle Operations . .
Recording Variable Locations .
Incremental Live Analysis .
A Detailed Summary of Bookkeepmg
Code Explosion .

Other Ways to Control Code Explosmn
Improvements in Bookkeeping
Multicycle Jumps . . .

Efficiency of Partial Schedules

Memory-reference Disambiguation

Symbolic Derivations

Comparing Derivations

Bookkeeper Copying

More Powerful Techniques?
Programmer Assertions

Implementing Assertions . .
Disambiguator Implementation Detalls
Shortcomings .

Memory-bank Disambiguation . . .

A Simple Example

Determining the Bank .
Assertions .

Source Transformatlons

Data Transformations

Control Transformations .
Three Programs . .
Automating the Transformatlons
Non-vectors

Code Generation

An Example

Building the DAG

Nodes and Edges

Constants . .
Variables and Constrammg Edges .
Assignment Means Copy .
Conditional Jumps

Vector References and the Dlsamblguator

. 55
. 61
. 65
. 66
. 69
.73
. 82
. 84
. 89
. 94
. 95
. 99

103

. 107

107
112
115
116
117
120
126
128

133
134
135
138
138
140
145
150
150

151

152
154
155
155
157
159
160
161

Summary of Edges and Nodes
Constants Again

Variable Renaming and erte—a.fter rea.d Edges
Some Definitions

Height and Depth .

Functional-unit Assignment

Bottom-up Greedy

Priorities . . .

Other Node Types

BUG, Phase II ..

Time Complexity of Bug . ..
The Complete Algorithm for Assign . .
List Scheduling Overview

Top Level

Nodes . . .

Scheduling an Opera.tlon Node

Data Movements and Copy Nodes . . .
Scheduling a Copy Node .

Scheduling Defl Nodes

Scheduling Usel Nodes

Constraining Edges

Computing the Earliest Cycle ..
Dead Code Due to Conditional Jumps .
Allocating Registers .

Choosing Good Registers

Spilling Registers

Time Complexity of List Scheduhng
Reporting Back to the Trace Scheduler

List Scheduling Versus Operation Scheduling . .

Experiments

The Ideal Machine Models .
The ELI Models .

The Benchmark Library
Running the Experiments
Trace Profiling

Execution Statistics .
Compilation Statistics .
Sequential Speed-up .
Speed-ups in Detail
Comparing versions of TRID .
Experiments for the Future .

vii

164
164
166
169
170
171
173
177
178
183
186
188
189
190
191
192
194
197
200
200
200
202
203
204
207
209
210
212
217

223
224
229
232
232
233
235
237
238
244
246

viii

9 Final Thoughts00 ... 249

Other Domains 249
Scaling Up 2 8¢
Automating the Transformatlons e e e e e e e e e 250
A Better Approach? 1310
VLIWs Versus Vector Machmes 133 |

Trace Scheduling for RISCs and LIWs e e < < . . . 252
Appendices

The ELI MachineModels ¢ ¢ ... 253
The Realistic ELI e e e e 255
The Sequential ELT e e e e e e e e e e 258
The Base ELI Definitions e e e e e 260
Some of the Benchmark Programs 263
MATMUL C e e e e e . ¥
FFT (416
TRID4 £
NEWRZ e e e e e 285

References . . . ¢ ¢ & v v 6 6 6 v 6 o o o o o 6 6 o o o » 293

Chapter 1
My Thesis

Ordinary scientific programs can be compiled for a new parallel architecture called
VLIW (Very Long Instruction Word), yielding order-of-magnitude speed-ups over
scalar architectures.

Introduction

Compilers have traditionally played second fiddle to hardware projects in par-
allel processing. Parallel architectures have been built to be hand coded, and
attempts at compiler writing were mere afterthoughts. These attempts have
been unsurprisingly unsuccessful.

The two most common types of parallel architectures built to date have
been vector machines and multiprocessors. Compiling (or simply hand coding)
for either requires matching an overview of the coarse structure of the application
to that of the hardware. It’s conceivable that hand coders and compilers might
someday be good at this; but so far they haven’t been, and there’s no reason for
optimism. There has been a general failure at culling large amounts of parallelism
from existing programs automatically.

So instead of building an architecture first and a compiler second, the ELI
project at Yale has simultaneously developed a compiler and an architecture
intended for scientific computing [Fisher 82, Fisher 83, Fisher 84, Fisher 84b).
Using a technique called trace scheduling, the Bulldog compiler finds large
amounts of parallelism in ordinary scientific code. Taking advantage of this
parallelism requires a new hardware architecture, which we call VLIW (Very
Long Instruction Word). The compiler and the hardware form an integrated
pair—neither is very useful without the other.

Unlike other proposed parallel architectures, we think VLIWSs are practical
in the very near future. In fact, a new company, Multiflow Inc. of Branford,
CT, has been formed specifically to produce a commercial attached processor for
scientific computing using VLIW and trace-scheduling technology.

The Bulldog compiler is finished, and it compiles ordinary scientific programs
into highly parallel machine code for a large class of VLIWs, achieving order-
of-magnitude speed-ups over traditional scalar architectures. This dissertation
describes the compiler and the experiments investigating its capabilities.

Previous Architectures

What’s wrong with previous parallel architectures?

Currently, architectures supporting the so-called functional languages are
quite fashionable in academy. But over a decade of research into data-flow,
reduction, and logic-based architectures has produced not one believable pro-
totype, much less a commercial machine. There are many unsolved problems

2 Chapter 1: My Thesis

(by unsolved, I mean lacking a working demonstration of a solution). One of the
most serious is efficiently handling large aggregate data structures such as vectors
without the side-effects of traditional architectures: The naive approach requires
huge amounts of garbage collection, while more sophisticated approaches involve
significant access overhead. Another serious problem is keeping the communica-
tions overhead within practical limits. Yet another problem is providing sufficient
memory bandwidth for the large number of processors envisioned. Functional ar-
chitectures might yet prove workable in the long term, but what about the next
ten years?

Highly parallel machines that actually have been built fall into two broad
classes: multiprocessors and vector machines. Both classes provide coarse-grained
parallelism, which is hard for a compiler to use.

With multiprocessors, a compiler must minimize communication and syn-
chronization while trying to keep all the processors busy, avoiding the delays
when one processor must wait for another. This forces a compiler to look for
large sections of relatively independent control and data; compilers have only
been able to do this for programs consisting of simple data-independent inner
loops.

With vector machines, a compiler must find large data aggregates in the
program that can be fetched and operated upon simultaneously using relatively
simple operators. This requires finding a high degree of regularity in the data
and control, and compilers haven’t been too successful at that either (though
vectorizing compilers are getting better all the time).

LIW Machines

Recently, several numerical attached processors offering low cost/performance
ratios have appeared on the market. These processors, typified by the MARS-
432 [Numerix 83] and the FPS-164 [FPS 82|, provide fine-grained parallelism as
opposed to the coarse-grained parallelism of vector machines and multiproces-
sors. Several pipelined functional units, a large memory, and register banks are
connected by partial crossbars and buses. All these elements are controlled by a
single, wide instruction stream capable of independently initiating an operation
on every functional unit in each cycle (hence the name LIW, Long Instruction
Word).

LIWs are essentially reduced-instruction-set processors like the MIPS [Hen-
nessy 82| but with a few more functional units. The functional units and register
banks handle scalars only, and all aggregate operations must be explicitly pro-
grammed. All scalar data movements between memory, the register banks, and
the functional units are also explicitly programmed. Unlike machines such as the
CDC 6600 and the Cray, there are no hardware interlocks for the pipelines—the
compiler (or the hand coder) must track when and where pipeline results are
available.

Chapter 1: My Thesis 3
Address Address Loop Instruction
ALU ALU Counters Literal
y 1
Bus
Data } W
Memory — _—
v ¥ — ———1| Register banks
¥ v v y
+ X + Float arithmetic units
LT L LT e ovtput quee
/
Cross-bar

Figure 1.1. The MARS-432 architecture.

Figure 1.1 shows a block diagram of the MARS-432. The 432’s instruction
word has a separate field controlling each of the elements. So two memory reads,
two address calculations, two floating adds, a floating multiply, two register-bank
writes and two reads, and the necessary crossbar connections can all be initiated
by a single instruction. As a consequence, the instruction word is quite wide: 128
bits.

The manufacturers call these machines “horizontally microcoded,” but the
term is deceptive. Unlike the microarchitecture of traditional machines, these
LIWs have comparatively clean architectures without most of the detailed dirt
and asymmetry usually associated with microcode. LIWs have much more in
common with reduced-instruction-set processors.

But despite this comparative cleanliness and the little parallelism actually
offered, LIWs are still incredibly difficult to program by hand. To get maximum
utilization for even the simplest programs, the operations of inner loops must be
severely reordered and overlapped with other operations, and the programmer
must keep track of the state of each pipeline and register bank [FPS 82]. A much

4 Chapter 1: My Thesis

improved Fortran compiler has recently been released for the FPS-164, but it
handles only a simple class of inner loops [Touzeau 84].

VLIW Architectures

Given the commercial success of LIW machines, the natural question is: How wide
can we profitably make an LIW? Such a VLIW (Very Long Instruction Word)
machine would have many more functional units, register banks, memories, buses,

~and crossbars, all controlled in lockstep by a single instruction stream. Given the
difficulty of programming the MARS-432 or FPS-164 in assembly language, hand
coding a VLIW would be impossible. Would a compiler be able to take advantage
of the potential parallelism offered by a VLIW machine?

Instead of the coarse-grained parallelism of vector machines and multiproces-
sors, VLIWs provide a fine-grained parallelism that a trace-scheduling compiler
can easily use. In a VLIW, every resource is completely and independently con-
trolled, by which I mean:

Timing control. Every single action takes an amount of time predictable
by the compiler. The time may vary according to the operation.

Flow control. There is a single thread of control, a single instruction
stream, that initiates each fine-grained operation; many such operations
can be initiated each cycle.

Commaunications control. All communications are completely chore-
ographed by the compiler and are under explicit control of the compiled
program. The source, destination, resources, and time of a data transfer
are all known by the compiler. There is no sense of packets containing
destination addresses or of hardware scheduling of transfers.

Such fine-grained control of a highly parallel machine requires very large instruc-
tions, hence the name Very Long Instruction Word architecture.

Figure 1.2 shows a hypothetical VLIW machine. It has 8 clusters con-
nected by simple data buses. Each cluster is similar to a MARS-432, containing
a memory, a floating adder, a floating multiplier, two integer ALUs, and intercon-
nections to the other clusters. As in an LIW, all the elements run in lockstep and
are controlled by a single instruction stream, and each instruction specifies the
action of every element independently. Consequently, instructions will be very
large (at least several hundred bits).

VLIW machines are far too large to have a single crossbar connecting all
their elements. Instead the clusters are connected by buses for transferring scalar
values. It may well take several hops to move a value between distant clusters,
and those hops must be explicitly programmed by the compiler.

VLIWs need not have the regularity implied by the example. The inter-
connections between the clusters, the type and number of elements within the
clusters, and the connections between cluster elements can (and probably will)
be asymmetric.

Chapter 1: My Thesis

Partial crossbar
4 values/cycle

From neighboring clusters

\Y
+ GB MEM ALU
\'14
M
f
To neighboring clusters
Co c1/”
X0 | 40 | GBo |MEMo| ALUy | X3 | +1 7
_ c7
ALUg X7 +7 GB7 | MEM7 | ALU7

o
2

Figure 1.2. A Hypothetical ELL Each of the 8 clusters is connected to
4 neighbors. A close-up of a cluster is shown in the middle. A separate
field in the instruction word controls each element in every cluster, as
shown at bottom.

6 Chapter 1: My Thesis

Before the advent of trace scheduling, it wasn’t practical to build VLIW
machines because no mere mortal could program them by hand. It is just barely
possible to program machines like the FPS-164 and the MARS-432 in assembly
language, but the amount of effort involved is tremendous. Hand-coding a VLIW
with 8 or 16 or 32 times the number of functional units is out of the question.
Without a compiler for a high-level language, VLIWSs are useless.

Compilers for VLIWs

At first blush compiling high level languages for VLIWs might appear to be an
impossible task, given that they are programmed at such a fine-grained level.
But in fact the Bulldog compiler isn’t that much different from a traditional
optimizing compiler.

A traditional compiler parses the source program into an intermediate code,
optimizes that intermediate code, and then translates the intermediate code into
machine code. Usually, the translation to machine code is done one basic block
at a time, perhaps after registers have been globally allocated.

It wouldn’t be hard to construct a basic-block code generator for VLIWs.
Several such code generators were written for machines with limited fine-grain
parallelism such as the FPS-164, the CDC 6600 and 7600, and the scalar portion
of the Cray [Sites 78]. Part of the problem is equivalent to that of statically
scheduling a set of interdependent jobs with different resource requirements on
a fixed set of processors; this problem has been studied for years and there are
many practical solutions [Fisher 79].

But basic blocks have severely limited parallelism; experiments showed early
on that one could expect at most a two- or three-times speed-up by executing
basic blocks in parallel [Foster 72, Tjaden 70]. A basic-block-based code generator
couldn’t hope to keep a VLIW with 8 or 16 processors busy.

Later experiments showed, however, that if one ignored the artificial con-
straints imposed by basic blocks, ordinary scientific programs contained large
amounts of parallelism—factors of 90 on average [Riseman 72, Nicolau 81]. If

only a compiler could find it, such parallelism is more than enough to keep a
VLIW busy.

Trace Scheduling

Trace scheduling finds much of that factor-of-90 parallelism by giving more than
one basic block at a time to the code generator. To generate machine code for
a routine, the compiler repeatedly traces out a path of many basic blocks in the
intermediate-code flow graph of the routine and hands that entire path to the
code generator. These paths, or traces, contain much more parallelism than
basic blocks. The code generator treats a trace of blocks almost as if it were a
single very large basic block.

The compiler picks a trace, generates machine code for it, and replaces the
trace by the machine code. Then it picks another trace and does the same thing.

Chapter 1: My Thesis 7

Figure 1.3. A flow graph of basic blocks and the traces selected from
it.

It repeats this until the entire flow graph has been translated to machine code.
Estimates of execution frequency guide the compiler in picking traces; the blocks
most likely to be executed comprise the first trace, those next likely to be executed
comprise the second trace, and so on. Figure 1.3 shows the flow graph of a simple
program and the traces selected from it.

The current compiler uses loop nesting and programmer-supplied hints to
make reasonable guesses about block execution frequency; this method appears
to work fairly well without too much help from the programmer.

For various reasons, a trace never extends past a loop boundary. That is, a
trace can include only blocks from the same loop, but no blocks from containing
or contained loops.

8 Chapter 1: My Thesis

The underlying premise of trace scheduling is that the most likely execution
paths through a program can be predicted at compile time, and that most of the
execution time is spent in those likely paths. Is this a valid assumption? For
most scientific programs, yes. The time-critical control structures of scientific
code tend to be quite simple and highly predictable, consisting mainly of nested
loops with a few conditionals that usually branch one way most of the time.
Clearly, this premise is less likely to be true for other domains such as systems
programs—that’s why we restricted the ELI project to scientific programs.

To further increase the parallelism of traces, the compiler unrolls the bodies
of inner loops as many as 32 times immediately after parsing the source program
into intermediate code. For example, a loop such as: ‘

i:=1

LOOP
IF i>n THEN EXIT
...body...
i:=i+t

unrolled three times would look like:

i:=1

LOOP
IF i>n THEN EXIT
...body...
i:=i+d
IF i>n THEN EXIT
...body...
i:=i+d
IF i>n THEN EXIT
...body...
i:=i+l

This unrolling produces much longer traces, increasing the potential parallelism
available to the code generator. (Later we’ll see other uses for unrolling.)

To get parallel machine code, the code generator must substantially reorder
the trace’s intermediate-code operations, filling machine instructions with opera-
tions that come from widely separated places in the trace; time-critical operations
are usually scheduled early, while non-critical operations are often delayed.

In a basic-block code generator of a traditional compiler, this reordering is
simple [Aho 77, Sites 78]. By doing one basic block at a time, the traditional
code generator is assured that all jumps into the block from the outside are to
the block’s first instruction, and that there is at most one conditional jump in the
block, which must be at the end. But looking at figure 1.3, one immediately no-
tices that traces consisting of many blocks might have more than one conditional
jump and that there might be jumps from outside the trace into the middle of
the trace. This complicates the task of reordering considerably; in addition to
the normal data-precedence rules for basic block operations, the compiler must
also worry about jumps off the trace and jumps into the trace.

Chapter 1: My Thesis 9

For example, suppose that in the following flow-graph fragment, the current
trace consists of operations 1, 2, and 3:

(1. a:=b+c)
1

(2. IF 210 = 4. f:=a*x3)
{

(C 8. d:=a-3) l

If when reordering the trace the code generator decides to move a:=b+c below
the conditional jump, then to preserve correctness it must place a copy of a:=b+c
on the other edge of the jump:

I

(2. IF x»10 y—>{ 1. a:=btc)
I I

(1. a:=b+c) (4. f:=ax3)
I i

(C 3. 4d:=a-3)

An analogous transformation is required when the code generator moves
a trace operation above a jump into the trace; the operation must be copied
onto the edge jumping into the trace. For example, suppose a trace consists of
operations 1, 2, 3, and 4 below:

t 1. a:l=b+c)
(2. x:=x+1) I
= (5. a:=exf)
C s d:l=a-3 D]
(4. x:=dx2)

If the code generator decides to move d:=a-3 above x:=x+1 and the incoming
edge, it must place a copy of d:=a-3 on the incoming edge:

(1. a:=b+c)

C s 1023) |

(2. X:l=x+1) C 5. a.:l==e*f)
}4 (3. d:=a~-3)

(4. x:=dx2)

When the compiler replaces a trace by machine code, the copies of operations
produced by the code motions are inserted at the trace boundaries; this process is

10 Chapter 1: My Thesis

called bookkeeping. Figure 1.4 shows a trace before and after it is replaced by
its machine code and the correctness-preserving copies. The copies are treated
just like original intermediate-code operations and will be included as part of
later traces.

Memory-reference Disambiguation

Indirect memory references arising from pointer dereferencing and array indexing
pose special problems for a trace-scheduling compiler. Long traces contain many
such indirect references, and in order to take advantage of the potential parallel-
ism in the trace, the code generator must be able to reorder the references as it
does other operations in the trace. To see why, consider this fragment of a trace:

1. x1:=v[i]
2. v[i]l:=y1
3. x2:=v[jl
4. v[jl:=y2

Without knowing anything about the indices i and j, a compiler must assume
that i could equal j, and thus that operation 3 must be executed after 2; under
this assumption, there is no available parallelism in the fragment. But if the
compiler knew somehow that i and j were never equal, then 1 and 3 could be
performed in parallel and 2 and 4 in parallel, a doubling in speed. Analogous
situations arise from dereferencing pointers.

To achieve the most parallelism, the compiler must disambiguate as many
memory references as possible, determining whether they could possibly be to
the same memory location. Disambiguating pointer dereferences is tough; there
are few obvious clues in the program to help the compiler determine whether two
pointers might point at the same object. But in our target domain of scientific
code, the inner loops consist almost entirely of array references, and it usually
isn’t hard to disambiguate such references.

The disambiguator is a separate module of the Bulldog compiler. The code
generator asks the disambiguator questions of the form, “Can these two vector
references possibly refer to the same memory location?” The disambiguator
answers yes, no, or I-don’t-know. The yes and I-don’t-know answers are the ones
that restrict parallelism.

Sometimes the compiler isn’t able to disambiguate automatically two vector
references. There is an assertion facility that lets the programmer tell the com-
piler key facts about the program; if the compiler can’t automatically distinguish
two memory references, it consults the programmer-supplied assertions. This
avoids the catastrophic all-or-nothing behavior of many sophisticated compila-
tion techniques.

Chapter 1: My Thesis

11

Figure 1.4. The top figure shows a trace through a flow graph consist-
ing of operations T1-Tg. The bottom figure shows the flow graph with
the trace replaced by the machine instructions My—Mj generated by the
code generator. After inserting the machine instructions, the compiler
inserted the copies C;—Cjg of operations to preserve correctness of the
program.

12 Chapter 1: My Thesis

The Global-memory Bottleneck

Many designs of parallel architectures fail because of lack of memory bandwidth.
They have small, fast, local memories clustered around the computing elements,
with large aggregate data stored in a larger, slower, shared global memory. For
programs that manipulate large aggregates, especially for scientific programs,
the global memory is a severe bottleneck; it can’t fetch and store elements of the
aggregate data fast enough to keep the computing elements busy. Put another
way, it is easy to build a dual-ported memory, but very hard (and expensive)
to build an 8- or 16-ported memory. Even if the global memory does supply
enough bandwidth, the compiler or operating system is hard-pressed to move
data transparently through the memory hierarchy.

Most fast machines use a cache combined with interleaved memory banks
to provide higher bandwidth. For example, by putting even addresses into one
bank and odd addresses into another, the bandwidth doubles, since the two banks
operate in parallel. But this design doesn’t scale up easily, because there is still
a single central controller that accepts memory requests and distributes them to
the individual banks. Servicing two requests at a time is easy; servicing 8 or 16
at a time becomes a nightmare.

We solved the memory bottleneck problem as we solved other problems,
using a combination of new architecture and smart software. We noticed that
in scientific programs most of the memory references result from small inner
loops enumerating through the elements of large arrays. Further, the central
memory controller isn’t really needed for those accesses, since the particular
bank of each access could be predicted at compile time. If computing elements
could access individual banks without going through the central controller, the
memory bottleneck would be alleviated.

Unfortunately, even in scientific code it is not always possible to compute the
banks of memory references at compile time. Even if the architecture supports
direct reference to banks, it must still support general references for which the
bank is not known statically.

In the ELI architecture, each cluster has its own bank. Logical memory
addresses are interleaved among the b banks, with logical address a in bank
a mod b. Each bank has a front door that provides direct access for memory
references known at compile time to be in the bank. There is also a central
memory controller connecting all the banks and accessed through one or more
back doors. A memory reference whose bank is unknown at compile time
must be made through the controller’s back door. If the compiler can statically
determine the bank of a memory reference, it will generate code to reference
the bank directly through the front door; otherwise, it will generate a slower
back-door reference.

Determining the banks of memory references at compile time is called bank
disambiguation because the compiler uses techniques similar to memory-refer-
ence disambiguation. If these automatic techniques fail, the programmer can help

Chapter 1: My Thesis 13

by adding assertions. But the compiler also has to apply some source transfor-
mations. For example, consider the following implementation of vector addition:

IF i>n THEN EXITLOOP
a[i]:=b[i]+c[i]
i:=i+l

Suppose the machine has 8-way interleaving. The bank of each of the vector
references will be different on successive iterations through the loop. But by
unrolling the loop 8 times:

i:=1
LOOP
IF i>n THEN EXITLOOP
ali]l :=b[i]+c[i] /* bank O */
i:=i+1
IF i>n THEN EXITLQOOP
ali]:=b[i]+c[i] /* bank 1 */

=i+l

IF i>n THEN EXITLOOP

alil:=bl[il+c[i] /* bank 7 */

i:=i+t
the vector references are now to the same banks on successive iterations, and the
compiler can easily determine the banks using the symbolic analysis.

Unfortunately, more sophisticated transformations are needed for loops that

aren’t as well-behaved. For example, unrolling doesn’t help with loops having
variable initial-index values:

FOR i:=m TO n DO
alil :=b[i]+c[i]

Even after unrolling, the bank of a[i] will be different for different executions
of the loop, depending on the value of m mod 8 (assuming 8 banks). I'll present
several source transformations that solve these problems. Currently, the compiler
only implements loop unrolling automatically; the more sophisticated transfor-
mations must be done by hand.

The Conditional-jump Bottleneck

In order to achieve order-of-magnitude speed-ups, the compiler must compact
every time-critical trace into a schedule 1/10 (say) the length of the trace. But
it’s well-known that, even in scientific code, conditional jumps comprise a large
fraction of executed instructions; such jumps could well become a bottleneck if
only one can be executed per instruction. To achieve large speed-ups, a VLIW
will probably have to execute several jump operations each cycle.

14 Chapter 1: My Thesis

Several existing microarchitectures execute multiple conditional jumps per
instruction. Typically, two or more test conditions are evaluated in parallel and
a boolean bit-vector of the results is appended to the address field stored in the
instruction, yielding the actual target address of the branch.

Our approach is slightly different [Fisher 80, Fisher 83|, yet another example
of the symbiosis of hardware and compiler development. The ELI architecture
allows up to n conditional jumps within an instruction:

branchgy labely; branchy labely; ... branch,_1 label,

These jumps are executed like a Lisp cond statement. Semantically, the branch
conditions branch; are tested sequentially, and the first one that is true causes
a jump to the corresponding label;; if none are true, control “falls through” to
the next instruction. Of course, the hardware can evaluate all n conditions in
parallel and use a priority encoder to select the first one that is true. (The actual
value of n will be decided by experimentation and the constraints of hardware
design.)

When generating code for a trace, the compiler doesn’t have to do anything
special to take advantage of this hardware. It treats conditional jumps within a
trace just like any other operations, fitting as many as possible into each instruc-
tion. If several jumps are placed in an instruction, they are ordered according
to their position within the trace. The transformations needed for code motions
past jumps still apply. As explained later, the rest falls out naturally.

Because the fetch-execute cycle of machines is often pipelined, especially
in reduced-instruction-set processors, jump operations can take several cycles to
execute [Hennessy 82]. Many machines simply freeze instruction execution until
the jump completes; but in high-performance architectures the typical hardware
trick is to allow other non-jump instructions to be executed while waiting for the
jump to complete. It’s the responsibility of the compiler or assembly-language
programmer to fill the empty cycles following a jump with operations that can
be safely executed no matter which way the jump eventually goes.

Gross and Hennessy [Gross 82] describe a system for optimizing such “de-
layed branches.” Their method has several drawbacks. It is a separate pass in
the compiler that runs after code generation. It only looks at neighboring basic
blocks and can’t do more global code motion. It doesn’t have reliable informa-
tion for making static predictions of branch directions. It doesn’t allow jumps
to overlap—that is, only one jump can be in the execution pipeline at a time.
And their experiments show that for longer jump delays (3 cycles or more), the
performance of the method deteriorates.

The Bulldog compiler, via trace scheduling, handles multicycle jumps more
effectively. It treats multicycle jumps like any other multicycle operation, during
code generation. The choice of traces implicitly directs the compiler to optimize
those jumps and jump directions which are most time-critical. Jumps within a
trace are overlapped with other operations taken from anywhere on the trace,

Chapter 1: My Thests 15

increasing the likelihood that a time-critical jump will be overlapped with other
operations. And with a very small amount of extra hardware support, jumps can
overlap other jumps freely, allowing full pipelining of jump execution.

Code Generation

Generating machine code from intermediate-code basic blocks for a traditional
architecture is well understood. The two main problems are register allocation
and instruction selection. A compiler must decide whether to keep particular
values in memory or in registers. It must also map intermediate operations onto
one or more machine instructions, which may be difficult if the machine has a
rich instruction set.

The problems faced by a VLIW compiler generating code for a large trace
are somewhat different and more complex.

Foremost, a VLIW compiler must worry about packing many machine op-
erations into a single, large, parallel machine instruction. A traditional code
generator merely outputs a stream of machine instructions, one or more per in-
termediate operation, that are appended together to form the object code. But
a VLIW code generator must juggle the machine operations to get as many as
possible to fit into each parallel machine instruction.

Because VLIWSs are essentially reduced-instruction-set processors, there is no
problem with instruction selection; there is a direct mapping from intermediate-
code operations onto the machine operations of the machine model. But unlike a
traditional machine, a VLIW offers many hardware functional units implement-
ing the same operator, and the compiler must choose which one to use for a
particular intermediate operation. Because of the long data paths between dis-
tant elements, the code generator must try to cluster operations to minimize data
movements between elements, while at the same time trying to utilize fully all of
the functional units. This problem is called operation placement.

For example, a VLIW machine may have 16 memory banks and 32 differ-
ent functional units implementing the integer-add operation. To minimize data
movement, the compiler must try to perform the vector-indexing calculations on
integer ALUs near the memory bank containing the vector elements.

Data routing is the problem of choosing data paths (buses and registers) to
move data between elements of the machine. Between a source and destination
there might be several paths, and the compiler must pick one that will least
conflict with other activities. The move might take several hops between the
source and destination, and the compiler must allocate a register after each hop
to hold the value temporarily.

Finally, register allocation is tougher with a VLIW, since it could have at
least as many register banks as functional units. The compiler must not only
decide when to move a value into a register from memory but also which banks
will hold the value. Sometimes it’s advantageous to copy a value into several
banks so that it can be used by many functional units simultaneously.

16 Chapter 1: My Thests

Obviously, operation placement, data routing, and register allocation are all
interdependent. Compilers for existing horizontally microcoded machines such as
the FPS-164 haven’t had to deal with these problems because the target architec-
tures offer little choice: An operation can be done in only one or two functional
units, there are only one or two paths between any two points in the machine,
and a functional unit is serviced by only one or two register banks.

Ruttenberg and I have each written a code generator for the Bulldog com-
piler. Ruttenberg’s code generator [Ruttenberg 85] uses a complex branch-and-
bound strategy and a simple, somewhat unrealistic machine model. My code
generator uses a simpler strategy more similar to traditional code generators but
generates code for a more realistic machine model. The two code generators differ
primarily in their approach to operator placement and register allocation. I will
refer to Ruttenberg’s as “Ruttenberg’s code generator” and to mine as “the code
generator.”

The code generators get a trace of basic blocks as input and produce parallel
machine code as output, treating the trace as if it were one very large basic
block. Like many traditional code generators, our code generators convert the
intermediate-code operations into a directed acyclic graph. The nodes of the
DAG represent operations, and there is an edge between two nodes if one node
uses the value produced by another. The code generators then form a schedule of
machine instructions by traversing the nodes in some topological order, choosing
machine operations for intermediate-code operators and filling the instructions of
the schedule with the machine operations chosen. To prevent illegal code motions
past jumps and to force undisambiguated memory references to be evaluated in
the correct order, new edges are introduced to prevent one node from being
evaluated before another.

The Bulldog Compiler

Figure 1.5 shows the overall structure of Bulldog. The source language is parsed
into a traditional intermediate code and optimized using the standard Fortran-
compiler optimizations, producing highly optimized intermediate code. Then the
memory-bank disambiguator tries to determine the bank of every vector reference.

The resulting program is then handed to both the trace scheduler and the
disambiguator. The trace scheduler repeatedly picks traces from the program’s
flow graph, gives them to the code generator, and replaces the trace by the
machine code generated. While generating code, the code generator asks the
disambiguator whether pairs of vector references in the trace could possibly refer
to the same memory location.

Unlike a traditional compiler, the interfaces between the components are
quite simple and purely procedural. The only shared data structure is the opti-
mized intermediate code, which is represented as a simple list; individual com-
ponents build their own flow graph if they need one. The only data structures

Chapter 1: My Thesis 17

lsource language

Parser

intermediate code

Flow Analysis
& Optimization

optimized intermediate code

Memory-bank
Disambiguation

intermediate code intermediate code

trace v[il, v[jl 2
Trace Code Li] i1 . .
- Disambiguator
Scheduler - Generator
machine code yes, no, maybe

object codel

Figure 1.5. The Bulldog compiler.

passed through the interfaces are simple lists of numbers, symbols, and other
lists.

Keeping the interfaces simple enabled the four people working on the com-
piler at various times to work independently. If you’ve ever worked on a large
project, you know that shared data structures and data types can be a big
headache in a program undergoing rapid change, even (or especially) in a strongly
typed language like Mesa or Modula-2. The mild inefficiencies created by our pro-
cedural interfaces were far outweighed by the savings in programmer effort. The
procedural interfaces also allowed us to identify precisely which information is
needed where in the compiler.

The compiler is implemented in ELISP, a dialect of Lisp for the DEC-20.
Compared to the Algol family (C, Pascal, Mesa, Ada, Modula-2), Lisp is a better
tool for compiler research . The ELI project probably saved several man-years
by using Lisp in preference to C or Pascal. No other programming environment

18 Chapter 1: My Thests

provides: automatic storage reclamation, an interpreter, a single-stepper, a de-
bugger, formatted input/output of data structures, pretty printers that print all
data structures, a rich set of control and data structures, a large library of util-
ities for manipulating aggregate structures such as vectors and lists, space and
time efficiency when you need it, a compiler as good as typical C and Pascal
compilers, mixed interpreted and compiled code. A good Lisp provides all of this
in a unified environment with a read-eval-print loop accessible at all times. If
you haven’t used Lisp in the last five years or you think it is a toy language, stop
reading this thesis and read “Programming in the interactive environment: The
Lisp experience” [Sandewall 78], a recent collection of papers on Lisp [Lisp-84
84|, and the Common Lisp manual [Steele 84].

Experiments

The Bulldog compiler, like any compiler, is a collection of many algorithms and
heuristics whose interactions are complex and sometimes unpredictable. It is over
30,000 lines long and not susceptible to abstract analysis of performance. The
only convincing measure of such a large program is to run realistic experiments
on a large set of test data.

Pve assembled a library of numerical scientific routines and run them through
the compiler. The library consists of:

matrix multiply

FFT

LU decomposition

singular value decomposition

routines from the SIMPLE benchmark from Lawrence Livermore
tridiagonal solvers

integration using adaptive quadrature

one-dimensional optimization

zero-finding

These represent a broad spectrum of the likely data and control structures in
scientific programming.

I’ve run the routines through the compiler and measured their performance
on several machine models via simulations. The ideal machine, an abstract,
unrealistic model, helps measure the maximum amount of parallelism that trace
scheduling and disambiguation can find. The realistic ELI is as close to a
practical, 8-cluster VLIW as I could make it, based on the evolving design of the
ELI architecture [Fisher 80, Fisher 84]. The pipelined-sequential machine
is “built with the same technology” as the realistic ELI, but it has only one
cluster and resembles the MIPS [Hennessy 82] or the scalar portion of the Cray;
operations are pipelined but only one may be initiated per cycle. Comparing
the realistic ELI with the pipelined-sequential machine shows how much faster
the combination of VLIWs and trace scheduling are compared to traditional
architectures.

Chapter 1: My Thesis 19

The results of these benchmarks strongly support my thesis that ordinary
scientific programs can be successfully compiled for VLIWs, yielding order-of-
magnitude speed-ups.

Who Did What

The ELI project, now disbanded, was started by Josh Fisher around 1980 to
investigate trace scheduling and VLIW architectures. The Bulldog compiler is
one result of that project.

As in many group projects, the ideas in Bulldog were often the result of group
synthesis. Trying to ascertain exact authorship is difficult, if not pointless. This
dissertation presents the Bulldog compiler in its entirety, and it must necessarily
include ideas that are not solely, or even partially, mine. But I am obligated to
try to identify the major contributions made by others.

Originally, I was charged with assembling and interfacing the various com-
ponents of Bulldog. But I ended up writing nearly all of the code in the working
compiler. A number of the ideas and algorithms were strictly mine, but many
were not.

The basic idea of trace scheduling and its application to VLIWs is due to
Josh Fisher. Trace scheduling was originally intended for compacting vertical
microcode into the horizontal microcode of traditional architectures [Fisher 79,
Fisher 81]. But Fisher realized that trace scheduling could find much more par-
allelism than available in current machines, so he started thinking about VLIWs.

Fisher implemented a trace scheduler, not much different from the one de-
scribed in his thesis, for a simplistic machine model. I substantially reimple-
mented the same algorithm, refining the trace-picking heuristics, interfacing it to
the rest of the compiler, and designing the numerous hairy modifications neces-
sary for realistic VLIWs.

Alex Nicolau proved that trace scheduling is correct and terminates, and
in the process corrected an important but obscure bug in Fisher’s original algo-
rithm [Nicolau 84]. He also designed and implemented the first version of the
disambiguator. After some initial experience with that version, I reimplemented
the disambiguator using a different, more efficient algorithm. I also added in the
assertion facility.

Fisher and I developed the basic idea of memory-bank disambiguation. I de-
signed the symbolic analysis algorithm and worked out the various source trans-
formations needed to bank-disambiguate the programs in our library.

John Ruttenberg wrote the first VLIW code generator in the compiler, using
the technique he calls operation scheduling [Ruttenberg 85]. After seeing the early
results of his efforts, I wrote another code generator, the one described in detail
later on. My code generator is quite different from his, but I definitely profited
from his efforts. My functional-unit assignment algorithm (Bottom-up Greedy)
was partly inspired by operation scheduling.

20 Chapter 1: My Thests

Charles Marshall worked on a code generator for the FPS-164 that was
never finished but did generate code for individual traces. He may have had the
hardest task, trying to force a compiler intended for VLIWs onto an existing,
not-so-clean commercial machine. My discussions with him about the FPS-164
and other hardware helped me nail down my ideas about parameterized machine
models.

Fisher and Ruttenberg worked out the early seminal ideas of VLIWs [Fisher
83, Ruttenberg 83]. Later the rest of us joined in and added our two cents.
Mark Sidell and then John O’Donnell worked on making a real VLIW prototype,
the ELI (Enormously Long Instructions). My machine modeling, and the actual
model used in the experiments, is based on their work.

Others made smaller contributions: Richard Kelsey wrote a nifty algorithm
for drawing directed acyclic graphs, an invaluable debugging tool. Abhiram
Ranade talked with us about memory architectures, parallel algorithms, and
instruction execution. Joe Rodrigue hacked the Unix program “struct” to con-
vert Fortran into Tinylisp, and he helped exercise the compiler. Doug Baldwin
participated in many of the early hardware discussions.

Finally, I did most of the experiments, collecting the programs in our li-
brary, converting them to our Fortran-like language Tinylisp, adding in asser-
tions, discovering the needed source transformations, and coaxing them through
the compiler and the machine simulator.

Previous Work

Early parallelism experiments [Foster 72, Tjaden 70| indicated that there was
very little parallelism in ordinary programs. The pessimism of those experiments
combined with the difficulty of hand-coding VLIWs focused research on multi-
processors, vector machines, and data-flow and reduction machines, and away
from VLIWs.

Data-flow and reduction machines are still a gleam in the researcher’s eye.
Maybe they’ll eventually provide thousand-fold parallelism, but there are still
too many unsolved problems. Meanwhile, the ELI project has demonstrated a
practical hardware and software architecture that offers mere 8-fold speed-ups
right now.

There has been little success in compiling programs for multiprocessors. For
example, the Cm* project [Jones 80] was hamstrung by the difficulty in distribut-
ing programs among the multiple processors.

The major effort in automated compilation for vector machines and multipro-
cessors was undertaken at the University of Illinois. Kuck and his group developed
a system, Parafrase, whose main goal is to generate code for fast, highly paral-
lel machines [Padua 80]. Parafrase relies on extensive global data-dependence
analysis and no global flow information. A memory-reference disambiguation
system eliminates superfluous dependency edges in the data-dependency graph
due to ambiguous array references [Banerjee 79]. Using a large library of source

Chapter 1: My Thesis 21

transformations, Parafrase attempts to fit the available parallelism to the target
architecture. Because the architectures cannot use fine-grained, operation-level
parallelism, the disambiguator and the transformations operate at a coarse, all-or-
nothing level, ignoring anything that cannot fit the mold. As a result, Parafrase
ignores large amounts of parallelism existing in ordinary programs.

Many of the ideas of the ELI project were originally motivated by the
research on the compilation of high-level languages into horizontal microcode.
Fisher’s thesis introduced the concept of trace scheduling and discussed heuris-
tics for using list scheduling to generate horizontal microcode from vertical mi-
crocode [{Fisher 79]. Since then there have been many papers about variants
on trace scheduling and other techniques attempting translation into horizontal
microcode [Landskov 80, Micro-12 79, Micro-16 83].

Our research differs significantly from this microcode research. First, the
VLIW architectures we’ve been studying are not horizontally-microcoded ma-
chines—they are reduced-instruction-set processors that hide the complexity and
asymmetry of microcode, while offering many times the architectural parallel-
ism of current microcoded machines. Second, most of the microcode compilation
techniques generate vertical microcode with registers, functional units, and data
paths already assigned; then they try to compact the vertical microcode into
horizontal microcode, perhaps reassigning registers in the process. The problem
with this approach is that the register and functional unit assignments made
for the vertical microcode can significantly affect the compaction into horizontal
microcode, and for parallel machines it isn’t clear how best to make the assign-
ments. Finally, most of the microcode research is paper research with very few
people actually building real compilers.

A number of existing machines offer pipelined execution of operations; a pro-
gram can initiate one or two multicycle operations every instruction cycle. On
the MIPS [Hennessy 83], the compiler is responsible for ensuring the correct syn-
chronization of data-dependent operations; whereas the scalar part of the Cray
provides that synchronization in hardware, if necessary temporarily suspending
instruction execution until an operation’s operands become available. For both
machines, researchers have written peephole optimizers that reorder basic blocks
of machine instructions in an attempt to get the most overlapped pipelined execu-
tion of operations. On the Cray, Sites [Sites 78] used list scheduling and reported
5-20% speed-ups for scalar code compared with no reordering (the hardware al-
ways pipelines execution—Site’s system only reduced the number of times the
hardware needed to suspend instruction execution). On the MIPS, Hennessy
and Gross used a generalization of list scheduling and reported 2-10% speed-ups
compared with no pipelining at all (that is, no operation was started until the
previous one completed). The main drawback of both systems is that there is
little parallelism inherent in basic blocks; Gross told me that the MIPS could be
changed to allow only one operation initiated per cycle (instead of two) without
significantly affecting performance, since the MIPS compiler can’t find enough

22 Chapter 1: My Thesis

parallelism in basic blocks to keep the second operation field of the instruction
busy. And like the microcode compaction systems, the Cray and MIPS optimiz-
ers suffer from trying to reorder instructions with the registers already bound to
operations.

The Fortran compiler for the FPS-164 [Touzeau 84| is perhaps the only
compiler to date that generates good code for LIWs. It uses list scheduling on
basic blocks of intermediate code to generate the wide, parallel instructions for
the FPS-164. For simple loops, however, it uses a clever “software pipelining”
technique to generate near-optimal code. It combines binary search with list
scheduling to find the shortest pipelined sequence of instructions for the loop
body. “Simple loops” are those that iterate the induction variables through
linear sequences and that have no conditionals in the body. For much scientific
code this restriction on loops isn’t serious, and the compiler is quite adequate.
But the main problem is that the technique doesn’t scale up to larger VLIWs;
the compiler assumes there is one of each type of functional unit and that there
is a single crossbar connecting all the units.

The Polycyclic Architecture [Rau 81, Rau 82] is an ingenious combination of
hardware and software. The core of the architecture is a full crossbar connecting
the outputs and inputs of all the computing elements; at each crosspoint in
the bar is a small FIFO-like register file. This guarantees that an operation on a
functional unit will never be delayed because of contention for register bandwidth
when either reading the operands or writing the result. Provably optimal code
can be produced for simple loops using a fast algorithm; near-optimal code can
be produced for some other simple classes of loops. A VLSI chip implementing
the Polycyclic crossbar has been designed and supposedly fabricated, through
I'm not sure any fully working chips actually have been produced.

There are several problems with the Polycyclic architecture. Though it could
be used to build a powerful LIW, scaling it up to a VLIW with 8 or 16 times
the number of functional units would be out of the question. However, it could
be used as the local interconnect for individual clusters of a VLIW, but then the
nice algorithmic compilation properties would no longer hold; all the problems of
compiling for VLIWs that I’ve described previously would apply here as well. The
Polycyclic Architecture would make a nice crossbar for a VLIW cluster; with only
minor modifications to accommodate the FIFO register files, the Bulldog compiler
wouldn’t have problems modeling the crossbar. Unfortunately, the Polycyclic
suffers from the “not invented here” syndrome; because it is so different from
traditional architectures and because it is not in commercial production, there is
a natural resistance to considering it as part of a realistic machine design.

23

Chapter 2
The Front End

The front end of the Bulldog compiler is like any other Fortran compiler: A
parser translates the source language into an intermediate code, and an optimizer
optimizes the intermediate code in preparation for code generation.

Tinylisp

The source language of the current compiler is Tinylisp, a Fortran-like expression
language with Lisp syntax. (Tinylisp is a misnomer, since the only thing it has in
common with Lisp is its syntax.) Tinylisp includes all the basic Fortran constructs
used to write portable scientific routines.

We made a separate language instead of implementing a Fortran parser be-
cause we wanted a clean, malleable research vehicle that we could fiddle with.
For example, we’ve added syntax that allows the programmer to specify the jump
probabilities of conditional branches, how many times loops are expected to be
executed, and how many times loops should be unrolled. We’ve also added syntax
for specifying assertions to help the disambiguators.

Tinylisp’s data types are integer, float, complex, and multidimensional ar-
rays of those types. Tinylisp provides all the basic operators on expressions of
the types, including variable assignment. Tinylisp’s control primitives are blocks,
conditionals, loops, and exits from blocks and loops. The Bulldog compiler is de-
signed primarily to compile the time-critical kernels of scientific code, so the
Tinylisp parser expands all procedure calls inline (this prohibits recursive proce-
dures, of course). Like Lisp, every control construct is an expression and returns
a value.

It’s straightforward to convert most clean scientific code written in portable
Fortran into Tinylisp. In fact, we hacked the Unix utility Struct to convert
Fortran into Tinylisp (Struct translates vanilla Fortran into structured Ratfor).
Appendix B contains examples of Tinylisp and the original Fortran. Some were
converted by hand, others automatically.

Because Tinylisp uses Lisp syntax, we didn’t have to write a real parser;
instead, the compiler merely invokes Lisp read. The Lisp syntax also makes
source transformations simple. For example, the high-level looping constructs
are actually Lisp-like macros that expand into the low-level prlmltwes (This is
all well-known Lisp craft, I'm just proselytizing.)

Bulldog currently lacks the more exotic features that make Fortran useful as
a production language: double precision, common blocks, equivalence statements,
and so on. These are irrelevant to the task at hand, demonstrating that trace
scheduling and VLIWs work. After reading the rest of this dissertation it should
become obvious that there is nothing in any of the techniques used in Bulldog
that couldn’t be applied straightforwardly to a production Fortran compiler.

24 Chapter 2: The Front End

Intermediate Code

The compiler translates the source language into a traditional intermediate code.
For example, this source statement:

x = (v[i+1] *x y) + a

would be translated as:

IADD t1,i,1
FVLOAD t2,v,t1
FMUL &3,t2,y
FADD x,t3,a

where t1, t2, and t3 are newly introduced temporaries.
The general form of an intermediate-code operation is:

operator [dest,] operandy, ..., operand,

Each operator takes a fixed number of operands of fixed types and optionally
produces a result of a fixed type. The operands are either variables or constants.
For example,

FADD x,y.z

takes two floating operands y and z and produces a floating result, assigning it
to x.

Because VLIWSs are reduced-instruction-set processors, there is generally a
direct mapping from the intermediate-code operators to the available machine-
code operators of the machine model. Thus, the code generator doesn’t need to
worry about the complexities of instruction selection.

The operators fall into several broad classes:

Arithmetic operators. These include all the standard unary and binary inte-
ger and floating operators available on most scientific processors: multiplication,
subtraction, addition, logical operations, logical and arithmetic shifts, type con-
versions, minimum and maximum. Simple assignment is considered to be a unary
operator.

Comparison operators. These operators compare two operands and produce
a boolean result. There is a fully symmetric set of comparisons for both integers
and floats: <, <, =, #, >, >. For example:

FGT b,x.,y

compares x and y and sets b to be true or false, depending on whether x is greater
than y.

Chapter 2: The Front End 25

Jump operators. These include unconditional and conditional branches. The
conditional branches have the form:

IF comparison-operator, operandl, operand2, label, probability

The comparison-operator is one of the comparison operators above; label
specifies the target of the branch, and probability specifies the estimated prob-
ability that the branch condition will be true and the jump taken. There are also
two boolean-comparison jumps:

IF-TRUE operand, label, probability
IF-FALSE operand, label, probability

that branch depending on whether the operand is true or false. Some of the
machine models we’ve studied don’t implement conditional branches for floating
comparisons as a single machine operation. (A possible motivation for such ma-
chine models is given in chapter 4 in the discussion on multicycle jumps.) For
those models, a Tinylisp statement of the form:

IF x>y THEN ...

would be translated into a sequence of a comparison followed by a boolean test:

FGT t2.x,y
IF-TRUE t2, label, probability

Assertions. The ASSERT operator has the form:
ASSERT comparison-operator, operandl, operand?2

At runtime, ASSERT verifies that the asserted relation between the operands is
true. Assertions are used by the disambiguators at compile time and are normally
deleted by the code generators; but a debugging option retains the assertions in
the machine code, helping the programmer identify errors.

Vector operations. These load and store elements from vectors. Vectors are
one-dimensional arrays stored contiguously in memory and use 0-based indexing;
the Tinylisp parser translates a multidimensional array reference into an index
calculation and a vector reference. Unlike Fortran (but in conformance with most
other languages), Tinylisp arrays are laid out in row-major order. (The choice
between row-major and column-major isn’t crucial, since the programmer can
use inline procedures to produce alternate layouts. As we’ll see in chapter 6, this
ability to control array layout is needed for memory-bank disambiguation.)

The only intermediate-code operations on vectors are load and store.” For
example:

FVLOAD x,v,i
assigns the float x to be the ith element of vector v, and
IVSTORE v,i,a

assigns the ith element of v to be the integer a.

26 Chapter 2: The Front End

An intermediate pseudo-operation declares the size and type of every vector.
The address of the vector needn’t be known at compile time (it could well be a
procedure parameter).

Some machine models don’t implement the indexed-addressing mode implied
by VLOAD and VSTORE. For those machines, VLOAD and VSTORE are translated to
lower-level pointer operations. For example,

FVLOAD x,v,i

would be converted to:

VBASE t1.,v
IADD t2,t1,1
FPLOAD x,t2,v

The VBASE operator assigns t1 to be the address of the first element of vector
v. The IADD adds i to that address, yielding the address t2 of the ith element.
The FPLOAD loads the float stored at the address t2. (The name of the vector, v,
isn’t used by the FPLOAD operator; it is retained as an operand merely to tell the
disambiguator which vector is being referenced.) Almost all of the excess address
arithmetic resulting from this conversion will be eliminated by induction variable
simplification, described later.

Pseudo-operators. These provide various declarative pieces of information
about the program. The DECLARE pseudo-op declares the types, sizes, and initial
values of variables. The LABEL pseudo-op defines a label (the target of a branch).
There are several other pseudo-ops, none worth mentioning here.

Unlike most compilers, Bulldog has an interpreter for the intermediate code.
This was quite useful for debugging both the compiler, especially the interme-
diate-code optimizations, and the programs being compiled. It also makes opti-
mizations like constant folding easier, since the interpreter is invoked directly to
evaluate an operation at compile time.

From now on, I'll usually use a more readable infix notation for intermediate
code. For example, instead of:

IADD ti.,m,n
FVSTORE v,tl.,x

T’'ll write:
ti:=m +i n
v[tl] :=x

The suffixes i and £ indicate the datatype of operations, but I’ll drop them when
they’re not necessary for the discussion at hand. And for conditional jumps:

IF IGT, x, y, label
I’ll usually write:

IF x>y THEN label

Chapter 2: The Front End 27

Intermediate-code Optimizations and Transformations

The Bulldog compiler implements most of the intermediate-code optimizations of
the better traditional Fortran compilers. Of course, these optimizations would be
essential in a commercial trace-scheduling compiler. But they are also essential
to prove my thesis: Without highly optimized intermediate code, the speed-
up results from trace scheduling would be highly suspect, since the speed-up
(parallelism) found by trace scheduling might be strongly biased by the code
that otherwise would have been optimized away.

A great deal of my time was spent implementing the optimizations. Unfor-
tunately, I couldn’t simply rip out the guts from an existing Fortran compiler.
There are very few excellent compilers on the market, and they are all proprietary.
But even if I had access to an optimizing Fortran compiler, it wouldn’t have been
worth my time to hack it, since all such compilers are extremely complicated.
They are highly tuned for efficiency and for their target machines. Re-tuning
such a complicated program for Bulldog would have taken longer than simply
reimplementing the algorithms from scratch.

I relied on Principles of Compiler Design (the Dragon Book) [Aho 77| for
almost all of the optimizations. They all operate on the intermediate-code flow
graph, which is sectioned into basic blocks. I won’t describe them in detail here,
except to note particular modifications made for VLIW trace scheduling.
Constant folding. Constant expressions are evaluated at compile time:

x:=3+5 = x:=8

}‘r:=x*2 y:=16

Copy propagation. This helps eliminate useless assignments:
x:=y = X:=y

il}'x>n THEN ... iF.'.y>n THEN ...

The assignment x:=y will be deleted later by dead-code removal if that value of
x is no longer used.

Common-subexpression elimination. Common subexpressions are removed
within basic blocks only:
X:=a+b = x:=a+b
cen yi=x
y:=a+b

Global CSE is more difficult and results in little improvement, since most of
the global common subexpressions in scientific code occur in inner loops and
are eliminated via loop-invariant motion and induction-variable simplification

followed by basic-block CSE.

28 Chapter 2: The Front End

Dead-code removal. An operation is dead and useless if:

It is unreachable by any path from the start of the program, or

It produces a value that is not used, or

It is an IF whose true and false edges lead to the same successor in the
flow graph.

A simple iterative algorithm repeatedly removes all such dead operations from
the flow graph.

Variable renaming. New names are introduced for disjoint uses of the same
variable. For example:

X:=a+b X:=a+b
y:i=x*2 = yi=x*2
x =d-~-e }.Ci :=d-e
Z:=x+1 Z:=x1+1

Variable renaming increases the parallelism available to trace scheduling. In the
original fragment, the operations must be done sequentially to prevent the second
value of x from overwriting the first. But in the transformed fragment, the last
two operations can be done in parallel with the first two because the second use
of x has been renamed to x1.

Not all opportunities for variable renaming are due to the programmer.
When a loop is unrolled, the variables in the body can often be renamed. For
example, when the following loop is unrolled three times:

LOOP = LOOP
X:=a+b x:=a+b
v[i]:=x | v[i]:=x
x:=a+b
v[i] :=x

X:=a+b
v[i]:=x

the uses of x in each copy of the original loop body are disjoint and can be
renamed.

Bulldog uses a renaming algorithm similar to the simple one used by Par-
afrase [Padua 80]. The definitions and uses of a variable x are represented as
nodes in a bipartite graph, and there is an edge between a definition node and a
use node if the definition reaches the use. Each maximal connected component
of the graph can then be assigned a different variable name.

Chapter 2: The Front End 29

Loop unrolling. Inner loops are unrolled by some amount currently specified
by the programmer for each loop individually. Here is a loop unrolled 8 times:

i:=1 i:=1
LOOP = LOOP
IF i>n THEN EXITLOOP IF i>n THEN EXITLOOP
body bodyyg
IF i>n THEN EXITLOOP
bodyl

IF i>n THEN EXITLOOP
bodyr

Loop unrolling is currently implemented by the Tinylisp parser. The amount of
unrolling is specified in the source language:

FOR i:=1 TO n UNROLL 8
body

There is some trickiness with loop variables and induction-variable simplification
that is discussed below.

Loop-invariant motion. Operations producing values that are invariant across
iterations of a containing loop are moved out of the loop. For example:

i:=1 i:=1
LOoOP = X:=a+b
IF i>n THEN EXITLOOP LOOP
X:=a+b IF i>n THEN EXITLOOP
v[i] :=x v[i] :=x
i:=i+1 i:=i+l

The compiler also detects many invariant vector references. A vector reference is
invariant within a loop if the vector isn’t stored into anywhere in the loop.

Loop invariants aren’t always the result of programmer laziness. For ex-
ample, the index calculations for accessing multidimensional arrays give rise to
many loop invariants, and the programmer has no control over that.

Induction-variable simplification. IVS removes integer multiplications, ad-
ditions, and subtractions from a loop by introducing new induction variables and

30 Chapter 2: The Front End

eliminating old ones. For example, suppose that the following Tinylisp loop was
accessing a vector v with declared bounds 1:n:

Tinylisp: Before IVS: After IVS:
FOR i:=1 TO n i:=1) t1:=0
x:=v[i] LOOP t2:=n-1
. IF i>n THEN LOOP
EXITLOOP IF t1>t2 THEN
tl1:=i-1 EXITLOOP
x:=v[i] x:=v[t1]
ii=i+t £1:=t1+1

One subtraction has been removed from the loop body by replacing the induction
variable i by a new induction variable t1.

IVS really pays off in scientific code that accesses multidimensional arrays.
For example, suppose the following code references an array a with bounds 1:m
X 1:n:

Tinylisp: Before IVS: After IVS:
FOR i:=1 TO m i:=1 t4:=j-1
x:=ali, j] LOOP t6:=(m-1)*n
. IF i>m THEN t7:=t4+t6
EXITLOOP LOOP

tl:=i-1 IF t4>t7 THEN
t2:=ti*n EXITLOOP
t3:=j-1 x:=aft4]
t4:=t2+t3 e
x:=a[t4] td:=td+n
i:=i+1

IVS has removed a multiplication, an addition, and two subtractions from the
loop at the expense of a new multiplication, an addition, and a subtraction outside
the loop.

The Bulldog compiler uses a slightly more general algorithm than the one
presented in Principles of Compiler Design. And there is some tricky interaction
between loop unrolling, variable renaming, and IVS that requires special handling
for VLIWs. Suppose a simple loop is unrolled 8 times merely by repeating the

Chapter 2: The Front End 31

body. After unrolling and variable renaming, the code looks like:

i:=1

LOOP
IF i>n THEN EXITLOOP
body

i:=i+1

=

io:=1

IF iO>n THEN EXITLOOP
bodyg

i1:=i0+1

IF il>n THEN EXITLOOP
body1

i2:=i1+1

IF i7>n THEN EXITLOOP
body7
10:=17+1

There are two problems with the transformed code. The first is that the
Dragon Book’s IVS algorithm won’t recognize the varibles iO, i1, ..., i7 as
induction variables. The second problem is that the transformed code is less
parallel than it could be. If the copies of the loop body are data-independent
(often the case in scientific code), they can be overlapped completely. But because
the induction variables must be incremented sequentially, that is, i2:=i1+1 must
be executed after i1:=i0+1, copies of the later bodies can’t be fully overlapped
with the earlier ones; bodyy can’t be started until at least 7 cycles after the start

of bodyy.

To get around these problems, increment/decrement loop variables are treat-

ed specially by loop unrolling:

FOR i:=1 TO n = io:=1
body i1:=2
i7:=7
LOOP
IF iO>n THEN EXITLOOP
i:=i0
bodyg,
i0:=1i0+8

IF ii>n THEN EXITLOOP
i:=il

body,

i1:=11+8

IF i7>n THEN EXITLOOP
i:=1i7

bodyz

i7:=i7+8

Now all of the induction variables are independent from each other, the incre-
ments and the copies of the body can be fully overlapped, and IVS will also

recognize i0, ..., i7 as induction variables.

32 Chapter 2: The Front End

There is another minor hassle with IVS. It tries to rewrite all comparisons
in the loop that refer to the original induction variables in terms of the newly
introduced variables. The original IVS algorithm tended to rewrite the above
code into:

£0:
t1:

t7:=..
LOoP
IF t0>cO THEN EXITLOOP
bodyo
t0:=t0+8
IF tO>c1 THEN EXITLOOP
body1
t1:=t1+8

IF t0>c7 THEN EXITLOOP
body7
t7:=t7+8

That is, all the exit tests have been rewritten in terms of one induction variable
t0. This is unsatisfactory for VLIWs, since it is likely that the different com-
parison functional units will be widely scattered throughout the machine (one
per cluster). The code generator will produce code that either copies t0 to all
the comparison functional units or performs the exit tests sequentially, both of
which are time-consuming and less parallel than necessary. So the modified IVS
algorithm tries to use all the new induction variables evenly, making sure no one
induction variable is used more than another when rewriting comparisons:

t0:
t1:

t7:=...

LOOP
IF t0>cO THEN EXITLOOP
bodyo
t0:=t0+8
IF ti1>c1 THEN EXITLOOP
bOdyl
t1:=t1+8

IF t7>c7 THEN EXITLOOP

bodyr

t7:=t7+8
Thus, all the exit tests .ca.n be executed in parallel, without any long-distance
data movements of an induction variable.

Chapter 2: The Front End 33

There is still one more minor hassle with IVS involving the assertions sup-
plied by the programmer to help the disambiguator. For example, consider this
loop:

FOR i:=1 TO n

ASSERT i<=k
x:=v[i]

If this loop is unrolled 8 times and optimized by IVS, a family of 8 new induc-
tion variables will replace the original uses of i in the vector references v[i+0],
vii+1], ..., v[i+7]. But the assertion is in terms of i. Somehow the disam-
biguator’s assertion mechanism, described in chapter 5, must be able to relate i
to the newly introduced induction variables. IVS could either add a new rewrit-
ten version of the assertion for each new induction variable, or it could record
the linear function that relates i to each new variable. I chose the latter method
(though the former should work just as well).

When IVS introduces a new induction variable j, it will necessarily be some
linear function of the original induction variable i: 7 = a: + ¢. At the top of the
loop, IVS records this linear function using the EQUIV pseudo-op:

i:=...
je=...
LOOP
t1:=a*i
t2:=tl1+c

EQUIV j,t2
ASSERT i<=k

i:=i+d

jr=j+d1
Normally, the compiler ignores the EQUIV. But the disambiguator treats the EQUIV
as if it were a normal assignment. Thus it is able to express j in terms of i and
relate uses of j to the programmer-supplied assertion. After the disambiguator
is finished, all ASSERT and EQUIV operations are deleted, and a later pass of
dead-code removal will eliminate the old induction variables (in this example, i).

Replacing VLOADs and VSTOREs. As discussed previously, this transformation
replaces the VLOAD and VSTORE operators by PLOAD and PSTORE:

FVSTORE v,i,.x = VBASE ti,v
IADD t2,t1,1
FPSTORE t2,x.v

The transformation is invoked only for machine models that don’t have an in-
dexed-addressing mode.

34 Chapter 2: The Front End

Replacing comparison branches. As discussed previously, this transforma-
tion replaces branches with integer or floating comparisons (or both) by a com-
parison followed by a boolean branch:

IF FGT,x,y, label = FGT t1.x,y

IF-TRUE t1, label

The transformation is invoked only for comparison branches not directly imple-
mented by the machine model. :

Loading constants. This transformation replaces uses of non-immediate con-
stants by variables initialized to contain the constants. A non-immediate constant
is one that can’t be generated by the immediate field of an instruction—it must
be loaded from memory. Each machine model defines precisely which constants
are immediate. A use of a non-immediate is transformed as follows:

x:=y*3.9 = JF;C??:E?NT t1,3.9

The FCONSTANT operator merely assigns t1 the value of 3.9. Several FCONSTANTSs
of the same value in a loop will all get moved out of the loop by loop-invariant
motion, and common-subexpression elimination and copy propagation will then
replace them by a single FCONSTANT. In this way, the memory loads needed for
non-immediate constants are moved out of the loops. (The section on constants
in chapter 7 discusses the motivation for this transformation.)

The optimizations and transformations are applied in this order:

replacing VLOADs and VSTOREs
variable renaming

constant folding

loading constants

loop-invariant motion
common-subexpression elimination
copy propagation

dead-code removal
induction-variable simplification
constant folding
common-subexpression elimination
copy propagation

replacing comparison branches
memory-reference disambiguation
memory-bank disambiguation
deletion of assertions

dead-code removal

Several of the optimizations are repeated twice to clean up after previous opti-
mizations. Currently, the optimizations are reinvoked on the whole flow graph;
but that is often unnecessary. For example, the optimizations invoked after

Chapter 2: The Front End 35

induction-variable simplification need be invoked only on the blocks that were
changed by IVS.

The Costs of Optimization

The data-flow analyses needed to support these optimizations are live variables,
reaching definitions, reaching uses, reaching copies, and dominators. To compute
them, the Bulldog compiler uses the simple iterative set algorithms, implemented
with bit vectors representing the sets [Aho 77]. In practice, the algorithms per-
form O(n) set operations (union and intersection), where n is the number of
nodes in the flow graph. When implemented with bit vectors, each set operation
takes O(n/w) time, where w is the word size of the machine on which compiler
runs. Thus, the algorithms take O(n2) time.

For a typical flow graph encountered by a traditional compiler, the n/w
factor is small enough so that the running time is quite acceptable and appears
to be linear. Unfortunately, the running time is still asymptotically n?. Unrolling
the inner loops of scientific programs 16 or 32 times or more effectively increases
the size of the flow graph by almost the same amount. On such large flow graphs,
the running time of the flow-analysis algorithms becomes significant; the results
in chapter 8 show that the compiler spends roughly 1/3 to 2/3 of its time in flow
analysis (up to 40 minutes of CPU time on a DEC-2060).

As I’ll discuss at the end, these large running times don’t make trace schedul-
ing impractical. Currently people spend weeks hand-coding a small algorithm
such as a tridiagonal solver for a machine like the FPS-164. Replacing those
expensive man-weeks by an hour or two of time on a large computer is quite
economical.

Nevertheless, let’s consider three ways the flow analysis might be improved.

The first possible improvement is to implement sets more efficiently than bit
vectors. In the current algorithm, the bit vectors tend to be sparse, consisting of
either mostly one bits or mostly zero bits. Perhaps some type of sparse vector
representation would reduce the time needed for an average set operation. I'm
not sure that this would work, however. Even though the sparse representation
might be asymptotically faster, the comparatively large overhead required for
manipulating the representation could well make it slower than simple bit vec-
tors for the sizes of flow graphs actually encountered. (The current bit-vector
operations are hand-coded in assembly language and are very simple and fast.)

The second possible improvement is to implement incremental reanalysis.
Currently, the compiler assumes that an entire analysis is destroyed by an opti-
mization; for example, the live-variable analysis is invalidated by loop-invariant
motion. Thus, the analyses are recomputed several times as needed by the vari-
ous optimizations. But instead the optimizations could incrementally update the
analyses each time it makes a change to the flow graph. Unfortunately, incre-
mental reanalysis is very complicated in general; easy and efficient methods are
still open research topics.

36 Chapter 2: The Front End

The third possible improvement is to adopt different algorithms. The inter-
val-based algorithms could well be more efficient than the iterative ones for the
large flow graphs of trace scheduling [Aho 77]. The recursive-descent analyses can
be even more efficient, but they require a structured, tree-like flow graph; if the
source language includes GOTOs (Fortran), the compiler would have to convert
the flow graph (luckily, almost all Fortran programs have reducible flow graphs).
If you can afford to exclude gotos from the source language, the recursive-descent
analyses are probably the way to go.

37

Chapter 3
The Machine Model

The Bulldog compiler uses a parameterized machine model capable of describing a
large class of realistic VLIW architectures. A parameterized machine model was
essential, since we were developing the compiler and hardware simultaneously.
Using the model, arbitrary topologies of register banks and functional units can
be constructed and simulated. By compiling programs under various models, we
can explore the interactions between the compiler and the hardware design.

The model presented here is not intended as a general hardware description
language. Rather, it is tailored for the specific needs of the Bulldog compiler and
is parameterized just enough to characterize the class of VLIW architectures in
which we were interested.

Some basic terminology:

A machine element is either a register bank, a functional unit, or a
constant generator (such as the immediate-constant field of an instruc-
tion).

A machine operator is an operator of a hardware functional unit,
such as floating-point add.

A machine operation is the specification of machine operator, func-
tional unit, operands, and destination; for example

ri:=r2 +5 r3

(Register r1 gets the result of adding r2 and r3 on the fifth integer
adder.)

An instruction is a collection of many machine operations that will
all be executed in the same cycle. Instructions are stored in the wide
instruction words in instruction memory.

Building a model involves specifying the number and parameters of each machine
element and the connections between the elements. In the Lisp tradition, an
embedded, imperative, object-oriented language is used to concisely specify a
model. Appendix A contains some example model specifications.

Data Types

The only data types currently recognized by the model are integer and float, both
one word. All the data paths in the model are one word wide. Since memory is
word-addressed, the actual width of the word doesn’t matter to the compiler.
These two primitive data types are quite sufficient for our purposes. The
time-critical routines of most scientific programs use only integers and floats,
with either single precision or double precision predominating. Because most
memory references are for full-word integers and floats, word-based addressing

38 Chapter 3: The Machine Model

isn’t a limitation. (The scientific processors with which I’'m familiar are all word
addressed.)

Extending the model to handle different sized data types is a matter of detail:
Registers and data paths would be flagged with the data types they could hold
or transmit. A production compiler certainly has to deal with more data types,
but their absence in the Bulldog compiler has no bearing on my thesis.

Register Banks

Specified for each register bank are:

The number of registers.

The number of input ports.

The number of output ports.

The machine elements connected to the input ports.
The machine elements connected to the output ports.
The resources needed to read a register.

The resources needed to write a register.

(Resources are described below.)

The registers are all identically sized, holding either a float or a real.

All the input ports are identical in that they are all connected to the same
set of input machine elements. Similarly, the output ports are all connected to
the same set of output machine elements.

The operations on a register bank are “read register ¢ to output port 5~
and “write register ¢ from input port 7.” A transfer between registers in the
same bank is specified by the combination of a read and a write operation in the
same cycle; one of the output elements of the bank must be itself to allow such
a transfer.

More than one of the output elements can read a register being read out on
a port during a cycle. For example, if an adder and a multiplier were output
elements of a bank, then if “read register 3 to output port 2” were executed in
some cycle, both the adder and the multiplier could read the value of register 3
via port 2.

The registers are write-after-read; that is, a register’s old value can be read
at the beginning of the cycle and overwritten at the end of the cycle.

Functional Units

A functional unit is a machine element that computes some output value based
on its inputs. Examples are adders, multipliers, integer ALUs, and memory units.
Specified for each functional unit are:

The machine elements connected to the functional unit’s inputs.

The machine elements connected to its outputs.

Chapter 8: The Machine Model 39

The intermediate-code operators implemented by the unit.

The pipeline delay of the unit (the number of cycles required for an
operation to complete).

The resources needed to execute an operation on the unit.
A constraint function that operations must satisfy.

Because VLIWs are simple reduced instruction set processors, there is a one-to-
one mapping between intermediate-code operators and machine operators; for
simplicity, they have the same names. So to find a functional unit that could im-
plement the intermediate-code operation IADD (integer add), the code generator
merely looks for a functional unit that has IADD listed as one of its operators.

A memory unit is simply a functional unit that implements the memory-
reference intermediate-code operators.

The inputs of a functional unit are all identical with respect to their connec-
tions to other machine elements and are not distinguished “left” or “right.” For
example, suppose an integer ALU was connected to two register banks A and B.
Then for any registers ! in A and r in B, the ALU could compute | —r or r — [
with the same ISUB operator; if bank B had two output ports, then the ALU
could also use B for both of its inputs, computing { — m and m — [for any two
registers [and m in B.

The advantage of this symmetry for a code generator should be obvious.
Asymmetric operands for machine operations make code generators much more
complex, and should be avoided whenever possible. Providing the symmetry costs
a bit extra in hardware, true, but not that much when considering the benefit
of simpler code generators: A compiler writer has only so much time, and every
minute he devotes to handling asymmetric hardware is a minute not devoted to
improving the quality of generated code, and generating quality code is much
harder in the presence of asymmetry. I think the current code generator could
be extended to handle asymmetric machine operations, but only by making it
even more complex; the extra hardware is probably worth it. (Decide for yourself
after reading the chapter on code generation.)

All the operations of a functional unit have identical pipeline delay. A unit
with different delays for different operators could be modeled by having two func-
tional units with the same inputs and outputs but different delays and operators;
the resources required by each would ensure that only one of the units could be
used in any cycle (resources are described below).

Some actual hardware pipelined functional units can have operations initi-
ated only every n cycles. This too can be modeled using resources and is described
below.

The constraint function is a boolean predicate that takes an intermediate-
code operation as its argument and returns true if the operation can be imple-
mented on the functional unit. Currently the only use of this is to implement
memory banking. Before code generation starts, the bank disambiguator records

40 Chapter 8: The Machine Model

in each memory-reference operation the bank number of the reference (if the
number is known at compile time). Each memory-bank functional unit has a
constraint function that tests the bank number of intermediate-code operations
being considered for execution on the unit; only memory references marked with
the required bank number are allowed to be executed on the unit.

Constant Generators

A constant generator is a machine element that produces constant values on de-
mand. A constant generator is used to model the immediate fields of instructions
and the special 0, 1, and -1 inputs of some functional units.

Specified for each constant generator are:

The machine elements connected to the output of the generator.
The resources needed to generate a constant.
A constraint function.

The constraint function is a boolean predicate that takes a constant as its argu-
ment and returns true if the constant can be generated by this generator. For
example, to model the immediate field of an instruction, the constraint function
would allow, say, only integers that could be represented with 11 bits.

Many integer ALUs have special increment and decrement operations that
don’t require a second input. Such ALUs can be modeled by making one of
the inputs of the ALU a constant generator that generates only 1 and -1; this
simplifies code generation considerably, since the code generator need deal only
with the general add and subtract and not worry about special-casing increment
and decrement.

Resources

Each of the different types of machine elements has a resources field specifying
which ephemeral hardware resources are needed for element operations. One
example of a resource is the field within an instruction needed to initiate an
operation; another example is a bus which can transmit at most one value per
cycle. In this model, resources need not correspond with actual hardware and
can be used to model many sorts of hardware constraints.

A resource class is a set of n identical resources, any one of which can be
substituted for any other. In any cycle, no more than n of the resources can be
used.

A resource request is a requirement for resources needed to execute a
machine-element operation. Abstractly, it is a two-dimensional matrix A; as-
suming the operation is initiated in cycle ¢, a; ; specifies the number of resources
needed in cycle ¢ + ¢ from resource class j.

The simplest use for resource requests is to constrain the compiler from
initiating more than one operation on a functional unit per cycle. By convention,

Chapter 8: The Machine Model 41

each functional unit requires 1 resource from a corresponding resource class of
size 1. (Of course, a model could be constructed that would allow a functional
unit to start two operations every cycle, as in the MIPS [Hennessy 83]; the size
of the corresponding resource class would be 2 instead of 1.)

Similarly, a register bank having 4 output ports would request for its read
operation 1 resource from a corresponding class of size 4.

Some real hardware functional units such as memories can initiate an op-
eration only once every other cycle. This constraint can be modeled using a
resource request that requires 1 unit of the functional unit’s resource class for
the first cycle and 1 for the second cycle.

Connecting Machine Elements

There is one restriction on connecting machine elements: Only register banks may
be connected to the outputs of functional units. That is, a functional unit always
delivers its results to some register bank. The rationale for this is discussed in
a later section on “hot spots” (page 42). Other than this restriction, arbitrary
topologies can be constructed.

Every connection between machine elements has an associated resource re-
quest that must be satisfied to move data across the connection. This models
the hardware constraints on data paths. For example, to model a one-value-per-
cycle bus, all the elements writing the bus would be connected to all the elements
reading the bus. Associated with the bus is a resource class, bus, of size 1. Ev-
ery point-to-point connection between a writer and a reader would request the
resource class bus. Thus, only one value per cycle could be put on the bus.

You might think that under this scheme only one reader could read the
value on the bus in any one cycle, since another point-to-point connection from
the same writer to another reader would not be able to satisfy its resource request
for class bus. But the model assumes that once a value appears at the output
port of a register bank or constant generator, it may be read by any of the
machine elements connected to the port; only one of the point-to-point resource
requests (chosen nondeterministically) is required to be satisfied, and the others
are ignored.

A full crossbar is modeled simply by connecting all the readers with all the
writers, with no associated point-to-point resource requests. A partial crossbar
that connects all the readers with all the writers but allows only n values to
be transmitted per cycle is modeled just like a bus, except that the associated
resource class has size n instead of 1.

The point-to-point resource requests can be arbitrary, except for one restric-
tion: For any two elements A and B that are inputs to a functional unit F, the
resource request for the A-F connection must be non-conflicting with the re-
quest for the B~F connection. Two resource requests R and S conflict if, taken
as a pair, they can never be satisfied; that is, if R and § jointly request more
than the maximum amount available from some resource class. (Formally, R and

42 Chapter 8: The Machine Model

S conflict if there exists some ¢ and j such that r; ;+s; ; > size(5), where size(y)
is the size of the jth resource class.)

This conflict constraint makes life considerably easier for the code generator
without seriously affecting the class of architectures that can be modeled. With-
out the constraint, the code generator would have to go to a bit of trouble to make
sure that all the operands of a machine operation were suitably placed so that
they could all be moved to the functional unit in the same cycle. For example,
suppose that the inputs of functional unit F' were connected to register banks A,
B, and C, each with one output port, and that the A-F and B-F connections
have conflicting resource requests (each, say, requests the same class of size 1).
The code generator would have to guarantee that for two-operand operations,
at least one of the operands was in C, since it couldn’t move the operands from
A to F and from B to F in the same cycle. While one could imagine a code
generator smart enough to handle such conflicts, I didn’t see any real need for it.
(In fact, the current code generator handles very similar constraints imposed by
the number of output ports on a register bank.)

Shortest-path Table

The code generator needs to know how to move a value from any machine element
to any other machine element in the machine. Instead of trying to compute such
information on the fly during compilation, the compiler constructs a shortest-
path table that gives the shortest path between any pair of machine elements.
Only paths consisting solely of register banks are considered. (Though it might
be possible to move values through functional units using the identity operator,
it wouldn’t be necessary on any sane architecture.) The cost of a path from
machine element ¢ to machine element j is the number of cycles needed to move
a value along the path. A move between directly connected register banks takes
one cycle, so the cost of a path is the number of register banks along the path.
A standard transitive closure algorithm computes the path table, yielding
the cost matrix C and the path matrix P. The cost of the shortest path from
machine element ¢ to machine element 7 is given by ¢; ;- The list of register banks
immediately adjacent to element ¢ that are on the shortest paths from 7 to 7 is

given by p; ;.

Hot Spots

Many microprogrammed architectures have so-called “hot spots,” latches, that
will hold a value for only one cycle or until another value displaces it. For
example, the outputs of the multiplier and adder pipelines in the FPS-164 [FPS
82] are latched and can be fed back to the register banks or directly to the inputs
of the pipelines. There isn’t enough bandwidth into the register banks, so to
keep the pipelines full the programmer is often forced to use the latched pipeline
outputs directly as pipeline inputs. But the programmer must be very careful to

Chapter 8: The Machine Model 43

synchronize the pipelines’ inputs and outputs, since the next value coming out
of the pipeline will overwrite the previously latched value.

With a lot of work a code generator could do a fair job of handling the FPS-
164’s hot spots in the limited situations of optimizing simple pipelined loops
[Touzeau 84]. But handling hot spots in general is very difficult, since potentially
many operations in many cycles all have to be synchronized exactly. For example,
when the code generator schedules some operation that leaves its value in a latch,
it must ensure that latched value is not overwritten by successive operations until
it is safely moved out of the way. Unfortunately, on machines like the 164 it often
isn’t feasible to move the value into a register bank; instead, the compiler must try
to use the latched value directly as an input to another operation on the same or
nearby functional unit. But scheduling that reading operation of the value might
itself entail the use of latches, possibly even the original latch in question; the
code generator must recursively synchronize the use of those latches as well. This
suggests a recursive backtracking algorithm for code generation; such algorithms
tend to be expensive and very complicated in practice.

Instead we decided to adopt the approach of the MARS-432 [Numerix 83],
the Polycyclic Architecture [Rau 82], and most traditional high-level architec-
tures: We outlawed hot spots. Every value-producing operation and every data
transfer reads its operands from a register bank and delivers its result to a reg-
ister bank. The advantage of this is that operations don’t have to be tightly
synchronized—a value can be left for an extra cycle or two in a register without
worrying about it getting overwritten. The disadvantage is that more register
banks, more register-bank ports, larger crossbars, or some combination of these
are needed. But given the practicality of the MARS-432 hardware (it works and
is cost-effective) and the threat of a backtracking code generator if we allowed
hot spots, outlawing hot spots seemed the best approach.

The issue of hot spots illustrates the interaction of hardware design and
compiler design. Architectures with hot spots are easy to build, but building
compilers for them is hard. (It took years to build the FPS-164 compiler.) Bet-
ter that the compiler and hardware are designed in parallel, avoiding hardware
features that can’t be used easily by the compiler.

Multicycle Machine Operations

In real hardware, many operations, such as floating arithmetic and memory ref-
erences, take multiple cycles to execute and are pipelined. The code generator
views these multicycle operations as atomic, and specifies the operator, the input
registers, and the result register all on the first cycle of the operation. There are
two ways of implementing these operations in the hardware instructions, typified
by the MARS-432 and the FPS-164.

In the MARS-432, the operator, the operands, and the destination of an
operation are specified on the first cycle, and the hardware buffers them in in-
ternal registers until the operation completes. But in the FPS-164, a multicycle

44 Chapter 8: The Machine Model

template of micro-operations is used: The operator and operands are specified on
the first cycle, the pipeline is “pushed” with a special opcode over the succeeding
cycles, and the result is stored with a register-write operation on the last cycle:

FMUL r1,r2
PUSH

PUSH
WRITE r3

These implementations differ with respect to their behavior across jumps. In
the MARS-432, if a jump occurs during execution of a multicycle operation, the
operation will complete anyway, since the hardware has buffered the specification
of the operation, including the destination register. But in the FPS-164, if a jump
occurs in the middle of a multicycle operation, the operation won’t complete (and
won’t store its results in a register) unless the instruction template is explicitly
continued at the destination of the jump. For example, a 4-cycle multiply would
be written as:

FMUL r1.,r2
PUSH ; BRANCH-IF-TRUE L1
PUSH

WRITE r3
Li: ...

If the branch to L1 was taken in the second instruction, then the floating multiply
wouldn’t complete and nothing would be stored in the destination r3, unless the
tail end of the multiply template was continued at L1:

L1: PUSH
WRITE r3

The two machines also differ in their behavior at joins. For example, in the
MARS-432 a 4-cycle multiply can execute across a join:

BRANCH-IF-TRUE L1

r3:=FMUL ri1,r2
NOOP

L1i: NOOP
NOOP

If the branch isn’t taken, then the multiply is started and completes 4 cycles
later. If the branch to L1 is taken, then the multiply is ignored completely. But

Chapter 3: The Machine Model 45

in the FPS-164, the behavior is different:
BRANCH-IF-TRUE L1

FMUL ri1,r2
PUSH

L1: PUSH
WRITE R3

If the branch to L1 is taken, garbage from the multiplier’s pipeline will be stored
in r3 because the multiply template wasn’t started before the branch was taken.

Bulldog’s machine model and code generator are compatible with either
implementation. As we’ll see, the compiler guarantees that a multicycle operation
will be continued on either branch of a conditional jump:

r3:=FMUL ri1,r2

FMUL2 ; BRANCH-IF-TRUE L1
FMUL3

FMUL4

L1: FMUL3
FMUL4

And if a multicycle operation spans a join, it will be initiated on both incoming
branches with identical operands and destination:

r3:=FMUL ri1,r2

FMUL2 ; BRANCH-IF-TRUE L1
FMUL3

FMUL4

r3:=FMUL r1,r2
FMUL2

L1: FMUL3
FMUL4

(The FMUL; merely indicate the successive cycles of an FMUL.) In both cases,
whether the hardware uses buffering or micro-operation templates, the effect is
the same.

Multiple Conditional Jumps

The machine model allows up to n conditional jumps within an instruction:
branchg labely; branchy labely; ... branch,—1 label,_1

These jumps are executed like a Lisp cond statement. Semantically, the branch
conditions branch; are tested sequentially, and the first one that is true cause a
jump to the corresponding label;; if none are true, control “falls through” to the
next instruction. The number n of conditional jumps allowed per instruction can
be controlled by defining a resource class.

46 Chapter 8: The Machine Model

The actual hardware needn’t necessarily store n target addresses in the in-
struction word. For example, Fisher discusses an encoding scheme that requires
only one address per instruction [Fisher 80, Fisher 83]. In this scheme, every
instruction has a nextPC field that specifies the address of the next instruction
to be executed. The target address of an n + 1-way conditional jump is computed
as nextPC + ¢, where branch; is the first test in the instruction that evaluates to
true (¢ = n if no test is true). Fisher shows how to layout a compiled program in
memory to accommodate this encoding scheme without wasting too much space.
The layout is done in an independent post-pass, making the encoding transparent
to the rest of the compiler.

Pipelined Memory Operations

The model allows for several memory operations to be initiated simultaneously
and for them to be overlapped in the pipelines. It assumes that a memory write
actually stores its result into memory at the end of the last cycle of the write
and that a memory read gets its value from memory at the beginning of the last
cycle of the read. Thus, in the following example, assuming memory references
take 3 cycles, the memory read returns the value y, not x:

cycle 1 write x to address 1093
cycle 2 noop
cycle 3 noop
cycle 4 write y to address 1093
cycle 5 read from address 1093
cycle 6 noop
cycle 7 noop

The meaning of two writes or a write and read to the same location at the same
time is undefined.

Simulation

The Bulldog compiler includes a machine-model simulator that lets us debug our
compiler and experiment with proposed architectures. The flexibilities provided
by a simulator are well known: easy debugging, detailed instrumentation, quick
changes to the “hardware.” The disadvantage (slow simulation) isn’t so bad; any
of our benchmarks running small inputs for debugging can be simulated in less
than a minute on our DEC-2060, and most of the largest inputs (which we rarely
need to run) in less than an hour.

There is nothing unusual in the implementation of the simulator. It is driven
by the same model (data structures) that the compiler uses, with simple event
queues to simulate pipelined operations. The simulator is instrumented to gather
many sorts of statistics (presented in chapter 8). And it has some debugging
checks that find compiler bugs early. For example, the compiler tags the register
operands and results of operations with the source-variable names of the oper-
ands; during execution, the simulator stores the tags next to the values in the

Chapter 8: The Machine Model 47

registers, and it will flag any operations that reference a register with a variable-
name tag that doesn’t match the one stored in the register. This quickly identifies
value-location bugs in the compiler, which are typically very hard to find when
using real hardware.

Usefulness

How useful is the machine model? I described three potential unrealities, and
downplayed each:

Data types. The model supports only two primitive data types, float and
integer, but that is sufficient for most time-critical scientific routines.
It’s quite feasible to extend the model and the code generator to include
more data types (though it would be a lot of work).

Symmetry. The model requires that the outputs of a register bank be
identical, all connected to the same set of elements. Similarly, the inputs
of functional units must be identical and are not distinguished “left”
or “right.” I argued that processors, especially reduced-instruction-set
processors, should always have such symmetry—the small extra cost
in hardware is offset by a much simpler code generator. It would be
possible to build a code generator that could handle asymmetric register
banks and functional units in a VLIW, but only at great cost.

Hot spots. The model requires that value-producing machine operations
always store their results in a register bank; at the level seen by the code
generator, there can be no latched outputs that get overwritten the
next cycle. Handling hot spots in general would require an expensive,
complicated backtracking code generator. Many machines, including
the wide MARS-432, are built without hot spots.

The model used for most of our experiments is described in detail in chapter 8
and accurately mirrors the designs of the ELI project [Fisher 83].

48 Chapter 8: The Machine Model

49

Chapter 4
Trace Scheduling

Picking Traces

When picking the next trace from the flow graph, the trace picker tries to identify
a path of untranslated intermediate-code operations that are most likely to be
executed. (I first described trace picking in terms of basic blocks, but the actual
implementation is in terms of operations.) The code generator will optimize the
early traces at the expense of later ones, on the assumption that the early traces
are more time critical.

To understand the importance of picking good traces, consider this example:

(IF x)J—=_8)

Suppose the trace picker decides that x is usually false and picks a trace including
IF x and A. Given the trace, the code generator might well decide that A is
a time-consuming operation and that to generate a shorter schedule of machine
code, it will move A up above IF x:

Notice that A is now executed regardless of which way the jump goes. If in fact x
is usually false, the extra execution cost of evaluating A needlessly when the jump
goes right is outweighed by the faster execution that results when the jump goes
left. But if the trace picker was wrong and x is usually true, A will be executed
needlessly most of the time; worse, it will be consuming machine resources that
could be used for other, more time-critical operations (such as B).

The trace picker uses estimates of execution frequency to guide its selection
of traces. Each operation O has an associated count(O), the number of times
it is expected to be executed during an entire run of the program (I'll say more
about where these estimates come from in a later section). Each edge e out of
a conditional branch operation has an associated prob(e), the probability that e
will be taken once control reaches the branch. The expected number of times an
edge e from a conditional branch operation C is executed is thus:

count(e) = count(C) prob(e)

50 Chapter 4: Trace Scheduling

seed := the untranslated intermediate-code operation with the largest exe-
cution count

/* Grow the trace forward from the seed */
current-end := seed
loop
s := the good successor of current-end
if there is no such s or s is already translated to machine code or the
edge from current-end to s is a loop back edge
then
exitloop
Add s to the end of the trace
current-end := s

/* Grow the trace backward from the seed */
current-beginning := seed
loop
p := the good predecessor of current-beginning
if there is no such p or p is already translated to machine code or the
edge from p to current-beginning is a loop back edge
then
exitloop
Add p to the beginning of the trace
current-beginning := p

Figure 4.1. The trace-picking algorithm.

To pick a trace, the trace picker first finds the untranslated intermediate-code
operation with the highest estimated execution count. This operation becomes
the “seed”; the trace picker then grows the trace forward and backward from
the seed. To grow forward, the picker looks at the operation currently at the
end of the trace and considers all its successors, picking a good one based on
the execution estimates. The successor is added to the end of the trace, and
the process is repeated. The trace stops growing forward when there is no good
successor, when the chosen successor has already been translated to machine code
by an earlier trace, or when the edge to the successor is a loop back edge (an
edge from an operation in a loop body that jumps to the top of the loop). T'll
discuss later why traces aren’t allowed to cross loop back edges. Then the trace
is grown backward using a similar method Figure 4.1 shows the algorithm in
detail.

When growing the trace both backward and forward, the same criteria are
used for picking the next “good” operation to add to the trace. In either case, the
best flow-graph edge is chosen from a set of candidate edges: Going forward, the
candidate edges are those leaving the current end of the trace; going backward,
the candidate edges are those entering the current beginning. An edge is best

Chapter 4: Trace Scheduling 51

among all the candidates if the trace picker considers flow most likely to proceed
along that edge.
Specifically, suppose there is an edge ¢ from predecessor P to successor S:

\ v
N 7

y

When the trace is growing forward, P is the current end of the trace, and when
it is growing backward, S is the current beginning of the trace. Whether growing
backward or forward, the edge e is selected for the trace as the best candidate
edge if it meets the following conditions:

Of all the edges leaving P, e has the highest execution count. (This is
equivalent to saying e has the highest probability.)

Of all the edges entering S, e has the highest execution count.

Intuitively, these criteria specify that if the program reaches P, then it most likely
will proceed down e to S, and that if the program is already at S, it most likely
got there via e from P. Thus it makes sense to include e as part of the trace.

Note that under these criteria sometimes no best edge will be selected, and
the trace will stop growing in that particular direction. For example:

Suppose count(4) = 100 and count(B) = 10, and the branch edges have the
probabilities shown. Further suppose that B was the current end of the trace.
The edge with maximum count leaving B is B-D, but the edge with maximum
count coming into to D is A-D. So the trace will stop at B, on the assumption
that the most likely path of execution that reaches D comes down from A, not
from B.

In this example, it probably doesn’t matter that a trace would stop at B,
since it is likely that A and D, being more time-critical, would have been included

52 Chapter 4: Trace Scheduling

on an earlier trace anyway. Unfortunately, there are other situations in real pro-
grams where the trace-picking algorithm does stop growing a trace prematurely.
Consider this example from an inner loop of one of the benchmarks:

|
C Alloo)
(Bjgo: IF el
9
(Cog: IF e2
.6
(Dsy: IF e3
4
(F2]/)
C G100)

The cascaded conditional structure results from optimizing a single IF whose test
is a disjunction:

A

IF el OR e2 OR e3 THEN

E
ELSE

F
G
Intuitively, the most likely path of execution is A, B, C, D, E, and G. But the
trace picker stops prematurely when it gets to D, because the edge D-E is the
highest-count edge leaving D, but edge C—F is the highest-count edge entering
E. As a result, the trace is half as long as it should be.
One fix is to modify the heuristic to ignore edges to or from operations pre-

viously selected for the current trace. Here are the modified criteria for deciding
whether edge e from P to S is the best candidate edge:

Consider all edges P-X such that either X is the current beginning of
the trace or X isn’t already selected for the trace. Then e must have
the highest execution count of all those edges.

Consider all edges X-S such that either X is the current end of the
trace or X isn’t already selected for the trace. Then e must have the
highest execution count of all those edges.

But now the heuristic almost has the aura of magic—it’s not quite as intuitive
as before. (I haven’t actually implemented this fix.)

Chapter 4: Trace Scheduling 53

As is the case with many other compiler heuristics, it might be that a much
simpler heuristic will do as well or better. For example:

When growing the trace forward, pick the edge with maximum execution
count.

When growing the trace backward, pick the predecessor (not the edge)
with maximum execution count.

This simpler heuristic is guaranteed not to stop growing the trace prematurely.

As with most heuristics, the only sure way to distinguish them is by mea-
suring their performance on realistic benchmarks. I've implemented this last
heuristic, but I’ve only had time to run a very few comparisons with the original;
one benchmark did slightly better, one did slightly worse, but the differences were
only a few percent.

Loop Back Edges

The trace-picking algorithm ensures that a trace never crosses the back edge of a
loop. This restriction makes the disambiguator much simpler, since it is assured
that all the operations in a trace will be from the same iteration of a loop body.

For outer loops, this restriction on picking traces is a little too severe. Nested
loops have the form:

LOOP
outer loop code
initialization for inner loop
LOOP
inner loop body
finalization for inner loop
outer loop code

Under the normal rules, the first trace will be:
inner loop body

The second trace will be:

outer loop code
initialization for inner loop

and the third trace will be:

finalizatson for inner loop
outer loop code

For many programs in the benchmark library, the second and third traces are
individually not very parallel. Experiments showed that a significant fraction
of execution time was spent in these traces. The front-end loop optimizations
attempt to create a family of induction variables for each copy of the unwound
inner loop body, and the initialization code for each of those variables can consist
of many integer operations.

54 Chapter 4: Trace Scheduling

However, but for the loop back edge restriction, the third and second traces
could easily form one larger trace:

finalszation for inner loop
outer loop code

outer loop code
initialization for inner loop

This larger trace potentially has more parallelism in it. In fact, some experiments
with the benchmarks showed that if traces were allowed to cross outer-loop back
edges in this way, the execution time of several of the programs improved roughly
5 to 10%. .

Unfortunately, the current disambiguator relies on the fact that traces don’t
include loop back edges. Chapter 5 discusses possible modifications to the dis-
ambiguator that will lift this restriction.

Execution Estimates

Where does the trace picker get its execution estimates? The programmer can
supply them, or he can use an automatic profiler. By default the compiler assumes
each branch of an IF will be taken with equal probability and that the body of
a loop is executed 100 times each time the loop is entered. The programmer
can override these defaults for an individual IF or loop by giving an explicit
probability (for IFs) or iteration-count estimate (for loops). Alternatively, the
programmer can use the automatic profiler to measure and record these same
quantities over one or more program runs.

Given the probabilities and iteration-count estimates, the compiler propa-
gates execution count estimates to all the operations and edges in the flow graph,
using these rules:

count(S) =1

count(0) = Z count(e)
e€in(0)

where S is the entry into the flow graph, O is any operation, and in(O) is the set
of edges entering O. A loop header H (the unique entry to a loop to which all
the loop back edges lead) is treated as a special case:

count(H) = iteration-count(H) Z count(e)
e€in(H)

where iteration-count(H) is the iteration-count estimate of the loop. That is, the
execution count of a loop header (and thus all the operations within the loop) is

Chapter 4: Trace Scheduling 55

multiplied by the estimated iteration count of the loop. As defined previously,
the execution count of an edge e leaving operation O is defined as:

count(e) = count(O) prob(e)

Performance of the Trace Picker

How good is the trace picker? For our scientific benchmarks, at least, it is quite
adequate. The control structures of these programs are very simple, consisting
mainly of nested loops. The time-critical sections contain few explicit condition-
als, and the trace picker has no problems picking maximal traces for the inner
loops first, then the next outer loops, and so on.

Often, the default execution estimates for loops are sufficient to completely
identify the time-critical traces. And for most of the few time-critical condition-
als, it’s been obvious to the programmer which way they usually go. A typical
conditional looks like:

IF x™=0 THEN
y:=z/x

and it’s usually clear from the algorithm whether x is almost always non-zero or
almost always zero. Because most of the control structures in scientific code are
so simple, it’s not necessary to have accurate estimates; grossly exaggerated esti-
mates will guide the trace picker just as well. In the example above, it wouldn’t
matter whether the branch probability supplied by the programmer was .6 or
.9—the trace picker would still pick the same trace.

Three of the benchmarks, ZEROIN, FMIN, and EOS, had a large number
of nested conditionals, and it wasn’t clear to me which way the conditionals went
on average (but I wasn’t familiar with the algorithms). For these, I used the
automatic profiler and obtained significant improvements in execution time of
the compiled code (roughly 25 to 75%). But as discussed in chapter 8, even
with the automatic profiler these programs had little available parallelism. They
had many branches with probabilities close to half (branches that went each way
about the same number of times). Trace scheduling will never do very well on
such programs, because the core assumption of trace scheduling is that branches
mostly go one way or the other. So having a profiler is nice, but it probably isn’t
crucial.

Bookkeeping

After the code generator generates a schedule of machine instructions for a trace
of intermediate-code operations, the trace scheduler must remove the trace from
the flow graph and replace it by the machine instructions. This isn’t as simple as
it sounds. The code generator has substantially reordered the trace, filling each
machine instruction with operations from widely separated points on the trace;
time-critical operations are usually scheduled early, while non-critical operations

56 Chapter 4: Trace Scheduling

are often delayed. Because of the movement of operations with respect to con-
ditional jumps off the trace and jumps into the trace, simply replacing the trace
by the schedule would result in an incorrect program. To preserve correctness,
the code generator must insert new intermediate code around the boundaries of
the flow graph. For no really good reason, this process of replacing the trace
with the schedule and inserting new, correctness-preserving operations is called
bookkeeping.

Some definitions: A split is a conditional jump on the trace. A join is a
jump into the trace. The on-trace edge of a conditional jump on the trace is
the edge leading from the jump to the next trace operation; the off-trace edge
is the other edge of the jump. If a conditional jump is the last operation in the
trace, one edge is arbitrarily identified as the on-trace edge. Similarly, the on-
trace edge of a join is the edge coming from the previous trace operation; one of
the edges joining the first trace operation is arbitrarily identified as the on-trace
edge.

First, let’s consider splits. Suppose the trace consisted of the operations
between A and B:

C i:-F+1 D)
C IF e > k:=i+b)
C ki=ivd) |

and suppose the code generator produced the following schedule of machine op-
erations for it:

1 IF el
2 i:=n+1
3 k:=i+4

(In this example and succeeding ones, the actual registers and functional units of
the machine operations are suppressed for simplicity. For now, we’ll assume all

Chapter 4: Trace Scheduling 57

machine operations take one cycle.) Replacing the trace by the schedule in the
flow graph yields:

k:=i+5)

But this is incorrect—k:=i+5 gets the wrong value of i because i:=n+1 has
moved below the split in the schedule. The solution is to place a copy of the
intermediate-code operation i:=n+1 on the off-trace edge of the split:

If more than one operation moves below a split in the schedule, then they are
all copied out onto the split in original trace order. Figure 4.2 shows an example
of this.

58 Chapter 4: Trace Scheduling

%

C j;=11-2)
__m=j*3)
i
(. di:=m+1)
I
C IF e F——>(k:=i+5)
1
C k:=i+d) l
1 IF el
2] j:=1-2 i:=p+1
3{ m:=j*3 k:=i+4
1] l[IF el |——s(J:=I1'2)
(2] j:=1-2 | i:=n+1 | C m:=j*3)
1 |
[3] m:=j*3 | k:=i+4 | (i:=n+t)
C ki=isb)

+

Figure 4.2. An example of several operations getting copied at a split.
The top shows the trace, the operations between A and B. The middle
shows a schedule for the trace. The bottom shows the schedule replacing
the trace and the necessary split copies.

Now consider joins. Suppose that for this trace:

%

c:=a*b

:=a/2)

a

i:=i+1

d:=c-2

MY M
»
(A A

jo=i*2

Ry

Chapter 4: Trace Scheduling 59

the code generator produced the following schedule:

[¥N

1 c:=axb 1=i+]
2} d:=c-2 jr=i%2

Unlike the split example, it’s not clear here how to replace the trace by the
schedule. Where should the join from ¢:=a/2 be placed? If it is placed before
cycle 1, then unlike the original program, c:=a*b is now below the join. Whenever
execution proceeds from c:=a/2 through the join into the schedule, d:=c-2 will
get the wrong value of c. If the join is placed before cycle 2, i:=i+1 is now above
the join instead of below; if the program enters the schedule through the join,
j:=1i*2 will get the wrong value of i. Similarly, if the join is placed after cycle
2, j:=i*2 will also now be above the join, and the succeeding operations will get
the wrong value of j.

The solution is to place the join as early in the schedule as possible such that
no trace operations originally above the join are now below it. In the example,
the join would thus be placed between cycles 1 and 2:

iy

put

Then, if an operation was originally below the join but is now above it, it must
be copied onto the joining edge to preserve program correctness:

c:=a/2)
ir=i+1)

[a—y
0
]
®
¥*
o

'a
A O
[-

-l

#

If more than one operation has moved above the join, then they all must be
copied into the join in trace order.

The joins are made as early as possible in the schedule to minimize the
number of operations that need to be copied into it. Note that sometimes a
join must be placed after the last cycle of the schedule; this happens when some
operation originally above the join in the trace is scheduled in the last cycle.

60 Chapter 4: Trace Scheduling

The copies of operations created at splits and joins as a result of code motions
are treated just like other intermediate-code operations. They will be selected
and compiled as part of later traces.

We’ve seen what happens when an operation moves below a split in the
schedule. But what about an operation moving above a split? For example,
consider this trace:

C ii=lj+1 D,
(C1Fet »——= x:=ix3___)
C i:='i+2) l

Suppose the code generator produced the following schedule:

1 ir=j+1
2 i:=1i+2
3 IF el

That is, i:=i+2 has moved above the jump. The flow graph would look like:

(1] i:l=j+1|
2] i:'=i+2|
[8] IF et p——>(k:=i+3)

This would be incorrect, since now k:=i+3 gets the wrong value of i. But if i
were dead on the off-trace edge of the jump (that is, no operation read its value)
it would have been ok to move i:=i+2 above the jump, since no operation on
the off-trace edge reads i’s value. In general, an operation writing some variable
x can be moved above a split in the schedule only if x is dead on the off-trace
edge of the jump. But the trace scheduler doesn’t have to worry about this—
as described in chapter 7, the code generator won’t generate such illegal code
motions.

Chapter 4: Trace Scheduling 61

Jumps

In the examples so far we’ve only considered simple value-producing operations
moving past splits and joins in the schedule. But jumps can move past other
splits and joins as well, getting copied just like other operations. To copy a jump
into a split or join, the edges of a jump must be distinguished as “off-trace” and
“on-trace,” where the on-trace edge leads to the next operation in the trace and
the off-trace edge leads to some off-trace operation:

tra.ce off-trace edge)@
on-trace edge

Depending on the sense of the jump’s test, the on-trace edge can be either the
true or false edge of the jump.

When the jump is copied, the copy’s off-trace edge is left pointing at the same
spot as the original (C), while the on-trace edge points to the next operation in
the split or join. For example, consider this trace and schedule:

(__IFet }—-——~>1IIIFIII
C d:=iel)
)

T
C IF e2
C B
1 IF e2
2 IF el

3] d:=i+i

Note that the off-trace edge of IF el leads to C, and that IF el and i:=i+1 have
moved below IF e2 in the schedule and thus need to be copied onto its off-trace

62 Chapter 4: Trace Scheduling

edge:

The off-trace edge of the new copy of IF el points at C (where the original’s
off-trace edge points), while its on-trace edge leads to the next operation in the
split, the copy of i:=i+1.

You can convince yourself that the new flow graph is equivalent to the orig-
inal by trying out all four combinations of truth values el and e2. For example,
when el and e2 are both true, the operations executed in the original are

A, IF el, C
while the operations executed in the new flow graph are
A, IF €2, IF el, C

The fact that IF e2 is executed in the new flow graph but not in the original
doesn’t affect program correctness. It probably doesn’t affect the speed of the
compiled code, either, since the assumption that el and e2 are false most of the
time is implicit in the way the trace was picked. The idea of trace scheduling is
to optimize the most likely paths of execution (early traces) at the expense of
less likely paths (later traces).

Chapter 4: Trace Scheduling 63

Jumps are copied into joins just as with splits:

IF e
X:=y*z
i:=j+1

LI = 'a

The earliest the join can be made is after cycle 3:

Operation i:=j+1 moved below IF e and so is copied onto its off-trace edge; IF
e and x:=y*z moved above the join and so are copied into it.

Again, you can convince yourself that the new flow graph is equivalent to
the original by trying all combinations of truth values for e and entry points A
and C.

There is some extra hair when jumps get copied up into joins. Consider this

64 Chapter 4: Trace Scheduling

trace and schedule:

IF e

Wi

3 C E

The join is made between cycles 2 and 3:

. Operations B, C, and F moved below IF el in the schedule, so they get copied
into the split. Operations D and IF el moved above the join in the schedule, so
they get copied into the join.

But as it stands, this new flow graph is incorrect. Suppose e was true. Then

in the original flow graph, if control entered at H the operations executed would
be:

H,C,D,E IF e, I
But in the new flow graph, the operations executed would be:
H,D,IF e, I
Operations C and E don’t get executed as they should. They must be placed on

Chapter 4: Trace Scheduling 65

the off-trace edge of the new copy of IF e:

1] D | IFe

{
(2] [|
Gl ¢ 1 % |

Now, no matter which entry point is taken and what the value of e, the new flow
graph is equivalent to the original.

The general rule for a jump copied into a join is: All operations on the trace
below the join and above the jump that weren’t copied into the join (because they
were scheduled below it) must be copied onto the off-trace edge of the jump’s
new copy. If any of those copied operations are jumps, they are copied like any
other jump, but this rule is not recursively applied to them.

Buffering the Trace

In the examples so far, I've assumed that a conditional jump on the trace always
jumps to some operation not on the trace. But that’s not always the case:

Assume the trace consists of operations B-F. The off-trace edge from C immedi-
ately joins the trace below E. Handling such an edge during bookkeeping could
be quite tricky, since neither end is anchored to a fixed, off-trace operation, and
both ends could move after scheduling.

66 Chapter 4: Trace Scheduling

To make the bookkeeping simpler, temporary buffering nodes are inserted
between the trace and the rest of the flow graph, insuring that all split and join
edges are anchored:

At splits, a buffering node is spliced into the off-trace edge. At joins, a single
buffering node is spliced between the trace operation and all the incoming off-
trace edges joining to that operation.

After the buffering nodes are inserted, every split edge now leads to an off-
trace node, and every join edge comes from an off-trace node. Each buffering
node represents one split or join point, and there is now at most one off-trace
join edge and one off-trace split edge for every operation on the trace.

To replace the trace by the schedule, the buffering nodes are detached from
the trace and reattached to the schedule. Then the copies of operations produced
at the splits and joins are spliced between the schedule and the buffering nodes.
Lastly, the buffering nodes are removed from the flow graph.

Multiple Conditional Jumps

The machine model used by the compiler allows multiple conditional jumps in a
machine instruction:

IF e; THEN ly; IF eg THEN lo; ...; IF e, THEN I,

The conditions e; are tested sequentially, and the first e; that is true causes a
jump to the corresponding label ;.

When generating code for a trace, the code generator doesn’t do anything
special to handle multiple jumps—it simply places as many jumps into the current
instruction as the hardware resources allow, subject to the same data-precedence

Chapter 4: Trace Scheduling 67

rules as all other operations (for example, a jump IF x>y must follow the oper-
ations producing the values of x and y).

After a schedule is generated, the jumps within an instruction are ordered
by their original trace order. Then the normal bookkeeping rules are applied to
each jump individually. To see why this works, consider the following trace and
the schedule produced for it:

A
2 E IF el IF e2 IF e3
B C D

The code generator decided to place all three jumps into the same instruction.
Applying the normal bookkeeping rules yields the following flow graph:

|
AT T T]

[2] E | IF et | IF e2 | IF e3 |
| —

| S—

S

/

BLETolp]l] CroCEo CED
! T Co
‘

If none of the jump conditions are true, the second instruction will fall through
into the third. Because B moved below IF e2 in the schedule, it was copied onto
its off-trace edge. Similary, B and C were copied onto the off-trace edge of IF
e3. Trying out all combinations of values for e1, e2, and e3 shows that this is
equivalent to the original program.

68 Chapter 4: Trace Scheduling

There is a slight complication if the on-trace edge of one of the jumps placed
in an instruction is the true edge instead of the false, or fall-through, edge. For
example, consider this trace and schedule:

1 A
2 IF et IF e2
3 B

The on-trace edge of IF el is its true edge. Putting the schedule into the flow
graph yields:

el 4 | |
{2{ IFet | IF e2 |

RN
3] B | | C fcir__) L.I_)D
I
But this is incorrect, since now if el is true, control passes to C instead of IF e2

as it should. So the bookkeeper must replace the condition el by its complement
“el:

A] |
[2] IF "et | 11-‘:2 |

N
Bl B] | (l‘cl:) (zla)

l

For example, if the condition el was = > y, its complement would be z < y.

In general, when one or more jumps are placed into an instruction, the
bookkeeper complements the jump condition of each jump whose on-trace edge
is its true edge. The destinations of the off-trace edges of the jumps remain
the same, and the fall-through of the instruction is the next instruction in the
schedule. While it’s not necessary to do this for instructions containing only one
jump, the bookkeeper does it anyway for simplicity.

Chapter 4: Trace Scheduling 69

Multicycle Operations

Operations taking more than one cycle to complete add further complexity to
trace scheduling. Once an n-cycle machine operation is initiated, it finishes ex-
ecution n cycles later, whether or not any branches were taken during those n
cycles. Consider this trace and schedule:

C c:ﬁa*b)

C IF e - di=c+2)
1
2
3

c:=ax*xb IF e
*2
*3

The multiply machine operation takes three cycles (¥2 and *3 in the schedule
indicate the successive cycles of the multiply). If the branch in the first cycle
is taken, it can’t simply jump directly to the machine instruction for d:=c+2,
because the multiply producing ¢ won’t be finished until two cycles later.

So the bookkeeper inserts a two-cycle stub of machine instructions on the
off-trace edge of the jump:

(1] ci=a%b | IFe 2] *2 |

1
2] *2 | | 3] *3 |
(8] 3 | | (_di=cr2)

This stub, or partial schedule, allows the multiply to finish before the machine
instruction containing d:=c+2 can start.

70 Chapter 4: Trace Scheduling

If several multicycle operations are bisected by a jump, their tail ends are
all placed in a partial schedule. Consider this trace and schedule:

C x:=y*z)
h:=f+d)

C
C 5:=\lr[i] D)
C
C

T
I
a:=b+c)

1] x:=yxz

2 *2 h:=f+d g:=v[i]

3 *3 +2 (12 a:=b+c IF e
4 *4 +3 [13 +2

5 {14 +3

6 {ls

(Here, multiplies take 4 cycles, adds 3 cycles, and memory references 5 cycles.)

The jump IF e bisects 4 multicycle operations; after inserting the partial schedule
the flow graph would look like:

[xy=] I |]
(2] *2 | h:=f+d |g:=v[il] [|
(3] =3 | +2] l[]2 [a:=btc | IF ej\\
4] =4 | +3 | :[]3 [+2] |
{51 | l J[]4 | +3 | |
161 I | 005] l |
B y

|- [4] =4 | +3 lI 0s | +2 |

151 | | 04 | +3 |

(6] | [05 [|

Chapter 4: Trace Scheduling 71

If e is true and the jump is taken in cycle 3, the partial schedule will allow all
the multicycle operations in progress to finish before starting the instructions at
C (which may depend on the values produced by those multicycle operations).

An operation originally above a split but scheduled completely below it will
be copied (as an intermediate-code operation) onto the split edge as usual. All
split copies are placed after the partial schedule.

Multicycle operations bisected by joins require similar handling. For exam-
ple:

C_x=yx2)
I
C Z:=x+3)
B
1 a:=b+2
2 +2 x:=y*2
3 +3 *2
4 *3
5 *4
6 Z:=x+3
7 +2
8 +3

The bookkeeper will place the join as high as possible such that no operation
originally above the join in the trace is now below it; in this case, between cycles
3 and 4. But C can’t jump directly into the schedule between 3 and 4, because
the multiply is in progress. So the bookkeeper inserts a partial schedule between
C and the schedule that starts up the multiply and then joins the schedule two

72 Chapter 4: Trace Scheduling

cycles later:

2l __*2 | xi=ys2]
[3] +3 J *2 |
[<
(4] 1 3 |
(51 1 x|
16] =z:=x+3 | |
I
A — |
(81 +3 | |

Thus, no matter which way control enters the schedule, the multiply will be
started and produce the value of x for z:=x+3 in cycle 6.

If several machine operations are bisected by a join, then the initial parts of
the operations above the join are all placed in a partial schedule. For example,
if the bookkeeper decided to place a join between cycles 2 and 3 in this schedule:

1| a:=b+c |g:=v[i]

2 +2 [12 X:=y*z
3 +3 {13 *2

4 {14 *3

5 (15 *4

the following flow graph and partial schedule would result:

[1] a:=b+c |g:=v[i]] |

1
[1Ta:=b+c Ig::v[ill | (2] +2 | 02 [x:=yxz]
(2 +2 | (12 | x:=y*z|
37 +3 7T l[]3 I
{4] | l[J4 [=3 |
[5] | 005 | *4 |

Chapter 4: Trace Scheduling 73

Whether control enters from A or from C, the pipelines will be in the same state
of completion when control reaches cycle 3 of the schedule.

A machine operation originally below the join but scheduled completely
above it (that is, the last cycle of the operation is above the join) will be copied
onto the join edge as usual. All the join copies are placed between the off-trace
predecessor of the join and the partial schedule.

Recording Variable Locations

When the code generator is handed a trace, it needs to know the initial and final
register and memory locations of variables referenced on the trace. The locations
of variables at a trace’s boundaries must be recorded so that the code generator
will know where to find the variables or store them when it produces code for
later adjoining traces.

The simplest traditional code generators store variables back into known
memory locations (such as a stack frame) at the end of each basic block or even
each statement. This strategy is unacceptable for a VLIW compiler intended
for scientific code, since memory bandwidth is often the limiting resource in the
inner loops. More sophisticated code generators have a prepass that globally
allocates registers for the entire flow graph. But this strategy won’t work either.
Unlike a traditional machine, a VLIW has many register banks and functional
units separated by long, slow data paths. As explained in chapter 7, the decision
of which register should hold a variable is secondary to which functional units
should compute the operations that use the variable, and assigning functional
units to intermediate-code operations is best delayed until code-generation time
for each trace.

Thus, in the Bulldog compiler registers are allocated to variables by the
code generator as it is producing code for a trace. When the bookkeeper replaces
a trace by the generated schedule of machine instructions, it records at every
entrance and exit from the schedule the locations of live variables. Later traces
adjoining the exits and entrances are constrained to use those locations as initial
or final variable locations. ’

74 Chapter 4: Trace Scheduling

Consider a schedule that has just replaced a trace in the flow graph:

At every exit from the schedule, the bookkeeper inserts a DEF pseudo-operation
(supplied by the code generator) that specifies the final machine locations of every
variable live at that exit:

A DEF pseudo-operation has the form:
DEF vy l1, v9 lg, ..., vy Iy

where v; is a live variable and /; is one of its memory or register locations at
the exit. Since a variable can occupy many locations in the machine at a given
point in the program, there will be a separate v;/l; pair for each location of the
variable.

Chapter 4: Trace Scheduling 75

Similarly, at every entrance to the schedule, the bookkeeper inserts a USE
pseudo-operation (also supplied by the code generator) specifying the initial live-
variable locations assumed by the schedule at that entrance:

A USE has the form:
USE vy l{, vo lg, ..., vy Iy

where v; is a variable live at the entrance and [; is one of its locations.

The DEFs and USEs will be picked up as part of the later adjoining traces.
When a DEF is the first operation of a trace (DEFs will always be first), it tells the
code generator the initial register and memory locations of the variables live on
entrance to the trace. Similarly, when a USE occurs at the end of a trace (USEs
will always be last), it tells the code generator the final locations of variables live
on exit from the trace; the code generator must ensure that the variables end
up in at least those locations by the end of the schedule, if necessary generating
code to move the variables into position.

If there is no DEF at the beginning of a trace, the code generator is free to
make up any convenient initial locations for live-on-entry variables. When the
schedule is inserted into the flow graph, a USE at the entrance to the schedule
records the initial locations chosen. A later trace will include that USE as its last
operation and will guarantee that the variables do indeed end up in the chosen
locations.

Similarly, if there is no USE at the end of a trace, the code generator leaves
the variables in whatever locations are convenient. When the schedule is inserted
into the flow graph, a DEF at the exit of the schedule records the final locations
chosen, and a later trace adjoining the exit will pick up the DEF and be informed
of the locations.

A trace could consist of just a DEF and USE, in which case the code generator
may need to generate code to move variables from the initial locations specified

76 Chapter 4: Trace Scheduling

by the DEF into the final locations specified by the USE. No code is needed for a
variable if its final locations are a subset of its initial locations.

DEFs and USEs actually record the variable locations at the boundary between
the partial schedule of the split or join and the operations outside the trace
(including any split or join copies inserted by the bookkeeper). Schematically, an
exit looks like:

schedule
partial schedule
1]
1

split copies

)

1
Jt

Chapter 4: Trace Scheduling 77

where C is the original off-trace successor of the split. Similarly, a join looks like:

()
join copies
| USE ...
A |
; (_l___'l
| B! ! partial schedule

]

schedule I |
L |

—

i

A DEF at a schedule exit records for all its uncompiled successors the locations
of live variables for use by later traces. But if all the successors of a schedule
exit (including split copies) are machine instructions, that is, if all the successors
have already been translated into machine operations by previous traces, then a
DEF would serve no purpose, and the bookkeeper doesn’t insert one. Similarly,
if all the predecessors of a schedule entrance are machine instructions, no USE is
inserted.

At this point, an extended example hopefully will make the DEF /USE mecha-
nism clearer. Suppose the compiler is given a simple program that computes the

78 Chapter 4: Trace Scheduling

average of 12 over all integers ¢ between 1 and n:

8:=0
FOR i:=1 TO n DO
8:=s+i*i
:=s/n

The intermediate-code flow graph initially looks like:

(1] DEF E: mi00)
@ ___s:=0)
@] i=t)

@] s:=s/n)

1
(9] USE s mi01)

The DEF at the beginning specifies memory location 100 as the initial location of
the input parameter n, and the USE at the end specifies memory location 101 as
the final location of the output parameter s.

The first trace picked and compiled is the inner loop (the most time-critical
operations), operations 4-7. Because there is no DEF or USE on the trace, the
code generator is free to choose initial and final locations for variables. Inserting

Chapter 4: Trace Scheduling 79

the schedule for the trace into the flow graph yields:

(1] DEF n m100)

@ == D

G 2=t D
K—)QO]USE i 1:1l n r2, s rd
IF 1(r1)>n(r2) }——(12] DEF n r2, s 14)
F ti(ra):-l(rl)*l(ri)J
[8(zB): =|;: (rd)+t1 |

| i(x6) :=i(r1)+1 |
\ I
@1]pEF i r6, n r2, s rd

al s:=s/n)

i
(9] USE s mi01)

(Instances of variables in machine operations are annotated with the registers
used to hold their values.) The new DEFs and USEs inserted in the flow graph
record the locations of the variables live at the entrances and exits. Notice that
the code generator was dumb and picked new registers for the new values of i
and s instead of updating them in place. (The real code generator would keep
an induction variable in one register.)

The next trace consists of operations 11 and 10 (in that order), the DEF and
USE on the back edge of the inner loop. Because the locations of i and s in the
USE aren’t the same as those in the DEF, the code generator will generate code to

80 Chapter 4: Trace Scheduling

move them from the DEF’s locations to the USE’s locations:

(1{ DEF n m100)

@m0

D
Q5{USE i 1'6,l n r2, s rb)

I
r—>| MOVE i(xr6)->i(r1) |

[MOVE s(ré)->s(r4)]

IF i(r1)>n(r2) |—>(12] DEF n r2, s r4)
1

L

[t1(x3):=i(r1)*i(r1) |
1

l

I

8(r5) :=a(r4)+t1 |
I
i(r6):=i(r1)+1 |

(8] s:l=-s/n)
(9] USE s mi01)

The operation i:=1 originally joined the USE at the end of the trace; that join was
placed on the schedule using the normal rule—as high as possible such that no
operation originally above the join on the trace is now below it. In this example,
“as high as possible” is the beginning of the schedule. Consequently, the new
USE inserted at that join reflects the variable locations at the beginning of the
schedule, not the end. (Remember this is just an example and that the code
generator would really have kept the induction variables i and s in the same
register throughout the loop.)

The next trace includes the exit from the loop, operations 12, 8, and 9. This
trace also has a DEF and a USE giving the required initial and final locations of

Chapter 4: Trace Scheduling 81

the live variables. The resulting flow graph is:

(1] DEF n mi100)
@ s)
D

T
@5|USE i 6, n r2, s rb)

l

(,-44 MOVE i(x6)->i(r1) |
i

[MOVE s(r5)->s(r4) |

b IF i(x1)>n(z2)
1
[£1(8) :=i(r)*i(x1) |

i s(rS):=;(r4)+t1]
1
{ i(x6) :=i(r1)+1 |

[s(r1):=s(rd)/n(zx2) |
I
| MOVE s(r1)->mi01 |

Because the final location specified by the USE for s was memory location 101,
the code generator generated a memory store to move s from its register to m101.

The final trace consists of operations 1-3 and 15. The finished object code
is:

| 8(r5) :=0 |
i

{ i(r6):=1
1

| MOVE n(m101)->n(x2)

-

-

|

(—a>{ MOVE i(x6)->i(rl)
I

| MOVE s(r5)->s(r4d)

| IF i(r1)>n(x2)

I
I £1(r3):=i(r1)*i(rl)
|

s(r5):=;(r4)+t1 |
1
| i{r6) :=i(r1)+1

| s(x1):=s(x4)/n(r2)
I
[MOVE s(r1)->mi01 |

]

——

Because the initial location of n was m101, a memory fetch was necessary to put

82 Chapter 4: Trace Scheduling

n into register r2 as required by the USE at the end of the trace. The code
generator was pretty smart here, noticing that since the USE required s in r5, it
makes sense to use r5 for previous references to s on the trace.

This example suggests that traces are always maximal and either include a
DEF and a USE or else stop at loop boundaries. While this is usually the case, there
is nothing in trace scheduling or the DEF /USE mechanism that requires traces to
be maximal.

Incremental Live Analysis

Just as a basic-block code generator needs to know the variables live on entrance
and exit from the block, the Bulldog code generator needs to know the variables
live on every entrance and exit from the trace. This live information is used
to allocate and free registers and to prevent illegal code motions. Before trace
scheduling begins, a standard live analysis [Aho 77] calculates the sets of live vari-
ables at every point in the flow graph. Unfortunately, this pre-trace-scheduling
analysis isn’t sufficient, because the flow graph is changed during trace schedul-
~ ing by the bookkeeper adding in split and join copies of operations. Thus, the
bookkeeper must perform an incremental reanalysis after each trace.

When a trace is replaced by a schedule and split and join copies added to
the flow graph, the live-in and live-out variable sets of all the other operations in
the flow graph remain unchanged. Intuitively, this is precisely because the code
generator and the bookkeeper are designed to replace the trace by a semanti-
cally equivalent combination of machine instructions and bookkeeper operations.
Therefore, the bookkeeper need only compute the live-in and live-out sets of
the new split and join copies. (Nicolau [Nicolau 84] provides a more rigorous
justification for this observation.)

Consider a typical split after the partial schedule, DEF, and split copies have
been inserted:

{

schedule

partial schedule

Rl

Chapter 4: Trace Scheduling 83

The C; operations are split copies of operations from the trace, and the B; are
the buffering nodes inserted at the beginning of bookkeeping. The sets of live
variables at the buffering nodes remain unchanged when the schedule and copies
replace the trace. Since the variables live at the buffering nodes are already
known, it is easy to calculate the live-in and live-out sets for each of the copies
C; by simple backward propagation from B; and By. That is, the variables live
at C3 are calculated in terms of the variables live at By, Cg in terms of By and
Cs3, and Cj in terms of Cj.
Now consider a typical join after bookkeeping:

schedule partial schedule

#

Notice that Cs is a copied jump and that operations C4 and Cy were copied
onto its off-trace edge. As at a split, the variables live at the buffering nodes
remain unchanged when the schedule and copies replace the trace. Also, the
USE specifies the locations for exactly those variables live on entry to the partial
schedule. (The code generator computes the USE from the schedule using the
variables live on exit from the trace supplied to it by the trace scheduler. This
computation is described in chapter 7.) Since the variables live at the USE and
at the buffering nodes B2 and Bg are known, the variables live at the copies can
be calculated just as at a split by backward propagation from the known points.

A simple backward-propagation algorithm suffices for both splits and joins.
It uses the standard data-flow equations:

live-out(0) = U live-in(S)
S €succ(0)
live-in(O) = (live-out{O) — def(O)) U use(O)

That is, the set of variables live on exit from an operation O is the union of the
sets of variables live on entry to all of O’s successors. And the set of variables

84 Chapter 4: Trace Scheduling

live on entry to O is the set of variables live on exit from O minus the variables
written by O, plus the variables read by O.

The algorithm keeps a set to-do to remember all the operations O whose
live-in and live-out sets are ready to be computed (all of O’s successors have
known live-in sets). The algorithm repeatedly picks an operation O from to-do,
calculates O’s live sets using the live-in sets of its successors, and then adds
to to-do all the predecessors of O that are now ready to have their live sets
computed:

to-do := 0

for each node O such that O is either a USE for the schedule or a buffering
node at a split from the schedule

do
to-do := to-do U ReadyPredecessors(O)

while to-do # 0 do
O := any operation in to-do
Remove O from to-do
live-out(0) := U live-in(S)
S €succ(0)
live-in(0O) := (live-out(O) — def(0)) U use(0)
to-do := to-do U ReadyPredecessors(O)

The procedure ReadyPredecessors(O) returns the set of all predecessors of op-
eration O that can now have their live sets computed. Each of the returned
predecessors P satisfy the following:

The live-in and live-out sets of P aren’t yet known.
The live-in and live-out sets of all the successors of P are known.

This algorithm is fast. Each operation examined is examined exactly once,
and the total number examined is the sum of the number of split and join copies,
the number of splits, and the number of joins.

A Detailed Summary of Bookkeeping

By now, it might seem that bookkeeping is incredibly complicated—split and
join copies, jumps, multicycle operations, partial schedules, USEs and DEFs, etc.
It is complex, but manageably so; its implementation in the current compiler
consists of only 20 pages of code. This section presents a concise summary of
bookkeeping.

In what follows, the entrance to the beginning of the trace is considered a
join, and the exit from the end of the trace is considered a split even if the last
operation of the trace isn’t a conditional jump.

The schedule returned by the code generator is opaque to the trace sched-
uler and can only be examined using interface procedures exported by the code
generator. The bookkeeper decides where splits and joins should be placed and

Chapter 4: Trace Scheduling 85

then invokes the interface procedures to construct the partial schedules, DEFs,
and USEs for the splits and joins. The implementation of the interface procedures
is described in chapter 7. The procedures are:

Schedule:length(schedule) returns the length of the schedule.

Schedule:[](schedule,cycle) returns the machine instruction for the given
cycle from the schedule. A machine instruction is simply an ordered list
of machine operations. Supplied with each machine operation is the
corresponding intermediate-code operation from the trace.

Schedule:split (schedule,cycle) returns the partial schedule and DEF for a
split from the schedule at the end of the given cycle. The DEF contains
the locations of all the variables live on exit from the partial schedule.

Schedule:join(schedule,cycle) returns the partial schedule and USE for a
join that the bookkeeper has decided to make to the beginning of the
given cycle. The USE contains the locations of all the variables live on
entry to the partial schedule.

The following functions on machine and intermediate-code operations are derived
from the original trace and the information supplied by the interface functions:

Cycle(M) is the first cycle of a machine operation M in the schedule,
that is, the cycle the operation is scheduled.

LastCycle(M) is the last cycle of a machine operation M in the schedule,
that is, Cycle(M) + Time(M) — 1, where Time(M) is number of cycles
needed to execute the operation.

ICO(M) is the original intermediate-code operation from the trace that
gave rise to machine operation M. In the machine model used by the
compiler, an intermediate-code operation causes at most one machine
operation to be generated; machine operations that simply move data
from one part of the machine to another don’t have associated interme-
diate-code operations.

TracePos(0) is the position of intermediate-code operation O within
the trace.

Off TraceSucc(0) is the off-trace successor of an intermediate-code jump
on the trace; after the buffering nodes are inserted, this successor is
always a buffering node.

The steps in bookkeeping are:

1. Buffering the trace. Dummy buffering nodes are inserted at every entrance
and exit from the trace, so that every split edge exiting the trace leads to a
buffering node, and every joining edge to the trace comes from a buffering node.
The set of variables live at each buffering node is recorded in the node.

86 Chapter 4: Trace Scheduling

2. Setting flow-graph successors. The successor of every machine instruction
in the schedule not containing a conditional jump is set to be the next instruction
in the schedule; the successor of the last instruction is set to be the buffering node
at the end of the trace. If a machine instruction does contain one or more jumps,
its fall-through successor is set to be the next instruction in the schedule, and
the target of each jump J in the instruction is set to be Off TraceSucc(ICO(J)).
If the on-trace edge of ICO(J) is its true edge, then the branch condition of J is
complemented (for example, < becomes >).

3. Setting the flow-graph predecessors. The predecessor of every machine
instruction in the schedule is set initially to be the previous machine instruction
in the schedule; the predecessor of the first machine instruction is set to be the
buffering node at the beginning of the trace. Then the joins to the trace are moved
over to the appropriate points in the schedule. Each join to the trace at position
t has an associated buffering node B. The joining edge from B is moved to the
earliest machine instruction in the schedule such that no operations originally
above the join in the trace are now below it in the schedule. That is, a join
originally to trace position ¢ is placed at the beginning of the earliest cycle ¢ in
the schedule such that for every machine operation M with Cycle(M) > ¢, then
TracePos(ICO(M)) > t.

4. Split partial schedules and DEFs. At every conditional jump J in an in-
struction at a given cycle in the schedule, Schedule:split(schedule,cycle) is invoked
and returns a partial schedule and a DEF for the split. The partial schedule and
the DEF are spliced between J and its associated buffering node B on the split:

| schedule

partial | _orr) ("B)
I

An operation M is in the partial schedule if it spans the split, that is if
Cycle(M) < cycle and LastCycle(M) > cycle. Only those cycles of M above the
split (from Cycle(M) to cycle) are included in the partial schedule.

5. Join partial schedules and USEs. At every join to a cycle in the schedule
(there may be several), Schedule:;join(schedule,cycle) is invoked and returns a

Chapter j4: Trace Scheduling 87

partial schedule and a USE for the join. The partial schedule and the USE are
spliced between the buffering node B for the join and the instruction at cycle:

. |
partial | mm T Ne (B

schedule

cycle:

An operation M is in the partial schedule if it spans the join, that is if Cyele(M) <
cycle and LastCycle(M) > cycle. Only those cycles of M below the join (from
cycle to LastCycle(M)) are included in the partial schedule.

6. Split copies. At every conditional jump J in the schedule, the bookkeeper
finds all the machine operations M originally above J in the trace but now sched-
uled completely below it, that is, TracePos(ICO(M)) < TracePos(ICO(J)) and
Cycle(M) > LastCycle(J). For each such M, the intermediate-code operation
ICO(M) is copied onto the off-trace edge of the split between the DEF and the
buffering node B. If there are several such operations Oy, Og,...,Oy that are

copied, they are arranged in increasing trace order starting at the DEF, so that
TracePos(0;) < TracePos(O;4.1):

partial | _orrTy 207)

schedule

0D
CBO

If some machine-operation jump J is copied into the split as O;, then its on-
trace edge points to O;4; (or B if ¢ = n), and its off-trace edge points to
Off TraceSucc(ICO(J)).

7. Join copies. At every join originally to trace position ¢ but now to cycle cycle
in the schedule, the bookkeeper finds all the machine operations M originally
below the join but now completely above it, that is, TracePos(ICO(M)) > t
and LastCycle(M) < cycle. For each such M, the intermediate-code operation
ICO(M) is copied into the join between the USE and the buffering node B. If

88 Chapter 4: Trace Scheduling

there are several operations Oy, Os, ..., O, that are copied, they are arranged in

increasing trace order starting at B, so that TracePos(0;) < TracePos(0;4):

(B)
(01)
m
partial
cycle: schedule USE ... = On

If some machine-operation jump J is copied into the join as O, its on-
trace edge points at O;,; (or the USE if 7 = n), and its off-trace edge points
to B) = OﬂTraceSucc(I CO(J)). Then all the machine operations Nj originally
between the join and the jump on the trace but now below the join in the schedule

must be copied onto the off-trace edge of O;:

Cor Do

partial ICO(N,)

o: — schedule USE ... On i
cycle: Co(Von

More formally, the machine operation N; is copied if

TracePos(ICO(N;)) >
TracePos(ICO(Ny)) < TmcePos(ICO(J))
Cycle(NJ) > cycle.

8. Incremental live analysis. The live-in and live-out sets of the new split
and join copies are computed as described in the previous section.

9. Setting the execution counts. The execution-count estimates of the newly
added machine instructions and split and join copies are computed using the
same rules that were used for the original flow graph, with one minor addition
to handle machine instructions with multiple jumps. Suppose a newly formed
instruction contains the jump operations Jy, Ja,...,Jn with the corresponding

Chapter 4: Trace Scheduling 89

exiting edges ej,es,...,en, where e, is the fall-through edge. The multiple
jumps are semantically equivalent to the following flow graph:

€
=

€n+1

Let p; be the probability of the off-trace edge of the original intermediate-code
operation ICO(J;). Then the probabilities of the new instruction’s edges e; are:

prob(e;) = p1

prob(e;)) =p; [[(@-p;)
1<5<i-1

prob(ep+1) =1— Z prob(e;)
1<j<n

= H (1 _'pj)

1<j<n

10. Unbuffering the trace. The buffering nodes are removed from the flow
graph.

Code Explosion

The intermediate-code copies created during the bookkeeping of a trace are se-
lected and compiled as part of later traces. Conceivably, trace scheduling might
never terminate for some programs—copies would be generated as fast as or faster
than they are picked by traces. However, Nicolau shows that trace scheduling is
correct and does indeed terminate [Nicolau 84].

" But even though trace scheduling terminates, there can be an exponential
number of copies generated [Fisher 79]. Figure 4.3 shows such an example. The
first trace through the flow graph is shown at top, and next to it, a possible
schedule. Notice that the jumps are scheduled in reverse order. The bottom
half of the figure shows the flow graph after bookkeeping. All the joins from the
operations B; must be made to the end of the schedule after A;. The off-trace
edges of the copied jumps aren’t shown—the off-trace edge of a copy of C; leads
to B;.

90 Chapter 4: Trace Scheduling

An
Co By Cn1
Anot
C1

l
Cn (G (A4 (G)(42)
Cpn-1 (G (A4) (43

An-—l

L C —=(C1 (A

H

Figure 4.3. An example of code explosion

Chapter 4: Trace Scheduling 91

There are Z 27 split copies and Z 27 join copies, for a total of

1<i<n—1 1<i<n—-1
2n2% — 2n copies on the first trace alone. The next n traces could well be:
trace 2: Cl,Ala---aCn—-l’An—laBn
trace 3: Ci,Ay,y...,Bp-1,Cn, Ap

trace n + 1: Bi,Cn, Ap,...,Ca, A

Each of these traces has O(n — 1) operations, and like the first trace could be
scheduled in reverse order, giving rise to O(n — 1) new traces each with O(n —2)
elements. Each of those traces could give rise to O(n — 2) traces of O(n — 3)
elements each. And so on until the remaining traces have length 1. Thus the
total number of operations is proportional to:

n+nn—1)+nn-1)(n—-2)+---

which is O(nn!) or roughly O(n").

At least two critics have complained that this potential code explosion could
make trace scheduling impractical [Linn 83, Lah 83]. But my benchmarks demon-
strate that code explosion isn’t a serious problem for much, maybe most, scien-
tific code. The experiments reported in chapter 8 show that the amount of actual
copying is usually quite acceptable.

Most scientific code has very simple control structures with few cascaded
conditionals. However, sometimes the inner loops do contain an IF-THEN-ELSE or
two; unrolling these loops 16 or 32 times could lead to exponential code explosion
similar to the example above. Luckily, all of the inner-loop conditionals in the
benchmarks that caused code explosion fell into two main classes, each of which
could be rewritten to avoid code explosion.

One class of inner-loop conditionals looks like:

IF x™=0.0 THEN
Y iSX*Z

The only purpose of the conditional is to avoid an extra multiplication. On a
scalar machine this might save time. But it is pointless in a highly parallel,
pipelined VLIW unless x is almost always zero (in which case the algorithm can
probably be rewritten, say, using sparse-matrix techniques). If x is frequently

92 Chapter 4: Trace Scheduling

non-zero, then simply removing the conditional eliminates the possibility of code
explosion when the loop is unrolled:
y:i=X*z

The other class of conditionals looks like:

IF b THEN
X:=el

ELSE
X:=e2

where the expressions el and e2 are very simple, often just constants or variables.
Examples:

IF x>y THEN
it=j-1
ELSE
ir=j+1
IF x™=0 THEN
z:=z/x

To avoid potential code explosion in this class requires the introduction of a new
Tinylisp, intermediate-code, and machine operation, SELECT.

SELECT(b, x1, x2)

returns either x1 or x2 depending on whether b is true or false. So the above can
be rewritten as:

IF b THEN = x:=SELECT(b, e2, el)
x:=el

ELSE
X:=e2

IF x>y THEN = i:=j+SELECT(x>y, 1, -1)
i:=j-1

ELSE
i:=j+1

IF x™=0 THEN = z:=SELECT(x™=0, z/x, z)
z:=z/x

(The last example assumes the machine doesn’t signal exception on division by
0.)

The SELECT operator is easily implemented in hardware (the Numerix
MARS-432 has a SELECT, and many vector machines have vector equivalents).
Remember that the purpose of the ELI project was to develop a compiler and
an architecture simultaneously; we’re not concerned about compiling for other
random machines. The disadvantage of SELECT is that both operands must be

Chapter 4: Trace Scheduling 93

evaluated; but this isn’t a problem if one assumes the operands are usually con-
stants, variables, or simple expressions that can usually be evaluated in parallel.

An interesting example of the usefulness of SELECT arose when I decided
to implement SIN and COS as functions that get expanded and compiled in-
line. On traditional machines these functions are implemented as a block of
straight-line code (one or two dozen operations) followed by one or two very
simple IFs testing the sign of intermediate results. When a simple loop containing
a call to SIN using that implementation was unwound several times, there was
massive copying after the first trace because each expansion of SIN was data-
independent from the others, and the conditionals floated up towards the top of
the schedule. Replacing the IF-THEN-ELSEs with SELECTs eliminated the code
explosion without sacrificing performance.

Not all inner-loop conditionals cause code explosion. Conditionals that exit
from a loop don’t cause excessive copying:

LOOP

IF el THEN
EXITLOOP

IF e2 THEN
EXITLOOP

(Actually, all loops look like this after they are unwound.) Because these condi-
tionals don’t have joins to the loop body like IF-THEN-ELSES, the explosive copy-
ing is avoided. And as will be discussed in chapter 6, transformations needed for
memory-bank disambiguation will result in many loops that iterate some mul-
tiple of the amount of unrolling. For these unrolled loops, only one exit test is
needed; the others can be discarded, resulting in even less copying.
Data-dependent cascaded conditionals usually don’t cause problems either:

IF b1 THEN
x:=el
ELSE
X:=e2
IF x>0 THEN
s1
ELSE
s2

Because the second conditional uses the value of x produced by the first, the
relative ordering of the conditionals in the schedule remains unchanged and the
second conditional is prevented from moving above the join from the first, mini-
mizing the number of split and join copies.

94 Chapter 4: Trace Scheduling

Other Ways to Control Code Explosion

There are several heuristics that may reduce the number of split and join copies.

The code generator can maintain the relative trace ordering of conditional
jumps within the schedule. This is easy for the code generator—it won’t place a
jump any earlier in the schedule than all the jumps occurring previously in the
trace. Thus no conditional jumps would ever be copied into splits, and fewer
jumps would be copied into joins. Since copied jumps are responsible for the
exponential factor in code explosion, reducing their number greatly reduces the
total amount of copying. I haven’t had time to run rigorous experiments, but
based on a few casual experiments this heuristic appears to work well in scientific
code, reducing copying without affecting the speed of the generated code. This
is probably because the control structures are so simple. Many of the results
reported in chapter 8 were produced using this heuristic.

There are some obvious generalizations. The code generator could limit the
number of operations that moved past a split or join during code generation. Or
it could limit the number of splits or joins any one operation is allowed to pass
in the schedule. Or it could fiddle with the priority function used to pick which
operation to place on the schedule next. The list-scheduling code generator forms
the instructions of the schedule sequentially, packing as many eligible operations
into the current instruction as will fit, considering eligible operations in priority
order. The priority of an operation could be decreased by an appropriate amount
according to how many copies would be generated by placing it in the current
instruction. These heuristics could be applied solely to jumps instead of all
operations. (I haven’t implemented any of these heuristics.)

In drastic situations, the trace picker can simply limit its traces to single
basic blocks; there will be no join copies and very few split copies, with no jumps
copied at all. (The few split copies could be eliminated by forcing the jump at
the end of the block to be scheduled in the last instruction.) Of course, this
eliminates most of the potential parallelism as well.

Finally, the heuristics could be changed as compilation progressed. The first
time-critical traces would be allowed to generate copies freely, while the space-
saving heuristics would be turned on for later, less critical traces. The strength
of the heuristics could be adjusted to the estimated execution frequency of the
trace, or the number of copies already produced.

While we of the ELI project have mentioned such triggered heuristics in the
past, I'm now doubtful as to their efficacy. Consider a loop body consisting of 64
operations, with two cascaded IF-THEN-ELSEs, each with 50% branch probability.
(This could arise from two calls to SIN.) Unrolling the loop 16 times yields a loop
body with 32 IF-THEN-ELSEs and 1024 operations. The schedule for the first
trace through the loop could easily move all the conditionals near the bottom,
producing roughly

992 + 960 + 928 + 896 + - - - = 15872

Chapter 4: Trace Scheduling 95

join copies on the first trace alone. Any heuristic applied to later traces wouldn’t
be very useful, since an impractical number of copies were produced on the first
trace. Even ignoring this, a heuristic triggered by the execution count of a trace
wouldn’t work, because all the possible execution paths through the loop body
are equally likely, and the traces will have roughly the same execution counts. A
heuristic triggered by number of copies wouldn’t work well either, because then
some of the traces would be compiled into highly parallel code (and produce a
lot of copies) while the rest of the (equally likely) traces would be compiled into
much less parallel code.

Improvements in Bookkeeping

Another way to reduce copying is to look for improvements in bookkeeping itself.
The current algorithm sometimes copies operations unnecessarily, and with quite
a bit of work the extra copies can be avoided.

An operation assigning x that has moved below a split need be copied only
if x is live on the off-trace edge of the split. For example, consider this trace and
schedule:

C x:=v[i]) _ 1] 1IF e

C IF e - }——>...x is dead... 21 x:=v[i]
1 .o

C T D) 3] y:r=x*2

The operation x:=v[i] has moved below the IF, and the current bookkeeper
would copy it onto the off-trace edge. But it really doesn’t need to be copied,
since the value of x is dead on that edge and won’t be used.

To implement this, the bookkeeper must the update the set of variables live
on the off-trace edge after each operation is copied onto the edge. To see why,
consider this example:

i:=j+1
- IJ .) 1 IF e
C x:=1|r[1]) 2] i:=j+1
(IF e ——>...xis live, i is dead... 3] x:=v[i]
1 4] yi=x*2

C y :=‘x*2)

Both i:=j+1 and x:=v[i] have moved below the IF. Originally, i is dead on the
off-trace edge. But after x:=v[i] is copied onto the edge, i is now live on the

96 Chapter 4: Trace Scheduling
edge, so i:=j+1 must also be copied:

|
(1] IFe }——=(i:-lj+1)

I
12] i:l=j+1 | C x:=v[i])
13 x:[-v[i] |
[=z]

Nicolau describes further minor details of this enhancement. Implementing it in
the current bookkeeper wouldn’t be hard. But on the other hand, it probably
wouldn’t result in much saved copying, since such situations probably don’t occur
frequently in scientific code.

A more serious problem (which Nicolau doesn’t address) is the excess copying
that occurs at code motions past IF-THEN-ELSEs. Consider this trace:

Currently, if the code generator moves x:=y+z up above the IF, it will get copied
into the join:

But the copy is redundant, since the original has moved completely above the
IF.

Chapter 4: Trace Scheduling 97

How serious is this problem? Consider a trace through a flow graph that
models two calls to SIN expanded in-line and the schedule for the trace:

1 A Ao
2 Bi By
3 Cy Cy
4 Dy Dy
5 Ey Es

The two expansions of SIN are data-independent and can be done in parallel, so
the code generator has done exactly that in the schedule. But now look at the
flow graph after bookkeeping:

L4 [4 |
LB 1 B |
BL_ & [&]
41 D | DL B
~_E1
G B | E |

The entire second expansion of SIN has been needlessly duplicated on the off-
trace edge of D in cycle 4 of the schedule. Not only are extra copies created,
but the program is slower than optimal as well. Assuming the branch probability
of Dy is 50%, then on half of all the executions through the flow graph, twice as

98 Chapter 4: Trace Scheduling

many instructions will be executed than necessary. Thus on average the code is
1.5 times slower than it could be. The situation is much worse when an inner
loop containing such an IF-THEN-ELSE is expanded 16 or 32 times. (Of course,
SIN in particular can use the SELECT operator and avoid this problem, but it may
not be possible to rewrite all critical IF-THEN-ELSEs that way.)

In general, suppose an operation O moves above a join to point a:

The operation needn’t be copied into the join if:

1. Every path of execution from the program start to b first goes through
a (that is, a dominates b).

2. On any path from a to b, none of the variables used by O are assigned.

Both of these conditions are easy to check in a static flow graph. Condition 1
uses the “dominates” relation normally used for loop optimization, and condition
2 uses “reaching copies,” a slight generalization of the data-flow analysis used
for copy propagation [Aho 77|. But trace scheduling changes the flow graph, so
both the dominators and reaching copies analysis would have to be incrementally
updated during bookkeeping, taking account of the reordered operations in the
schedule and the new copies as they are added into splits and joins.

The analogous situation where an operation moves below an IF-THEN-ELSE
could be handled by a generalization of Nicolau’s suggested improvement for
splits. For example, suppose the code generator moves the operation x:=y op z
down to point a:

l
(xi=yopz)

C

toH»H
U,

[

o

(w=xopv)

Assuming C doesn’t reference x, x is now dead on the off-trace edge of A. By
Nicolau’s rule it isn’t necessary to copy x:=y op z onto the off-trace edge.
Unfortunately, the current incremental live analysis (and the one proposed by
Nicolau) would report after bookkeeping that x is live on the off-trace edge. This

®

Chapter 4: Trace Scheduling 99

is because the analysis doesn’t proceed past the buffering nodes at splits and joins;
so even though x would be reported dead at the join below C, that fact wouldn’t
be propagated up through C into the split. The analysis doesn’t have to proceed
past buffering nodes because of the current bookkeeping rules. Changing those
rules would require the analysis to change. For the more sophisticated copying
rules to work, a potentially much more expensive incremental analysis is needed
that takes account of all the code at C, which could be arbitrarily complex (loops
and conditionals) and include machine instructions from previous traces.

While feasible, the incremental reanalyses needed for detecting unnecessary
split and join copying would complicate bookkeeping quite a bit more. Are the
complications worth it? For that matter, are any of the heuristics and improve-
ments previously discussed worth it? Maybe not, if the benchmarks reported
in chapter 8 are representative of the time-critical control structures of scientific
code; for most of those programs, the current compiler appears to perform ade-
quately well. For the benchmarks on which the trace scheduler doesn’t do well,
the reasons are not due to unnecessary copying (see chapter 8).

On the other hand, if the benchmarks are not representative of most sci-
entific code, or if one wishes to expand the domain of the trace scheduling to
include other applications, then perhaps the improvements discussed above are
necessary. But then it probably makes sense to junk the current algorithm and
adopt a generalization of trace scheduling called “SRDAG compaction” [Linn
83]. SRDAG compaction cleanly and efficiently incorporates more general code
motion, including motion past IF-THEN-ELSEs, without creating the unnecessary
copies produced by trace scheduling.

Multicycle Jumps

Many pipelined machines, including the MIPS and the FPS-164, have conditional
jump operations that take longer than one cycle. (Sometimes these are called
“delayed jumps.”) Transfer of control occurs on the last cycle of the jump if
the test is true. Because the machines are pipelined, other operations can be
executed while a jump is completing.

The current compiler only handles one-cycle jumps. This isn’t an unreason-
able architectural assumption. A number of microcoded machines machines (for
example, the Numerix MARS-432) have large, fast instruction caches with high
hit rates; given an address, the cache can deliver an instruction in much less than
one cycle if it is in the cache. If multiple jumps are allowed in an instruction,
the memory-bank-interleaving scheme Fisher proposed for implementing them
[Fisher 80] could just as easily be applied to the cache as well. Branch conditions
that take a long time to evaluate (floating point comparisons, for example) can

100 Chapter 4: Trace Scheduling

be split up into two separate operations, a comparison that delivers a boolean
result into a register and then the jump itself:

IF x>y THEN = temp:=x>y

IF temp THEN

But suppose that for hardware reasons multicycle jumps turned out to be more
practical. Could the compiler handle them? Yes, with only a few minor changes
needed.

What would happen if multicycle jumps were treated like any other multi-
cycle operation? Consider this trace and its schedule:

IF el 1] IF et

IF ei-2 IF e2

IF =2 ;2D R E If 032

The second cycle of the first jump overlaps the first cycle of the second jump;
the split (the transfer of control) from the first jump actually occurs at the
end of cycle 2 and bisects execution of the second jump. Applying the normal
bookkeeping rules for multicycle operations yields the following flow graph:

[1] IF et | |
i

{2] IF e1-2 | IF e2 |
—

[

(3] | IF e2-2 |

Because IF e2 was bisected by the split from IF el, its tail end is placed in a
partial schedule on the split. Note that the partial schedule is a placeholder only,
indicating that instruction is occupied by the last cycle of an operation that was
started in the main schedule.

But this machine code is wrong. Suppose the branch conditions of IF el
and IF e2 are both true. In the original flow graph, control ends up at A. But
in the new flow graph, control ends up at B. Here’s the sequence of events:

cycle 1 IF el initiated
cycle 2 IF e2 initiated

IF el completes, transfers control to partial schedule
cycle 3 IF e2 completes, transfers control to B

What to do?

Chapter 4: Trace Scheduling 101

The Easy Solution. The easiest solution is simply to prevent jumps from
overlapping. So a valid schedule and flow graph for the above trace would be:

IF el

IF e1-2

IF e2

IF e2-2
l

If a multicycle jump is bisected by a join, its first part is put into the join’s partial
schedule just like any other bisected operation:

Eo A S

[1] IF et |
= 1] IF el |
[2] IF e1-2 |

Thus, no matter which way control enters the schedule, the jump will be initiated
and complete in cycle 2 of the schedule. (According to the definition of where
joins are placed during bookkeeping, the only operations that could be bisected
by a join are those that were originally below the join in the trace. So we’re
assured that it is correct to initiate the bisected jump if control enters from the
join.)

This easy solution isn’t so bad. (It’s essentially the solution used for the
MIPS [Gross 82].) Other multicycle operations can still overlap a jump, so most
of the advantages of pipelined jumps are retained. And assuming the machine
supports multiple jumps initiated per instruction, the machine is still able to
execute a large number of jumps quickly.

Another Solution. A better solution allows multicycle conditional jumps to
overlap, but requires a little extra architectural support. Assume jumps take d
cycles to complete and that the hardware determines the result of the branch
condition after the first cycle. When a branch condition for a jump J is true,
the hardware will ignore any successive jumps initiated in the next d — 1 cycles
needed for J to complete, even if the the successive jumps’ branch conditions are
true.

102 Chapter 4: Trace Scheduling

Consider the trace and resulting schedule and flow graph from the example
above:

IF el 1] _IF el

2] IF ei-2 IF e2

IF &2 20 JEE IF e2°3

[1] IF el | |
1
{2] IF e1-2 | IF e2 |

[3] [IF e2-2 | |
|

If el is true, the hardware will ignore IF e2 and control will transfer directly to
A—we don’t have to worry that one cycle after IF el jumps IF e2 might jump
again. If IF el is false, then IF e2 will execute normally. Note that because IF
e2 is ignored if IF el jumps, there is no reason to include the second cycle of IF
e2 in a partial schedule at the split from IF el.

Now consider an alternative schedule for the same trace:

IF el 1 IF e2
2| IF el IF e2-2
IF e2 (B 8] IF el-2
[1] | IF e2 |
1
{2] IF et | IF e2-2 |
;__,(

[3] IF e1-2 | 1

IF el has moved below IF e2 in the schedule, and the split from IF e2 bisects
IF el. Again, the second cycle of the bisected jump isn’t included in a partial
schedule at the split. But this time, because IF e2 will cause IF el to be ignored
when IF e2 is true, IF el (which was originally above IF e2) is treated as if
it were completely below the split and copied into the split. You can convince

Chapter 4: Trace Scheduling 103

yourself that this is correct by trying all combinations of boolean values for IF
el and IF e2.
The modified bookkeeping rules at splits are:

Conditional jumps bisected by a split are never put into the partial
schedule.

A conditional jump J; is copied into a split from jump Jp if J; was
originally above the split but is now initiated below the split, that
is, if TracePos(ICO(J1)) < TracePos(ICO(J2)) and Cycle(J1) >
Cycle(Js).

At joins, conditional jumps are treated like any other multicycle operation. The
discussion about joins in the easy solution applies here as well.

How good is this second solution? Better than the first. It’s not much harder
to implement: Both the required hardware and the bookkeeper modifications are
simple. Unlike the easy solution, this one allows multicycle conditional jumps to
overlap freely, * and there is fully pipelined execution of overlapped jumps except
in one infrequent case. In the example above, IF el moved below IF e2 in the
schedule and was copied into the split; when IF e2 is true, the execution of IF
el and IF e2 aren’t pipelined. But this is a rare event in programs that can be
handled well by trace scheduling, since the underlying assumption is that jumps
usually don’t branch off the trace. And if, as discussed in a previous section,
jumps are always kept in trace order on the schedule, then this situation will
never occur.

Efficiency of Partial Schedules

The job of partial schedules is to either fill or drain the pipelines at the boundaries
of a schedule. The instructions of a partial schedule typically have many “holes”
where other operations could be placed. For example, a partial schedule at a
split might look like:

I .
schedule ———> +3 | *2 *4 [s |
| C I s]
[[x4 I |

succeeding operations

Most of each instruction in the partial schedule is not being used, even though
it’s likely that a smarter compiler could move some of the succeeding operations
up into the holes, thereby producing faster, more parallel code.

* Gross, who helped design the optimization of multicycle jumps in the MIPS,
told me that the people on the MIPS project didn’t seriously consider overlapping
jumps; they thought the problem was too hairy.

104 Chapter 4: Trace Scheduling

How serious is this problem? The results reported in chapter 8 show that
the benchmark programs are spending only a few percent of their time in partial
schedules; even if partial schedules were somehow eliminated, it would make
little difference. Of course, the inner loops of these programs are very simple
and contain few conditionals, so this result isn’t much of a surprise. The trace
scheduler successfully picks long, likely traces of execution through the inner
loops, and the time spent in the partial schedules at the boundaries is insignificant
in comparison to the time spent in the main traces. 7

But what if the benchmarks are not completely representative of the time-
critical control structures in scientific code? What if the inner loops of some
important scientific code contain many IF-THEN-ELSEs, and contrary to the basic
assumption of trace scheduling, many of the those conditionals are just as likely to
go either way? If such is the case, trace scheduling probably wouldn’t perform well
for many other reasons; but just the same, I'll offer two potential improvements
to partial schedules.

Improvement 1. One way to fill the holes in the partial schedules is to include
the partial schedules in the traces handed to the code generator. At most one
split partial schedule could occur at the beginning of the trace, and at most one
join partial schedule at the end. The code generator would try to integrate the
partial schedules into the newly formed schedule while obeying the constraints
required by the nature of partial schedules. The partial operations in the partial
schedule at the beginning must start in the first cycle of the schedule, while the
partial operations in the partial schedule at the end must finish in the last cycle
of the schedule.

It’s easier to do this integration for the partial schedule at the beginning of
the trace than for the join partial schedule at the end. Because the schedule’s
instructions are formed sequentially, the code generator could simply initialize
the schedule and related data structures to contain the partial schedule at the
beginning; the code generator would then form the rest of the schedule as usual.
But the partial schedule at the end causes problems—the code generator can’t
possibly know exactly how to fit it onto the end of the schedule until the rest
of the schedule is already formed. Probably the best the code generator could
do practically is to merely place the partial schedule as early as possible on
the schedule such that the partial operations still finish in the final cycle of the
schedule (taking account of the register usage and resource contention).

Though the integration of partial schedules sounds conceptually straightfor-
ward, it would likely be a hairy mess to implement.

Improvement 2. A simpler approach to filling the holes in partial schedules is
to use a peephole optimizer. The peephole optimizer would try to overlap partial
schedules with the previous or following basic blocks of instructions, subject to
the constraints of register usage and resource contentions. But the optimizer

Chapter 4: Trace Scheduling 105

wouldn’t attempt to rearrange the relative ordering of operations within the
blocks.

For example, the peephole optimizer would merge the split partial schedule
and succeeding basic block of instructions (shown on the left) into a single basic
block that is shorter by one instruction (shown on the right):

*3 +3 (W r4)

*4 (W ri) *3 +3 (W r4)
*4 (W r1) | = (R r4)
* (R r4) *2
*2 + (R r1) *3
+ (R rl) *3 :

The registers written by the partial-schedule operations and read by the basic-
block operations are shown in parentheses. The basic block can start no earlier
than the second cycle of the partial schedule, since its multiply reads the value
in register r4, which isn’t produced until the end of the first cycle.

The peephole optimizer would be pretty easy to implement, but how well
would it perform? It might not be able to do much with split partial schedules,
because the code generator generally tries to place operations as early in a sched-
ule as possible; as a result, it’s likely that an operation in the first cycle of the
block following the split partial schedule reads a register written in the last cycle
of the partial schedule, precluding any overlap. But the peephole optimizer might
do better with join partial schedules, since the same “early as possible” policy
of the code generator tends to leave the ends of schedules relatively empty; as a
result, there is likely to be plenty of room in which to overlap a following partial
schedule.

If the time wasted by partial schedules becomes significant (but I doubt it
will), then the correct approach is to first implement the peephole optimizer, since
it is quite simple. If that doesn’t do the trick, only then should one consider the
first suggestion of including partial schedules with the trace when it is given to
code generator.

106 Chapter 4: Trace Scheduling

107

Chapter 5
Memory-reference Disambiguation

The problem of disambiguation is: Given two vector references v[i] and v[j],
could they possibly refer to the same memory location? In order to get the
most parallelism from traces of scientific programs, the code generator must
disambiguate as many vector references as possible.

How does the disambiguator disambiguate two vector references v[i] and
v[j1? Using the conventional flow analysis of reaching definitions, the disam-
biguator derives symbolic expressions ¢; and e; for the indices i and j in terms
of the induction variables and loop invariants of the loops enclosing the two ref-
erences. It then compares the two expressions symbolically to see if they could
possibly be equal; that is, it sees if there are any integer-valued solutions to the
equation ¢; —e; =0 ’

For example, suppose that for the following code the code generator asked
about the two vector references v[j] and v[k]:

FOR i:=1 to n DO

j:=i+m
vljl:=y
k:=j+1
x:=v[k]

The disambiguator derives the expressions ¢ + m for index j and ¢ + m + 1 for
index k. The two indices are equal if and only if (: + m) — (¢ + m + 1) = 0. The
disambiguator simplifies that to —1 = 0 and concludes that j could not possibly
equal k; therefore, v[j] and v[k] refer to different memory locations.

The code generator only asks about pairs of vector references from the same
trace—it will never ask about two references that come from different traces.
This simplifies disambiguation considerably.

Symbolic Derivations

As the first step in disambiguating two vector references v[i] and v[jl, the
disambiguator expresses the indices i and j in terms of loop invariants, loop
induction variables, and other variable definitions. These symbolic derivations
are produced by recursively following the use-definition chains resulting from the
reaching definitions analysis [Aho 77].

108 Chapter 5: Memory-reference Disambiguation

First consider a straight-line code example:

1. INm
2.INn

3. j:=m*n
5. k:=m/3
6. 1:=k

4, j:=j+4
7. i:=1+1
8. v[i]:=x
9. v[jl:=y

(IN m signifies that m is an input variable to the program.) Using use-definition
chains, the disambiguator recursively produces a derivation for the use of j at
operation 9:

(m1*ng) +4

(m indicates the value assigned to m by operation 1.) Similarly, one might expect
that the derivation for i at operation 8 would be:

(m1/3) +1

But as is explained later, the disambiguator is interested only in the integer
operations +, %, and —, and it stops recursing when it encounters any other
operators. So the actual derivation for i is:

ks +1

The value produced by operation 5, a division, is treated as an atomic variable
in the derivation.

Code with conditional jumps (but no loops) adds some complications, since
more than one definition may reach a use of a variable. For example:

1. IN m
2. IF e THEN
3. i:=m+1
ELSE
4. i:=m+3
5. v[i]:=x
There are two definitions of i reaching its use in operation 5, and the disam-
biguator must consider both of them. So an alternation operator V is introduced
into the derivation:

(my+1) Vv (my +3)

Chapter 5: Memory-reference Disambiguation 109

The V operator means that the expression could have either one of the two values.
In the presence of multiple conditional jumps, multiple levels of alternation may
occur corresponding to the different possible paths of execution. For example:

1. IN M

2. IF el THEN

3. i:=m*3
ELSE

4. i:=m#*2

5. IF e2 THEN

6. j:=i+l
ELSE

7. j:=1+3

8. v[j]l:=x

To get the derivation for j at operation 8, the disambiguator first obtains:
(t+1)V(i+3)
Each use of i has two reaching definitions, and the derivation of both uses of i
is:
(3% my) Vv (2%m)
So the resulting derivation for j is:
((B*m1) v (2%m1)) + 1) V (((3 #m1) V (2% m1)) +3)

This represents the value that j could have resulting from each of the four dif-
ferent possible paths of execution.

More formally, derivations are produced as follows. The derivation of a
constant is just the constant itself:

derivation(¢) — ¢, for a constant ¢
The derivation for a use of a variable a in some operation is:
derivation(dy) V derivation(dg) V ...V derivation(dn)

where the d; are the definitions of a reaching the use. The derivation of a reaching

definition depends on the operator, and is expressed recursively as the derivation
of the operands:

derivation(a := b) — derivation(b

derivation(EQUILV a, b) — derivation(b

derivation(a := b+ ¢) — derivation(b

(

)
)
)
derivation(a := b — ¢) — derivation(b
)
) —
)

)
)
) + derivation(c)
) — derivation(c)
b)

derivation(a := b * ¢) — derivation(b) * derivation(c)
derivation(a := —b) — —derivation(b)

derivation(o) — o, for any other operation

110 Chapter 5: Memory-reference Disambiguation

Notice that EQUIV is handled the same as :=. EQUIV is described in detail
in chapter 2; its purpose is to express a new induction variable a introduced
by induction-variable simplification in terms of the original source variables (the
expression represented by the variable b).

The last rule terminates the recursive derivation: Any operation producing
a value by means other than integer 4+, —, or * becomes a variable in the final
symbolic derivation. Since program input variables are all defined at the begin-
ning of the program with the special operator IN, the recursion is guaranteed to
stop eventually.

But what about loops? The loop induction variables will produce cyclic use-
definition chains, and the recursive derivation algorithm won’t terminate. For
example:

1.INm
2. i:=1
LooP
3. IF i>n THEN EXIT
4. j:=i-2
5. vijl:=x
6. k:=j+m
7. v(k] :=y
8. i:=i+1

The definition of i at 8 reaches the use of i at 8.

But remember that we want to produce symbolic derivations in terms of
loop induction variables and loop invariants. In the example above, i is the loop
induction variable; the derivation for the use of j at 5 should be:

71— 2
and the derivation for the use of k at 7 should be:
(t=2)+m

To implement this efficiently, a trick is used that effectively prevents the
derivation algorithm from following a use-definition chain across the back edge
of a loop. Before code generation begins, all the induction variables of a loop are
identified. Informally, an induction variable is a variable whose value is written
in one iteration but used in a later iteration. More formally, an induction variable
is any variable x that meets these conditions:

x is live on entry to the loop header (the top of the loop).

Chapter 5: Memory-reference Disambiguation 111

x has at least one definition in the loop that reaches the header.

Then for every induction variable, a dummy definition of the variable is inserted
at the top of the loop. For example, in the previous example, i is an induction
variable, and the dummy definition 2a would be inserted at the top of the loop:

1.LINm
2. i:=1
LOOP
LOOP-ASSIGN i
IF i>n THEN EXIT
ji=i-2 ‘
vljl:=x
k:=j+m
v[ki:=y
ir=i+l

2

PO P

Once all the loops have been processed, reaching definitions are recomputed.
As far as the reaching-definitions algorithm is concerned, LOOP-ASSIGN i is equiv-
alent to i:=i. In the example, the uses of i within the loop are now reached only
by the LOOP-ASSIGN i definition. The derivation algorithm will terminate when
it gets to a LOOP-ASSIGN, applying the last derivation rule:

derivation(o) — o, for any other operation

The effect of this trick is to break the use-definition chains with the LOOP-ASSIGNs
at the point where the chains cross a loop back edge, removing the back edges
from the flow graph as far as the disambiguator is concerned.

So in the example above, the derivation of the use of j in operation 5 is:

19q — 2
and the derivation of the use of k in 7 is:
(f2q —2) +m

That is, the uses of j and k have been expressed symbolically in terms of the
induction variable i and the loop invariant m.

Before code generation begins, the derivations of all uses of index variables
are precomputed and stored in the individual operations using the variables.
Then the dummy LOOP-ASSIGNs are removed from the program.

Note that this trick will only work if traces don’t cross the back edges of loops,
that is, as long as a trace doesn’t include operations from different iterations of
the same loop. The disambiguator assumes that a loop induction variable has the
same value when comparing derivations, and that assumption could be invalid if
a trace crosses a loop back edge.

112 Chapter 5: Memory-reference Disambiguation

For example, consider this loop:

1. LOOP

2. LOOP-ASSIGN i
3. ji=i-1

4. x:=v[j]

5. v[i]:=y

6. i:r=i+1

The derivation of index j in operation 4 is 79 — 1, and the derivation of index
i in operation 5 is 29, so the disambiguator concludes that operations 4 and 5
are to different locations. But suppose the trace handed to the code generator
started at operation 5 and didn’t stop at the back edge, but instead crossed it
and included operations 3 and 4 at the end of the trace:

5. v[i]l:=y
6. i:=i+l
3. ji=i-1
4. x:=v[j]

Even though the disambiguator thinks that operations 4 and 5 are to different
memory locations, in this trace they refer to the same location. This is because
operation 5 is from one iteration of the loop and operation 4 from the next
iteration, and i in fact has different values in the two derivations.

As I discussed in chapter 4, allowing traces to cross the back edges of outer
loops might yield some advantage. If so, the disambiguator must be modified.
The simplest fix is to assume that two references on different sides of a loop back
edge within a trace could possibly refer to the same memory location, regardless
of their derivations. This would constrain vector references in such traces to be
executed in source order. But remember that the motivation for allowing traces
to cross the back edges of outer loops was to overlap the initial code of the outer
loop with the final code, and much of that code doesn’t contain vector references.
Thus more sophisticated changes to the disambiguator that would handle vector
references in such traces might not be worth it.

Comparing Derivations

To disambiguate two vector references, the disambiguator must compare the sym-
bolic derivations to see if they could possibly be equal. That is, given two index
variable derivations, e; and e;, it forms the difference e; — e;, simplifies it, and
attempts to determine if the difference could possibly be zero for some integer
values of the variables. In other words, if the equation e; — e; = 0 has any in-
teger solutions, then the vector indices i and j could possibly be equal, and the
memory references might refer to the same location during execution.

Chapter 5: Memory-reference Disambiguation 113

Many of the difference expressions encountered during disambiguation sim-
plify to a constant, as in the first example in this chapter. But sometimes the
equation doesn’t simplify as neatly. For example, consider the following loop:

FOR i:=1 to n BY 2*m

v[i]
v[i-1]:

Suppose the inner loop is unrolled 2 times. Then the vector references of the
unrolled body are:

vii]

v[i-1]

v[i+2+*m]

v[i+2*m-1]

To disambiguate the first and last vector references, their index derivations are
subtracted, yielding the equation:

2+sm—1=0

Assuming m is integer-valued, there are no solutions to this equation no matter
what value is chosen for m. Thus v[i] and v[i+2*m-1] could not possibly refer
to the same location.

Answering the general question of whether an equation of real-valued vari-
ables has a solution is very difficult. But most index calculations in scientific
programs are strictly integer-valued and linear; linear equations of integer-valued
variables are called linear diophantine equations, and the algorithm for de-
termining whether there is a solution is well known. This is why the derivation
algorithm considers only the integer operations +, *, and —, treating values pro-
duced by other operations (for example, floating operations) as variables in the
derivation.

A linear diophantine equation of one variable of the form

ar+c¢=0
has solutions if and only if ¢ is divisible by a. An equation of two variables
ax +by+c=0

has solutions if and only if ¢ is divisible by the greatest common divisor (gcd) of
a and b. Equations of more variables can be reduced to the two-variable case.
Checking these conditions is very simple and efficient.

For ease of manipulation, the difference of the derivations is first put into a
normalized form as an alternation of sums of products. Internally, of course, the

114 Chapter 5: Memory-reference Disambiguation

expressions are represented as Lisp s-expressions (prefix notation); the syntactic
rules for normalized form are:

expr — (V sum [sum ... sum])
sum — (+ product [product . .. product])
product — (* constant [var .. .var])

That is, a normalized expression is an alternation of one or more sums; a sum
contains one or more products; and a product contains a constant multiplying
0 or more variables (a variable is represented by the operation in the program

producing the variable’s value). The first product in a sum has no variables and
looks like:

(* constant)

(constant may be 0). All the succeeding products in a sum have unique combi-
nations of variables; that is, no two products can be combined.

The elementary algebraic identities plus some distributive rules for handling
alternation are used to normalize derivations:

a+(bve)=(a+b)V(at+e)
ax(bVe)=(axb)V (ax*c)

Alternation is also commutative and associative.
Once the difference expression is normalized, it has the form:

(V sumy sumg...sumy)

The value of the expression could be the value of any of the sums, so each must
be examined in turn using the method for linear diophantine equations described
above. For each sum, there are three possible answers:

Yes—the sum will always be equal to zero for any values of the variables.
No—the sum will never be equal to zero for any values of the variables.
Maybe—the sum may or may not be equal to zero for different values

of the variables.

The maybe answer results from linear equations that have been discovered to
have solutions and from non-linear equations. To come up with a yes-no-maybe
answer for the entire alternation expression, there are four cases:

At least one of the sum answers is maybe. One of the sums may be
equal to zero for some variable values; therefore, the entire expression
may be equal to zero for some variable values. Final answer: maybe.

Chapter 5: Memory-reference Disambiguation 115

All the answers are yes. Therefore the entire expression is known to be
zero for all variable values. Final answer: yes.

All the answers are no. Therefore the entire expression will never be
zero for any variable values. Final answer: no.

Some answers are yes, some are no. For some paths of execution, the
expression is always equal to zero, for others it is never equal to zero.
Final answer: maybe.

A yes answer for the entire expression means that the two vector references being
disambiguated will always be to the same location. A no answer means that the
two references will never be to the same location. A maybe answer means that
it can’t be determined for sure one way or the other, so the code generator will
have to assume that they might refer to the same location.

Bookkeeper Copying

The disambiguator computes the derivations of index variables using the opti-
mized intermediate-code flow graph produced before code generation begins. But,
as described in chapter 4, the flow graph changes during code generation—copies
of trace operations are inserted on the boundaries of a trace after code has been
generated for it. At first glance, one might think that the disambiguator would
have to compute the derivations on the fly during code generation, using the cur-
rent flow graph as modified by the bookkeeper; this would entail a recomputation
of reaching definitions after every pick-trace/generate code/bookkeep cycle.

Fortunately, however, the pre-code-generation flow graph is sufficient. The
symbolic derivation of an operation copied by the bookkeeper is exactly the same
as the derivation of the original. Intuitively, this is because the bookkeeper
copying is intended to preserve program correctness by preserving the reaching
definitions of the copied operations.

For example, consider the following fragment of a flow graph:

|
Q. mj)

@l _i:=jt1)

@3] IFe Fr—(5] v[?.]:=y)

T
(4] v[:‘i,]:=x)

Suppose a trace includes operations 1-4 and that during code generation oper-
ation 2 gets moved below the conditional jump 3. The bookkeeper will place a

116 Chapter 5: Memory-reference Disambiguation

copy of 2, 2°, on the off-trace edge of the jump:

The derivation of the use of i in operation 5 is still the same even in the presence
of the copy 2’; 2’ was copied precisely to preserve the correctness of i’s value.

A case-by-case analysis of the bookkeeper copying rules shows that each
copying transformation preserves the symbolic derivations. Nicolau presents a
more formal and detailed argument for this claim [Nicolau 84].

More Powerful Techniques?

The method of disambiguation described above is sufficient to disambiguate most
vector references in most scientific programs. But this isn’t good enough—if only
two references in an inner loop were not disambiguated, parallelism could decrease
by at least half. For example, consider the following simple loop:

FOR i:=1 TO n BY m
v[i]:=v[i]+1

Assume m is an input variable. If the loop is unrolled two times, then the vector
references in the unrolled body are:

read v[i]
store v[i]
read v[i+m]
store v[i+m]

Using the disambiguation method described, the read of v[i+m] would be con-
strained to follow the store of v[i], because i+m could equal i if m is zero; thus,
without any knowledge about possible values of m, the disambiguator answers
maybe and the references must be done sequentially. But obviously, m must be
greater than zero if the loop is to terminate, and thus the vector references are
actually to different locations; if the disambiguator only knew this, then the reads
could be done in parallel and the stores in parallel.

To handle these situations, we considered using more powerful techniques
such as symbolic range analysis [Harrison 77]. However, symbolic range analysis
is reputed to be quite slow and fairly difficult to implement efficiently. The extra
benefit didn’t seem to be worth the costs, especially considering that no matter
how powerful our techniques, there were still going to be programs that couldn’t
be disambiguated automatically. As a simple example, suppose that the above

Chapter 5: Memory-reference Disambiguation 117

loop was embedded in an outer loop that fetched m from some array previously
constructed:
FOR j:=1 to p
m:=alj]
FOR i:=1 ton BY m
vii]l:=v[i]+1

It would be a very smart (and slow) program analyzer indeed that could deter-
mine that m was non-zero. And if m is an input variable, then no automatic system
could hope to handle the situation without additional programmer-supplied spec-
ifications for the inputs.

Programmer Assertions

So instead of pursuing ever more costly automatic techniques with diminishing
returns, I decided instead to implement an assertion facility that the program-
mer can use to give hints to the disambiguator. In the example above, a single
assertion about the variable m would be sufficient to disambiguate all the memory
references:

FOR j:=1 to p

m:

ASSERT m>0

FOR i:=1 ton BY m
viil :=v[il+1

Only the arithmetic relations <, <, >, >, and # can be asserted.

How does the programmer know when assertions are needed? The compiler
tells him. On request, the compiler prints out every pair of vector references en-
countered during compilation that couldn’t be disambiguated (that is, those pairs
for which the disambiguator answered maybe). Along with the vector references
the compiler prints out the simplified symbolic difference of the index-variable
derivations. If, after examining his program, the programmer determines that
the vector references are indeed to different locations, he can add the appropriate
assertions and recompile.

Usually it is immediately apparent to the programmer exactly which asser-
tions are needed, even if he isn’t familiar with the underlying algorithm. The
structure of loops in scientific code tends not to be very complicated. Our bench-
mark programs typically have needed only one or two assertions (or copies of the
same assertion in similar loops) to completely disambiguate all memory refer-
ences. To understand exactly how assertions are used, how simple they are, and
their importance, we’ll work through some examples.

118 Chapter 5: Memory-reference Disambiguation

FFT. The loops and vector references of FFT look like:

length:=1
WHILE 2*length<=n DO
FOR j:=1 TO n BY 2*length DO
FOR 1:=1 TO length DO
ASSERT 1>=1
ASSERT 1<=length
coov[1+j-1]. ..
...v[1+j-1+length]...
length:=length+length

Unrolling the inner loop 4 times would produce the following:

1. IF 1+0>length THEN EXIT
2. ASSERT 1+0 >= 1
3. ASSERT 1+0 <= length
4. v[1+0+j-1]

5. v[1+0+j-1+length]
6

7

8

9

. IF 1+1>length THEN EXIT
. ASSERT 1+1 >= 1
. ASSERT 1+1 <= length
. v[1+1+j-1]
10. v[1+1+j-1+length]

11. IF 1+2>length THEN EXIT
12. ASSERT 1+2 >= 1

13. ASSERT 1+2 <= length
14. v[1+2+j-1]

15. v[1+2+j-1+length]

16. IF 1+3>length THEN EXIT
17. ASSERT 1+3 >= 1

18. ASSERT 1+3 <= length
19. v[1+3+j-1]

20. v[1+3+j-1+length]

Disambiguating vector reference 19, v[1+3+j-1], and reference 5, v[1+0+
j-1+length], the disambiguator subtracts the index derivations, yielding 3 —
length. Without the assertions, the disambiguator would have to assume that
length could equal 3, and thus that the references could be to the same location.
But using assertions 2 and 18 the disambiguator proves that 3 — length < —1,
and thus that references 19 and 5 are to different locations.

Note that the assertions in the loop are context sensitive, applying only to
the code that follows the assertion. For example, assertion 18, ASSERT 1+3 <=
length, is not always true at vector reference 4 (specifically, when length < 4).
The implementation of the assertion mechanism, described below, must keep
track of where in the code assertions are valid.

Chapter 5: Memory-reference Disambiguation 119

SOLVE. In SOLVE (LU decomposition), a permutation vector ps is used to
select rows of a two-dimensional array:

ASSERT ps[i] “=ps[k]

FOR j:=k+1 TO n DO
...lulps[il,jl...
...lulps[k],jl...

The difference of the index derivations is ps{¢] — ps[j]; the disambiguator must
be told via an assertion that the two index values are different.
Another fragment from SOLVE:
IF pividx~=k THEN
ASSERT pividx™=k
...pslk]l...
...pslpiviax]...

Without the assertion, the disambiguator wouldn’t know that on one branch of
the IF only, ps[k] and ps[pividx] refer to different locations.

TRID4. From TRID4 (tridiagonal solver using cyclic reduction):

FOR i:=iO[1]+1 TO iO[1l]+m,
j:=jO[1]+1 TO jO[1]l+m
DO
ASSERT i-j>=10
oex[dl. ..
oxlil.o

The variables i and j are stepped in parallel beginning with i0[1]+1 and
jO[1]+1. The validity of the assertion depends on gory details of the algorithm,
but it allows the inner loop to be unrolled up to 10 times while still completely
disambiguating all the vector references.

The assertions in these three examples fall into two categories: Those that
could be generated easily by the compiler from the source, and those that tell
the compiler subtle facts about indices involving double indirection in the vector
references. The assertions in the rest of the benchmark programs generally fall
into these two categories as well.

The latter category, subtle facts usually arising from double indirection,
demonstrate the true worth of these assertions. No practical automatic method
of program analysis could possibly deduce these facts, but once alerted by the
disambiguator, any programmer can formulate the required assertions in a few
minutes. And as explained below, the assertions can be efficiently processed by
the compiler.

120 Chapter 5: Memory-reference Disambiguation

As for the former category of assertions, obviously the compiler could auto-
matically generate range assertions for simple loops:

FOR i:=m TO n DO
ASSERT m<=i
ASSERT i<=n

And it could easily generate assertions for the different branches of an IF:

IF expression THEN
ASSERT expression

ELSE
ASSERT “expression

In effect, these automatically generated assertions would be implementing a lim-
ited but useful and efficient symbolic range analysis. The only reason the current
compiler doesn’t generate the assertions is simply that I had more important
things to do in my limited time.

Implementing Assertions

Before disambiguation begins, the compiler scans the program and collects all
the assertions, converting them into a normal form that is easy to manipulate.
In the intermediate code, assertions have the following form:

ASSERT varl relop var2

where varl and var2 are variables, and relop is one of the integer operators <,
<=, >=, >, or “=. Using the same derivation mechanism used for index variables
in disambiguation, derivations are computed for vari and var2. (See above and
chapter 2 for a discussion of the EQUIV mechanism, which relates the derivations of
assertions on original source-program variables to the derivations of the induction
variables introduced by the front-end loop optimizations.)

Chapter 5: Memory-reference Disambiguation 121

Using elementary algebra, the assertions are put into normal form:
ASSERT expression > O

or
ASSERT expression "= O

For example:

1. IN i

2. i:=i%2

3. j:=0

4. LOOP

5 LOOP-ASSIGN j
6. x:=1+3

7. y:=j*4

8. z:=y-2

9

ASSERT z<=x

First derivations are obtained for z and x in the assertion:
4xj5—-2<2%21+3

Putting the assertion into normal form yields:
2%%1—4%J5+6>0

Note that, like index derivations, the variables in the normal-form assertions
are actually value-producing operations in the program, not the original textual
variables names like i and j.

If the normal-form expression for the assertion contains alternation, for ex-
ample (z — 3) V (z — 1), then the assertion is ignored. To see why, consider this
example:

1. IN m
2. INn
3. x:=m
4. y:=n
5. IF e THEN
6. xX:=x-1
7. y:=y-1
8. ASSERT y>x

The derivations for x and y at the assertion are:

myV (my — 1)
na V (ng — 1)

122 Chapter 5: Memory-reference Disambiguation

and the difference of the derivations is:
(ng—my)V(ng—my+1)V(ng—1—my)
yielding these possible normal-form assertions:

ng—mp; >0
ng—m;+1>0
ng—1—m;>0

Which of these should the disambiguator use? The last assertion is incorrect,
since m could be 6 and ny could be 7, but using the alternation mechanism, the
disambiguator has no way to deduce this. The problem with alternation is that
it doesn’t take account of the execution paths used to produce the derivations;
this general problem is discussed in a later section (page 128). Without knowing
more about the execution paths, the disambiguator must ignore any assertion
containing alternation. (The current compiler doesn’t implement this, though it
would be trivial to fix.)

When the disambiguator isn’t able to disambiguate two vector references
using the method of linear diophantine equations, it consults the collection of
assertions to see if any might apply to the vector indices. To do this, it has to
know which assertions might apply to the vector references; that is, it has to
determine which assertions include the references in their scope.

Consider this example:

1. ASSERT m>0
2. FOR i:=1 TOn BY m

3. ASSERT i<=n

4. IF i>10 THEN

5. ASSERT i>10
6. sl

7. s2

8. ELSE

9. ASSERT i<=10
10. 83

11. sd

12. sb

The scope of assertion 1 is lines 2-12, the scope of assertion 3 is lines 4-12, the
scope of assertion 5 is lines 6-7, and the scope of assertion 9 is line 10.

To determine the scopes, the disambiguator uses the dominators flow analysis
that is usually used for loop optimizations [Aho 77]. Operation A dominates
operation B if and only if every path of execution from the program start to B
includes A at least once. The scope of an assertion is those operations dominated
by the assertion. To see why, suppose we had an assertion A dominating some
operation B. Then any path of execution from the start to B must include the

Chapter 5: Memory-reference Disambiguation 123

assertion; that is, the assertion will be executed no matter which path is taken
to reach B. Remember that the loop back edges have been effectively removed
from the flow graph by the insertion of the LOOP-ASSIGNs, so that every such
execution path to B is loop-free.

Given two references v[i] and v[j] to be disambiguated, the corresponding
sets S; and S; of dominating assertions might not be identical. Which of those
assertions does the disambiguator use in trying to prove ¢ # ;7 The intersection
of the two sets? The union? Further, do the code motions and transformations
of trace scheduling require that the dominators relation must be incrementally
updated?

The current compiler’s solution to these problems is simple but unintuitive.
It relies on a minor restriction that vector stores are not allowed to move above
conditional jumps during code generation. To try to prove ¢ # j, the disambigua-
tor uses the union of the dominating assertions, S; U Sy, that is, all assertions
that dominate either v[i] or v[j]; and the dominators relation does not have
to be incrementally updated.

I'll sketch an informal argument for this solution; by no means should it be
taken as a formal proof. There are four types of code motion performed on vector
references during trace scheduling: motion in straight-line code, moving from
above a split to below it, moving from below a split to above it, and moving from
below a join to above it (moving below a join is disallowed by the bookkeeping
rules). First, I'll show that for each of these motions, if an assertion A applies to
a vector reference before the motion, then after the motion A still applies to the
reference and any copy of it produced by bookkeeping.

Consider motion in straight-line code (a basic block). Because the assertion
A and the index derivation are in terms of reaching definitions and not textual
variable names, wherever the vector reference can be moved legally within the
basic block (as constrained by the data dependencies), the assertion is still true.

Consider motion below splits. Suppose a vector reference moves below a
split and thus is copied onto the other edge of the split. The assertion A still
applies to both copies because A dominates the new locations of the copies and
the conditional jump does not affect the truth of the assertion.

Consider motion above splits. The only way a vector reference x:=v[i]
could move above a split is if x is dead on the off-trace edge of the split. For

124 Chapter 5: Memory-reference Disambiguation

example:

|

C IF e ———>...xis dead...
i

(_ ASSERT i"=j)
i

C x:=\|r[i])

If x:=v[i] is moved above the split:

|
C x:=1;'[i])
C IF e ——>...x is dead...

{
(_ ASSERT i“=j)

we can safely assume that ASSERT i~=j still applies to it, since the only case that
matters is when e is false; when e is true, it won’t matter if x gets the wrong
value. This argument doesn’t apply to the motion of vector stores. For example:

I
(_y:=vlil)
i
C IF e ———>...vis dead, y is live...
1
(ASSERT i"=j)
i

C v[j]':=z)

If v[j]:=z moved above the IF and the assertion continued to apply to it, the
following should be correct:

l
C v[j]|:=z)
C y:=\{[i] D)
C IF e ———>...vis dead, y is live...

i
(ASSERT i"=j)

But now y could get the wrong value when e is true and i=j; that’s why the
motion of vector stores is restricted.

Consider motion above joins. Suppose a vector reference moves above a join
~ and thus is copied into the join edge. As discussed previously, a variable in an
applicable assertion must have exactly one reaching definition. So a definition
used by both the assertion A and the vector reference must reach both edges of

Chapter 5: Memory-reference Disambiguation 125

the join right before the join, and therefore the assertion applies to the vector
reference and its copy after the motion.

Thus, no matter where a vector reference is moved or copied during trace
scheduling, the assertions dominating it before trace scheduling began still ap-
ply. Incremental update of dominators isn’t necessary. (This argument relies on
Nicolau’s demonstration that reaching definitions of an operation are in effect
unchanged by trace scheduling.)

The only use the code generator makes of the disambiguator is to determine
whether one vector reference can move past another on the trace. Conceptually, if
the code generator is to move v[i] past v[j], it must first move v[i] and/or v[j]
so that they are adjacent, and then it must swap them. If the code generator can’t
move v[i] and v[j] to be adjacent (because of data-dependency constraints)
then it doesn’t matter whether or not the disambiguator correctly disambiguates
them—the data dependencies will force them to be done in original trace order.
If the code generator can make them adjacent by legal code motions, then when
they are adjacent any assertion that applies to one of the references obviously
applies to the other. Thus, the disambiguator can use the union of the two sets
of dominating assertions S; and S; when it attempts to prove ¢ # 3.

The restriction that vector stores can’t move above splits isn’t serious. Ex-
amining the benchmark library and the code generated for them, I didn’t find
any inner loops where there was even the possibility of a vector store moving
up above a conditional jump (the vector must be dead on the other edge of the
branch). And in scientific code, typically the conditionals of an inner loop all
float to the top of the loop, and the vector stores occur at the end of the loop,
after a bunch of computation.

Once the disambiguator finds the set S; U S; of assertions dominating the
two references in question, it then tries to use those assertions to prove that the
normalized difference d of the index derivations is not equal to zero. In general,
d is an alternation of several sums, and the disambiguator must prove each sum
is not equal to zero.

First the disambiguator looks for an assertion d # 0; if none is found, it must
then resort to the > O assertions, using a heuristic proof method. The method
is based on the fact that if z + ¥y > 0 and y < 0, then z > 0. The recursive
procedure Prove? below tries to prove, given a set of assertions, that sum is not
equal to zero by proving that sum is either greater than or less than zero.

Prove?(sum,assertions) —

1. If sum is just a constant, return true if the constant is not
equal to zero, return false otherwise.

2. Find the subset S of assertions. Assertion A :e > 0isin S
if ¢ contains all the products of sum (except possibly for the
constant of sum), that is, if sum has the form:

sum = constanty + prod; + prodg + « -+ + prodm

126 Chapter 5: Memory-reference Disambiguation
and e contains prod; through prod,,:

e = constantg + prody + prodg + - - - prodmy, + prody,y1 + - -+ + prod,

3. For each such assertion A in S, try to recursively prove that
sum 2> e using the remaining assertions in S. That is, if

Prove?(1 + constanty — (constanty + prody,+1 + «- - + prod,), S — A)

then return true, because sum > 0. If trying all the assertions
in S fails, then return false.

Prove? is not general; for example, given the assertion 4z + 4 > 0 it can’t
prove that 3z + 4 > 0. Nevertheless, Prove? appears to be quite sufficient for
disambiguation because the index calculations and the assertions needed to dis-
ambiguate them tend to be quite simple. The worst that happens when Prove?
fails is that two memory references can’t be disambiguated. Because the num-
ber of assertions whose scope includes any two vector references on a trace is
very small (typically less than 6), Prove? is quite fast and has allowed us to
disambiguate all our benchmark programs.

The only extension that might be worthwhile is to add a second method: To
prove prody + prods > 0, try to recursively prove prod; > 0 and prods > 0. The
assertions required by one of the benchmarks would have been slightly simplified
if Prove? knew this method as well.

The general problem of trying to prove e > 0 given a set of assertions
ey > 0,eg > 0,...,en > 0, where all the expressions are linear expressions of
some number of variables, is equivalent to integer programming, which is NP-
complete. There are clever algorithms for solving integer programming problems,
but they tend to be quite complicated with large overhead. Even if assertions
are automatically generated for loop induction variables and IFs, the number of
assertions valid at any point in the program will be very small, and the overhead
of the general algorithm would not be worth the very little extra benefit.

Disambiguator Implementation Details

The disambiguator uses the same flow-graph data structure used by the interme-
diate-code optimizations. After the optimizations have been applied but before
trace scheduling begins, the disambiguator identifies the loop induction variables
and inserts the LOOP-ASSIGNs. Then it recomputes reaching definitions in the
presence of the LOOP-ASSIGNs.

Next the derivation of each use of an index variable within a vector reference
is computed. To avoid recomputation, the first time the derivation of the value
produced by an operation is computed, it is stored away in the corresponding
flow-graph statement representing the operation. Thus, the computation of all
index derivations takes time linearly proportional to the size of the flow graph.

Chapter 5: Memory-reference Disambiguation 127

After the index variable derivations are computed, the assertions are col-
lected. Then the disambiguator constructs a mapping, implemented by a hash
table, of intermediate-code operations to the flow-graph statements representing
the operations. This mapping is used to get from the operations supplied by the
code generator to the corresponding statements in the flow graph. Finally, the
LOOP-ASSIGNs are deleted from the flow graph. At this point trace scheduling
begins.

The symbolic manipulations on derivations (normalization, diophantine
equation solving, and proofs using assertions) are implemented as a separate
module. This module is also invoked by loop induction variable simplification to
simplify its symbolic expressions for induction variables. Because the derivations
include only the operators +, *, and —, the symbolic manipulations are quite easy
to implement. (Much easier in Lisp, however, than in an Algol-based language.)

The diophantine equation solver currently handles equations with at most
two variables; extending it to handle more would be messy but not too hard.
However, none of our benchmark programs contain diophantine equations with
more than two variables; the few equations with more than two variables that did
arise during disambiguation weren’t linear and would have needed the assertion
mechanism anyway.

The interface to the code generator was originally designed to aid the code
generator in building an expression DAG from a trace as well as answer questions
about vector references. To build the DAG, the code generator presents the op-
erations of the trace one at a time in source order to the disambiguator. For each
operation, the disambiguator returns the previously presented trace operations
that should form the predecessors of the current operation in the DAG. With each
predecessor, the disambiguator returns information identifying the edge type be-
tween the operation and the predecessor, for example, whether it represents a
read-after-write of an operand or a write-after-write (these edge types are dis-
cussed more fully in chapter 7). The predecessors of a vector read include all the
previous vector writes on the trace that could possibly be to the same location;
the predecessors of a vector write include all the previous vector reads and writes
that could possibly be to the same location.

In retrospect, it would have been cleaner to have kept most of the details of
DAG building out of the disambiguator/code-generator interface. As discussed
in chapter 7, there are many subtleties to building a DAG for a trace, and the
code generator can best handle them directly. In fact, the current code generator
ignores all the information returned by the disambiguator except the disambigua-
tion conflicts between vector references. So a cleaner interface that could easily

128 Chapter 5: Memory-reference Disambiguation

be substituted for the current one would be simply a single procedure that takes
two vector reference operations:

VectorConflict?(vector-reference-1,vector-reference-2)
and returns one of:
yes—the vector references are always to the same location

no—the vector references are never to the same location

maybe—the vector references may or may not be to the same location.

Shortcomings

The current disambiguator has two not-serious shortcomings.

When the disambiguator fails to resolve two memory references, its output
informing the programmer is too cryptic because it is in terms of the intermediate
code instead of the source code. Some sample output:

Possible vector index conflict:

53: (IVSTORE PS $184 $183) 54: (IVLOAD %143 PS $111)
$184 = (+ -1 PIVIDX)
$111 = (+-1K
$111 - $184 =70 (+ K (* -1 PIVIDX))

Printing out the failures in terms of the original source is a “trivial” problem
that in fact is quite hard to engineer simply. The compiler must maintain a
mapping from the optimized intermediate code back to the source expressions,
and updating that mapping during optimization isn’t easy. The same sorts of
problems occur in debugging optimized code [Hennessy 82b).

In retrospect, the mechanism used to handle multiple reaching definitions
for index variables isn’t too useful. In none of the benchmark programs was
it actually used during disambiguation, and in one of the programs it actually
interfered with the assertion mechanism. Consider:

INm
i:=2*m
IF e THEN

i:=i-1
ji=i+l
v[i]:=x
vijl:=y

N U W=

The derivations of 1 and j in the two vector references are

(2%my) Vv (2xmy —1)
(2*m;+1)V (2%my)

and their difference is

l1v2vov -1

Chapter 5: Memory-reference Disambiguation 129

Because one of the sums of the alternation is zero, the disambiguator concludes
that i and j might be to the same location even though clearly they are not.
Adding in an assertion doesn’t help because the difference of the derivations
contains constants only, for which assertions are meaningless.

The root problem is that the disambiguator’s alternation mechanism doesn’t
take account of the execution paths used to produce the alternate derivations; it
will compare derivations produced via two or more paths that couldn’t possibly
be executed at the same time. Thus, in the example above the disambiguator
compares the derivation 2 * my for i with the derivation 2 * m; for j. But the
derivation for i assumed the IF was not taken while the derivation for j assumed
it was, impossible during actual execution.

One solution to this problem might be to separately consider each execution
path to the two vector references, comparing the derivations of the index variables
produced along each path (remember that the back edges of loops have been
effectively removed from the flow graph by the insertion of LOOP-ASSIGNs). In
the example above, there are two paths reaching the vector references: 1-2-3-5
and 1-2-3-4-5. Along the first path, i has derivation 2 * m and j has derivation
2 %+ m + 1, and thus on this path, i and j are not equal. Along the second path,
i has derivation 2 * m — 1 and j has derivation 2 * m, and again i and j are not
equal. So we conclude that i and j could not be equal at the vector references.

In the limit, the number of paths reaching a point in a flow graph with no
loops could be exponential in the number of nodes in the graph. In most scientific
code this wouldn’t matter, since index calculations tend to be short and rarely
include few, if any, conditional jumps. But consider this fragment:

ji=1
FOR i:=1 TO n
IF ... THEN
ji=j-1
ELSE
j:=j+1
.o.vljl.o..
...v[il. ..

If this loop is unrolled 32 times, there would be 232 different paths of execution
reaching the last v[j] that the disambiguator would have to examine. An ex-
ample like this doesn’t arise very often in scientific code, but the disambiguator
should at least be prepared to handle it gracefully (maybe by considering at most
only some small number paths before giving up).

There is another alternative that, while not as effective as considering each
path separately, is perhaps more practical and easier to implement. The current
derivation algorithm could be modified so that when it reaches a use of a vari-
able with more than one reaching definition, instead of recursively “forking” the

130 Chapter 5: Memory-reference Disambiguation

derivation with the alternation operator V, it instead stops recursing and returns
the set of reaching definitions as a derivation variable. For example:

IN n
i:=2*m
IF e THEN
i:=i-1
ji=i+t
i:=i+4
viil:=x
vljl:=y

PN O

Because the use of i in operation 5 has two reaching definitions, its derivation
would simply be a single variable identified by the set of reaching definitions
{72,%4}. The derivations of the uses of i and j in 7 and 8 would be:

4+ {12,174}
1+ {29,174}

Since the difference of the derivations is 3, the disambiguator would conclude i
and j were not equal at 7 and 8.

Intuitively, the sets of definitions uniquely capture the value of a variable
at some point in the flow graph. More formally, suppose we have a flow graph
with no back jumps (no loops), but arbitrary forward flow of control with several
entrances and exits from the graph (remember that the LOOP-ASSIGNs inserted
during disambiguation effectively remove the back jumps from the graph). As-
sume there are two operations in the graph, A and B. If A and B occur on one or
more paths of execution through the flow graph, then either A always precedes
B, or B always precedes A (otherwise there would be a loop).

Claim: If the same definitions of i reach both A and B, then for every
path of execution that includes both A and B, the value of i will be
identical at A and B.

Proof: Assume that A precedes B. Suppose the same definitions of
i reach both A and B, but that on some path of execution i has a
different value at B than at A. Then there must be an assignment to i
on the path between A and B. According to the original assumption, the
assignment (call it C) must reach A as well as B. But that would imply
there is a loop, from A to C and back to A again. That contradicts the
assumption that the flow graph has no loops.

Since the disambiguator compares the indices of vector references only if they
are on the same path of execution (that is, a trace), this claim allows us to use
the reaching definition sets as variables in derivations. In the implementation,
hashing could be used to give the sets unique names for efficient comparison.
Because scientific code has so few index calculations involving condition-
als, this derivation method would probably disambiguate better than the current

Chapter 5: Memory-reference Disambiguation 131

method, correctly handling the one benchmark example where the current dis-
ambiguator fails. Though not as powerful as the compare-all-paths-separately
method, it would be more efficient and easier to implement.

132 Chapter 5: Memory-reference Disambiguation

133

Chapter 6
Memory-bank Disambiguation

In addition to providing a slow, central memory controller, the VLIW architecture
allows the individual interleaved memory banks to be addressed directly. The
central memory controller is called the back door, and the ports to the individual
banks are called the front doors. The back door handles only one request at
a time, while the front doors operate in parallel. For example, if there were 8
memory banks, then 1 back-door and 8 front-door requests could be initiated
every cycle.

If the compiler knows the bank of a particular memory reference, it will
generate code to use the bank’s front door; otherwise, it will be forced to use the
slower back door. The goals of memory-bank disambiguation are to make
as many memory references as possible through the front doors and to distribute
the load on the front doors evenly. To accomplish these goals, the memory-bank
disambiguator uses a symbolic analysis technique, similar to memory-reference
disambiguation, combined with several classes of source transformations.

The Bulldog compiler implements the symbolic analysis and the simplest
source transformation, loop unrolling. The other source transformations are
much more complex and currently must be done by the programmer. Later
I'll discuss the prospects for automating them.

Throughout this chapter, b designates the number of memory banks in the
machine.

A Simple Example

To illustrate the problems of memory-bank disambiguation, consider this simple
loop implementing vector addition:
i:=t1
LOOP
IF i>n THEN EXITLOCP
alil:=b[i]+c[i]
i:=i+l

Suppose the machine has 8 banks (b = 8). The bank of each of the vector
references will be different on successive iterations through the loop. But by

134 Chapter 6: Memory-bank Disambiguation

unrolling the loop 8 times:

i:=1

LOooP
IF i>n THEN EXITLOOP
ali]l:=b[i]+c[i] /* bank 0 */
i:=i+1
IF i>n THEN EXITLOCP
al[i] :=b[il+c[i] /* bank 1 */
i:=i+1

IF i>n THEN EXITLOOP
alil:=b[i]+c[i] /* bank 7 */
=i+l

the vector references are now to the same banks on successive iterations. If the
compiler knows the base address of the vectors, or at least the bank of the base
address, it can easily determine the bank of each reference at compile time and

generate code to use the front doors.
In general, such loops must be unrolled a multiple of b times.

Determining the Bank

The compiler uses the symbolic derivation techniques of memory-reference disam-
biguation (chapter 5) to discover the bank of a vector reference. Given a vector
reference v[i], the compiler finds the symbolic derivation e; for the index i; that
is, it expresses i in terms of loop invariants and loop induction variables. The
bank of v[i] is then

(e; + base(v)) mod b = ¢; mod b + base(v) mod b

where base(v) is the base address of v. If the bank expression simplifies to a
compile-time constant, the reference v[i] will always be to that bank, and the
code generator can use the bank’s front door for the reference. But if the bank
expression doesn’t simplify to a constant, v[i] may be to different banks during
execution, and the code generator must use the back door.

For example, consider the intermediate code generated for x:=a[i, 3], where
a is a 256 X 256 array:

t1:=1*%256

t2:=t1+3

x :=a[t2]

Assuming i is a loop induction variable, the derivation of the index t2 is 256%7+3.
If b = 8 and a begins in bank 0, then

(256 * ¢ + 3 + base(a)) mod b = 3;

thus, the reference a[i,3] is always to bank 3.

Chapter 6: Memory-bank Disambiguation 135

Remember that index derivations may contain the alternation operator V,
indicating the values corresponding to the different paths of execution that could
be taken to reach the vector reference. Given a normalized derivation e of the
form

sumyV sumg V...V sumy,

the disambiguator evaluates m; = sum; mod b for each <. If all the m;’s are
compile-time constants and all have the same value, then e has the same residue
no matter which path is used to reach the vector reference, and the reference is
to a single known bank; the bank’s front door may be used for the reference. But
if some of the m;s are not compile-time constants or if they aren’t all equal, then
the vector reference could be to many different banks during execution, and the
back door must be used.

Simple algebra is used to simplify the residue of normalized sums and prod-
ucts:

(z + y) mod b = (z mod b+ y mod b) mod b
7bmod b =0, for any integer j

Assertions

As in memory-reference disambiguation, the programmer can supply assertions
to help out the compiler. The assertions have the form:

ASSERT expressionl MOD b = expression2

Assertions are used mainly to tell the compiler about input variables and loop
variables. In the simple loop unrolling example above, the derivations of the
vector indices are in terms of the value of the loop variable i at the top of the
loop. An assertion is needed to tell the compiler that after unrolling, ¢ mod 8 is
always 1 at the top of the loop:

i:=1

LOOP

ASSERT i MOD 8 = 1
IF i>n THEN EXITLOOP

ali] :=b[il+c[i] /* bank O */
i:=i+l

IF i>n THEN EXITLOOP

a[i] :=b[i]+c[i] /* bank 1 */
i:=i+l

IF i>n THEN EXITLOOP

a[i]:=bl[i]+c[i] /* bank 7 */
i:=i+l
The derivations for the vector references are ¢,72+1,...,7+ 7. The compiler uses

the assertion about i to compute the residues of the derivations modulo 8. For

136 Chapter 6: Memory-bank Disambiguation

example, given ¢ + 3, the disambiguator computes ¢ mod 8 and 3 mod 8. Because
i isn’t a constant, the compiler consults the assertions and finds that ¢ mod 8 is
1. Thus it concludes that (¢ + 3) mod 8 is 4.

The same assertion-scoping mechanism used in memory-reference disam-
biguation is used here to find assertions applicable at a given point in the program.
Assertions are stored in normalized form:

ASSERT ezxpresston mod £ =0

If the residue modulo b of a normalized sum s doesn’t evaluate to a constant,
the compiler consults the applicable assertions. Suppose s has the form ¢ + p; +
-+++ pn, where c is a constant and the p; are normalized products. If there is an
applicable assertion of the form

ASSERT (a+ p; +-+++ pp) mod 56 =0, for any 7 >0

then s mod b = (¢ — @) mod b.

If there is no such assertion, the compiler recursively tries to find the residue
of each product p;. If p; doesn’t have a constant residue, the assertions are
consulted again. Assume p; has the form ¢ * v * - -« % vy, where ¢ is a constant
and the v; are variables. If there is an applicable assertion of the form:

ASSERT (a+p;) mod j6=0, forany j >0
then p; mod b = (—a) mod b. Or if there is an assertion of the form:
ASSERT (a + vy % -+ - * v,,) mod 7b = 0, for any 7 >0

then p; mod b = (—¢ * a) mod b.
As in memory-reference disambiguation, this proof method isn’t general. For
example, given:

ASSERT zmod b=0
ASSERT (z+y) mod b=0

the method can’t prove (2 +y + 2) mod b = 0. Nevertheless, the method is quite
sufficient for this application. ’

There is a messy interaction between programmer-specified loop unrolling
and assertions. If an assertion is in a loop body, it will be unrolled (repeated)

Chapter 6: Memory-bank Disambiguation 137

just like any other statement. But that is incorrect—the assertion is valid only
in the first unrolling. For example, suppose this loop is unrolled 8 times:

FOR i:=1 TO n UNROLL 8
ASSERT i MOD 8 = 1
body

Not only will the assertion be untrue if the loop isn’t unrolled a multiple of 8
times, but the unrolled loop will have 7 incorrect assertions:

i:=1

LOOP
IF i>n THEN EXITLOOP
ASSERT i MOD 8 = 1
body
IF i>n THEN EXITLOOP
ASSERT i MOD 8 = 1
body

IF i > n THEN EXITLOOP
ASSERT i MOD 8 = 1
body

The solution is to make the assertion dependent on the unrolling using a source-
language construct:

1: FOR i:=1 TO n UNROLL 8
ASSERT i MOD UNROLL(1) = UNROLL-INDEX(1)
body

The expression UNROLL(label) evaluates to the amount of unrolling specified
for the loop with the given label; UNROLL-INDEX(label) is expanded during
loop unrolling and evaluates to the number of the current unrolling of the loop
body (from 1 to UNROLL(1label)). For example, the loop above unrolls into this
intermediate code:
i:=1
LOOP
IF i>n THEN EXITLOOP
ASSERT i MOD 8 = 1
body
IF i>n THEN EXITLOOP
ASSERT i MOD 8 = 2
body

IF i>n THEN EXITLOOP
ASSERT i MOD 8 = 8
body

Now each assertion in the unrolled loop is correct, even if the programmer later
on changes the amount of unrolling.

138 Chapter 6: Memory-bank Disambiguation

Source Transformations

Symbolic bank analysis alone isn’t sufficient for memory-bank disambiguation;
source transformations are also needed. We’ve already seen the simplest trans-
formation, loop unrolling with an assertion at the top. Unrolling by itself works
only if the loop variable has an initial value with known residue, the bases of
the vectors referenced in the loop are known, and residues of the vector indices
evaluate to compile-time constants.
Many inner loops in scientific code fit this mold. But many don’t. Sometimes
the initial values of loop variables are variables and don’t have a known residue:
FOR i:=j to k
U 4 5 5 O

Sometimes the base of an array doesn’t have a known residue, as when arbitrary
cross sections of arrays are passed as parameters. Sometimes all the vector refer-
ences in an inner loop can be bank-disambiguated, but they are all to the same
bank, restricting parallelism.

These situations require source transformations more complex than loop un-
rolling. The transformations fall into three broad classes: data, control, and
algorithmic. Data transformations change the layout of aggregate data like ar-
rays; control transformations globally reorder the loops and statements of the
implementation without changing the abstract algorithm; algorithmic transfor-
mations make large-scale transformations in the abstract algorithm. The data
and control transformations could probably be automated in the near future,
whereas algorithmic transformations require very sophisticated reasoning.

The following catalogue describes the transformations needed for the bench-
mark library of programs. By no means is it intended as a complete list.

Data Transformations

The compiler assumes by default that arrays start in a known bank (usually
bank 0). This isn’t hard to arrange for statically and dynamically allocated
arrays—they’re simply allocated starting on b~-word boundaries. Is this a serious
restriction? For most time-critical scientific kernels, no. The only problem arises
with arbitrary cross sections of arrays passed as input parameters, for example,
passing a row of an array to a routine that expects a vector parameter. Luckily,
this feature isn’t crucial to most scientific code; but when it is, it can still be
bank-disambiguated using some of the transformations below.

The way multidimensional arrays are laid out in memory is crucial to bank
disambiguation. Inner loops of scientific code tend to access arrays by rows, by
columns or by both rows and columns. If the time-critical accesses are predom-
inantly by row or predominantly by column, then those references can be easily
bank-disambiguated.

If time-critical access is primarily by row, then the array should be laid out
in row-major order, and the rows should be a multiple of b elements long. Thus

Chapter 6: Memory-bank Disambiguation 139

each row will start in bank 0, and a loop accessing a row can be trivially bank-
disambiguated by simple unrolling. For example, consider this typical inner loop
accessing a row of a 100 x 256 array (assume b = 8):

FOR j:=1 TO n UNROLL 8

...a[i,jl...
The intermediate code for the unrolled references a[i, j] looks like:
t1:=2566%*1
t2:=t1+j
x :=a[t2]

The index derivations for the 8 references have the form 256 * ¢ + 3 + ¢ where
¢ is between 0 and 7. With the appropriate assertion at the top of the loop,
(256 * ¢ + j + ¢) mod 8 is ¢; thus the cth reference in the loop is to bank c.

Similarly, if the time-critical access to an array is by columns, then it should
be laid out in column-major order, and the columns should be a multiple of b
elements long.

Constraining the row- or column-length of arrays to be a multiple of bisn’t a
serious restriction for most applications. If the actual input sizes aren’t divisible
by b, it’s usually a simple matter to pad out the inputs with appropriate dummy
values (typically zeros).

Once an array is so constrained, it is possible to pass cross sections consisting
of one or more entire rows to procedures (if the array is row-major). The cross
sections are guaranteed to start in bank 0.

Simple unrolling and array padding can accommodate only one access direc-
tion, either by row or by column. If time-critical code accesses an array in both
directions, then control transformations must be used to bank-disambiguate the
accesses in the other direction.

Another layout trick is to merge several vectors that are accessed in parallel
into a single array, each vector forming a column of the array. For example,
in the routine EOS from the SIMPLE benchmark, the inner loop evaluates a
polynomial whose 7 constants are drawn from the vectors a, b, ¢, 4, e, £, and g,
each of length n:

x[01*a[j] + x[11*b[j] + ... x[71*g[j]

The index j is obtained indirectly from a table each time through the loop, so
loop unrolling won’t help here. But by laying out the 7 vectors as columns in an

140 Chapter 6: Memory-bank Disambiguation

n X 8 array w (the 8th column is padding):

|

n lalblcldleif|g

|

the bank of the vector accesses can now be predicted (assuming b = 8). All a
elements are in bank O, all b elements in bank 1, all ¢ elements in bank 2, and
so on. To evaluate a polynomial, the jth row (a[jl, b[jl, ..., g[j]) is fetched
in parallel. Because each row starts in bank O, the fetch of row j is completely
bank-disambiguated regardless of the value of j.

Another way to think of this transformation is that the array w is a vector
of records, each record having 7 fields a through g, with a dummy padding field
to make the record fall on 8-word boundaries.

This trick was also used to bank-disambiguate QK61 (the kernel of an adap-
tive quadrature package) and the constant-table accesses of the inline SIN and
COS library functions.

Of course, Fortran doesn’t give the programmer any tools for controlling ar-
ray layouts; the programmer is forced to implement different layouts by manually
editing the program. One of the advantages of using a Lisp-embedded language
like Tinylisp is that tools like macros and inline procedures make non-standard
data layouts easy. For example, arrays in Tinylisp are always row-major; but a
column-major array a is easily implemented by using a row-major array work_a
and an inline procedure that expands a[i, j] into work_alj,i].

Control Transformations

Reversing the loop. Suppose a loop has the form:

FOR i:=j TO n
..o.v[id. ..

where n mod b and base(v) are known, but j mod b isn’t. If the iterations of
the loop are data-independent or if the loop implements an associative vector
reduction (such as adding the elements of a vector), the iteration sequence can
be reversed:
FOR i:=n TO j BY -1
...v[i]. ..

When normal loop unrolling is applied, ¢ mod b will always be O at the top of the
unrolled loop, and the vector references will be completely bank-disambiguated.

Chapter 6: Memory-bank Disambiguation 141

Often n is the upper bound of the vector or array row being accessed. As
discussed above, a few extra padding elements usually can be added to the vector
to make n a multiple of b.

This transformation was used for SOLVE (LU decomposition) and SVD (sin-
gular value decomposition).

Adding a preloop. The worst-case loop has the form:

FOR i:=j TO k
oWv[dl. ..

where either base(v) mod b or both 5 mod b and k¥ mod b are unknown. To bank-
disambiguate the references, a preloop can be added that executes a copy of the
loop body at most b — 1 times until base(v) + ¢ hits a known bank; control then
transfers into the main loop:
FOR i:=j TO k
IF (BASE(v)+i) mod b = O THEN
temp:=i
EXITLOOP
body

ASSERT (BASE(v)+temp) MOD b = O

FOR i:=temp TO k UNROLL b
body

The preloop can’t be disambiguated, but the main loop can, using simple un-
rolling.

The problem with adding preloops is that there is significant overhead when
the number of iterations is small. To get a feel for the problem, let’s consider
an 8-cluster machine with b = 8. Suppose that the loop implements a simple
element-wise vector operation. Thus we can expect close to an 8-fold speed-up
of the main loop compared to a sequential machine. But because the preloop is
constrained to fetch one element per cycle through the back door, it won’t be
much faster than the sequential machine.

Assume that one iteration of the sequential version of the loop body takes ¢
cycles and that the body is executed n times. Then the sequential version takes
time:

8§ =nc

In the transformed version, the preloop body is executed about 3.5 times on the
average before transferring to the main loop; the time of the preloop is:

p = 3.5¢

142 Chapter 6: Memory-bank Disambiguation
The main loop takes time:

[= (n —3.5)c
8

yielding a total time on the parallel machine of:

(n — 3.5)c

t=p+1=35c+ 3

The following table shows, for an increasing number of iterations n, the speed-up
of the transformed loop over the original sequential loop (s/t) and the percentage
of time spent in the preloop relative to the total time of the transformed loop

(p/t):
n s/t pft (%)

8 2.0 .86

16 3.2 .69
32 4.5 .50
64 5.8 .32
128 6.7 .18
256 7.3 .10
512 7.6 .05
1024 7.8 .03

By these estimates, there is quite a bit of overhead for loops with less than
100 iterations, and 500 iterations are needed to approach full utilization of the
machine. Unfortunately, the inner loops of many scientific programs originally
written for scalar architectures often have less than 100 iterations. This is a
problem with vector machines like the Cray-I as well; the same techniques used
to increase the vector sizes on a vector machine can be applied here.

Because of its overhead, adding a preloop should be the transformation of
last resort. In my library of benchmarks, only one program, EOS, required a
preloop.

Merging with outer loops. A number of scientific programs access multi-
dimensional arrays by both rows and columns. The row accesses can be bank-
disambiguated by unrolling and padding, but some other transformation is needed
for the column accesses. A preloop won’t work for the column accesses, because
all the elements of a column are in the same bank. However, the doubly and
triply nested loops can often be rearranged to bank-disambiguate the column
accesses with little overhead.

The typical example of mixed row and column accessing is matrix multipli-
cation. The definition of Z = XY is:

% = Tin Yng =) T kYk
k

Chapter 6: Memory-bank Disambiguation 143

where z; , denotes the 1th row vector of X and y, ; the jth column vector of Y.
The common implementation of that on scalar machines is:

FOR i:=1 TO m
FOR j:=1 TO o
sum:=0
FOR k:=1 TO n
sum:=sum + x[i,k]*yl[k,j]
z[i,j]:=sum
The innermost loop moves across the ith row of x and down the jth column of y.
Assuming the arrays are in row-major format and the rows are padded to have a
multiple of b elements, unrolling the loop will bank-disambiguate the references
to x but not y. Adding a preloop won’t work here because all the elements of
the kth column of y are in the same bank and thus must be fetched sequentially.
A general solution for bank-disambiguating column accesses is to process b
columns at a time in the inner loop. In matrix multiply, that means forming &
dot products in parallel:

Zi,j4+0 = Tigx " Y j+0
Zig+1 = Tigx " Yr 41
2 g+b—1 = Tix " Ys j+b—1

The implementation of this is (assuming b = 8):

FOR i:=1 TO m
FOR j:=1 TO o BY 8

sumO: =0
suml:=0
s.n.n;ﬂ :=0

FOR k:=1 TO n
sumO:=sum0 + x[i,k]*y[k,j+0]
sumi:=suml + x[i,k]l*y[k,j+1]

sun?:=sum? + x[i,k]*y[k,j+7]
z[i, j+0] :=sumO
z[i,j+1] :=suml

i.[i.j+7] :=sum7

The code assumes both arrays have rows with a multiple of b elements. Because
j is now always a multiple of 8, the references to y in the inner loop are trivially
bank-disambiguated. When the inner loop is unrolled 8 times, the references to
x will also be bank-disambiguated, and there will be 8 references to each of the
8 banks.

144 Chapter 6: Memory-bank Disambiguation

This method of folding an outer loop into an inner one is often used on vector
machines—the variables sums are stored in a vector register (which on the Cray-I
has 64 elements). A nice side effect of the transformation on matrix multiply is
that the number of memory references to x have been reduced by a factor of b
(the compiler identifies the b occurrences of x[i,k] as a common subexpression).

A seeming disadvantage of the transformation is that the inner loop must be
unrolled at least b2 times: b times for x and b times for y. For b = 8 or b = 16 this
isn’t a major problem, but for larger values it is impractical. But for the larger
values of b, the transformed inner loop doesn’t really need to be unrolled an extra
factor of b times. There would be 1 back-door reference to x and b front-door
references to y, and the extra time needed for the back-door reference would be
insignificant.

In addition to matrix multiply, this transformation was also used for SVD
(singular value decomposition).

The transformation assumes that the initial or final column is in a known
bank. If it isn’t, then a preloop must be added that processes one column at a
time until a known bank is encountered.

Skewing arrays. Another possible method for disambiguating arrays accessed
by both rows and columns involves a data transformation as well as a control
transformation. The rows of the array are padded so that their length is relatively
prime to b. Thus, any successive b elements from a row or column will be in b
different banks. This evens out the memory load for loops accessing an individual
column, since b successive elements of a column can be fetched in parallel. But
now neither the rows nor the columns necessarily start in bank 0, and preloops
must be used for both row and column-oriented loops.

Given the overhead of preloops, loop merging is preferable for column ac-
cess; skewing arrays should be used only when loop merging isn’t possible, such
as when both individual columns and rows are accessed “randomly” instead of
successively. However, I don’t know of a scientific program that accesses rows
and columns like that; only two library programs, matrix multiply and singular
value decomposition, have mixed row and column accessing, and loop merging is
feasible for both.

Interesting aside: Memory architectures have been proposed for vector ma-
chines that have a prime number of banks. Most arrays in programs don’t have
dimensions that are divisible by, say, 17. Thus, there is a high probability that
the memory references of most cross sections, whether by row, column, or di-
agonal, will be evenly distributed among the banks. In effect, the hardware is
skewing the arrays automatically. Unfortunately, these architectures presuppose
a central memory controller, which is precisely what VLIWs are trying to avoid.

There is little reason to have the hardware skewing if the compiler can do it
instead, especially considering that when b isn’t a power of two, special memory
hardware is required. In practice, given an array, a value for b, and the small set
of accessing patterns used on the array by a real program, it is likely that the

Chapter 6: Memory-bank Disambiguation 145

array can be skewed by the programmer or compiler so as to bank-disambiguate
all the memory references and fully utilize all the banks, while requiring only a
little extra memory for padding the array.

Three Programs

Most of the programs in the benchmark library were easily bank-disambiguated
using the techniques described above. However, three of the programs required
special transformations.

TRID4. TRID4 is a tridiagonal solver using cyclic reduction. Its inner loops
have the form:
FOR i:=1 TO 1
FOR j:=jo[il TO m[i]
vl

At first glance, the inner loop appears to require a preloop, since both the initial
and final values of the loop variable j are variable. But an examination of the
algorithm reveals that the array jO contains the following values:

Jo[l]=n

Jo[2] = n + g-

. n n
30[3] =n-4+ 5] + l_zJ

o) =n+ | 2]+ 3]+ [Eggj + [E%J

where n is the size of the input vector v and

n n
5-1:5 Z c > E_—l
The constant ¢ is specified in the implementation (¢ = 20 in the current version).

Assuming b is a power of two, the values in jO will be divisible by b if
the input size n is constrained to be a power of two and ¢ is chosen such that
¢ > b. Thus the initial value of j in the inner loop will always be divisible by
b, and simple loop unrolling and an assertion will bank-disambiguate the vector
references.

(When n is a power of two, up to 2 times the actual input size is needed for
the arrays. But if ¢ > 3b, n needn’t be a power of two; it could be either 2% or
3 % 2¢ for some 7, and the values of jO will still be divisible by b; in this case, at
most only 50% extra space is needed. Similarly, if ¢ > 5b, n may have any of the
forms 2¢, 3 * 2% or 5% 2¢. and at most 33% extra space will be needed. However,
increasing ¢ increases the running time of the algorithm somewhat.)

146 Chapter 6: Memory-bank Disambiguation

SVD. SVD computes the singular value decomposition of an m x n array u.
Most of the time-critical array accesses can be disambiguated by unrolling and
padding the rows. But one time-critical section of the original version of SVD
accessed u by columns.

The column accessing performs the following operations:

Uiim,; = Uiy t+ ((uz’:m,i . ui:m,]’)/h) * Uiimyis fori<j<n

where U;.m j TEPresents the vector formed by taking elements ¢ through m from
the jth column of u. The original implementation of this did one column at a
time:
FOR j:=i+1 TO n
sum:=0
FOR k:=1i TO m
sum:=sum + ulk,i]l*u[k, j]
f:=sum/h
FOR kx:=1i TO m
ulk,jl:=ulk,j]l + f*ulk,i]

Loop unrolling and array padding won’t work here, and a preloop will have too
much overhead (especially considering that i goes from 1 to n-1).

But the loops can be rewritten to do row accesses instead. The vector
expression is split into two parts, the first part doing the dot products for all the
columns 5 and storing them in a temporary vector £[1:n]:

[i = (Wiim i~ Yizm 5) /B, fori<j<n
Wi, = Ui, j + I * Ui 5, fori<j<n

The first part can be implemented using loop merging, doing b columns at a time:

FOR j:=n TO i+1 BY -b
ASSERT j MOD b = O
sum[0] :=sum[1]:= ... :=sum[b-1]:=0
FOR x:=1 TO0m
uki:=ulk,i]
sum[0] :=sum[0] + uki*ul[k,j-0]
sum[1] :=sum[1] + uki*u[k,j-1]

sun[b-1] :=sum[b-1] + uki*u[k, j-b+1]

f£[j-0] = sum[0] / h
f[j-1] =sum(1] / h
£[j-b+1] := sum(b-1] / h

All but one of the vector references are now to known banks. Notice that the
outer loop has been reversed so that j mod b is always O; for this to work the
array must be padded so that n mod b = 0. Also notice that the last iteration
through the outer loop might overshoot the final value 7 + 1 and compute up to

Chapter 6: Memory-bank Disambiguation 147

b—1 extra dot products. But that’s ok—the extra dot products will be computed
in parallel with the ones actually needed and will be ignored later on.
The second part of the expression:

Uiim,j = Uimj + Jj * Uiims fori<j<n

is an element-wise array expression that can be done by rows just as well as by
columns:

Uk itlin = Ukitlin T figrm *Up;, fore<k<m

The code for this is:
FOR k:=1i TO m
uki:=ulk,i]
FOR j:=n TO i+1 BY -1 UNROLL b
ulk,jl:=ulk,j] + £[jl*uki

All the vector references but one are now to known banks, and that one isn’t
in the inner loop. Notice that the inner loop has been bank-disambiguated by
reversing it and unrolling it b times.

Finally, even though a temporary vector £ has been introduced, the total
number of memory references is less than the original implementation for most
values of m and n. Assume m = n (in many applications m ~ n). The variable
i iterates from 1 to n — 1, so the total number of memory references done by the
old and the new versions is:

Told = Z Si(i + 1)
1<i<n
Tnew= 9 (4+1/B)i(E+1)+i+1
1<i<n

Asymptotically, the new version does about 18% fewer memory references when
b=8.

FFT. Of all the programs, the Fast Fourier Transform required the most com-

plicated transformations. For the following transformations to work, the input

size n must be a multiple of b, both n and b must be powers of two, and n > b2.
First let’s consider the shuffie part of FFT:

FOR i:=0 TO n-1
v[i]:=ul BR(i,n)]

BR(i,n) is the bit-reversal of the binary representation of i using a word of logn
bits.

None of the techniques presented above could possibly bank-disambiguate
this loop. Instead, we’ll rewrite the loop, in the process unrolling it b2 times.

148 Chapter 6: Memory-bank Disambiguation

Let d = n/b; by the initial assumptions, d mod b = 0. For simplicity, assume
b = 4; the transformation extends naturally to larger values. The loop will move
16 elements at a time from u into v, in 4 groups of 4:

v[i] through v[i+3]
v[i+d] through v[i+d+3]
v[i+2d] through v[i+2d+3]
v[i+3d] through v[i+3d+3]

The loop variable i will go from O to d-1 in increments of 4:

FOR i:=0 TO d-1 BY 4
FOR j:=O TO 3

FOR k:=0 TO 3
v[i+j*d+k] :=u[BR(i+j*d+k)]

When the two inner loops are unrolled completely, all 32 vector references will
have known banks:

Reference Bank Reference Bank
v[i+0*xd+0] O ul[BR(i+0*d+0)] O
v[i+O*xd+1] 1 ul[BR(i+O*d+1)] 0
v[i+0*xd+2] 2 ul[BR(i+0*d+2)] 0
v[i+0*d+3] 3 u[BR(i+0*d+3)] 0
v [i+1xd+0] 0 ul[BR(i+1xd+0)] 1
v[i+1*xd+1] 1 ul BR(i+1*d+1)] 1
v[i+1*d+2] 2 ul BR(i+1*d+2)] 1
v[i+1%d+3] 3 ul[BR(i+1*d+3)] 1
v[i+2+d+0] 0 ul[BR(i+2*d+0)] 2
v[i+2*d+1] 1 ul[BR(i+2*d+1)] 2
v[i+2*xd+2] 2 ul[BR(i+2*d+2)] 2
v[i+2%d+3] 3 ul[BR(i+2*d+3)] 2
v [i+3*d+0] 0 u[BR(i+3*d+0)] 3
v[i+3*d+1] 1 ul[BR(i+3*d+1)] 3
v[i+3*d+2] 2 ul[BR(i+3*d+2)] 3
v[i+3*d+3] 3 ul[BR(i+3*d+3)] 3

You can convince yourself by writing out the values of the indices i+j*d+k and
looking at the low order log b bits and the high order logb bits. But even with
the two loops unrolled, there is no way the symbolic analysis could discover the
residue of BR(i+j*d+k). So 16 assertions must be manually added:

ASSERT BR(i+0*d+0) MOD 4 = O
ASSERT BR(i+O*d+1) MOD 4 = 0
ASSERT BR(i+3+d+3) MOD 4 = 3

A nice property of this transformation is that the memory references and
the communication between banks are uniformly distributed among the banks.

Chapter 6: Memory-bank Disambiguation 149

The main loop of FFT looks like:

FOR i:=1, 2, 4, ..., n/2
FOR j:=0 TO n-1 BY 2*j
FOR k:=0 TO i-1
co.vlk+j). . ovik+j+id ...

None of the standard techniques can bank-disambiguate this code. But look what
happens when the first three iterations of the outer loop are unrolled (assume
now that b = 8):

§6ﬁlj:=o TO n-1 BY 2 UNROLL 8
F:Tg[k+j]...v[k+j+i]...

i:=2

FOR j:=0 TO n-1 BY 4 UNROLL 4
lf:Tv[k+j] co.vlk+j+id. ..

:-..v[k+j] coovlkejHid .ol

i:=

FOR j:=0 TO n-1 BY 8 UNROLL 2
#:Tv[k+j]...v[k+j+i]..
#:Tv[k+j]...v[k+j+i]...
F:Tv[k+j]...v[k+j+i]..
o ey] . vDeiedl

FOR i:=8, 16, ..., n/2

FOR j:=0 TO n-1 BY 2#i
FOR k:=0 TO i-1 UNROLL 8
vlk+j]. . .vik+j+il.

At the top of each unrolled inner loop, (kK + j) mod b=0 and (k+j +¢) mod b
is known. Thus all the vector references now have known banks. This special
unrolling also eliminates the large overhead due to the many short iterations of
the inner loop. Experiments showed that this unrolling increased the available
parallelism by a factor of 4. Rodrigue [Rodrigue 82] discusses other methods for
eliminating the overhead for vector machines.

150 Chapter 6: Memory-bank Disambiguation

Automating the Transformations

Of all the bank-disambiguating transformations presented, the compiler imple-
ments only loop unrolling, and even there the programmer must specify how
much to unroll and the corresponding assertions. All other transformations must
be done manually by the programmer. What’s the prospect of automating them?

It would be easy to change the compiler to allocate all array rows in multiples
of b elements. And it wouldn’t be too hard to automatically detect the situa-
tions where simple unrolling, possibly aided by loop reversal, would suffice. The
compiler could even add in preloops when no other transformation is applicable.

But one of the most valuable control transformations, rewriting nested loops
that manipulate arrays, is very hard. Allen and Kennedy [Allen 84] have imple-
mented a system for applying similar sorts of transformations to code intended
for vector machines. Most likely many of the same techniques could be modified
for use here. But they are complicated, and not very general.

As T’ll discuss in the last chapter, perhaps a better long-term approach is
to forget low-level languages like Fortran, and instead use a notation like APL
that expresses the array operations directly. It would then be much easier for
the compiler to choose loop structures for implementing the array operations
of an expression; by construction the array references would be automatically
bank-disambiguated.

Non-vectors

What about data structures other than vectors? There is no clear answer. Dy-
namically allocated objects can have any size and can fall on any bank. However,
if objects are allocated in sizes that are multiples of b, then clearly every ob-
ject begins on a known bank. Whether this is practical for many programs, I
don’t know, since I’ve only fully investigated scientific applications, whose data
structures are usually large arrays.

151

Chapter 7
Code Generation

The code generator gets a trace of operations as input and produces parallel
machine code as output, treating the trace as if it were one very large basic block.
There are three main phases: representing the trace as a DAG (directed acyclic
graph), functional unit assignment, and list scheduling.

As in many traditional code generators, the intermediate-code operations of
the trace are converted into a DAG. The nodes of the DAG represent operations,
and there is an edge between two nodes if one node uses the value produced
by another. To prevent illegal code motions past jumps and undisambiguated
memory references, new edges are introduced to prevent one node from being
evaluated before another.

The assignment phase performs operation placement, picking functional
units for each of the intermediate-code operators in an attempt to get maximum
utilization of the machine. It is analogous to the register allocation of traditional
compilers, and in fact was inspired by the top-down-greedy register-allocation
algorithm [Barrett 79]. Traditional register allocation tries to assign a limited
set of registers to the operations of the DAG, minimizing the movement of data
between registers and memory. Analogously, the assignment phase allocates func-
tional units to intermediate-code operations, minimizing the costly movements
of data between distant functional units and the delays caused by contention for
heavily used units.

The list-scheduling phase actually generates machine instructions, using a
first-fit algorithm that originated in processor scheduling but has since been
widely used for compilation [Sites 78, Fisher 79, Touzeau 84]. The list sched-
uler forms a schedule of instructions by enumerating the DAG nodes in some
topological order, packing operations into machine instructions.

The interface to the trace scheduler makes code generation more complex.
A trace may give locations of the live variables at the beginning of the trace or
at the end of the trace or both. If locations for the live variables at the beginning
are given, the code generator must use them as the initial variable locations;
otherwise the code generator is free to assign registers to variables. Similarly, if
locations for the live variables at the end are given, then the code generator must
ensure that the variables end up in those locations, moving them if necessary;
if no locations are given, then the code generator may leave the live variables
wherever convenient.

After it forms the schedule of machine instructions, the trace scheduler will
splice the schedule back into the flow graph. To aid the trace scheduler in its
bookkeeping, the code generator must maintain a map between intermediate-
code operations and the corresponding machine operations in the schedule. At
the boundaries of the trace (at the beginning, the end, conditional jumps, and

152 Chapter 7: Code Generation

g

A B

—

+1 X

L L

Figure 7.1. An example machine model.

-
ik

/
!

I—i

joins into the middle) the code generator must also report the locations of live
variables, so that adjoining traces will know where to find them.

An Example

Before describing code generation in detail, let’s consider a simple example that
illustrates some of the complexity of code generation. Suppose that the compiler
is compiling for the (unrealistic) machine model shown in 7.1.

There are two register banks A and B, two adders (denoted +1 and +2),
and a multiplier. Each adder can read its operands from either or both register
banks but must write its result in one particular bank. The multiplier reads its
operands and writes its result to bank B only. Additions and multiplies take 2
cycles. If necessary, a value can be moved directly from one bank to the other.
Two values can be read and one written to each bank every cycle.

Figure 7.2 shows a sample trace of intermediate-code instructions, the DAG
constructed from the trace, and a possible schedule for the machine model. The
leaves of the DAG are at the top and the roots at the bottom. (Unlike most
academics, I draw DAGs this way because they are easier to read: Evaluation
of the DAG proceeds naturally from top to bottom, just like the linear code the
DAG represents.)

Variables m, n, and q are live on entry to the trace, and t, u, q, and s are
live on exit. The nodes are labeled with their variable name, the functional unit
chosen for the node by the assignment phase, and the register chosen for the
node during list scheduling. Note that at least 4 cycles will be needed for any
schedule, since the longest path from an entrance to an exit of the DAG contains
2 operations.

The schedule shown is 5 cycles long and is optimal. Four cycles are not
enough, because the multiplier requires both of its operands to be in bank B—p
and r must either be computed using +2 or else one or both of them computed
using +1, requiring an extra cycle to move the results from bank A to bank B. If

Chapter 7: Code Generation 153

Live:m, n, q

C p:=mta)
C r:=mtq)
(s =ptT)
C :==lp*r)
(_uw=ptp)

Live: t, u, q, 8

USEmA.1, n B.1, q A.2

r(B.2):=n(B.1) +2 q(A.2

)

+2-2

p(B.1):=m(A.1) +2 n(B.1)

+2-2

+(B.3):=p(B.1) * r(B.2) s(B.2):=p(B.1) +2 r(B.2)

u(A.1):=p(B.1) +1 p(B.1)

(S TN KN)

E 3

+2-2

+1-2

DEF s B.2, t B.3, u A.1, q A.2

Figure 7.2. An example trace and the corresponding DAG and sched-

ule produced by the code generator.

154 Chapter 7: Code Generation

the compiler had mistakenly chosen +1 for both of the first two additions instead
of +2, the schedule would have been one cycle longer. Note that in cycle 4, only
2 values are read from the banks even though three operations are initiated; a
value appearing on a bank’s output port can be read by many functional units.

The USE pseudo-op at the beginning of the schedule records for later traces
the registers chosen to hold the trace’s input variables. The DEF pseudo-op at
the end records the registers where the output variables were left.

Building the DAG

The trace scheduler supplies the code generator with a trace of intermediate-code
operations from which the code generator builds a DAG. The DAG-builder uses
techniques similar to those used by traditional compilers for basic blocks [Aho
77]. You should be familiar with these techniques before reading any further in
this chapter.

Supplied with the trace are the set of variables live on entrance to the be-
ginning of the trace and the set of variables live on exit at the end. With each
conditional jump in the trace is the set of variables live on the off-trace branch
of the jump. These sets completely define the variables live at the boundaries
of the trace. (The live variables at joins into the middle of the trace can be
inferred from the operations below the join and the live-on-exit variables.) If a
variable is live at some exit (either the end or at a conditional jump), then the
code generator must preserve its value in some location until the exit.

At the beginning of the trace there may be an optional DEF pseudo-op that
specifies initial register or memory locations for all the live-on-entry variables.
At the end of the trace there may be a optional USE pseudo-op that specifies
the required final locations for all the live-on-exit variables. The DEFs and USEs
indicate the locations of variables assumed by earlier-compiled traces abutting
the current trace. (Chapter 4 describes DEFs and USEs in detail.)

If a DEF isn’t present, the code generator is free to assign initial locations to
variables however it wishes (presumably minimizing data movements). If the DEF
is present, the code generator must use the initial locations it specifies. Similarly,
if a USE isn’t present, the code generator may leave live-on-exit variables lying
around wherever convenient; if the USE is present, then the code generator must
guarantee that the variables end up in the final locations specified.

If a trace variable is live on entry and live on one of the exits (either at
the end or at a conditional jump), and there are no initial locations for live-on-
entry variables (that is, there is no DEF), then the code generator is responsible
for assigning a location that will hold the variable for the duration of the trace.
Even if the variable isn’t read by any of the trace operations, the code generator
must still assign a location to the variable. Later traces abutting this trace will
then have a known place in which to find or store the variable.

Chapter 7: Code Generation 155
Nodes and Edges

As in a traditional basic-block DAG, every operation in the trace becomes a node
in the DAG. There are operand edges from an operation node to each of the nodes
representing the operands.

Each live-on-entry variable is represented by a special DEF node, which rep-
resents the variable’s initial value. Operations that read the entry-value of a
variable will have an operand edge to the DEF node of the variable. If one or
more initial locations for the variable are given for the variable in a DEF pseudo-
op at the beginning of the trace, those locations are recorded in the variable’s
DEF node.

Each live-on-exit variable is represented by a special USE node. For each USE
node there is an operand edge to the node for the operation that last assigned
the variable in the trace. If no operation in the trace assigns the variable, then
there is an edge directly from the USE to the DEF representing the variable’s
initial value. If one or more final locations were given for the variable via a USE
pseudo-op at the end of the trace, those locations are recorded in the USE.

USE nodes have two purposes: to record the final locations of a variable and
to keep that variable “alive” through the entire trace. Normally, after all nodes
reading some node’s value have been scheduled, the register holding the node’s
value can be deallocated and used for some other purpose. But USE nodes are
never scheduled, so the register holding the corresponding value will never be
deallocated.

As an example, figure 7.3 shows a sample trace and its corresponding DAG.

Constants

There are three types of constants in the intermediate code: numbers, vector
bases, and addresses. A vector base, notated VBASE(v), is the address of the
first element of a vector v; vector bases are often parameters to subroutines, so
they are run-time, but not compile-time, constants. An address of a variable x
is notated ADDRESS(X), and an address of the constant 3.5e-2 stored in memory
is notated ADDRESS(3.5e-2).

Constants are further differentiated as immediate and non-immediate. Im-
mediate constants are always produced by constant generators (usually fields
within the instruction word). They are either used directly by an operation (if
the functional unit is connected to the constant generator) or kept in one or more
registers during the trace until their last use. Every distinct immediate constant
on the trace gets a separate DEF node in the DAG, and an operation node reading
the constant has an operand edge to the DEF node.

Every non-immediate constant on the trace is loaded from memory before its
first use and then kept in one or more registers for the duration of the trace. So
a non-immediate constant ¢ gets expanded into two nodes, a DEF for the memory

156 Chapter 7: Code Generation

((DEF d r2, i rl, x ¥4, x r5)
1

C i :-li+d)
C c:jd*d D)
C di:=i+c)

I
(USEir2, cri, xr3, x r5)

[DEF x r4, r5]

[USE x r3, r5] [USE i r2]

Figure 7.3. A sample trace and the corresponding DAG.

address of ¢ (which is itself an immediate constant) followed by a memory load.
For example, this trace fragment:

(a:=2.6%5b)
i
(c:=2.64d)

would get transformed into this DAG:

[DEF_ApDRESS(2.5)] [DEF b] [DEF 4]

The FPLOAD operator takes a single operand, an address, and fetches the float
stored at that address. '

Chapter 7: Code Generation 157

A constant never has a final USE node, and its value in registers is discarded
immediately after the last use. (Loading a constant from memory for each trace
that uses it may sound inefficient; a later section discusses this.)

Variables and Constraining Edges

During execution a variable x takes on a sequence of many values, z1,z2, 23, ...
The current value of a variable often resides in many different locations at one
time in the machine. For reasons presented in a later section, the lifetimes of a
variable’s values cannot overlap; that is, x cannot be assigned both z; and z; +1
at the same time. Intuitively, a variable can have only one value at a time, and
its value cannot be changed until all the uses of the current value have been
evaluated.
For example, in the following trace fragment:

1. x:=y-z
2. a:=b+x
3. c:=x-d
4, x:=e+f

operation 4, which writes x, must not be executed until after operations 2 and 3
have read the previous value of x. Even if the two different values of x are kept
in separate registers, operation 4 must still follow 2 and 3.

To implement this restriction, special constraining edges are added to the
DAG. For every operation that assigns x, there is a write-after-read constrain-
ing edge from that operation to each operation that reads the previous value of
x; there is also a write-after-write constraining edge to the previous operation
assigning x. For the example above, the DAG looks like:

The write-after read edges are marked “w-r” and the write-after-write edges “w-

w.”

158 Chapter 7: Code Generation

Because registers are read at the beginning of a cycle and written at the
end, an operation assigning x can occur in the same cycle as the last use of the
previous value of x. In this example:

1. a:=b+x
2. x:=c+d

operation 2 could be executed in the same cycle as 1 or later but no earlier. That
is, a write-after-read edge constrains the writing node to be executed no earlier
than the reading node. (Fisher called these write-after-read edges “equal edges”
[Fisher 79] because the nodes were allowed to be executed in the same cycle.)

You might think that the write-after-read edges could restrict parallelism
unnecessarily. Consider this trace:

1. x:=a+b
2. ¢c:=x+1
3. d:=x*2
4, x:=e+f
5. gi=x+1
6. h:=x*2

Intuitively, operations 4-6 could be done in parallel with operations 1-3. But the
write-after-read edges will constrain 4 to be done after both 2 and 3, reducing
the amount of available parallelism. However, variable renaming (see chapter 2)
will rename x in operations 4-6 to be a new variable x1:

1. x:=a+b
2. c:=x+1
3. d:=x*2
4. x1:=e+f
5. g:=x1+1
6. h:=x1%2

In this optimized fragment, there are no edges from operations 46 to operations
1-3, and the two groups could be executed in parallel.

Variable renaming can not eliminate all write-after-read edges. For example,
part of a trace of the body of an inner loop might look like:

1. j:=i/3

2. i:=i+t
Assuming i is a loop induction variable, the definition of i by operation 2 could
not be renamed, since it is directly used by 1 and itself. So there must be a

write-after-read edge from 2 to 1; that is, the increment of i must occur after all
the operations that read the previous value of i.

Chapter 7: Code Generation 159

Assignment Means Copy

No two variables can share the same physical location at the same time. In
general, the assignment operation must physically move the value being assigned
into a new location. To see why actual copying is necessary, consider this fragment
of a flow graph:

|
A==y D) |

f=] x=y-1)
@] z:l=x+1)
€l azl=y*2 D)

Suppose a trace included operations 1, 2, and 3, and assume that the code gen-
erator didn’t actually generate a copy for x:=y but merely updated its variable-
location information to indicate that x and y were located in the same location
for operations 2 and 3. That would be incorrect, since on the execution path
4-2-3, x and y have different values and hence must have different locations.

So the assignment x:=y must be implemented by the code generator as a
copy of the value of y into some new location. The assignment is represented
by a special DAG node called a COPY node, with an operand edge to the node
corresponding to y. COPY nodes are treated specially during the later phases of
code generation. '

Implementing assignment as copying contrasts with basic-block code gener-
ators, which can implement an assignment x:=y merely by attaching the label x
(signifying the current value of x) to the node currently representing y. But as the
example above shows, trace-based code generators must worry about joins into
the middle of the sequence of operations, whereas basic-block code generators
don’t. '

Fortunately, copy propagation and dead-code removal eliminate useless as-
signments from a program [Aho 77]. The only assignments left in a program
after these optimizations are those that really must be implemented as a copy to
a new location. As an example of these optimizations, the basic block

X:=y
Z:=x+1
a:=xX*2

would be transformed by copy propagation into

x:=y
z:=y+1
a:=y*2

and then the assignment x:=y would get deleted by dead-code removal:

z:=y+l
a:=y*2

160 Chapter 7: Code Generation

Conditional Jumps

Basic-block code generators are guaranteed that a block contains at most one
conditional jump and that it will be at the end of the block. But a trace may
have several conditional jumps occuring anywhere in the trace; such jumps require
further constraints on the evaluation order of DAG nodes.

Consider this fragment of a flow graph:

I
G} x:l=a+b)
@] IF o ——=>(4] ci=x+1)
Gl £ !

Assume that the current trace includes operations 1-3 and that x is dead on
entry to 3. If 1 is evaluated before 2 in the generated schedule, then the register
holding the value of x must remain allocated to x until after the conditional jump
is evaluated, because the value of x is live on the off-trace edge of the jump, read
by operation 4. After the jump executes, though, the register can be reused.

So in some sense the jump “reads” the value of x because x is off-live at
the jump (live on the off-trace edge). By adding an operand edge from 2 to 1 in
the DAG, we could guarantee that the register holding x will remain allocated
to x until after the jump is executed. But such an edge would be too restrictive
because there is no reason why 1 couldn’t be scheduled after 2:

|

(2] IFe |——=(1] x:=a+tb)
I I

[1] =x:=a+b | (4] ci=x+1)
I

[(3] y:=2¢z |

(The bookkeeper would place the copy 1’ on the off-trace edge after code gen-
eration.) If an operand edge were placed from 2 to 1, this possibility would be
disallowed, since the code generator would then be forced by topological ordering
to schedule 2 after 1.

Instead of an operand edge, another edge type is used. An off-live edge is
placed from every conditional jump to each operation producing a value that is
live on the off-trace edge of the jump. Off-live edges are ignored for the purposes
of topological ordering during scheduling; their only use is to inform the code
generator when registers holding the values of off-live variables may be reused.

Chapter 7: Code Generation 161

Another complication of conditional jumps is illustrated below:

|
] xi=a+b)
] IFe)»—>(4] e:=x+1)
(3] x:=c+d D) |

Assume the trace includes operations 1-3; because 4 reads x, x is off-live at the
conditional jump. Operation 3 must not be scheduled before 2, since its execution
before the jump would cause 4 to read the wrong value of x. So a write-after-
conditional-read constraining edge must be added from 3 to 2 that will ensure
that 2 is evaluated first; in effect, the jump “reads” the off-live value of x.

Write-after-conditional-read edges are like write-after-read edges, except
that the writing node must be evaluated strictly after the conditional jump; if it
were evaluated in the same cycle, the off-live variable would still get the wrong
value. As with write-after-read edges, variable renaming will eliminate superfi-
cial write-after-conditional-read conflicts by renaming disparate uses of variable
names.

Vector References and the Disambiguator

Vector operations include the vector address as one of their operands. For exam-
ple, v[i] :=x would be represented in the DAG as:

DEF VBASE(v)

In addition to the normal operand edges, constraining edges must be added
to force undisambiguated pairs of vector references to be evaluated in source
order. For example:

1. x:=v[i]
2. vljl:=y

If the disambiguator reports that v[i] could possibly refer to the same location
as v[j], the DAG-builder will add a vector-conflict edge from operation 2 to

162 Chapter 7: Code Generation

operation 1 that will constrain 2 to be evaluated after 1:

DEF VBASE(v)

(If 2 were evaluated before 1, x could get the wrong value if j happened to equal
i.) However, if the disambiguator reports that v[i] and v[j] refer to different
locations, then they can be evaluated in any relative order, and no constraining
edge is needed.

When building a node for a vector reference, the DAG-builder looks at each
previous reference on the trace to the same vector such that one of the references
is a vector store. (That is, if the current reference is a store, it looks at previous
stores and loads; if the current reference is a load, it looks only at previous stores.)
For each such pair of vector references, the DAG-builder asks the disambiguator
if they could be to the same location; if the disambiguator answers maybe or yes,
it adds a vector-conflict edge from the current reference to the previous one.

You might guess that if the answer is yes, the two references are to the same
location, then the disambiguator might be able to eliminate one of the references.
For example, given the following trace:

|
@i V[li]1=x D)
2} y:|=v[i])

the code generator would ask the disambiguator about references 1 and 2, and
the disambiguator would answer yes. So the code generator would be tempted
to transform the second reference:

|
@l _vlil=x)
@l yI==x)

But this would not always be correct—there might be a join from off the trace

Chapter 7: Code Generation 163

between 1 and 2:

QT vlil:=x)
= @Bl __vlil:=z)
@L__y=x)

|

In this case, y would not get the correct value when control flows from operations
3 to 2.

But common-subexpression elimination at the intermediate-code level elim-
inates these situations before code generation begins. The current compiler only
does it within basic blocks, though it wouldn’t be hard to do it globally [Aho 77).
So the code generator can treat yes and maybe answers from the disambiguator
identically without affecting the quality of code generated.

A vector as well as a scalar can be off-live at a jump:

|
@l vlil:=)
@] IIF e »r—] z:=vik])
AT |

Because an element of v is read by 4, 3 cannot be allowed to move above the
jump, since j and k might be equal and 3 could give v [k] the wrong value. So for
these purposes, the vector v is considered live on the off-trace edge of the jump,
and an off-live edge is added from the node for 3 to the node for 2 in the DAG.

To determine which vectors are off-live at a jump, the live analysis treats
vectors as one large aggregate. Any load or store to the vector, for the purposes
of live analysis, is considered to “read” the vector. Stores aren’t added to the
“kill” sets of the live-analysis algorithm, because in general it is impossible to
tell exactly which vector references are killed by a vector store. By treating all
vector references as “reads,” the live algorithm will produce live sets that include
all vectors that could possibly be live at a jump.

This approach to off-live vectors is extremely conservative (but simple to
implement). Take the example above: It might be “easy” to prove that the store
into v[j] by 3 couldn’t possibly reference the same location as the reference to
v[k] by 4, and therefore that 3 should be allowed to move above the jump. But
a more sophisticated approach which attempts to determine exactly which vector
references are off-live at a jump probably isn’t worth it. Looking at the programs
in the benchmark library, there doesn’t seem to be any time-critical loops where
the current conservative approach degrades performance; that is, there are no
instances where a vector reference prohibited from moving above a jump causes
a degradation in performance.

164 Chapter 7: Code Generation

Summary of Edges and Nodes

At this point, let’s summarize the types of nodes and edges created by the DAG-
builder.

The DAG-builder uses four types of nodes: DEF nodes, operation nodes,
COPY nodes, and USE nodes. (Two other types, DEF1 and USE1 are created by
later phases of the code generator.)

A DEF node represents the initial value of a variable that is live on entry
to the trace. It also represents the value of a constant used on the trace.
If the trace gives initial locations for a live-on-entry variable, they will
be recorded in the corresponding DEF node.

An operation node represents intermediate-code operations of the trace.
‘A COPY node represents an assignment operation of the form x:=y.

A USE node represents the final value of a variable that is live on exit
from the trace. If the trace gives final required locations for a live-on-
exit variable, they will be recorded in the corresponding USE node.

The previous sections described many different kinds of edges, but the im-
plementation has only three kinds: operand edges, off-live edges, and constraint
edges.

An operand edge goes from some operation reading variable x as an
operand to the operation or DEF node producing the value of x being
read.

An off-live edge goes from a conditional jump that has variable x live on
its off-trace edge to the operation or DEF node that produces that value
of x. Off-live edges help the code generator determine when registers
holding off-live variable values can be reused for other purposes.

A constraint edge with associated delay d from node A to node B con-
strains A to be scheduled no earlier than d cycles after B (not quite
true, but I'll explain later). Write-after-read edges are constraint edges
with d = 0. Write-after-write, write-after-conditional-read, and vector-
conflict edges are constraint edges with d = 1.

Constants Again

Constants are handled differently from variables—why? Some constants are im-
mediate, capable of being generated from thin air by constant generators (such
as the immediate field of an instruction), and others are stored in memory. A
constant in a register can be discarded if there is a shortage of registers, since it
can always be reloaded later on, while a variable must be spilled to memory. For
these reasons, constants are excluded from live-variable analysis and don’t show
up in the trace’s live-variable sets or in the DEF and USE pseudo-ops.

Chapter 7: Code Generation 165

As described in a previous section, loading constants afresh each trace, either
by constant generators or by reading memory, is not always the best thing to do,
since constant generators may be a scarce resource and memory references are
expensive. For example, in an inner loop it is often faster to keep a heavily
“used constant in a register than it is to load the constant at the beginning of
every iteration. It would be nice if such constants were treated like variables and
considered to be live for segments larger than an individual trace. On the other
hand, one doesn’t want to clog up the registers with constants referenced only a
few times on the trace that could easily be produced by constant generators.

An intermediate-code transformation extends the lifetime of certain loaded
constants past single traces. The machine model defines, via a predicate function,
exactly which constants get transformed into variable references. Every use of
such a constant is replaced by a new temporary variable; immediately preceding
the use the temporary is assigned the constant. For example:

x:=a+3.0
gets transformed into:

temp:=3.0
x:=a+temp

Loop-invariant motion moves the constant assignments out of loops, and com-
mon-subexpression elimination and copy propagation then identify all the tem-
poraries that get assigned the same value. As an example of the net effect, this
code:

FOR i:=1 T0O n
v[i]:=3.0
wl[i]:=3.0

would get transformed into:
temp:=3.0

FOR i:=1 TO n
v[i] :=temp
w[i] :=temp

Without the transformation, the constant 3.0 would have been loaded from mem-
ory once every time through the loop; with the transformation, the constant is
loaded into the variable temp before the loop starts, and temp is kept in a register
for the duration of the loop.

Is the transformation worth it? Keeping a non-immediate constant in a
register instead of reading it from memory each time will eliminate a memory
reference at the expense of a register dedicated to the constant for the entire loop.
But for inner loops, the time saved by eliminating an extra memory reference is
often insignificant. These loops are usually unwound 16 or more times, and a
constant used in all 16 unrollings is loaded just once at the top of the unwound
loop; that memory fetch can often be fitted into a “hole” in the schedule where

166 Chapter 7: Code Generation

the memory units are otherwise idle. In a few casual experiments with the bench-
mark programs and model described in chapter 8, transforming non-immediate
constants speeded some programs up just a few percent. Transforming immediate
constants also had little effect (the model has one immediate constant generator
for each integer ALU).

Actually, the current code generator has a lot more options for handling
constants, none of which appear to make much difference in performance. It can
treat constants much like variables, propagating their register locations across
trace boundaries using DEFs and USEs, loading them on demand if they aren’t
to be found in a register; the disadvantage of this is that registers tend to get
filled with constants, since one constant can be live across a large segment of
the program. If a future code generator adopts this strategy, it will have to be
very careful when it comes time to kick a constant out of a register because of
a shortage of registers; the code generator should prefer to keep non-immediates
over immediates, and it should try to discard constants that can be regenerated
later without making the schedule longer.

The current scheme of transforming expensive constants into loop-invariant
variables is simpler, with more manageable heuristics; given that the preliminary
evidence indicates that little is to be gained by even the current transformation
method, fancier methods don’t seem worth it.

Variable Renaming and Write-after-read Edges

In a previous section I claimed that the lifetimes of a variable’s values cannot
overlap. That is, if x takes on the values zy, z9, r3, ... during execution, x cannot
be assigned both z; and z; at the same time, for any 7 # j. To implement this
restriction, the DAG builder adds write-after-read and write-after-conditional-
read edges.

But how could a variable possibly be assigned two different values at once?
By keeping the different values in different registers. For example, consider this
fragment:

1. x:=a+b /* register 4 */
2. y:=x+1
3. x:=c+d /* register 5 */
4. z:=x+1

The value produced by operation 1 could be kept in register 4, and the value
produced by operation 3 could be kept in register 5. The code generator would
have to ensure that operation 2 reads the x in register 4 and operation 3 reads

Chapter 7: Code Generation 167

the x in register 5. In effect, the code generator would be renaming the different
uses of x at code-generation time:

1. x1:=a+b
2. y:=xi+1
3. x2:=c+d
4. z:=x2+1

Assuming this could be done correctly all the time, what advantage is there in
doing renaming like this at the trace and register level? Variable renaming at the
intermediate-code level catches most, but not, all of the opportunities to increase
parallelism. For example, in this source loop:
log:=0
FOR i:=1 TO n
some expensive operations
IF el THEN EXITLOOP
log:=v[i]
IF e2 THEN EXITLOOP
log:=v[i+1]
x:=log+1

the two different assignments to log can’t be renamed since they both reach the

use of log after the loop. As a consequence, a trace of the loop body would look
like:

some expensive operations

G el >—>--
G Teg:=hl D)
G TF ez D)—> -
a t::=i+1 D)
Gl loiFv[t] D

Since log is off-live at each of the jumps, there will be write-after-conditional-
read DAG edges from 2 to 1, from 5 to 3, and from 5 to 1. If the initial part of
the loop body is expensive to evaluate, the code generator might well be able to
produce a shorter schedule by moving 2 and 5 above the IFs, overlapping them
with the earlier computations. But the write-after-conditional-read edges force 2
and 5 to be evaluated after the IFs, resulting in less parallelism.

However, if the code generator could do a little register-level renaming, the
vector loads of 2 and 5 could be moved above the IFs. For example, the code
generator could put the first load into register rl and the second in register r2,
reporting the location of log on the off-trace branch of operation 3 as register r1
and the location at the end of the trace as register r2.

168 Chapter 7: Code Generation

Unfortunately, such renaming doesn’t always work, because sometimes at
trace exits the code generator is forced to report locations for two different values
of the same variable. For example, consider this fragment of a flow graph:

|
A] x:=atb)

@ yi=xvt)

3] x:l=c+d D)

(4] IFe J)—=6] z:=xt1)
Gl z:;=x+2) I

Suppose the trace consisted of operations 1-5, and that in the absence of write-
after-read edges the code generator produced a schedule that looked like:

[1]x(r1):=a+b]
|3|x(r21):=c+d|
AL e Gl ymwi D)
l2[y:=xl(r1)+1| (6] z:|=x+1 D)
[5|z:-xl(r2)+2l

The value of x produced by operation 1 is put in register r1, and the value
produced by operation 3 is put in register r2 (each use of x is annotated with
its register). Because operation 2 moved below the IF, the bookkeeper placed a
copy 2’ on the off-trace edge.

- The code generator is now faced with a dilemma: Which register does it
report for the location of x at the off-trace edge of 4? If it reports r1, then
operation 6 will get the wrong value; if it reports r2, then 2’ will get the wrong
value.

The root cause of this problem is that the DEF-USE mechanism reports vari-
able locations by name only; it has no way of associating different locations of
a variable with different uses. One could probably think up solutions to this
problem, such as reporting location by reaching uses (sets of operations in the
flow graph reading a variable) instead of by live-variable name.

But is such complication worth it? I think not. Variable renaming at the
intermediate-code level catches almost all of the potential renaming possibilities.
I've examined all of our benchmark programs, and there was only one with a

Chapter 7: Code Generation 169

loop like that above with variables that couldn’t be renamed to eliminate write-
after-read conflict, and that loop wasn’t time critical. It was easily rewritten to
allow the renaming and avoid the conflict. For example:
log:=0
FOR i:=1 TO n _
some expensive operations

IF ... THEN EXITLOOP
log:=v[i]
IF ... THEN EXITLOOP
log:=v[i+1]

x:=log+l

could be rewritten as:

log2:=0
FOR i:=1 TO n
some ezrpensive operations

IF ... THEN
log:=log2
EXITLOOP

logl:=v[i]

IF ... THEN
log:=logl
EXITLOOP

log2:=v[i+1]

x:=log+1

Now the two vector loads can float freely above the IFs and be overlapped with
the computation the top of the loop.

It wouldn’t be hard to expand intermediate-code variable renaming to iden-
tify these situations and transform the code automatically.

Some Definitions
Before proceeding further, here are some basic definitions:

Delay(fu). The number of cycles needed to execute an operation on
functional unit fu. Integer ALUs typically have a delay of 1, floating
multipliers a delay or 3 or 4.

Distance(mel,me2). If both mel and me2 are machine elements (func-
tional units, register banks, or constant generators), the result is the
number of cycles needed to move a value from the output of mel to the
input of me2; this is equivalent to the number of register banks on the
shortest path between the output of mel and the input of me2.

If both mel and me2 are sets of machine elements, the result is the
minimum distance between some element of mel and some element of
me2:

min Distance(t,7)

i€mel
JEmMe2

170 Chapter 7: Code Generation

If either mel or me?2 is the empty set, the result is 0. If one is a single
machine element but the other is a set, the former is assumed to be a
singleton set.

FeasibleLocations(node). If node represents an intermediate-code oper-
ation, this returns the set of functional units that implement the op-
eration of node. When looking for a functional unit to implement an
intermediate-code operation, the code generator need only consider the
units in this set.

If node is a DEF node, the result is the set of initial register bank locations
currently assigned to the node.

Height and Depth

Simple ordering heuristics often improve results of the non-optimal DAG-manip-
ulation algorithms used by compilers. This code generator uses the height and
depth of nodes to place nodes in order of importance.

In an abstract DAG the height of a node is the length of the longest path
from the node to an exit of the DAG, and the depth is the length of the longest
path from an entrance to the node. In the context of expression DAGs, height
and depth become more useful by weighting the path lengths with the execution
times of the associated operations. The depth of a node is the earliest time that
it could be executed, and the height is the minimum time needed to execute the
node and the rest of the DAG dependent on the node.

Height and depth are recursively defined in terms of a node’s operands and
readers:

Depth(n) = oé%aacl) Depth(o) + Delay(o)

Height(n) = rgha(zrcl) Hetght(r) + Delay(n)

where O(n) is the set of operands of n and R(n) is the set of nodes reading n, that
is, the nodes having n as an operand. The delay of an operation o is defined here
to be the delay of the functional unit that executes the operator fastest. These
definitions only account for operand edges; the actual definitions also look at the
constraining edges (a node can’t execute until all of its constraining predecessors
have executed).

The critical path length of an abstract DAG is the longest path through
the DAG, equivalent to the maximum depth or the maximum height. In this
context, the critical path length [/ is the maximum height over all the nodes; any
machine-code schedule for the DAG must take at least [cycles.

Chapter 7: Code Generation 171

Functional-unit Assignment

After the DAG has been built from the trace, the next phase of the code gener-
ator assigns functional units to operations and initial locations to live-on-entry
variables. The goal, of course, is to produce the shortest possible schedule for the
trace. In pursuit of this goal, the code generator tries to get the fullest utilization
of all the functional units while minimizing the costly movement of data between
units.

To get a feel for the problem, let’s look at a simple example. Here is an
expression and its corresponding DAG:

x:=(v[i+1]1(1) * (a1+b1)) + (v[i+2](2) * (a2+b2))
DEF ai]| [DEF bi] DEF 1| DEF 1| [DEF 2| [DEF a2| [DEF b2]
+£ | +f |
[1(2) |
*f |

+f |

e

[USE x |

The vector references must be done in specific banks, notated (1) and (2).
Integer operations are marked with i and floating operations with £.

Suppose that we have a very simple machine model consisting of two clus-
ters connected by a narrow-bandwidth bus; each cluster has a memory bank,
an integer ALU, a floating adder, and a floating multiplier, all connected to a
multiported register bank. Each operation takes one cycle.

Because the vector references are tied to particular banks, they determine
where the other operations should be executed in an optimal schedule. The
operands of a vector reference should be computed in the same cluster as the
reference, and the result of the reference should be used in the same cluster. An

172 Chapter 7: Code Generation

optimal schedule assigns the left half of the DAG to the first cluster and the right
half to the second cluster, which would result in this schedule:

Cycle Cluster 1 Cluster 2
1 t1 =1 +i 1 t2 ;=31 +1i 2
ul := al +f bl u2 := a2 +f b2
2 vl = v[t1] (1) v2 := v[t2](2)
3 wl := ul *f vi1 w2 = u2 *f v2
4 copy w2 to cluster 1
5 x1 := wl +f w2 ~

Notice that even though the critical path length of the DAG is 4, the optimal
schedule takes 5 cycles, because at some point a value must be copied between
clusters. Also, each cluster’s register bank starts out with a copy of the input
variables i and VBASE(v); if they were in only one bank, an extra cycle would be
needed to copy them to the other bank.

It’s easy for us humans to eyeball the DAG and come up with a good as-
signment of functional units to operations, but what about an algorithm?

One thought is to find clusters of nearby operations in the DAG (operations
closely connected by operand edges) and assign them to functional units close to
each other in the hardware. The assignment algorithm has to notice particular
operations tied to particular functional units, such as vector references to specific
banks. Since these operations could be in the middle of a DAG, a simple one-pass
algorithm, either top-down or bottom-up, wouldn’t work very well.

The assignment algorithm also has to notice the initial and final locations of
variables if they were specified on the trace, avoiding excessive data movements of
variables to functional units. If some input variable starts out in a given register
bank (as specified in a DEF), it makes sense to try to assign operations reading
that variable to nearby functional units. Similarly, if a variable must end up in a
given register bank (as specified in a USE), it makes sense to assign the operation
producing the variable’s value to a nearby functional unit.

The example above shows that a simple one-pass algorithm, either top-down
or bottom-up, couldn’t do this clustering very well. A top-down algorithm would
miss the fact that the index calculations should be computed near the corre-
sponding memory banks; a bottom-up algorithm wouldn’t know to compute the
multiplies in banks near the corresponding references. A top-down algorithm
wouldn’t notice USEs until it was too late, while a bottom-up algorithm wouldn’t
notice DEFs.

The clustering algorithm must keep track of how busy functional units are.
If a functional unit is very busy, it sometimes pays off to move the operands of
some operations to a distant cluster of functional units that’s idle, compute over
there for a while, and then move the results back.

Chapter 7: Code Generation 173

Bottom-up Greedy

The assignment algorithm used by the code-generator is called bottom-up greedy
(BUG), after the top-down greedy register allocation paradigm [Barrett 79]. Both
algorithms start at the roots of the DAG and recurse towards the leaves, but
because academics draw their DAGs upside down with the roots at the top, they
call their algorithm “top-down.”

BUG makes a major simplifying assumption: Functional units are the only
limiting resource in the machine, and conflicts due to scarce register-bank ports
or buses are ignored. Is this a reasonable assumption? Probably, since in a well-
balanced architecture the bandwidth of the register banks and buses matches that
of the memories and other functional units. That is, if the code generator decides
to use a functional unit in some cycle, there will be a high probability that there
will be enough register ports to service the unit. If there weren’t enough ports,
then the machine is improperly designed: The functional units are underutilized,
and removing one would improve the price/ performance ratio.

This is all intuitive speculation, though. The final test of whether the as-
sumption is correct is the overall performance of the code generator. I'll report
on that later, of course, but suffice it to say that I'm pleased with the results.

BUG recursively propagates from the roots of the DAG to the leaves esti-
mates of where each operation can best be computed. When it reaches the leaves,
BUG works it way back to the roots, making final assignments of functional units
to operations along the way. To make a final assignment to a node, BUG esti-
mates the cycle in which the functional unit can compute the operation, and
both the functional unit and the cycle get recorded in the node (notated node.fu
and node.cycle). BUG also keeps a table that shows for each cycle the functional
units still available during that cycle; when an assignment is made, BUG updates
the table to mark the functional unit as unavailable during that cycle. BUG uses
this table to decide which functional unit could earliest compute an operation.

The core of BUG is the recursive procedure Assign:

proc Assign(node,destinations)
if node is a leaf or node is already assigned a functional unit
then
return

for each operand of node do ‘
estimated-fus, estimated-cycles := LikelyFUs(node,destinations)
Assign (operand estimated-fus)

estimated-fus, estimated-cycles := LikelyFUs(node,destinations)
node.fu := first(estimated-fus)

node.cycle := first(estimated-cycles)

available?|fu,cycle] := false

Assign takes two arguments, node and the set destinations, a set of functional
units that are likely places where the value produced by node might be used.

174 Chapter 7: Code Generation

First, Assign recursively calls itself to make assignments to each of the operands of
node. Then, based on where the operands are assigned, it picks a good functional
unit and estimated cycle for node, marks the functional unit unavailable during
that cycle, and returns. The measure of goodness of a functional unit is how
early the operands can be moved to the unit, the operation computed, and the
result moved to one of the units in destinations.

Before recursively assigning each operand, Assign recomputes a best-guess
set estimated-fus of functional units that could likely be assigned to node; this
best-guess is used as the set of likely destinations for the operand in the recursive
call to Assign. As each operand is assigned, the recomputed estimated-fus gets
more and more accurate. After all the operands have been assigned, a final best-
guess set is computed, and one of the functional units from it is chosen arbitrarily
as the unit to be assigned to node.

Clustering information is passed up through the DAG via these best-guess
sets (the destinations parameter of Assign). The actual assignments pass clus-
tering information back down. For example, consider what happens at a vector
reference tied to a particular memory bank:

[4 1 B 1
[(C: ()]
Because node C must be executed in the second bank, the initial best guess for
C will consist only of that bank. That bank will be passed as the destinations
parameter to the recursive Assign calls for A and B, biasing the selection of
functional units for A and B towards ones near the bank.

The procedure LikelyFUs is called by Assign to compute the best-guess set
of good functional units for node based on the feasible functional units for node
and the existing assignments to the operands of node. LikelyFUs returns two cor-
responding lists, estimated-fus = fuy, fug,... and estimated-cycles = ¢y, e¢s,...,
where fu; is a good functional unit for node and ¢; is the earliest cycle such that
fu; could be scheduled to compute the operation of node.

I’ll present LikelyFUs from the bottom-up. But first, let’s introduce another
definition:

AvailableCycle(node). Returns the cycle when the value of node is pro-
duced and stored in a register bank (the last cycle of the operation);
the value can’t be read by other nodes until the succeeding cycle at the
earliest. For leaf nodes, the result is 0. For operations, the result is

Chapter 7: Code Generation 175

defined only if node is already assigned a functional unit; the result is
node.cycle + Delay(node.fu) — 1.

The procedure StartCycle returns an estimate of the earliest cycle that the
functional unit fu could be used to compute the value of node:

proc StartCycle(node,fu)
if any operands of node are assigned functional units then
¢ := max, over each assigned operand of node, of
AwvailableCycle(operand) + Distance(operand.fu, fu)
return the smallest ¢ > ¢ such that available?[fu,c1] is true
else
¢ := max, over each operand of node, of
Depth(operand) + Distance(Feasible Locations (operand), fu)
return ¢

StartCycle considers two cases: Some of the operands are already assigned func-
tional units, and none are assigned units.

Suppose some of the operands of node are already assigned. For these op-
erands, the estimated cycle in which they will be executed has already been
computed and stored in their .cycle slots. The earliest possible arrival time of an
operand at the inputs of fu is the cycle when the value is computed plus the time
needed to move the value to fu. The maximum arrival time (over all assigned
operands) is the first possible cycle fu could be scheduled; starting with that
cycle, the result is the first in which fu is available.

In the other case, none of node’s operands are assigned. The arrival time
of an operand is the depth (as described above) plus the minimum distance
to fu from the set of feasible functional units for the operand. Since none of
the operands have been assigned, this call to StartCycle is only a very rough
estimate, so the per-cycle availability of the functional unit is ignored; the result
is the maximum arrival time over all the operands.

The procedure CompletionCycle returns an estimate of when the operation
of node could be computed on functional unit fu and its value moved to the
nearest functional unit in the set destinations:

proc CompletionCycle(node,fu,destinations)
return StartCycle(node, fu)+ Delay(fu) — 1+ Distance(fu, destinations)

The completion cycle is computed by estimating the cycle in which node could
be executed on fu, adding the execution time of fu, and then adding the time to
move the result from the output of fu to the nearest unit in destinations.

176 Chapter 7: Code Generation

Finally, here is the definition of LikelyFUs:

proc LikelyFUs(node,destinations)
e := min, over each fu in Feastble Locations(node), of
CompletionCycle(node,fu,destinations)
return estimated-fus, estimated-cycles where
estimated-fus is the list fu;, fus,... and
estimated-cycles is the list ¢y, ¢9,.. ., such that
— fu; € Feastble Locations (node),
— ¢; = StartCycle(node, fu;), and
- e = CompletionCycle(node, fu;, destinations).

Remember that LikelyF Us returns a best-guess list of functional units that would
be good choices on which to execute node and move its value to one of the units
in the set destinations. Also returned is a corresponding list of cycles when
the functional units could be scheduled. The implementation examines each
functional unit capable of executing node, calling CompletionCycle to determine
the earliest the functional unit could execute node and the result moved to one
of destinations. The functional units with the minimum completion cycles are
returned. :

Here’s some speculation: The definition of StartCycle only considers oper-
ands already assigned functional units, if any are assigned; if none are assigned,
it doesn’t consider functional-unit availability. My intent was to be conservative
when not all of the operands have been assigned yet, returning a large set of
likely functional units that will be used as the potential operand destinations in
the recursive calls to Assign. Though the current definition of BUG appears to
be doing a decent job, perhaps StartCycle could be improved slightly:

proc StartCycle(node,fu)
:= max, over each operand of node, of ArrivalCycle(operand,fu)
return the smallest c1 > ¢ such that avaslable?fu,c1]

proc ArrivalCycle(operand,fu)
if operand is assigned a functional unit then
return AvailableCycle(operand) + Distance(operand.fu, fu)
else
return Depth(operand)+ Distance(Feasible Locations (operand), fu)

The main differences in this version are that all the operands are always used to
estimate the starting cycle and that the availability of fu is checked even if none
of the operands are assigned. This version seems more intuitive, but intuition in
such matters is often wrong—experimentation must be the final arbiter.

Chapter 7: Code Generation 177

Priorities
The top level of BUG looks like:

for each node that is a root do
Assign(node,0)

The top-level call to Assign assigns functional units to node and all of its pre-
decessors that aren’t already assigned. The empty set passed as the destinations
parameter signifies that no particular destinations are desired for node. (The
distance between the empty set and any functional unit or set of units is always
zero.)

In what order should the root nodes be processed? For that matter, what
order should the operands of a node be processed? Intuitively, nodes along the
critical paths of the DAG should receive highest priority, since they are the
primary bottleneck in the computation. If an operation on a critical path is
delayed a few cycles waiting for a busy hardware resource, the length of the
entire schedule for the DAG increases. But it doesn’t matter as much if an
operation not on the critical path is delayed a little, since by definition the value
of that operation isn’t needed right away; these non-critical operations can fit
into the “holes” in the schedule between the critical operations.

The depth of a node indicates how critical it is compared to others. As
defined above, the depth of a root node is the length of the longest path from
a DAG entrance to the node. The larger the depth, the more time-critical the
node and its predecessors. So the top level of BUG processes roots in decreasing
depth order, calling Assign on the roots of critical paths first.

Similarly, the operands of a node are processed by Assign in decreasing depth
order. Given two operands A and B of anode C such that Depth(A) > Depth(B),
A is more time-critical. Any delay in the computation of A and its predecessors
will most likely delay the computation of C, whereas the computation of B and
its predecessors could probably be delayed a little while still delivering its value
to C by the time A completes.

At this point, the reaction of most computer scientists is, “Yes, but have
you tried other ordering heuristics?” No, I haven’t. Long experience with DAG
algorithms in compilers and other scheduling applications shows that the partic-
ular heuristic matters very little, as long as some reasonable heuristic is used.
Height and depth are no worse than others examined and are sometimes slightly
better [Fisher 79, Ruttenberg 85, Touzeau 84, Hennessy 83]. Finding the bounds
and average performance of heuristics in simplistic DAG algorithms is a favorite
game of theorists. But in a practical compiler, the differences in heuristics are
mostly irrelevant—improvements made to other parts of the compiler can result
in much larger gains.

178 Chapter 7: Code Generation

Other Node Types

So far I've only discussed handling operation nodes. But BUG must handle DEF,
COPY, and USE nodes as well. The procedure Assign actually looks like:

proc Assign(node,destinations)
case node.type of

Def: AssignDef (node,destinations)
Operation: AssignOperation(node,destinations)
Copy: AssignCopy(node,destinations)

Use: AssignUse(node,destinations)

We’ve already discussed assignment of operations.
USE nodes represent variables that are live on exit from the DAG. AssignUse
is defined as:

proc AssignUse(node,destinations)
operand := the one operand of node
Assign(operand,node.final-locations)

Any final register locations specified on the trace for the variable represented by
the USE are stored in the node’s .final-locations slot. They are passed on as the
destinations parameter for the recursive assignment of the operand of the USE.
This will bias the assignment towards functional units nearby the final locations.
If no final locations were specified, node.final-locations is the empty set, and the
variable value will end up wherever the operand leaves it.

COPY nodes represent intermediate-code assignments, for example x:=y. As-
signCopy is defined as:

proc AssignCopy(node,destinations)
operand := the one operand of node
Assign(operand,destinations)

That is, the destinations for the COPY are passed on to the destinations of the
operand of the COPY. The actual assignment itself can be implemented anywhere
in the machine as a register transfer, so its location doesn’t really matter.

DEF nodes represent the initial locations of the trace’s input variables and
immediate constants. If initial locations for a variable are specified on a trace,
BUG doesn’t have to worry about picking locations; but the given initial locations
should influence BUG’s selection of functional units for operations that read the
variable. If no initial locations are specified, however, BUG is responsible for
picking one or more based on the functional units assigned to operations reading
the variable. This decision is distributed between the main phase of BUG (the
calls to Asstgn that pick functional units for operations) and a second phase that
handles just DEF and USE nodes.

Chapter 7: Code Generation 179

The procedure AssignDef is defined simply as:

proc AssignDef (node,destinations)
return

That is, when Assign reaches a DEF node, it does absolutely nothing. All the
work is done elsewhere.

First, let’s consider the simpler case when a DEF node has initial register
locations specified on the trace. BUG only has to make sure that these initial
locations influence the assignments to operations reading the DEF. For example,
if variable i has an initial location in some register bank, BUG should try to
find an integer ALU near that register bank for the operation j:=i+1. This bi-
asing is already handled by the definition of LikelyFUs. To obtain a good guess
about where to place an operation, LikelyFUs (via StartCycle) calls FeasibleLo-
cations(operand) to determine where each operand is likely to be placed. Since
Feasible Locations returns the set of initial locations for a DEF node, LikelyFUs
will be influenced to seek functional units near the initial locations of an operand
DEF.

The harder case is when a DEF node has no specified initial locations—BUG
must choose some locations for the variable or immediate constant represented by
the node. But how many locations should be chosen? A naive approach might be
to add a new location whenever convenient. For example, consider this fragment:

The naive approach would reason there should be two copies of i, one for each
register bank servicing an integer ALU; that way, the two additions could be
performed in parallel.

But there is a cost to introducing multiple locations for a DEF. Some later
trace that joins to the top of the current trace will have to copy the variable into
all its multiple locations, and that copying is not free. In the above example,
suppose that BUG decided i should live in both register 2, bank 1, and register
5, bank 2. After generating code for this trace, the code generator would leave a
USE pseudo-op at the entrance recording the locations of i and other variables.
Some later trace will pick up that USE as its last operation, and that trace will
have to copy i into both locations. So maybe one cycle was saved on the current
trace by allowing the two additions to be done in parallel, but a cycle might have
been added on a later trace to do the copying of i.

Sometimes this deferred copying pays off, and sometimes not. It all depends
on whether the deferred copying can be overlapped with already-existing opera-
tions of later traces. If it can, then making up multiple locations is a win; if it
can’t then there is a net benefit only if the cost of deferred copying is cheaper

180 Chapter 7: Code Generation

than the extra cycles that would otherwise result by allowing only one initial lo-
cation. Judging the net benefit is extremely difficult, since the code generator has
no information about the contents of later traces (which might well be affected
by what’s generated for the current trace).

Suppose there is a trace consisting of the body of an inner loop and that
there is some induction variable i that is read many times and then incremented
at the bottom of the loop:

C DEF i)
 IF :i‘.>10 ..
C x:=\:r[i])
C 3= D
C i:-;i+1)
C USE i)

I

If there are many uses of i, it might be tempting to choose multiple locations
for it, one close to each functional unit that reads its value. But because i is
incremented after all the uses, only one location for i would be alive at the end
of the trace. So after code has been generated for the trace, the flow graph would
look like:

USE i ly,ls,...,1n)

(__DEF i lny;)

A later trace will traverse the loop back edge, consisting solely of the DEF and
the USE. To satisfy the USE for i, the code generator would have to copy i from
the location /4 to all the locations ly,1s,...,1,, which could take several cycles.

Chapter 7: Code Generation 181

The copying couldn’t be overlapped with other operations since there are none
on the back edge. The resulting flow graph would look like:

copy code |] 1 |

For tight inner loops with several induction variables, the copying on the back
edge could increase the running time of the loop considerably.

On the other hand, suppose there was some loop invariant k referenced
several places in the loop. Choosing multiple locations for k is almost always
a clear win. Because k is live on entrance and live on exit from the loop-body
trace, any initial locations chosen for k will be live on exit from the trace as well.
The DEF and USE locations on the back edge will match up, so there won’t be
any copying of k on the back edge. The USE left at the entrance to the loop’s
machine code will cause code to be generated in a later trace that copies k into
all the locations needed by the loop body. Assuming the loop is executed many
times, this copying in the loop header is usually worthwhile, especially since it .
can probably be overlapped with other code in the loop header.

This loop example suggests a simple heuristic for BUG: When choosing loca-
tions for a DEF, allow multiple locations only if the variable isn’t a loop induction
variable (any variable whose value is computed on one iteration of a loop but is
used on later iterations). Of course, when generating code for a trace the code
generator is free to copy an induction variable from its initial DEF location to
anywhere in the machine, but that copying will be done only if BUG determines
that it is worthwhile, that is, if the increased parallelism of the operations reading
the variable outweighs the cost of copying. BUG is pretty good about making

182 Chapter 7: Code Generation

such decisions. In the above example:

C DEF i)
(C IFi>to ——s--.
C x:={r[i] D
C j:=:i+3)
C i:=-;i+1)
C USE i)

i would be restricted to a single initial location. If the many uses of i were time-
consuming and could be done in parallel, BUG would decide that there would be
a net gain from copying i to where it was needed. (BUG accounts for the cost
of copying on the trace via the calls to Distance made by StartCycle.)

The current version of BUG uses an even simpler heuristic, though: Multiple
locations are allowed for a DEF only if the variable isn’t assigned on the trace;
whether or not the variable is an induction variable doesn’t matter. Almost
all time-critical traces result from inner loops, and almost all the live-on-entry
variables assigned on those traces are induction variables. Based on the experi-
ments and examination of the code produced, this heuristic appears to be quite
adequate.

BUG handles DEFs with no specified initial locations differently according to
whether or not they are allowed multiple locations.

The Assign phase of BUG does nothing with DEFs allowed multiple locations.
It implicitly assumes that the DEF will not affect the choice of functional units,
that is, no matter which functional units are chosen for operations reading the
DEF, a good set of initial locations can be found later. (The result of Feasible-
Locations for such a node is the empty set, and the distance from the empty set
to any functional unit is zero.) After the Assign phase has assigned functional
units to operations, a later phase (described below) then picks the actual loca-
tions for multiple-location DEFs. For example, suppose that i is allowed multiple
locations:

Because FeasibleLocations(A) returns the empty set, Assign could well place B
on one integer ALU and C on another. Assuming that the two ALUs are serviced

Chapter 7: Code Generation 183

by different banks, the later phase would pick two initial locations for the DEF,
one for each bank.

For DEFs allowed only a single location, Assign must do some more work.
To see why, assume in the example above that the DEF was restricted to a single
location and that node B is assigned a functional unit by Assign before C. Because
B is assigned first, it is presumably more time-critical than C, so the location
chosen for the DEF should be close to B’s functional unit. We’d like to choose a
location for the DEF immediately after choosing B’s unit, so that later on when
C is assigned, BUG can make its choice for C based on the location of the DEF
(which was based on the location of B).

Towards this end, Assign is a little more complicated than presented previ-
ously:

proc Assign(node,destinations)
case node.type of

Def: AsstgnDef (node,destinations)
Operation: AssignOperation(node,destinations)
Copy: AssignCopy(node,destinations)

Use: AssignUse(node,destinations)

for each operand of node do
if operand is a Def with no initial locations and it must have a
single location
then :
ReassignDef (operand ,node)

After assigning a functional unit to node, the operands are examined. If a DEF
operand has no initial locations yet but must have a single location, ReassignDef
is called to pick a location. ReasstgnDef finds a register bank with free registers
that is closest to the functional unit assigned to node and assigns it to the initial
locations of operand. Subsequent calls to FeastbleLocations for that DEF will
return the chosen register bank, thus influencing the functional unit selection of
other operations reading the DEF.

BUG, Phase II

After Assign chooses functional units for all of the operations in the DAG, a
second, smaller phase of BUG attacks the DEF and USE nodes. This second phase
has two purposes: to choose locations for those DEF nodes that don’t yet have
any, and to prepare the DEF and USE nodes for list scheduling.

DEF nodes that still don’t have initial locations are of two types:

Nodes for variables that didn’t have locations specified by the trace and
that are allowed to have multiple register locations.

Nodes for immediate constants. One or more constant generators should
be chosen for these nodes.

For each variable DEF node, BUG picks a set of register banks for the DEF by
examining the operations that read the value of the DEF. For each such operation,

184 Chapter 7: Code Generation

BUG picks a register bank with free registers that is closest to the operation’s
assigned functional unit. If there is a choice, BUG prefers a register bank already
picked for the DEF for some other operation; if there is still a choice after that,
BUG prefers a register bank with the fewest assigned registers, in an attempt
to even the load on the register banks. Finally, if a USE with specified locations
reads the value of the DEF, those locations are merged with the locations picked
for the operations. By including the final locations in the set of initial locations,
no copying will have to be done on this trace to satisfy the USE. The final set of
locations is assigned to the .initial-locations slot of the DEF.

~ For each immediate-constant DEF node, BUG picks a set of constant gener-
ators for initial locations using a similar method. The operation and USE nodes
reading the DEF are examined, and a constant-generator closest to each is picked;
if there is a choice, a constant-generator already picked for another reader is
preferred.

To make life simpler, the list scheduler assumes that every node represents
one location for one value. If a variable in the DAG has several locations, there
should be a separate node for each location. To help meet this requirement, a
final pass of BUG splices new nodes next to the DEF and USE nodes.

First, each USE node that has specified final locations gets new USE1 nodes
spliced between the USE and the operand of the USE. There is a separate USE1 for
each final location. For example:

[x:=y+z]

|USE x r5.2, r2.4|

gets transformed into:

(The notation r5.2 indicates register 5 in bank 2.)
Next, each DEF node gets new DEF1 nodes spliced between the DEF and its
readers, one DEF1 node per initial location. Each reader of the DEF gets attached

Chapter 7: Code Generation 185

to the particular DEF1 containing the location closest to the reader’s functional
unit or register bank. For example:

DEF x r2.1, r4.4, ri1.5

Assume the vector reference and the multiplication are closest to bank 5 and the
addition is closest to bank 4. These nodes would then be transformed to:

[DEF x r2.1, r4.4, r1.5]

x 4.4 DEF1 x r1.1

USE1 x r5.2

DEF1

Notice that one of final locations of x (bank 2) doesn’t have a corresponding
initial location in the DEF, so BUG picks the closest initial location (in this case,
bank 1). During list scheduling, a register transfer will be needed to move x into
that final position.

Finally, a USE1 is spliced between each USE that has no specified final loca-
tions and its single operand. For example:

X:=y+z

USE x

i

gets transformed into:

X:=y+2z

USE x

444

186 Chapter 7: Code Generation

Sometimes a USE has a DEF1 operand, as in the following example:

[CDEF1 x r3.4] [DEF1 x r5.3]
[use x]

(The USE gets randomly attached to one of DEF1s when they are spliced in.) This
situation occurs only if the variable x isn’t assigned anywhere on the trace. We’d
like to keep all the locations of x alive until the exit from the trace, not just one
location, so in this special case USE1s get spliced between the USE and all the

DEF1s:

[DEF{ x r3.4] [DEF1 x r5 3

USEL x USEL x

Time Complexity of Bug
To derive upper bounds on the time used by BUG, let:

n be the number of nodes in the DAG.

f be the maximum number of feasible functional units for any one op-
eration; f is constant for any machine model.

Note that the number of operands of an operation is bounded by a small constant
(typically 3).

Chapter 7: Code Generation 187

I'll derive the time bounds from the bottom-up. First consider the procedure
StartCycle:

proc StartCycle(node,fu)

1. if any operands of node are assigned functional units then
2. ¢ := max, over each assigned operand of node, of
AvailableCycle(operand) + Distance(operand.fu, fu)
3. . return the smallest c1 > ¢ such that avaslable?[fu,c1] is true
4. else
5. ¢ := max, over each operand of node, of
Depth(operand) + Distance(FeasibleLocations(operand), fu)
6. return c

If the condition tested on line 1 is true, the only non-constant cost is from line 3,
finding the first cycle a functional unit is available. Currently, this is implemented
as linear search, which in the worst case could take O(s) where s is the size of
the schedule. '

However, Ruttenberg ingeniously uses the union-find algorithm instead of
linear search, essentially reducing the worst-case time to be a constant [Rutten-
berg 85]. Every functional unit has its own union-find universe. Each set in the
universe is a maximal range of cycles ¢: such that the functional unit is unavail-
able in cycles 7 through j — 1 and is available in cycle 5. Find(c) returns the
set 4: j containing ¢; by definition, 7 is the first cycle at or after ¢ in which the
functional unit is free, so Find(c) can replace the linear search at line 3. Then to
mark the functional unit unavailable at cycle 7, the set containing j+1: k is found
by calling Find(j+1), and the two sets ¢: j and j + 1: k are merged (unioned) into
a single set 7: k; that is, the functional unit is now unavailable from cycles ¢ to
k—1 but is available in cycle k. Initially, the universe is initialized to the singleton
sets 4:4 for every cycle ¢ in the schedule; that is, the functional unit is available
in every cycle and unavailable nowhere. '

Thus the worst-case cost of line 3 can be reduced to almost-constant time.
BUG doesn’t use union-find however, because in practice only a small number of
cycles past ¢l need be examined to find one in which the functional unit is free.
The not-insignificant overhead of union-find might make linear search the better
choice on average.

Getting back to our analysis, if lines 5-6 are executed, the time used is the
cost of finding the minimum distance between a single functional unit and a set
of feasible functional units, which can be no larger than f. So the time cost is
O(f) times the number of operands (bounded by a constant).

Thus the time cost of StartCycle is O(f). :

CompletionCycle invokes StartCycle and then computes the distance from
the functional unit to the destinations set passed to Assign. The size of destina-
tions can be no larger than the set of feasible functional units, so the time for
CompletionCycle is O(f). In practice, the size of the destinations parameter is

188 Chapter 7: Code Generation

much smaller than f because of the restrictions imposed by vector references tied
to particular banks.

LikelyFUs invokes CompletionCycle on each feasible functional unit for a
node’s operation, so it takes time O(f 2).,

Assign invokes LikelyFUs for each operand and then once more, so it also
takes time O(f?).

Finally, Asstgn is called on each node of the DAG, so the total time of BUG
is O(n f2). Since f is constant for any machine mode, the time of BUG is linear
in the size of the DAG.

The Complete Algorithm for Assign

For easy reference, here is the complete algorithm for the assignment phase of
BUG:

for each node that is a root do
Assign(node,B)

proc Assignénode,destinations)
case node.type of
Def: AssignDef (node,destinations)
Operation: AssignOperation(node,destinations)
Copy: AssignCopy(node,destinations)
Use: AssignUse(node,destinations)
for each operand of node do
if operand is a Def with no initial locations and it must have a
single location
then
ReassignDef (operand,node)

proc AssignDef (node,destinations)
return

proc AssignCopy(node,destinations)
operand := the one operand of node
Assign(operand,destinations)

proc AssignUse(node,destinations)
operand := the one operand of node
Assign(operand,node.final-locations)

Chapter 7: Code Generation 189

proc AssignOperation(node,destinations)

if node is a leaf or node is already assigned a functional unit
then
return

for each operand of node do

estimated-fus, estimated-cycles := LikelyFUs(node,destinations)
Assign(operand,estimated-fus)

estimated-fus, estimated-cycles := LikelyF Us(node,destinations)
node.fu := first(esttmated-fus)

node.cycle := first(estimated-cycles)

available?[fu,cycle] := false

proc LikelyFUs(node,destinations)
e := min, over each fu in FeasibleLocations(node), of
CompletionCycle(node,fu,destinations)
return estimated-fus, estimated-cycles where
estimated-fus is the list fuy, fug,... and
estimated-cycles is the list ¢, ¢9, ..., such that
~ fu; € FeastbleLocations(node),
~ ¢; = StartCycle(node, fu;), and
— e = CompletionCycle(node, fu;, destinations).

proc CompletionCycle(node,fu,destinations)
return StartCycle(node, fu) + Delay(fu) — 1+ Distance(fu, destinations)

proc StartCycle(node,fu)
if any operands of node are assigned functional units then
¢ := max, over each assigned operand of node, of
AvailableCycle(operand) + Distance(operand.fu, fu)
return the smallest ¢1 > ¢ such that available?fu,c1] is true
else

¢ := max, over each operand of node, of

Depth(operand) + Distance(Feasible Locations (operand), fu)
return ¢

List Scheduling Overview

Once functional units have been assigned to operations of the DAG, the list-
scheduling phase emits actual machine code by enumerating the nodes in a topo-
logical order and filling in the schedule of machine instructions. The instructions
are formed in order: first cycle 0, then cycle 1, then cycle 2, etc. To form the
next instruction, the list scheduler considers all nodes that are data ready, that
is, nodes all of whose predecessors have already been scheduled. It fills the in-
struction with as many of the data-ready operations as possible using first-fit;
when no more can be squeezed into the current instruction, it is emitted and a
new instruction started.

190 Chapter 7: Code Generation

During list scheduling the code generator is often faced with a choice of
several nodes. For example, at each step in list scheduling there are many data-
ready nodes, only some of which will fit into the current instruction. In such
cases, the code generator orders the nodes by height (maximum distance to an
exit of the DAG), on the assumption that the nodes of greatest height are the
most time-critical and should take priority.

The destination register bank and register for a value produced by an op-
eration are chosen on the fly when scheduling the operation. The list scheduler
looks for an available register bank on the shortest path between the functional
unit producing the value and the functional units that will be using the value.

Data movements between distant register banks are also scheduled on the
fly during list scheduling. As soon as a value-producing operation is scheduled,
the list scheduler looks at all the operations reading the value. If any are more
than one register bank away, the list scheduler inserts COPY nodes into the DAG
between the producing node and the distant reading nodes that will move the
value to the distant functional units. These COPY nodes will be scheduled just
like normal operations, getting the values to the reading functional units as early
as free hardware resources will allow.

Top Level
The top-level of list scheduling looks like:

Initialize(data-ready-queue)
current-cycle := 0

for each Defl node do
Schedule(node)

while data-ready-queue is not empty do
node := DeleteFirst(data-ready-queue)
current-cycle := node.earliest-cycle
Schedule(node)

To manage the set of data-ready nodes efficiently, the list scheduler keeps them in
a priority queue. Nodes in the queue are ordered according to the earliest cycle
that they could be scheduled; nodes with the same earliest cycle are ordered
according to DAG height.

The queue is initialized to contain all the successors of DEF1 nodes in the
DAG. The main scheduling loop repeatedly removes a node from the queue and
attempts to place it in the current machine instruction by calling Schedule. If the
node can’t fit in the current machine instruction, Schedule increments the node’s
.earliest-cycle slot and requeues it. If the node does fit, Schedule adds all the
successors of the node that are now data ready to the queue. The .earliest-cycle
of a newly added data-ready node is computed based on when the value of each of
the operands is available and when any constraining predecessors were scheduled.

Chapter 7: Code Generation 191

All the nodes in the DAG will eventually be added to the queue and then
scheduled later; when the queue is empty, all the nodes have been scheduled.

The global variable current-cycle contains the current cycle being scheduled;
because nodes are ordered in the queue by earliest cycle, its value increases mono-
tonically. A vector of resource sets keeps track of which resources are used in each
cycle; an operation can be scheduled in the current cycle only if the resources it
needs are available. When an operation is scheduled, the resources it uses are
marked unavailable during the appropriate cycles (remember that a resource re-
quest can extend over several cycles). Another vector indexed by cycle contains
the machine instructions of the schedule.

Nodes

To aid in list scheduling, nodes have the following slots:

.predecessors-left is the number of unscheduled predecessors of the node.
When a node’s .predecessors-left count reaches 0, it is data ready, and
it is added to the data-ready queue to be scheduled.

.earliest-cycle is the earliest cycle that the node could be scheduled. It
is set when the node is added to the data-ready queue and is computed
based on when the operands are available and when the constraining
predecessors were scheduled.

.cycle is the cycle the node was actually scheduled.

.register-bank and .register give the register location of the value of this
node after it has been scheduled.

.register-cycle is the first cycle that the node’s value can be read from
its register location. This is usually node.cycle + Delay(node.fu).

.read-cycle is the most recent cycle that the value of the node was read
from its register location (or from the constant generator, if the node
is a DEF1 for an immediate constant). In any cycle, once a register is
read out onto a port of the register bank, one or more machine elements
connected to that port can read its value that cycle. This slot tells the
code generator whether the value of the node is already being read by
another operation in the current cycle; if it is, the code generator doesn’t
need to schedule the resources needed to read the register. Similarly, a
constant generator can generate the same constant for many different
machine elements in the same cycle.

.readers-left is the number of unscheduled nodes reading the value of this
node. When this count reaches O, the register containing this node’s
value can be freed for other uses. The count includes the number of

192 Chapter 7: Code Generation

conditional jumps for which this value is live on the off-trace edge. For
example, in this trace:

|
A== O

@] a:=xx2)
I

€] IF e)——> xis live here
|

the .readers-left count of the node representing operation 1 starts out at
2. This guarantees that the register holding x will not be reused until
after both operations 2 and 3 have been scheduled. If the conditional
jump weren’t included in the count, then the register containing x might
be reused (and x’s value lost) before operation 3 is scheduled; operations
on the off-trace edge of the jump reading x wouldn’t get the correct
value.

If a USE1 is a reader of a node, that node’s register will never be freed
for other uses, since a USE1 is never scheduled. That is, the register will
remain alive until the end of the schedule (exactly what we want).

Scheduling an Operation Node

The procedure Schedule takes the following steps trying to schedule an operation
node:

1. The resources needed for the functional unit assigned to the
operation are scheduled.

2. The resources needed to read the operands are scheduled.

3. A good destination register bank is found and the resources
needed to write it are scheduled.

If any of steps 1-3 fail because the necessary resources aren’t
available in the current cycle, Schedule undoes any resources
that were successfully scheduled for this node, sets the .earliest-
cycle of the node to be current-cycle + 1, requeues the node in
the data-ready queue, and returns.

4. The operands are marked as having been read this cycle.

5. The registers of operands for which this node is the last sched-
uled reader are freed.

6. A destination register is allocated from the chosen register
bank and assigned to the node; copy nodes are inserted if nec-
essary.

Chapter 7: Code Generation 193

7. Any successors of the node that are now data ready are added
to the data-ready queue.

8. The machine operation for this node is added to the current
instruction.

Step-by-step details:

2. The resources needed to read the operands are scheduled.

Each operand is examined. If the operand’s .read-cycle is the current cycle, that
means the operand, in a register bank or a constant generator, already appears on
the output port of the bank or generator because some other operation scheduled
in this cycle is already reading that operand; no new resources are needed by the
current operation to read the operand. Otherwise, the resources needed to read
a value from the register bank or to use the constant generator are scheduled.
Finally, whether or not .read-cycle equals the current cycle, the resources needed
to move a value from the output of the operand’s bank or generator to the input
of this node’s functional unit are scheduled (these resources are specified in the
point-to-point connection table of the machine model).

3. A good destination register bank is found and the resources
needed to write it are scheduled.

A functional unit may have several register banks connected to its output, and
one must be chosen. Because those banks may have their outputs connected to
different sets of machine elements, it pays to pick a bank that is closest to the
inputs of the functional units that will be reading the value of this node, thereby
reducing the need to move the value later on.

Let destination-me be the machine element location of the successor node of
maximum height that reads the current node. If the maximum height reader is
an operation, the location is the assigned functional unit; if the reader is a USE1
with a specified final register bank, the location is that bank. To find a good
destination register bank, Schedule considers all banks that

— are connected to the output of the functional unit;
— are on the shortest path from the functional unit to destination-me;
- have a free register;

— can be written in this cycle (that is, the resources needed to write
the register bank and the point-to-point resources needed to move the
value from the functional unit to the register bank are available in the
current cycle);

Of these, Schedule then finds one with the minimum number of register-bank
reading conflicts (reading conflicts are described later) and schedules the required
resources.

194 Chapter 7: Code Generation

4. The operands are marked as having been read this cycle.

The .read-cycle of each operand is set to the current cycle. Any later operations
being scheduled this cycle that also read the operand will then know that the
resources needed to read the operand have already been scheduled.

5. The registers of operands for which this node is the last sched-
uled reader are freed.

The .readers-left count of each operand and each off-live predecessor is decre-
mented. If a node’s count reaches 0, that node’s register is freed for other uses.
The details of register allocation and deallocation are described later.

6. A destination register is allocated from the chosen register
bank and assigned to the node; copy nodes are inserted if nec-
essary between the node and its successors.

More on this later.

7. Any successors of the node that are now data ready are added
to the data-ready queue.

The .predecessors-left count of each of the successor nodes (including constrain-
ing-edge successors) is decremented. If the count reaches 0, the successor is now
data-ready; its .earliest-cycle is computed as described later, and it is added to
the data-ready queue for scheduling.

Data Movements and Copy Nodes

For several reasons, the register bank chosen to hold a node’s value may not be
directly readable by some of the successor nodes reading the value.

The most common situation is that the inputs of a successor operation’s
functional unit may not be directly connected to the register bank. For example,
consider these nodes:

Suppose that the node for i was just scheduled and its value assigned to a register
in bank 2. Further, the memory unit assigned to the left vector reference is
directly connected to bank 2, while the unit assigned to the right reference isn’t.
Somehow the list scheduler must copy the value of i to some bank connected to
the right reference’s memory unit.

Chapter 7: Code Generation 195

Immediately after i’s node is scheduled and assigned a register bank, the
list scheduler notices that the right reference can’t read the value of i from bank
2, so it splices a COPY node into the DAG:

el copY

[vlil:=y]

When it gets scheduled, this COPY node will copy the value of i from bank 2 to
a bank nearer the memory unit. The COPY node receives a height-based priority
in the data-ready queue just like any other node; a time-critical COPY will be
scheduled early, and a not-so-critical COPY will be delayed in favor of more critical
nodes.

Another reason that a value stored in a register bank may not be directly
readable by a successor is that there are not enough output ports on the register
bank. For example:

Suppose that the functional unit assigned to a:=b+c is connected to register banks
1 and 2, and that each bank has only one output port. As it stands, the addition
can’t execute because both its operands are in the same bank. This situation
is called register-bank reading conflict and occurs whenever the number of
bank output ports required by an operation exceeds the number of ports on the
bank.

When choosing a destination register for a node, Schedule looks for banks
with the least number of reading conflicts with its successor nodes, but it isn’t
always possible to avoid conflict. So when a destination register is assigned to
a node, Schedule looks at its successors to see if any now have reading conflict.
If so, Schedule splices a COPY node into the DAG that will copy the value into a
non-conflicting bank.

For example, suppose that in the DAG above c:=y+z was scheduled after
b:=w+x. When Schedule picks bank 2 for c:=y+z, it notices that a:=b+c now has

196 Chapter 7: Code Generation

reading conflict, since it can’t read both its operands from bank 2. So a COPY
node is spliced in:

[c(x7.2) :=y+z]

When the COPY gets scheduled it will copy the value of ¢ into bank 1, at which
point the addition will be schedulable.

The final situation where the list scheduler needs to splice in COPY nodes
occurs at USE1ls with specified final locations. Consider this example:

[DEF1 x r2.3]
[USE1 x r1.2]]

The initial location for x may have been specified on the beginning of the trace,
or BUG may have chosen that location because a time-critical operation needed
x as an operand in bank 3. In any case, the list scheduler must splice a COPY node
between the two nodes so that x ends up in its required location. This situation
also arises with operations:

x(r2.3) :=a+b]
l USE1 x r1.2 l

Note that if the two locations of x were in the same bank but in different registers,
a COPY would still be needed.

The general strategy for splicing COPY nodes is as follows: Immediately after
choosing a register for a node, Schedule finds all the successors that need a COPY
node spliced in for one of the reasons described above. It then groups these
successors such that each successor in a group has the same first register bank
on the shortest path from the node to the location of successor. A COPY node is
spliced between the node and each group. Grouping the nodes according to the
first hop on the shortest path minimizes the amount of copying needed. Schedule
then computes the height of the COPY nodes and the earliest cycle they could be
scheduled and inserts them into the data-ready queue.

Chapter 7: Code Generation 197

As an example of the grouping, consider this DAG:

x(rl.4) :=y*z

- USE1 x r2.3]

Suppose that only node 3 could read x directly from bank 4, that the first register
bank on the shortest path from bank 4 to the functional units of nodes 2 and 4
is bank 2, and that the first register bank on the shortest path from bank 4 to
bank 3 is bank 3 itself. The DAG would look then look like:

x(ri.4) :=y*z

- USE1 x r2.3]

A COPY node moves a value only one register bank closer to its eventual destina-
tion. If after a COPY has been scheduled its value is still not directly readable by
some of its successors, the process is repeated: One or more new COPYs are spliced
between the original COPY and the successors and are added to the data-ready
queue for scheduling. This continues until all of the successors have access to a
copy of the value that they can read directly.

Scheduling a Copy Node

Scheduling a COPY node is very similar to scheduling an operation, except that
the “operation” of a COPY node is simply a register transfer. The steps are:

1. The resources needed to read the operand from its register
bank or constant generator are scheduled.

2. A good destination register bank is found and the resources
needed to move the operand to the bank and write the register
are scheduled.

If steps 1 or 2 fail because the necessary resources aren’t avail-
able in the current cycle, Schedule undoes any resources that
were successfully scheduled for this node, sets the .earliest-
cycle of the node to be current — cycle + 1, requeues the node
in the data-ready queue, and returns.

3. A destination register is allocated from the destination bank.
If the desired destination register is occupied by some other
node, special action must be taken (described below).

198 Chapter 7: Code Generation

4. The operand is marked as having been read this cycle.

5. If this node is the last scheduled reader of the operand, the
operand’s register is freed.

6. The destination register is assigned to the node and copy nodes
are inserted if necessary.

7. Any successors of the node that are now data ready are added
to the data-ready queue.

8. The machine operation for this node is added to the current
instruction.

I'll only discuss the steps that are different from scheduling an operation:

2. A good destination register bank is found and the resources
needed to move the operand to the bank and write the register
are scheduled.

The same procedure used to pick a bank for operation nodes is used here. But
instead of considering banks connected to the operation’s functional unit, Sched-
ule consider’s banks connected to the register bank or constant generator of the
operand.

3. A destination register is allocated from the destination bank.
If the desired destination register is occupied by some other
node, special action must be taken (described below).

A special case arises when the maximum-height reader of the COPY is a USE1 with
a specified final location in the register bank selected for the COPY. For example:

[[xG2. 2 =]
E[___COPY |
I:l USEL x r4.3 |

If bank 3 is directly connected to the output of bank 2, then bank 3 will be
chosen as the destination bank of the COPY. Normally, any free register in the
destination bank is as good as any other, but in this case it makes sense to copy
only into the register specified for the USE1 (register 4 in the example). The
register allocator recognizes this special case and will try to allocate the specific
destination register of the USE1.

Chapter 7: Code Generation 199

But what if the register is occupied by the value of some other node? For
example:

[[[zG2.9 =y=]

2 cory 7 [B] k=it1] [8] L=i-1]
|:|USE1xr4.3|

The COPY can’t be scheduled until all the successors of node 4 are scheduled; at
that point, register 4 in bank 3 will then be unused. If node 4 isn’t a descendent
of the COPY, then the list scheduler just adds constraining edges from the COPY to
all the unscheduled successors of 4. The list scheduler won’t attempt to schedule
the COPY again until all the successors of 4 have been scheduled.

However, adding in the constraining edges won’t work if some of the succes-
sors of 4 are descendents of the COPY. For example, if the COPY were an operand
of node 5:

(]x(x2.2):=y*z]
G cop (4] 1(x4.3):=j+3
- USE1 x r4.3] I:‘ L:=i-1]

then adding a constraining edge from the COPY to the successor would create a
circularity in the DAG—5 couldn’t be scheduled until 2 was, and 2 couldn’t be
scheduled until 5 was.

The solution is to copy the value of node 4 from its current register to some
other register, thus freeing up register 4, bank 3 for use by the COPY. To do this,
the list scheduler splices a new COPY between 4 and its successors:

(=G5 ES DI

Bl__c
I:l USE1 x r4.3] Li=i-1

In addition, a constraining edge is added from node 2 to the new COPY 7, so
that the list scheduler won’t attempt to schedule 2 again until the new COPY has
moved the value of 4 out of the way.

200 Chapter 7: Code Generation

Scheduling Defl Nodes

If you recall from the description of list scheduling’s top level, the data-ready
queue is initialized by scheduling all the DEF1 nodes, which causes their successors
to be added to the data-ready queue. The steps taken to schedule a DEF1 node
are:

1. A register is allocated for the node (if it isn’t an immediate
constant).

2. The register is assigned to the node and copy nodes are inserted
if necessary.

3. Any successors of the node that are now data ready are added
to the data-ready queue.

Details:

1. A register is allocated for the node (if it isn’t an immediate
constant).

If the DEF1 has an initial register location specified on the trace, that register is
allocated. Otherwise, the bottom-up-greedy phase allocated a register bank to
the node but not a register; Schedule just picks any free register in the bank.

2. The register is assigned to the node and copy nodes are inserted
if necessary. :

As for operations and COPY nodes, new COPY nodes are inserted between the DEF1
and all the successors that can’t read the assigned register directly.

3. Any successors of the node that are now data ready are added
to the data-ready queue.

The .predecessors-left count of each successor is decremented, and if it reaches
zero, the successor is added to the queue.

Scheduling Usel Nodes

Schedule does nothing when called on a USE1 node except, for debugging, verify
that the node’s value has indeed ended up in the required location.

Constraining Edges

As discussed previously, constraining edges are added to the DAG to enforce
several types of ordering constraints. Associated with each constraining edge e
is a delay d,; for example, write-after-read edges have d, = 0, and vector-conflict
edges have d; = 1. Ifudged earlier and said that if operation B has a constraining
edge e to operation A, then B can be scheduled no earlier than d. cycles after
A. However, multicycle operations and partial schedules impose an additional

Chapter 7: Code Generation 201

requirement: The last cycle of operation B must also occur at least d, cycles
after the last cycle of operation A.
To see why, consider this trace fragment:

Q] yi=x+£2)
I
@] x:=a+fb)

Because operation 1 reads x and operation 2 writes x, there is a constraining edge
with delay O from 2 to 1. Assume that multiplies take 4 cycles and additions 2
cycles, and that the requirement about last cycles wasn’t being enforced. Then
the following would be a possible schedule:

1] y:=x *f 2

2 *f-2 x:=a +f b
3 *f-3 +£-2

4 *f-4

That is, the addition is started 1 cycle after the multiply. But suppose the trace
scheduler decided to place a join originally above operations 1 and 2 in between
cycles 3 and 4 of the schedule, bisecting the multiply. The trace scheduler would
splice a partial schedule and a copy of operation 2 between the join and the
schedule:

[1]y:=x *f 2|
1
[2] #*£-2 |x:=a +f b |
1
{8] *£-3 | +£f-2 |
(4] »f-4 |

T

But now the copy of operation 2 is executed before the multiply, not after as it
should, giving the multiply the wrong value of x.

That’s the reason for the requirement that the last cycle of a constrained
operation be at least d. cycles after the last cycle of the constraining operation.

202 Chapter 7: Code Generation

Applying the rule to the example, the addition must be scheduled at least 2 cycles
after the start of the multiply:

1| y:=x *f 2

2 *f-2

3 *f-3 x:=a +f b
4 *f-4 +£-2

Now, no matter where the trace scheduler makes a join, the correct partial sched-
ule and operation copies will be generated at the join. For example, if the join
were made between the third and fourth cycles, we’d get the following:

@] x:=a +fb)

(1] y:=x *f 2| i
I

(2] =£f-2 | |
I

[3] #£f-83 [x:=a +f b |
-

[Lly:=x *f 2| |
I

(2] *£-2 | |
I

{3] *£-3 [x:=a +f b

{4] *£f-4 I‘l +£-2 |

The addition properly executes after the multiply.

Rather than constrain the last cycles, a slightly better solution might be
to include the addition in the partial schedule with the multiply, preventing the
trace scheduler from copying the addition above the partial-schedule multiply at
the join. (A similar technique could be used at splits, where the same situation
arises.) It wouldn’t be hard to implement this, since the situation can easily be
identified using the constraining edges. The advantage would be that constrained
operations could be scheduled slightly earlier. But I've examined several inner
loops where this problem occurs, and in none of them did the current strategy
(aligning last cycles) delay a critical-path operation; I would guess that using the
enhanced partial-schedule solution would pay off little, if at all.

Computing the Earliest Cycle

When all of a node’s operands and constraining predecessors have been sched-
uled, Schedule inserts the node into the data-ready queue. The queue is ordered
primarily by the earliest cycles that the nodes could be scheduled, based on when
the operands and constraining predecessors are scheduled.

The .earliest-cycle of a data-ready node is formally defined as:

max(c;, ¢2)

Chapter 7: Code Generation 203

where
= .cycle + Delay(o.
c1 oeén(?zfdc) (o.cycle elay(o.fu))
cg = max _(p.cycle + CD(p, node) + max(0, Delay(p.fu) — Delay(node.fu)))
pEC(node)

O(node) is the set of operands of node,

C(node) is the set of constraining predecessors of node, and

CD(n,m) is the maximum delay (0 or 1) associated with any constrain-
ing edges from nodes n to m.

That is, node can be scheduled only after all the operands have finished execution
and after all the delays specified by the constraining predecessors. The expression

max (0, Delay(p.fu) — Delay(node.fu))

used in the computation of the constraining delays guarantees that the last cycle
of node is scheduled no earlier than the last cycle of predecessor p (as discussed
above).

Dead Code Due to Conditional Jumps

Sometimes dead code is created during scheduling because operations move below
conditional jumps. Consider this sample trace:

G x:=a+b)
I
@] IFe)»>——>xislive
l
x is dead

The variable x is live on the off-trace edge of the jump but dead immediately
after the jump on the trace. Nodes 1 and 2 can be scheduled in any relative
order; the only edge between them is an off-live edge indicating that x is off-live
at 2, but this edge doesn’t impose any scheduling constraints. The only purpose
of the edge is to maintain the .readers-left count of node 1.

Suppose that node 1 is scheduled before 2. When 1 is scheduled, its .readers-
left count is 1, indicating there is 1 unscheduled reader (node 2). Thus the register
holding x remains allocated until node 2 is scheduled; at that point, the .readers-
left count of node 1 is decremented and reaches 0, so X’s register is deallocated,
available for use in the next cycle. '

204 Chapter 7: Code Generation

But now suppose that node 1 is scheduled after node 2:

(2] IfF e [——1| x:=atb)

[L] x:=atb | % is live

x is dead

(After code generation, the trace scheduler will place a copy of 1 on the off-
trace edge of 2.) When node 2 is scheduled, the .readers-left count of node 1 is
decremented from 1 to O (because of the off-live edge from 2 to 1). Then when
node 1 is scheduled, its .readers-left count is already 0, indicating that there are
no unscheduled readers. In other words, the value produced by node 1 is now
dead because 1 has moved below its only reader, the conditional jump. The code
generator doesn’t have to generate an actual machine operation for 1. Note that
the copy 1’ still computes the value of x on the off-trace edge of the jump.

In general, when Schedule gets a node with a zero .readers-left count, it
assumes the value of the node is useless because it moved below a conditional
jump, and it doesn’t schedule a machine operation. Instead, it just adds a no-op
to the schedule (the interface to the trace scheduler requires that every source
operation have a representative machine operation in the schedule).

Allocating Registers

Because the schedule of machine instructions is formed in sequence, the list sched-
uler doesn’t need a temporal data structure telling which registers are available
during which cycles. It only needs to know whether or not a register is free in
the current cycle being formed. Associated with each register is the cycle ¢ when
that register will next be free for use; if ¢ < current-cycle then the register can
be allocated for an operation in the current cycle. When an register is allocated
to a node, c is set to infinity.

When can a register be reused? Roughly, a register holding a node’s value
must remain allocated to that node until all the node’s readers have completed
execution. More precisely, a node’s register can be reused in the cycle defined by

max(cy, c2)
where
¢1 = max LastCycle(s
! s€R(node) yele(s)
¢o = max LastCycle(s) +1
2 sEOL(nodc)(y ())

node.cycle + Delay(node.fu) — 1, for operation nodes;

LastCycle(node) = { node.cycle « for COPY nodes.

Chapter 7: Code Generation 205

R(node) is the set of readers of node, and

OL(node) is the set of those conditional jumps for which the value of
node is live on the off-trace edge (the conditional jumps which “off-live
read” the value of node).

That is, a node’s register cannot be reused until the last cycle of each successor
that reads the register and until the succeeding cycle after each off-live successor.

To understand this requirement, suppose an operation takes one cycle and
that it is the last scheduled use of one of its operands. Because a write into
a register takes effect at the end of the cycle, the operand’s register can be
reused (written into by some other operation) in the same cycle as the operation.
If instead the operation takes two or more cycles, you might think that the
operand’s register could still be reused in the operation’s first cycle (as opposed
to its last cycle), since its value will be latched by the functional unit’s inputs.
But consider this section of a trace:

l

C xi=y xf 2)
1

C i=j+i1)
I

C ji=i+itl)
I

and the corresponding machine instructions that might be generated under such
a policy:

1] x(x1):=y(r2) *f 2 i(r2) :=j(xr3) +i 1
2 *f-2 j(rd):=i(r2) +i 1
3 *f-3
4 *f-4

The registers assigned to variables are indicated in parentheses; assume the mul-
tiply takes 4 cycles. Notice that register 2, originally holding the variable y, was
reused in the first cycle to hold i. Suppose the trace scheduler decides to place
a join to the trace between cycles 1 and 2; the multiply is bisected by the join,
so the trace scheduler creates a partial schedule between the join and the trace:

[1] x(x1):=y(x2) *f 2 i(r2):=j(x3) +i 1 | |

3=

MM x(x1):=y(r2) *f 2 |
(2] *f-2 [j(xd):=i(x2) +i 1 |
1
3] -3 Il |
(4] *£-4 l Il

—

Because the addition i:=j +i 1 isn’t bisected by the join, it isn’t included in

206 Chapter 7: Code Generation

the partial schedule. Notice that on entry to the partial schedule from the join,
both i and y should be in register 2, an impossibility.

The code generator avoids this situation simply by keeping a register allo-
cated until the last cycle of each of the operations reading it. In the example,
register 2 wouldn’t be available for reuse until cycle 4, so another register would
have been chosen for i.

An analogous situation occurs with destination registers and splits from the
trace. Suppose we had a trace and schedule similar to the above, except that i
is kept in r1 and an IF is also scheduled in the first cycle:

1] x{(rl):=y(x2) *f 2 i(r1):=j(x3) +i 1 IF e
2 *f-2 j(rd) :=i(r1) +i 1

3 *f-3

4 *f-4

Because register 1, the destination register of the multiply, isn’t written until
cycle 4, you might think that register 1 could be also used for i, the result of the
addition, as shown above. But the split from the trace caused by the IF bisects
the multiply, resulting in a partial schedule between the trace and the split:

I
(1] x(r1):=y(x2) *f 2 [i(r1):=j(x3) +i 1 | IF e }——>{2] #*f-2 |
]

121 *f-2 | j(rl4):=i(r1) +i 1| | {3] *:f-s]
(31 *£-3 l : I | 4] -4 |
@ T | | | !

On exit from the partial schedule, both i and x are supposed to be in register 1.
But by allocating the destination register of the multiply at the beginning of the
multiply, this problem is avoided.

In summary, a register is allocated to hold a value starting on the first cycle
of the operation producing that value. The register isn’t deallocated until the
last cycle of all the operations that read the register and until the succeeding
cycle of all the jumps for which the value is live on the off-trace edge.

This strategy makes life easier for the compiler but wastes registers. In
general, 2(d—1) extra registers are needed for a pipeline of d stages. Experiments
with the benchmarks show that the compiler can rarely keep the pipelines full, so
this wastage might not be important. However, if it turns out to be significant,
the code generator could be smarter about what goes into partial schedules,
including more than just bisected operations when necessary. In the last example,
if j(rd4) :=i(r1) +i 1 were included in the partial schedule, then there wouldn’t
be any problem, since then only x would need to be in register 1 at the exit from
the partial schedule. It wouldn’t be hard to implement this smarter strategy, but
it would add hair to an already hairy interface.

Chapter 7: Code Generation 207

Choosing Good Registers

Choosing a good register bank for a node has already been described—BUG
chooses banks for DEF1s, and Schedule chooses banks for operation and COPY
nodes. Once the bank has been chosen, though, Schedule must choose a free
register within the bank.

The procedure AllocateRegister(bank,cycle,node) selects a register in bank
that is free no later than cycle, for use by a DAG node. A trivial implementation
of AllocateRegister would simply look for some register such that its first cycle free
is less than or equal to cycle. While trivial, this strategy results in excess copying
of values between registers. For example, consider a trace of an inner-loop body;
the final locations of the induction variables would probably be different from the
initial locations, and copying on the loop back edge would be needed to move the
variables’ final values into the initial locations at the top of the loop. Experience
with Ruttenberg’s code generator, which only implemented the trivial strategy,
showed that this back edge copying could be expensive (sometimes 10% or more
of total execution time). But some simple heuristics can virtually eliminate that
copying.

The list scheduler keeps a table that gives for each variable name any final
locations specified by USE1s for that variable. When allocating a register from
bank b for a node that assigns x, AllocateRegister consults the table and prefers
any register r such that r.b is a final USE1 location for x. For example:

[x:=y+z]
[USEL x r3.4]

If bank 4 was chosen for the addition, then Allocate Register would chose register
3 if it was free, since register 3, bank 4 would be recorded in the table under x.
Assuming register 3 was available, no extra copying would be needed to satisfy
the USE1. Another example:

| X:=y+z l
| X:=x+2
|USE1 x r3.4|

If bank 4 was chosen for node x:=y+z, AllocateRegister would try to allocate

register 3 for the node, thus keeping x in the same register for both additions.
When looking for a register for variable x, AllocateRegister tries to avoid

registers preferred for other variables. That is, a register preferred for y won’t be

208 Chapter 7: Code Generation

selected for x unless there are no other free registers in the bank. This improves
the chances that a preferred register will be allocated to a variable.

Traces of inner-loop bodies require special attention. For example, if this
was an inner-loop trace:

C DEFli i)

_i=ix2)
i =i+l)
(C USE1i)

we’d like the initial and final location of i to be the same so that the final value
of i wouldn’t need to be copied into its initial location on the loop back edge.
(BUG picks register banks, but not registers, for the initial locations but ignores
the final locations.)

To get DEF1s and USE1s to match, Schedule takes special action after choosing
a register for a DEF1 x. If x is a loop induction variable, Schedule looks for a USE1
x node. (For these purposes, an induction variable is one assigned in the loop
whose value is live on entrance to the top of the loop; an induction variable will
have only one USE1 node.) If the USE1 x has no specified final location, Schedule
sets the location to be the register just chosen for the DEF1 x and records this
new location in the USE1 preference table described above.

For example, consider the inner-loop trace above. When Schedule picks some
register for the DEF1 i, it will simultaneously set the location of USE1 i to be
that same register:

(DEF1 T r3.4)
C ji=ix2)
C i=j+1)

|
(_USE1 i r3.4)

When i:=j+1 gets scheduled, the USE1 preference mechanism causes Allocate Reg-
ister to try to pick register 3, bank 4 as the destination, thus avoiding the need
to move i on the loop back edge. Even if the preferred register isn’t available
(because it’s allocated to some other node), the copying needed to put the final
value of i into its initial loop location will be incorporated on the trace, where
it most likely can be overlapped with other computation.

AllocateRegister uses one more heuristic which is usually redundant with the
previous ones. If the operation being assigned a register has the form x:=x op
¥, X:=y Op X, Or X:= op X, and the required destination bank is the same as the
bank currently holding x, AllocateRegister returns the register holding x. That
is, the assignment to x will be done in place in the register.

Chapter 7: Code Generation 209

At this point you might be worried that heuristics based on variable names
might get confused by different uses of the same variable name. But remember
that variable renaming has given unique names to the different uses of a source
variable.

Together, these simple heuristics eliminate the copying that would otherwise
be needed on loop back edges. They also reduce the copying at other boundaries
between traces. Execution profiles of the benchmarks show that almost all the
time is spent in the inner loops; since the heuristics handle these loops just fine,
attempting to adapt more sophisticated register-allocation algorithms (such as
the graph coloring now in vogue [Chow 84]) could well be a waste of effort.

Spilling Registers

When a compiler runs out of available registers, it must spill some into memory.
The current compiler doesn’t implement spilling—it assumes that the machine
model provides enough registers. If a node can’t be scheduled because there isn’t
a free register in its chosen destination bank, the node is simply requeued for
scheduling in the next cycle; in the meantime, the scheduling of other nodes may
free up registers in the full bank (for example, the operands of such a node may
be in the full bank while the destination is in another).

This delaying strategy will only work well when the number of registers
required for parallel execution of the trace is close to (or less than) the number
supplied by the hardware. If many more registers are needed, then the compiler
must spill to memory. (The current compiler will blow up if delaying doesn’t
free up registers—it will just keep delaying data-ready nodes until it exceeds the
maximum allowed schedule length.)

It wouldn’t be hard to implement spilling in list scheduling, using a method
like that used in the FPS-164 compiler [Touzeau 84]. The code generator looks for
a low-priority node occupying a register in the full bank, and it splices a memory
store and memory load between the node and its unscheduled successors. A
constraining edge is added from the memory load to the node that couldn’t find
a register originally, guaranteeing that the memory load won’t be scheduled until
at least one new node has been allocated a register and scheduled.

The code generator could also look for variables live on entrance and exit
from the trace but that weren’t referenced during the trace. Currently these vari-
ables are assigned register locations to hold their values throughout the trace.
If the code generator runs out of registers, it can simply pick memory locations
for these variables instead, freeing the assigned registers for immediate use. (Of
course, this forces later adjoining traces using the variables to do memory refer-
ences.)

Finally, the code generator can look for constants occupying registers and
simply appropriate the registers. Because a constant can be regenerated on de-
mand, the code generator simply splices the nodes necessary for regeneration in
between the node representing the constant and its unscheduled successors.

210 Chapter 7: Code Generation

Ruttenberg claims that an operation scheduler could perform spilling better
than a list scheduler. When it runs out of registers, the operation scheduler can
look back up into the schedule already generated and schedule the spilling as early
as possible; whereas the list scheduler is always constrained to schedule newly
generated nodes after the current cycle being scheduled. Would the operation
scheduler be better in practice? Who knows—it all depends on how time-critical
are the traces in which spilling occurs, how many non-critical nodes are available
for spilling, etc. My intuition, based on experience with both code generators,
says that the operation scheduler wouldn’t be much better.

But in the context of designing hardware and compiler simultaneously, mi-
nor differences in spilling ability shouldn’t matter one bit in choosing a code-
generation paradigm. If there aren’t enough registers to service the time-critical
inner loops of scientific code, the machine is improperly designed. Most of the
inner loops are memory bound, and spilling will decrease performance drastically
due to the excess inner-loop memory references. Either more registers should be
added to the machine, or else some functional units removed (or their bandwidth
decreased).

Time Complexity of List Scheduling

All of Schedule’s actions take constant time. Though a node may have arbitrarily
many successors, all of the work done on them by Schedule (splicing copies, decre-
menting predecessor counts, etc.) can be charged to the individual successors.
Because the number of operands of a node is bounded by a constant, that work
takes constant time. Splicing a copy between a node and one of its successors
takes O(r) time, where r is the maximum number of register banks connected to
the output of a functional unit.

Inserting and deleting a node from the data-ready queue takes O(logn) time,
where n is the size of the DAG. So the list scheduling time is bounded by:

) Z Q(node)rlogn
node€DAG

where Q(node) is the number of times a node is inserted in the data-ready queue.
A node can be requeued at most O(n) times. For example, suppose a node P
has successors S1, Ss,..., Sy, and that each of the S; requires the same resource.
After P is scheduled, all of the successors S; are inserted in the data-ready queue.
All n successors are considered for the next instruction but only one can be
scheduled; the rest are requeued for the next instruction because of the restricted
resource. The n — 1 requeued nodes are considered for the next instruction, and
only one can be scheduled while the n — 2 others are requeued. This continues
until all the nodes are scheduled, resulting in a total of n(n + 1)/2 insertions.

Chapter 7: Code Generation 211

So the worst-case time for list scheduling is O(n%r logn). Since r, the maxi-
mum number of register banks connected to a functional unit’s output, is constant
for any machine model, the worst-case time is O(n? logn).

The easy way to improve this upper bound is by having a separate data-
ready queue for each functional unit. To form an instruction, the list scheduler
removes the head of each queue and fits it into the instruction; when all the heads
have been removed and placed, the instruction is emitted and a new one started.
Assuming that the only resources required by nodes are functional units, nodes
would never be requeued, and thus list scheduling would take O(nlogn) time. Of
course, if nodes require more than one resource (such as register ports and buses
as well as functional units), then this scheme wouldn’t work as well (though it
would help).

But does the O(n?logn) worst-case time matter? Not with a realistic ma-
chine and realistic source programs.

I measured the number of times each node was inserted and the data-ready
queue sizes for all of the traces of three typical programs on the 8-cluster machine
model. (The programs and the machine model are described in chapter 8.) The
inner loops were unrolled 8, 16, and sometimes 32 times:

Insertions/node DRQ Size

Unrolling 8 16 32 8 16 32
FFT 1.5 1.7 - 30 53 -
TRID4 1.7 1.9 - 62 85 -

SOLVE1 12 13 13 20 29 33

“Insertions/node” is the total number of insertions into the queue divided by the
total number of nodes scheduled. On average, a node is inserted in the data-
ready queue less than two times; that is, Schedule is called on a node less than
two times. Schedule usually does very little work to determine that an operation
doesn’t fit in the current instruction; before doing anything else it checks that
the resources needed to read the operands and schedule the functional unit are
available.

“DRQ Size” is the sum of the queue sizes before each insertion into the queue
divided by the total number of insertions. (Remember that the queue can include
nodes that are first ready to execute in the next several cycles, not just the current
cycle.) In terms of logn, these average sizes are in the realm of small numbers
where constant factors can be more important than the asymptotic behavior. For
example, to insert an item in a heap of size 60 takes 6 probes, and the insertion
is probably much cheaper than the other work done by Schedule.

On casual examination, the other benchmark programs all look similar to
those measured above, at least in terms of traces and the size of individual expres-
sions. I think it’s safe to say that the observed average behavior of list scheduling
is quite linear, O(nr).

212 Chapter 7: Code Generation

Reporting Back to the Trace Scheduler

Once a schedule is generated for a trace, the code generator returns the schedule
to the trace scheduler, which then integrates the machine instructions into the
flow graph. The trace scheduler inserts partial schedules, DEFs and USEs record-
ing live-variable locations, and copies due to code motion between the schedule
and the rest of the flow graph. As described in chapter 4, the code generator
provides several interface procedures to aid the trace scheduler in these tasks—
the trace scheduler cannot access the schedule’s data structures directly. The
implementation of the algorithms and data structures supporting this interface
is non-trivial.

Schedule:length(schedule) simply returns the length of the schedule.

Schedule:[](schedule,cycle) returns the contents of a machine instruction
in the schedule as a list of pairs, each pair of the form <machine-operation,
intermediate-code-operation>, where the intermediate-code operation is the
source operation giving rise to the machine operation. COPY operations (register
transfers) due to intermediate-code assignments have an associated intermediate-
code operation, but COPY operations generated during list scheduling merely
to move operands where they are needed in the machine have no associated
intermediate-code operation. A d-cycle multicycle operation is represented as d
successive machine operations, each associated with the original source operation.

To implement Schedule:[], the list scheduler maintains the schedule as a
vector of lists indexed by cycle, each list containing pairs of the form <machine-
operation, node>. The DAG nodes contain the original intermediate-code oper-
ations as supplied by the trace scheduler.

Schedule:split(schedule,cycle) returns the partial schedule and live-variable
locations at a jump off the schedule at the given cycle. Likewise, Schedule:join(
schedule,cycle) returns the partial schedule and live-variable locations for a join
to the schedule between cycle — 1 and cycle. The live-variable locations at a split
are represented by a DEF pseudo-op, at a join by a USE pseudo-op. The join to
the beginning of the trace and the exit from the end are handled just like other
splits and joins.

Constructing the partial schedule at a split or join isn’t hard. The code gen-
erator scans the schedule backwards and forwards from the given cycle, looking
for operations that span the cycle.

The hardest part of the interface is computing the live-variable locations at
a split or join. The reported locations are not what is live at the given cycle in
the schedule, but rather what is live on exit from the constructed partial schedule

Chapter 7: Code Generation 213

(for splits) or on entrance (for joins). That is, a split with a partial schedule looks
like:

[

schedule { | | partial schedule
. .

B (DEF _...)

and a join looks like:

— (USE ...)
.
schedule [] || partial schedule
]
]
]

The variable locations reported at the DEF and USE points are slightly different
from the locations at the actual split and join to the schedule.

A machine instruction may have many conditional jumps, each jumping to
a different off-trace location:

I
L |

1
[| IF el | IF e2 | IF e3 |

L
[,\vﬂﬁ

@EF;..) @EF:..) @EF:..)

Though the partial schedules at the jump destinations are the same, there may
be different sets of variables live at the destinations. But the interface to the
code generator doesn’t need to distinguish between the different jumps; instead,
it returns a single DEF that is the union of all the variables live at each of the
destinations. It doesn’t matter that some variables will be reported live at a
jump that really aren’t. The trace-scheduler’s incremental live analysis only
looks at the contents of USEs, which are accurate, and it will propagate correct

214 Chapter 7: Code Generation

live variable sets up to the DEFs. When the code generator is given a DEF on
some trace, it uses the live-on-entrance set also supplied with the trace to weed
out variable-location pairs from the DEF that aren’t really live.

To compute the live-variable locations, the code generator uses a live-dead
analysis on the nodes of the DAG. Because a node represents one value in one
location over one contiguous period of time, it’s straightforward to compute a
vector live such that live[t] is the set of nodes whose value is live on entry to
cycle 1. To report the live-variable locations at the beginning of a cycle, the
code generator merely enumerates the nodes in live[t] and examines their variable
name and recorded location. (There may be several nodes with the same variable
name that are live in a cycle; they each represent a different location for the
variable.)

The vector live is computed from two auxiliary vectors, gen and kill. The
vector gen[i] gives the set of nodes whose value first becomes live on entry to
cycle 1, and kill[i] gives the set of nodes whose value first becomes dead at the
end of cycle ¢. The vectors gen and kill are constructed by enumerating the nodes
and computing their gen and kill cycles; a node whose value becomes available
in cycle ¢ is added to gen[i], and a node whose value is last used by its successors
in cycle 5 is added to kill[j]. The vector live is recursively defined in terms of
gen, kill, and itself:

live[7] = (live[s — 1] — kill[s — 1]) U genli]

That is, the nodes live on entry to cycle ¢ are the nodes live on entry to cycle
¢ — 1, minus the nodes that became dead at the end of cycle 7 — 1, plus the nodes
that are newly live in cycle 1.

The sets of nodes are represented using bit vectors. Assuming constant time
bit vector operations, the vectors gen and kill can be constructed from the DAG
in time linear in the number of nodes, and live can be constructed in time linear
in the size of the schedule.

Actually, I’'ve been fudging. To account for the partial schedules, two sepa-
rate live analyses are needed, one for splits and one for joins. At a split, we’re
interested in the variables live on exit from the split’s partial schedule; similarly,
at a join we’re interested in the variables live on entrance to the join’s partial
schedule. Using the general techniques described above, two sets of vectors are
computed: splitGen, splitKill, and splitLive, and joinGen, joinKill, and joinLive.
The vector splitLive is used to report live-variable locations at splits, and join-
Live at joins. The only difference between the sets of vectors is the way the gen
and kill cycles of nodes are computed.

First, let’s consider splits. Because a jump at cycle 1 takes effect at the end
of the cycle after all values have been computed and stored, the interface looks
at splitLive[t + 1], the nodes live on entry to the next cycle, to determine those
live at the split.

Chapter 7: Code Generation 215

To compute splitGen, each node is added to the set splitGen|node.cycle +1}.
That is, a node’s value is live on entry to the cycle immediately after the cycle
the node is scheduled, even if the node is a multicycle operation. To see why,
consider this schedule fragment:

[1]x:=a +f b| IF e +£-2
1

2]__+-2 | |
i

3 +f-3

2 - @D

A conditional jump occurs in the first cycle of a 3-cycle addition. Even though
though the value of x isn’t available after the jump occurs in the first cycle,
it is available on exit from the partial schedule at the DEF, which is the point
we’re interested in. By definition, any multicycle operation bisected by a jump is
guaranteed to finish execution in the split’s partial schedule. So for the purposes
of computing splitGen, we can pretend that every operation takes one cycle.

Similar reasoning applies to splitKill. Each node is added to the set
splitKill{c] where the cycle ¢ is defined to be

max(cy, c2)
where
cL = selrﬁ?zfde) s.cycle
= Oni?zco da)(s.cycle +1)

R(node) is the set of nodes reading node’s value;

OL(node) is the set of conditional jumps for which node is off-live, that
is, the jumps that off-live read node.

The expression for ¢; again pretends that operations take only one cycle; any
multicycle operations bisected by a split are guaranteed to finish execution in the
partial schedule. The expression for ¢3 is a little more subtle; it says that a value
isn’t dead until at least the cycle after a conditional jump for which the value is
off-live. To see why, consider this schedule:

j is live

Suppose that j is read on the off-trace edge of the jump and that no succeeding
operation in the schedule uses its value. Assuming the jump is scheduled in cycle

216 Chapter 7: Code Generation

1, the set splitLive[i + 1] is used to report the live values at the split; so the value
of j must be kept alive up through cycle ¢z + 1.

A similar analysis is used to derive the construction of joinGen and joinKill.
Each node is added to joinGen|LastCycle(node) + 1]. That is, an operation’s
value isn’t live until after the last cycle of the operation. For example:

The join bisects the 2-cycle addition, and the value of x is not live on entry to
the partial schedule (but it would be if the join were made one cycle later).

A value becomes dead no earlier than the last cycle of all its successors; that
is, each node is added to joinKill[c] where the cycle ¢ is defined as:

max LastCycle(s)
s€S(node)

where S(node) is the set of all successors, including jumps for which the node is
off-live.

In the previous example, assuming the addition is the last use of a, a will be
reported live on entry to the join’s partial schedule. If the join were made one
cycle later, a would be reported dead.

There is an obscure complication in computing joinGen and joinKill. Con-
sider this example:

l
(1] I |

I
{2]i:=j +i 1| IF e |——=iislive
T
{31 |

>
[
|

Suppose there are no operations reading the value of i on the schedule and that
i is live on the off-trace edge of the IF. Then i is dead at the join. But unless
special action is taken, i would be reported live at the join, because joinGen|[3]
would contain the node for i:=j +i 1. So in general, a node is not added to
joinGen if its only successor is a conditional jump for which the node is off-live
and the conditional jump is scheduled in the last cycle of node.

Chapter 7: Code Generation 217

List Scheduling Versus Operation Scheduling

How does the list-scheduling code generator compare with Ruttenberg’s operation
scheduler? (In what follows, “list scheduling” refers to all of the code generator
just described, including bottom-up-greedy.)

Operation scheduling does not form the schedule of instructions sequentially
as in list scheduling. Instead it enumerates the nodes in some topological order,
placing each node in the earliest possible cycle of the schedule, based on when and
where its operands were scheduled. The general algorithm is similar to BUG, with
temporal data structures keeping track of the cycles in which functional units,
registers, and data paths are available. Each node has a list of triples:

<first cycle, last cycle, location>

specifying where and when the multiple copies of the node’s value can be found.
To schedule a node, the operation scheduler must consider all these possibili-
ties: the multiple temporal locations of the operands, the different functional
units capable of executing the node’s operation and the cycles they are available,
the multiple ways to move the operands to a candidate functional unit, and the
destination register banks connected to a candidate functional unit. The op-
eration scheduler uses branch-and-bound search to consider all combinations of
these choices, finding the combination that will compute the node’s value earli-
est. If it’s necessary to copy the value of a node to be closer to a functional unit,
the node’s time/location triples are updated to reflect the additional locations
occupied by the value.

You might think that deciding which code generator is better is simply a
matter of running some benchmarks through both. Unfortunately, the operation
scheduler’s machine model is unrealistic, a small subset of the list scheduler’s
model. A machine consists of several clusters, and each cluster consists of several
functional units connected by a complete crossbar and a single, highly ported
register bank (for example, 3-in/6-out); the clusters don’t all contain the same
functional units. The memory banks are not distinguished by memory-bank dis-
ambiguation, that is, any vector reference can be done in any bank. In addition,
only two programs were tested thoroughly on the operation scheduler, SOLVE
(LU decomposition) and FFT (Fast Fourier Transform), with the inner loops
unrolled only 4 times and with only small inputs (a 16 x 16 array for SOLVE, a
512 array for FFT). So the limited machine model and the lack of experiments
makes comparisons of the implementations only marginally useful.

The code generated by the list scheduler ran slightly faster than the code
generated by the operation scheduler:

0S LS OS/LS
FFT 40163 instrs. 36345 instrs. 1.11
SOLVE 19649 17950 1.09

The results shown were the best for each code generator, choosing from all the

218 Chapter 7: Code Generation

various option settings. The operation scheduler’s post-pass, which tries to fold
data movements on top of other code, was used with the operation scheduler.

Examining the object code and the execution profiles (described in chapter
8) shows that both code generators produced about the same length schedules for
the inner loops. But the operation scheduler doesn’t handle induction variables
very well—it doesn’t ensure that induction variables end up in the same location
at the end of an inner-loop trace as at the beginning. Consequently, the operation
scheduler is forced to move the induction variables from their final to initial
positions on the back edge of the loop; this extra copying accounts for the slightly
poorer results of the operation scheduler.

The list scheduler ran about two times faster than the operation scheduler:

0S LS OS/LS
FFT4 144 seconds 63 seconds 2.3
SOLVE4 231 138 1.7

These times don’t include the operation scheduler’s post-pass.
Finally, the list scheduler is somewhat smaller than the operation scheduler:

(0N LS OS/LS

Lines 3956 2957 1.34
Tokens 14489 10631 1.36

(Blank lines and comments weren’t counted.)

Considering the unrealistic machine model used by the operation scheduler,
the small number of benchmarks, and the fact that both code generators were
implemented as research prototypes, these comparisons shouldn’t be taken too
seriously.

The current implementations aside, how do the two algorithms compare?
Because operation scheduling and bottom-up-greedy use similar algorithms, op-
eration scheduling will only perform significantly better than list scheduling if the
simplifying assumption used in list scheduling is invalid. That is, list scheduling
(including BUG) will do as well only if the choice of register banks, bank ports,
and data paths are secondary to the choice of functional units. I've already ar-
gued that if registers and data paths were a primary factor, then the machine is
probably ill-designed.

To get some feel for how good the assumption is, I compared the lengths
of schedules as estimated by BUG against the lengths of the schedules actually
produced by the list scheduler for three programs:

LS cycles/BUG cycles
Unrolling 8 16 32

FFT 1.14 1.17
SOLVE1 1.04 104 1.05
TRID4 1.10 1.14

The ratio “LS cycles/BUG cycles” is the sum of all the actual schedule lengths

Chapter 7: Code Generation 219

divided by the sum of the lengths estimated by BUG. For these benchmarks,
BUG appears to be underestimating the schedule lengths by about 5-15%. This
5-15% is due solely to the fact that BUG doesn’t account for limited data paths
(buses and register ports). Thus, operation scheduling could hope to do at most
5-15% better than list scheduling on these benchmarks by avoiding contention
for the data paths. Because at least some of that contention is unavoidable, op-
eration scheduling most likely couldn’t attain these upper bounds. So it appears
that, based on these few benchmarks, the assumption made by BUG is pretty
reasonable.

The current operation scheduling algorithm doesn’t appear to do as well
as BUG in taking account of the eventual destination of data. Consider this
example:

[y:=x+5]

Z I =yRw

Suppose there were many adders but only a few multipliers in the machine. Be-
cause of the way BUG passes estimates up the DAG, the list scheduler would try
to place both additions near the multiply. But the operation scheduler wouldn’t
take account of the multiply when placing the first addition; it would likely place
the addition somewhere distant from a multiplier, requiring extra data move-
ment. (However, it probably wouldn’t be hard to add BUG-like propagation of
estimates to operation scheduling.)

A more serious failing of the operation scheduler is that registers are not
fully utilized. When a register is assigned to a node newly scheduled in cycle ¢,
the register is reserved for cycles ¢ through infinity—no other node can use the
register after cycle ¢. After all the successors have been scheduled, however, the
reservation on the register is cut back to the actual range of cycles 2: y in which
the register is actually being used. For example, consider a DAG with 8 nodes
Nj—-Ng, in which No and N3 read Nj:

Ny

Ny | Nz |

Suppose that the height of node 2 is much greater than the height of node 3. A

220 Chapter 7: Code Generation

likely scheduling order for the nodes might be 1, 2, 5, 6, 7, 3, 8, 4; a possible
schedule might be:

Ny Ng
Ny
N3
No
N3 Ny
Ne

SO [0D) =

When node 1 is scheduled in cycle 2 and assigned some register, the register
is reserved for cycles 2: co. When node 2 is scheduled, the reservation remains
for 2: 00, since 3 is still unscheduled. Only after node 3 is scheduled in cycle
3 is the reservation cut back to cycles 2:4. Because nodes 5, 6, and 7 occur
in the scheduling order before 3, the reservation 2: co prevents them from using
the register, even though they are eventually placed after cycle 4 and wouldn’t
interfere with the use of the register by nodes 1, 2, and 3.

In general, given some scheduling order n;,n9,ng, ..., and two nodes n; and
n;, where n; is the last node in the order that is a successor of n;, none of the
nodes n;y,...,n;_1 will be able to use the register assigned to n;, even if they are
scheduled in cycles after all the successors of n;. Without doing experiments on
a realistic set of benchmarks, it’s hard to say exactly how serious this restriction
is (the few experiments with the operation scheduler used a machine model with
a 200-register bank in each cluster.) Conceivably, an unacceptably larger number
of registers might be required to prevent spilling in the inner loops. Note that list
scheduling doesn’t have this problem; because it forms instructions sequentially,
registers remain allocated for exactly the cycles in which they are used.

How do the time complexities of the two algorithms compare? BUG takes
O(nf?), where n is the number of nodes in the DAG and f is the maximum
number of functional units implementing any one operation. List scheduling
takes O(rn log n) worst-case (using separate data-ready queues for each functional
unit), where r is the maximum number of register banks connected to the output
of any unit. The observed behavior of list scheduling is strictly linear.

Ruttenberg mistakenly claims operation scheduling is O(n), but in fact it is
O(nlogn) if any heuristic based on sorting is used (for example, height, depth,
or execution frequency). But the linear constant factors are more important here
(sorting a few hundred nodes in a DAG is very fast). The branch-and-bound
search of operation scheduling takes time proportional to the product of:

f, the number of functional units that must be considered for any op-
eration;

r, the number of register banks connected to the outputs of a functional
unit;

Chapter 7: Code Generation 221

the number of different data paths from an operand’s location to a
functional unit;

the number of different locations a value occupies over time (the number
of <first cycle, last cycle, location> triples).

This product grows quickly as the size of the machine model increases, much
faster than the f2 factor in BUG and the r factor in list scheduling. Of course,
it’s not at all clear how the bounding of branch-and-bound will affect the opera-
tion scheduler’s average behavior. Asymptotic upper bounds on time complexity
just aren’t very useful for comparing programs as complex as code generators—
experimental observations are more meaningful. Nevertheless, based on the anal-
ysis above, the meager comparisons of the implementations, and the observed
behavior of list scheduling, it’s hard to see how operation scheduling could be
any faster, and it’s all too easy to believe that it will be slower.

The data and control structures used in operation scheduling are more com-
plicated than in list scheduling. Operation scheduling requires many tempo-
ral data structures (structures indexed by cycle) to track the availability of re-
sources and values. List scheduling only needs to remember availability for a
small, fixed-length window starting at the current cycle. Operation scheduling’s
branch-and-bound control structure of operation scheduling is much hairier than
the algorithms used in list scheduling.

Ruttenberg claims that operation scheduling provides a better framework for
heuristics controlling evaluation order, the order in which nodes are placed on the
schedule. This may be true, but does it matter? He ran only a few experiments
measuring the effects of different heuristics, and the results were inconclusive;
they don’t contradict my assertion that heuristics fancier than simple node height
aren’t much better in realistic situations. Concentrating on other problems in
the compiler are likely to result in more significant improvements, for example,
induction variables or bookkeeper copying.

222 Chapter 7: Code Generation

223

Chapter 8
Experiments

As I stated in the introduction, my thesis is: Ordinary scientific programs can
be compiled for VLIWs, yielding order of magnitude speed-ups. Given the com-
plexity of the Bulldog compiler, the only reasonable way to test this thesis is to
run the compiler on a representative set of scientific programs.

To this end, I’ve assembled a library of benchmark routines intended to
encompass a wide range of control and data structures encountered in scientific
programming. I’ve compiled these programs and simulated their execution on a
number of machine models. The results of these experiments strongly support
my thesis.

The Ideal Machine Models

Assume we had an arbitrarily fast and parallel VLIW machine. What is the
maximum amount of parallelism that trace scheduling and disambiguation can
find? The ideal machine models help measure that amount, giving an upper
bound on the parallelism we could expect to find on realistic hardware.

The parallel ideal model is a machine with an infinite number of functional
units and registers. All operations take one cycle, and there is no communications
delay between registers, functional units, and memory. The instruction word is
infinitely wide; that is, the compiler may place as many operations as it can in
an instruction. The set of operations implemented by the machine is exactly the
set of intermediate-code operations.

The sequential ideal model is just like the parallel ideal model, except that
it has only one functional unit (implementing all operations). As in the parallel
model, operations take one cycle, there are an infinite number of registers, and
there are no communication delays between elements. But only one operation
may be executed per cycle.

The ideal speed-up for a program is the ratio of the execution time on the
sequential model and the execution time on the parallel model. Intuitively, the
ideal speed-up measures how much parallelism trace scheduling and disambigua-
tion can find, independent of code generation for particular realistic hardware.

Code generation for the ideal machines is very simple. Because there is
an infinite number of registers, register allocation is trivial. Each intermediate-
code variable name is bound to a new register. Functional unit assignment is
also trivial: Because there are no communication delays and the elements are
completely connected, any functional unit implementing a given intermediate-
code operation will suffice. To generate code for a trace, the nodes of the DAG
are enumerated in a topological order. In the sequential model, each node is
placed in a separate instruction. In the parallel model, all the nodes at a given
depth are placed in the same instruction. (Remember that the parallel model

224 Chapter 8: Ezperiments

has an infinite number of functional units.) Thus, the length of a schedule for the
sequential model is exactly the number of nodes in the DAG, and the length of
a schedule for the parallel model is the depth (or height) of the DAG. The same
bookkeeping rules for code motions described in chapter 4 apply here as well.

The ELI Models

The realistic ELI (Enormously Long Instructions) models an 8-cluster VLIW.
To date, no VLIWs have actually been built, so I can’t say with 100% confidence
how “realistic” the model is. However, its design is based closely on the ELI
development work of Fisher, O’Donnell, and Sidell [Fisher 84].

The top of figure 8.1 shows the interconnection of the 8 clusters of the realistic
ELI Each cluster is independently connected to 4 others by long, slow buses. A
move between clusters takes one full cycle, and each bus can transport one value
every cycle. However, any one cluster can transmit at most 2 values and receive
at most 2 values per cycle.

Each of the clusters is identical (almost). The bottom of figure 8.1 shows
one cluster. A partial crossbar connects a front-door memory bank, two integer
ALUs, a floating adder, a floating multiplier, a constant generator (not shown),
and the bus interconnect to the neighboring clusters. One of the clusters also has
the back-door memory port that talks to all the memory banks.

The top of figure 8.2 shows a floating adder unit. The adder reads and
writes two register banks. Each bank has 16 registers; 1 value can be written
and 2 values read every cycle (1-in/2-out). Each bank is also connected to the
crossbar.

The floating multiplier and integer ALU units are similar to the floating
adder. The integer ALU implements a full set of arithmetic and logical operations,
including arithmetic comparisons and conditional jumps.

The bottom of 8.2 shows the front-door memory unit. It contains an integer
ALU as well as the memory port, both sharing the two register banks (each 1-
in/2-out). That ALU has a limited repertoire of arithmetic operations and is
intended mainly for address arithmetic. The one back door of the realistic ELI
is similar to a front door, except that it can address all memory banks.

Figure 8.3 shows the global-bus unit that connects the cluster with the neigh-
boring clusters. A single 2-in/2-out register bank sits between the cluster crossbar
and the interface to the global buses.

The constant generator (not shown) represents the immediate field of the
instruction for the cluster; it can place one 12-bit integer (signed or unsigned,
depending on context) on the cluster’s crossbar every cycle.

Chapter 8: Ezperiments

225

Co

C7 1

Cé C2

C5 C3
C4

Partial crossbar From neighboring clusters

4 values/cycle

To neighboring clusters

Figure 8.1. The 8-cluster realistic ELIL

226 Chapter 8: Ezperiments

cluster crossbar

+
{ 1
cluster crossbar
N\ AN
Front-door
ALU Memory

i /

Figure 8.2. Floating adder and front-door memory units.

Chapter 8: Exzperiments 227

From neighboring clusters
cluster crossbar

Global
Bus

To neighboring clusters

Figure 8.3. Global-bus unit.

The pipeline delays of the various functional units are:

integer ALU 1 cycle
floating adder 3 cycles
floating multiplier 4 cycles
back-door memory 6 cycles
front-door memory 3 cycles

A new operation can be initiated every cycle on each pipeline.

The partial crossbar connects the register banks of all the units, but can
transmit only 4 values per cycle. The functional units read and write values to
the local banks only; the banks serve as buffers between the crossbar and the
functional units.

Division isn’t directly implemented by the machine. Instead, a 3-step New-
ton’s method approximation is used [FPS 82]. The code for q:=y/x is expanded
inline as:

r0:=RECIP(x) :

ri:=r0 * (2 - x*r0)

r2:=r1 * (2 - x*rl)
r3:=r2 * (2 - x*r2)
q :=r3 * y

where RECIP is a one-cycle machine operator that provides an 8-bit approximation
to 1/x via table lookup.

228 Chapter 8: Ezperiments

y

L
7 VT VY |
Constant M
+ X ALU Generator emory

Figure 8.4. The sequential ELI

The conditional-jump machine operations of the integer ALUs have one of
the forms:

IF xrelopy
IF-TRUE x
IF-FALSE x

where relop is one of the integer comparison operators <, <, =, #,2>,>. Condi-
tional jumps cannot test floating point values directly, on the assumption that a
floating comparison would make a jump much longer than the one cycle allowed
(see page 99). The front end of the compiler transforms conditionals with float-
ing tests into a floating comparison followed by a boolean conditional jump. For
example, IF x>y would be expanded into: :

b:=x>y

IF-TRUE b

Appendix A contains the actual Lisp definition of the realistic ELI model.

The sequential ELI models a traditional pipelined machine like the MIPS
[Hennessy 82], the CDC 6600, or the scalar part of the Cray-L It is built with the
same technology as the realistic ELI. Figure 8.4 shows the sequential ELI. There
is one 1-in/2-out register bank servicing a floating adder, a floating multiplier,
an integer ALU, a memory bank, and a constant generator. These pipelined
functional units are identical to those of the realistic ELI. However, the machine
can initiate at most one operation per cycle, subject to bandwidth limitations of
the register bank.

Appendix A contains the Lisp definition of the sequential model.

The realistic speed-up for a program is the ratio of the execution time
on the sequential ELI and the execution time on the realistic ELI. It is a rough

Chapter 8: Exzperiments 229

measure of how much faster a VLIW is compared to a traditional machine built
by the same people with the same chips, assuming a trace scheduling compiler is

used for both machines. The realistic speed-up also indicates how effectively the
VLIW is being utilized.

The Benchmark Library

The library routines were converted directly from standard, portable Fortran
into Tinylisp, mostly using the automatic conversion program written by John
Ruttenberg and Joe Rodrigue. Any subroutines invoked by the main routines
were defined to be inline and automatically expanded at each use at compile
time. I added the needed assertions and manually performed various source
optimizations described later and in chapter 6.

Appendix B contains the Tinylisp and the Fortran for some of the programs.
The library consists of:

MATRIX MULTIPLY. A standard three-loop implementation. As described
in chapter 8, loop merging was used to bank-disambiguate the column-vector
accesses.

FFT. The complex Fast Fourier Transform, taken directly from Steiglitz [Steiglitz
74]. Chapter 6 describes the transformations made to bank-disambiguate the
vector references and eliminate much of the loop overhead.

SOLVE. LU decomposition, used to solve linear systems of equations. SOLVE
is similar to the routine in Computer Methods for Mathematical Computations
[Forsythe 77].

SVD. Singular value decomposition, from Computer Methods. SVD is a power-
ful tool, used for such problems as general linear equations, linear least-squares,
pseudo-inverses, approximating matrices, and evaluating determinants and find-
ing singular matrices. Chapter 6 describes the transformations made to SVD.
The computation of the matrix U of left-singular vectors was excluded from the
benchmark version so that the routine could be squeezed through the Bulldog
compiler. This omission isn’t serious: The code computing U is very similar to
other code in SVD, and in most applications of SVD, the left-singular vectors
aren’t needed.

TRID1, TRID2, TRID4. Three programs for solving tridiagonal linear sys-
tems. TRID1 uses the classical, two-loop method. Because its loops directly
implement linear recurrences of the form:

alil:=f(al[i-1])

there isn’t much directly available parallelism. TRID2 uses a slightly more com-
plicated algorithm whose loops have about twice the available parallelism as
TRID1. TRID4 uses the method of cyclic reduction and has a lot of available
parallelism [Rodrigue 82], but its many loops add quite a bit of overhead.

230 Chapter 8: Ezperiments

SIMPLE. SIMPLE is a Fortran program for doing fluid dynamics computation.
SIMPLE was written and distributed by scientists at Lawrence Livermore Na-
tional Laboratory as an example of production fluid dynamics code that parallel-
computing researchers in academy could use as a realistic benchmark. I obtained
my copy through Dennis Gannon at Purdue University.

I profiled the execution of SIMPLE on a DEC-2060 and found the most
time-critical routines to be:

EOS 39%
NEWRZ 19%
CONDUC 18%

I selected EOS and NEWRZ for my benchmark library. I rejected CONDUC
because it is essentially a tridiagonal solver, and tridiagonal solvers are already
included in the library.

EOS. From SIMPLE. EOS performs equation-of-state calculations. The original
routine in the benchmark is a scalar function that does a table lookup and then
evaluates a polynomial. It is actually a family of four functions performing sim-
ilar computations for different polynomials. For the library, I selected only the
function for computing energy; the other three are very similar.

I'vectorized the routine as described by Dubois [Rodrigue 82]. Also, following
his personal advice, I increased the number of data boxes used by the table lookup
from 4 to 25 in each direction, making the table lookup more realistic. The input
data for these experiments were captured from a snapshot of the running SIMPLE
program.

NEWRZ. Another routine from SIMPLE. The comment in the code for NEWRZ
says:

This routine calculates the new velocities, coordinates, and the density
and change in specific volume for each zone.

It consists of three simple sets of doubly nested loops containing expressions of
many floating additions and multiplies.

QK61. A core routine performing 61-point polynomial evaluations in QUAD-
PAK, a state-of-the-art package for adaptive quadrature [Piessens 83]. The func-
tion being integrated is used in calculating generalized Bessel functions; such
functions arise in analyzing the behavior of finite difference approximations to
the Telegraph equation, and in certain types of visco-elastic equations. Profiles
of running the top-level routine QAGE on a DEC-2060 showed that 90% of the
execution time was spent in QK61 and the function being integrated.

QUANCS. Integration using adaptive quadrature, from Computer Methods.
The function being integrated is the same as for QK61. QUANCS is not consid-
ered state-of-the-art. I included QUANCS because, unlike QK61, it contains all
the high-level conditional control structure of the adaptive quadrature algorithm.

Chapter 8: Ezperiments 231

ZEROIN. Finding real zeros of a single function, from Computer Methods. The
function being zeroed is used to analyze the behavior of 4th-order approximations
to the wave equation.

The functions passed as parameters to the last three programs were expanded
inline at each call. The trigonometric functions used by the parametric functions
were also expanded inline.

There’s one important source transformation that hasn’t been discussed yet.
Vector reductions, such as summing the elements, are common in scientific code,
but they’re typically written in a sequential style:

total:=0
FOR i:=0 TO n-1
total:=total+v[il

After unrolling, the additions to total must be done sequentially; even though
the memory references can be done in parallel, the sequential additions are a
bottleneck.

However, a simple transformation yields parallelism dependent only on the
amount of unrolling (assume b, the number of memory banks, is 8):

total0:=0; totall:=0; ...; total7:=0
i:=0

LOo0oP
IF i+0 >= n THEN EXITLOOP
totalO:=totalO+v[i+0]
IF i+1 >= n THEN EXITLOQP
totall:=totali+v[i+1]

IF i+7 >= n THEN EXITLOOP
total7:=total7+v[i+7]
i:=i+8

total:=((totalO+totall) + (total2+total3)) +
((totald+totals) + (total6+total?7))

Now, 8 independent sums are formed in parallel in the loop body, and at the
end they are totalled. (Induction-variable simplification will replace each of the
8 different uses of i by separate variables that can be manipulated in parallel.)

Because reductions are so common, I added a Tinylisp language construct
(a macro) for reductions. The above reduction would be expressed as:

total := VectorReduce(i:=0 to n-1, +, 0.0, v[i])

which expands into the code shown.

232 Chapter 8: Ezperiments

Running the Experiments

The experiments reported here were all conducted within the same framework.
The inner loops of a program were unrolled 1, 2, 4, 8, 16, and sometimes 32 times,
and for each amount of unrolling, the program was compiled and simulated on the
four machine models: the sequential and parallel ideal models and the realistic
and sequential ELI models. From these runs I gathered various sets of statistics,
presented below.

You’ll notice in the tables there are often numbers missing for particular
entries, and you’ll probably think of other experiments you’d like to have seen
run. I'm fully aware of the limitations of these experiments. The compilations
and simulations were very expensive and time-consuming, and when I started I
had little idea of exactly which source transformations to use. Consequently, I
concentrated my efforts on running those experiments which seemed most crucial
to proving or disproving my thesis. At the end of this chapter I’ll discuss future
possible experiments.

Trace Profiling

A simple but effective simulation tool for evaluating the performance of a program
is the trace profiler. It records the number of machine instructions and operations
actually executed for each trace, and at the end of simulation presents a concise
table of the results. This helps identify the bottlenecks in programs, both in terms
of absolute number of instructions executed in a trace and the local parallelism
obtained for a trace. For example, a profile might show that 50% of execution time
is spent in one particular trace of an inner loop and that the ratio of operations
to instructions (the local parallelism) is only 1.5; the inner loop would then be a
prime candidate for possible source or algorithmic transformations.

Chapter 8: Ezperiments 233

Execution Statistics

Speed-up Input size Unrolling % Partial
Program Ideal Real. Ideal Real. Ideal Real. Split Join Total

MATMUL 255 7.4 50% 502 32 64 1 0 1
FFT 483 69 1024 1024 16 16 2 0 2
SOLVE 189 62 1282 1282 16 16/8 2 0 2
SVD 162 54 302 1282 16/2 32/16 2 0 2
TRID1 2.7 9 4096 4096 16 8 5 0 5
TRID2 38 1.2 4096 409 16 8 10 0 10
TRID4 333 7.0 4096 4096 16/4 16/2 0 0 0
EOS 83 23 642 642 16 8 2 1 3
NEWRZ 198 7.6 602 492 8 16 2 0 2
QK61 102 45 - - 2 4 0 o0 0
QUANCS 8.1 - - - 4 - - - -
ZEROIN 3.5 - - - 4 -~ - - -

Ideal speed-up is the ratio of the execution times on the sequential
and parallel ideal models.

Realistic speed-up is s/r, where r is the execution time of the real-
istic ELI and s is the best execution time on the sequential ELI over
unrollings of 1, 2, 4, and 8.

Input size is the size of the input arrays.

Unrolling is the amount the inner loops were unrolled. Due to the
limitations of the compiler, some programs had mixed unrolling; for
example “16/8” indicates that the time-critical inner loops were unrolled
16 times, the other inner loops 8 times.

% Partial is the number of instructions executed in split and join
partial schedules on the realistic ELI, as a percentage of the total number
of instructions executed.

I didn’t waste precious time running QUANCS or ZEROIN on the realistic
models. QK61 is a better test of adaptive quadrature, and the ideal speed-up
for ZEROIN was so low that there was little point in confirming that its realistic
speed-up would be small.

Only three programs had little ideal parallelism: TRID1, TRID2, and ZE-
ROIN. This isn’t surprising. TRID1 and TRID2 have inner loops that are simple
recurrences of the form v[i] := £(v[i-1]). ZEROIN doesn’t manipulate any ar-
rays, and its control structure consists of a loop containing many data-dependent
conditionals that evaluates the parametric function once each iteration.

The ideal speed-up of the other programs is limited only by the amount of
unrolling and the size of the input. For example, the more the inner loop of

234 Chapter 8: Experiments

MATMUL is unrolled, the more copies of the inner loop body can be done in
parallel (provided the input arrays are big enough).

Of the programs with more than a little ideal parallelism, only EOS per-
formed badly on the realistic machine (EOS is discussed in more detail below).
The others achieved speed-ups from 4.5 (QK61) to 7.6 (NEWRZ).

Theoretically, realistic speed-ups greater than 8 are possible, since the real-
istic ELI can initiate much more than 8 times as many operations per cycle as
the sequential ELI. But in practice, scientific programs tend to be limited either
by memory bandwidth, floating adds, or floating multiplies, and for those the
realistic ELI is only 8 times faster (because it has only 8 times as many memory
banks or floating units).

Remember that the realistic speed-up is the ratio of the execution times on
the sequential ELI and the realistic ELI, using trace scheduling with loop un-
rolling for both models. However, current sequential machines like the MIPS
don’t actually use trace-scheduling compilers, but rather compile one basic block
at a time. A later section shows that trace scheduling results in significant im-
provements of execution time on the sequential ELI. So if we used a basic-block-
only compiler for the sequential ELI instead of trace scheduling, the realistic
speed-ups shown here would be somewhat larger.

The small percentage of time spent in partial schedules is quite encouraging.
Even EOS, which spends a lot of its time doing table lookup and thus has a
high proportion of conditionals, spends little time in partial schedules. The
numbers support my claim that fancier methods for handling partial schedules
aren’t needed.

Chapter 8: Ezperiments 235

Compilation Statistics

Program Unrolling Size RCS/SCS % Copies
Split Join Total

MATMUL 64 435 8.7 102 1 103
FFT 8 928 8.8 6 0 66

16 1693 16.1 (1.8) 126 O 126 (1.9)
SOLVE 8 1025 3.2 31 34 65

16/8 1853 5.7 (1.8) 65 79 144 (2.2)
SVD 8 7668 2.7 71 18 89

16 11378 4.0 (L5) 104 14 118 (L.3)
TRID1 8 2888 14.9 134 0 134
TRID2 8 3230 4.4 105 0 105
TRID4 8/2 1285 1.4 24 1 25

16/2 1921 20 (14 8 2 87 (3.5)
EOS 8 3189 1.2 90 28 118
NEWRZ 16 1156 2.7 12 0 12
QK61 4 2585 2.1 107 1 107

Size is the number of instructions generated for the realistic ELI.

RCS/SCS (realistic code size/sequential code size) is the ratio of the
number of instructions generated for the realistic ELI and the sequential
ELI (with no unrolling). The numbers in parenthesis indicate the rela-
tive increase in realistic code size for those programs that were run with
two different. amounts of unrolling. For example, the code size of FFT
unrolled 16 times is 1.8 times the code size of FFT unrolled 8 times.

% Copies is the number of intermediate-code copies produced during
bookkeeping at splits and joins, expressed as a percentage of the total
number of intermediate-code operations in the optimized flow graph.
The numbers in parenthesis show the relative increase in that percentage
for programs run with two different amounts of unrolling.

These numbers show that even with large amounts of unrolling, the size of
the code generated is not unreasonable for a practical machine, even though there
is a quite a bit of bookkeeper copying. Reassuringly, the copying (as a percentage
of intermediate-code size) appears to increase only linearly with unrolling, not
quadratically or exponentially as we feared. As discussed in chapter 6, most of
the copying could probably be eliminated by taking advantage of the fact that
the size of the input is a multiple of the number of banks b, eliminating most of
the exit tests from the unrolled inner loops.

236 Chapter 8: Ezperiments

Here are the running times of the compiler:

Program Unrolling Traces Total % of Total Relative increase
Opt TS CG Total Opt TS CG

MATMUL 64 27 39 76 5 19
FFT 8 47 41 63 4 32

16 66 124 43 5 52 3.0 20 34 49
SOLVE 8 83 20 4 6 50

16/8 136 56 45 10 45 28 29 44 25
SVD 8 287 63 45 10 45

16 418 122 40 13 46 19 1.7 2.6 20
TRID1 8 21 9 583 10 37
TRID2 8 21 30 63 9 27
TRID4 8/2 80 39 58 T 35

16/2 52 68 71 5 24 1.7 22 12 1.2
EOS 8 207 62 23 10 67
NEWRZ 16 42 138 83 3 14
QK61 4 19 92 T0 8 22

Traces is the number of traces needed to compile the program.

Total is the number of CPU minutes consumed by the compiler running
on a DEC-2060 with 1.5 megawords of memory.

% of Total shows the percentage of time spent in intermediate-code
flow analysis and optimization (Opt), trace picking and bookkeeping
(TS), and code generation (CG).

Relative increase shows the relative increase in the CPU times for
those programs that were run with two different amounts of unrolling.
For example, the compiler takes 3.0 times as long when the loops of
FFT are unrolled 16 times instead of 8.

Obviously, the compiler is very slow. And these times are CPU times—
the elapsed times (which I don’t have) tend to be somewhat larger, since the
large amounts of virtual memory paging by the compiler, mostly due to garbage
collection, aren’t fully included in the CPU time.

The Lisp system used to implement the compiler has only 2.2 megawords
of virtual address space available for data (1.1 million cons cells). Because each
program was unrolled as much as the limited address space allowed, there was
often very little unallocated space left in the storage heap, and the Lisp system
was forced to garbage collect quite frequently. (The amount of time spent in
garbage collection is another statistic I should have collected.) Multiflow, Inc.
has ported the compiler to a Symbolics 3600, whose CPU runs at about the same
speed as the DEC-2060 but which has a much larger virtual address space; initial

Chapter 8: Exzperiments 237

indications are that the compiler runs much faster (though certainly not as fast
as a traditional compiler).

Roughly 1/3 to 2/3 of the time is spent in the intermediate-code analyses
and optimizations; about one quarter to one half of the time is spent in code
generation; and less than a tenth of the time is spent picking traces and book-
keeping. Clearly, the first task in making the compiler faster is speeding up the
intermediate-code optimizations.

The two- to three-fold increase in CPU time as unrolling is increased from
8 to 16 is encouraging. If that linear trend holds for larger amounts of unrolling,
programs could be unrolled 32 or maybe even 64 times without much compiler-
tuning needed, thus making a 16- or 32-cluster VLIW practical.

Sequential Speed-up
The following table shows the effect of unrolling for the sequential ELL

Program Sequential Unrolling Input size

Speed-up

MATMUL 1.36 4 502
FFT 1.00 1 1024
SOLVE 1.87 2 882
SVD 1.36 4 642
TRID1 1.57 8 4096
TRID2 1.12 4 4096
TRID4 1.40 4 4096
EOS 1.01 2 642
NEWRZ - - -

QK61 1.03 2 -

Sequential speed-up is the ratio of the execution time on the sequen-
tial ELI with no unrolling and the execution time for the given unrolling.
The speed-ups shown are the largest over unrollings of 1, 2, 4, and 8.

As you can see, modest amounts of unrolling yield quite significant speed-
ups for a pipelined sequential machine. These increases are in addition to the
speed-ups due to pipelined execution of basic blocks. Considering that pipelined
execution will typically yield speed-ups from 1.5 to 2.5 [Kuck 78], and that the
speed-ups for the MIPS due to block reorganization were no more than 10%,
these speed-ups due to unrolling are quite important. At least for scientific code,
simple unrolling can yield significant improvements, yet it has received almost
no attention in academic compiler research, and as far as I know, no commercial
compiler implements it automatically.

238 Chapter 8: Experiments

Speed-ups in Detail

This section shows how the speed-ups vary for every program according to un-
rolling and the input size n, and discusses some of the programs in detail. A
general observation: Small input sizes (vectors of length less than, say, 30) don’t
yield nearly as much ideal or realistic parallelism as larger input sizes.

MATMUL.

Ideal Speed-up
Unrolling n=5% 102 252 502

1 23 24 23 23
2 3.5 41 43 4.5
4 41 59 73 83
8 5.0 6.9 10.7 13.7
16 4.5 84 151 198
32 3.7 69 16,5 25.5

Sequential Speed-up
Unrolling n=5% 102 252 502

1 1.00 1.00 100 100
2 101 111 1.26 1.30
4 0.74 100 1.20 1.36
8 0.56 0.70 0.99 1.22
16 0.29 048 0.77 0.96

Realistic Speed-up
Unrolling n=52 102 252 502

8 186 292 531 17.36

FFT.

Chapter 8: Ezperiments

Ideal Speed-up

Unrolling n = 32

1 2.9
2 4.4
4 5.7
4* 124
8 6.5
8* 20.8
16 6.8
16* 30.1

64

3.1
4.9
6.5
134
7.6
23.3
8.1
35.3

128

3.3
5.3
7.2
14.2
8.6
25.2
9.3
39.7

256

3.4
5.6
7.8
14.8
9.5
26.7
10.5
43.2

Sequential Speed-up

Unrolling n = 32 64 128 256
1 1.00 1.00 1.00 1.00
2 0.79 0.81 0.82 0.83
4 0.57 0.59 0.62 0.64
8 034 036 039 041
16 0.18 0.20 0.22 0.23
Realistic Speed-up
Unrolling n = 32 64 128 256
8 4.35 466 4.95 5.17
16 4.12 494 5.63 6.18

512

3.5
5.9
8.4
15.2
104
279
11.6
46.0

512

1.00
0.84
0.65
0.43
0.25

512

5.34
6.61

1024

3.6
6.1
8.9
15.5
11.2
28.8
12.6
48.3

1024

1.00
0.85
0.67
0.45
0.26

1024

5.47
6.92

239

The starred rows for the ideal speed-ups indicate the special unrolling de-
scribed in chapter 6. The special unrolling yields a four-fold increase in paral-
lelism for the largest input. (The realistic experiments were all done with the

special unrolling.)

Note that unrolling doesn’t improve the running time of FFT on the se-
quential machine. This might be due to the fact that the body of the inner
loop is quite large compared to most: It contains 10 vector references, a complex
multiply and two complex additions. This is enough to keep the pipelines full
without any unrolling, while unrolling merely increases the overhead due to extra
induction variables created by loop-induction-variable simplification.

240 Chapter 8: Ezperiments

SOLVE.
Ideal Speed-up
Unrolling n =162 322 642 83?2
1 19 19 2.0 2.0
2 29 33 3.6 3.8
4 3.8 5.1 6.2 7.0
8 46 7.0 9.7 12.1
16 53 86 134 18.9
Sequential Speed-up
Unrolling n =162 322 642 882
1 1.00 1.00 1.00 1.00
2 145 1.70 1.83 1.87
4 134 165 1.82 1.87
8 0.84 1.05 1.21 1.27
Realistic Speed-up
Unrolling n =162 322 642 882 1282
8 1.69 2.51 3.25 3.52 -
16/8 168 291 4.63 5.42 6.18

For inputs of size less than 64, SOLVE achieves less than 50% utilization of
the realistic ELL This is probably due to the overhead of the inner loops, which
have the form:

FOR i:=1 TO n
FOR j:=1i TO n

...v[jl.

Trace profiling showed that SOLVE spends a large fraction of its time in the traces
of outer loops, mostly in the initialization code of the inner loops. It might be
possible to reduce this overhead either by improving the loop-induction-variable
simplification in the front end, or by merging the outer loops with the inner loops,
similar to the merging used for memory-bank disambiguation.

Chapter 8: Ezpertments 241

SVD.

Ideal Speed-up
Unrolling n = 52 102 202 302

1 1.8 20 21 3.1
2 22 30 36 55
4 26 40 59 95
8/2 26 43 7.2 128
16/2 25 45 84 16.2

, Sequential Speed-up
Unrolling n =162 322 642

1 1.00 -1.00 1.00
2 1.24 130 1.33
4 1.17 1.29 1.36
8 1.01 117 1.29

Realistic Speed-up
Unrolling n = 162 322 642 1282

8 2.00 2.55 2.89 -
16 2.24 3.18 4.16 -
32/16 2.29 3.32 4.43 5.38

SVD achieves even lower utilization of the realistic ELI than SOLVE, and
only for very large inputs is the speed-up greater than 5. SVD has many more
loops with greater nesting than SOLVE, and as with SOLVE, trace profiling
showed SVD spending a large fraction of its time in the outer loops.

242 Chapter 8: Experiments

TRID1.

Ideal Speed-up
Unrolling n =256 512 1024 2048 4096

1 14 14 1.4 1.4 1.4
2 1.9 19 1.9 1.9 1.9
4 23 23 2.3 2.3 2.3
8 25 25 2.5 2.6 2.6
16 2.7 27 2.7 2.7 2.7

Sequential Speed-up
Unrolling n =256 512 1024 2048 4096

1 1.00 1.00 1.00 1.00 1.00
2 133 133 133 133 1.33
4 1.51 151 1.52 152 1.52
8 1.56 1.56 1.57 1.57 1.57

Realistic Speed-up
Unrolling n =256 512 1024 2048 4096

8 95 .95 .94 .94 94

It’s not surprising that TRID1 has so little parallelism. Its inner loops are
recurrences of the form v[i] := £(v[i-1]), and each iteration is data-dependent
on the previous iteration. Thus, the execution of successive iterations can’t be
overlapped much.

Notice that the realistic speed-up is less than 1.0; that is, the program ex-
ecutes faster on the sequential ELI than on the parallel realistic ELI. There are
three possible reasons for this. First, there is some overhead due to the ex-
tra induction variables created when loops are unrolled 8 times. In loops with
data-independent iterations, that overhead is far outweighed by the parallelism
resulting from separate induction variables for each unrolling; but in the data-
dependent loops of TRID1, there is no such resulting parallelism. Second, the
code generator isn’t perfect at allocating functional units, and it might have been
a little too greedy in distributing the computation across the machine, resulting
in communication delays. Third, even if the code generator allocates functional
units perfectly (for example, by restricting computation to one cluster), a single
cluster of the realistic ELI has more built-in communication delays than the se-
quential ELI. Which of these three reasons is the actual cause of the slowdown
isn’t important, though, since TRID1 is clearly an unsuitable algorithm for a
parallel machine.

Chapter 8: Ezpertments 243

TRID2.

Ideal Speed-up
Unrolling n =256 512 1024 2048 4096

1 3.2 3.2 3.2 3.2 3.2
2 3.5 3.5 3.5 3.5 3.5
4 3.7 3.7 3.7 3.7 3.7
8 3.8 3.8 3.8 3.8 3.8
16 3.8 3.8 3.8 3.8 3.8

Sequential Speed-up
Unrolling n =256 512 1024 2048 4096

1 1.00 100 100 1.00 1.00
2 1.08 1.07 1.07 1.08 1.08
4 1.12 110 111 111 1.12
8 1.10 108 109 110 1.10

Realistic Speed-up
Unrolling n =256 512 1024 2048 4096

8 1.20 120 119 119 1.19

Like TRID1, the inner loops of TRID2 are data-dependent recurrences that
are inherently non-parallel.

TRID4.

Ideal Speed-up
Unrolling n =256 512 1024 2048 4096

1 3.2 33 3.3 3.3 3.4
2 52 56 5.8 5.9 6.0
4 89 101 11.0 114 117
8 13.7 17.2 198 216 227
16/4 16,5 221 271 30.9 333

Sequential Speed-up
Unrolling n =256 512 1024 2048 4096

1 1.00 100 1.00 1.00 1.00
2 1.27 129 131 131 132
4 1.31 134 137 139 140
8 1.25 131 135 137 1.39

Realistic Speed-up
Unrolling n =256 512 1024 2048 4096

8/2 3.05 3.56 396 424 4.41
16/2 383 4.8 579 6.51 17.01

244 Chapter 8: Ezxperiments

The algorithm of TRID4, cyclic reduction, was designed explicitly for parallel
machines, and the numbers demonstrate its superior parallelism compared to the
previous two versions of TRID.

Comparing versions of TRID

The speed-ups obtained for the three versions of TRID say nothing about their
relative performance. Even though one version might have a greater amount of
parallelism, another might be faster in terms of absolute execution time.

. The tables below compare the execution times of the three versions running
on the parallel ideal machine, the sequential ELI, and the realistic ELL. The
numbers shown are the ratio of the best time for the given program with the best
time for TRIDI1.

Ideal Speed-up Ratio
n =256 512 1024 2048 4096

TRID1 1.0 1.0 1.0 1.0 1.0
TRID2 1.8 1.8 1.8 1.8 1.8
TRID4 3.1 4.2 5.1 5.8 6.3

Sequential Speed-up Ratio
n =256 512 1024 2048 4096

TRID1 10 1.0 1.0 1.0 1.0
TRID2 1.5 1.5 1.5 1.5 16
TRID4 0.8 0.8 0.9 0.9 0.9

Realistic Speed-up Ratio
n =256 512 1024 2048 4096

TRID1 1.0 1.0 1.0 1.0 1.0
TRID2 1.9 1.9 2.0 2.0 2.0
TRID4 3.3 43 5.3 6.1 6.6
Cray-I 40 5.0 5.8 6.2 6.5

Clearly, TRID4 is the fastest version for the realistic ELI; TRID?2 is the
fastest on the sequential ELI.

The row labeled “Cray-I” shows the ratio of the Cray-I execution times of
a version using hand-coded, vectorized cyclic reduction and the standard scalar
version (TRID1) compiled with the Cray Fortran compiler [Rodrigue 82]. Notice
the similarity between those ratios and the ratios for TRID4. This supports my
contention that the realistic and sequential ELI models correspond to reality.

For the smaller input sizes, the realistic TRID4 ratios are somewhat smaller
than the Cray ratios. This means either that the realistic ELI doesn’t han-
dle small vectors as well as the Cray or else the realistic ELI executes scalar,
data-dependent loops relatively faster than the Cray. Given that the parallelism

Chapter 8: Ezperiments 245

available for scalar programs on the ELI far outweighs that available on the Cray,
the latter explanation sounds more likely.

EOS.

Ideal Speed-up
Unrolling n=42 82 162 322 642

1 21 22 23 25 26
2 26 27 31 36 4.1
4 2.7 31 37 46 5.8
8 27 33 41 53 1713
16 30 35 43 58 83

Sequential Speed-up
Unrolling n=4%2 82 162 322 642

1 1.00 100 1.00 1.00 1.00
2 096 097 096 1.00 101
4 0.88 091 091 099 1.01
8 0.77 0.8 0.86 092 0.95

Realistic Speed-up
Unrolling n=42 82 162 322 642
8 1.32 150 1.58 1.86 2.29

The original version of EOS (from SIMPLE) was a scalar function that com-
puted a simple polynomial after doing table lookups to compute some coefficients.
The version used here has been vectorized as described in Parallel Computations
[Rodrigue 82]. The routine accepts a vector of input values; it then does table
lookups for each value in the vector, saving the coefficients in a temporary vector;
then it computes the polynomials using a simple, vectorizable loop.

The table lookups are the bottleneck in achieving higher parallelism. Trace
profiles showed that the computation of the polynomials was about 8 times faster
on the realistic ELI than on the sequential ELI, but the realistic ELI wasn’t any
faster doing the table lookups. The table lookups are implemented using the
cache-loop strategy described by Dubois in Parallel Computations (I'm doubtful
whether any other technique would be faster on the ELI).

Supposedly, the input sizes used in practice are much larger than the 642 used
here, maybe by a factor of 4 or more. If so, then the table lookups might become
insignificant, since the hit ratio of the cache loop would increase. Unfortunately,
running simulations with larger inputs was too expensive, and Yale wasn’t willing
to continue footing the bills.

246 Chapter 8: Ezperiments

QUANCS.

Unrolling Ideal Speed-up
1 3.4
2 5.3
4 8.1

QUANCS has only modest amounts of parallelism, primarily because the
inner loop uses only 8-point polynomial evaluation. The state-of-the-art QK61
evaluates larger polynomials and has more ideal parallelism.

ZEROIN.

Unrolling Ideal Speed-up
1 3.1
2 3.4
4 3.5

Unrolling doesn’t effect the ideal speed-up of ZEROIN much. ZEROIN uses
a bisection method to narrow the interval containing a zero, and for arbitrary
functions, the compiler can’t predict whether the right or left bisection will be
chosen, and thus can’t evaluate the next iteration of the loop in parallel with
the current one. Perhaps n-ary sectioning might yield significant improvements,
since then n — 1 evaluations of the parametric function could be done in parallel.

Experiments for the Future

Given the time, the next experiments I would have liked to run would measure
the individual contribution of the standard optimizations, trace scheduling, and
disambiguation. I would disable each in turn and in pairs and observe the degra-
dation in performance for the realistic ELL. To disable trace scheduling, I would
turn on the switch (that currently exists in the compiler) restricting traces to sin-
gle basic blocks. To disable disambiguation, I would add a switch that causes all
questions of the form, “Do v[i] and v[j] possibly refer to the same location?”
to be answered with “maybe.”

Next, I would like to try running other sorts of programs with different types
of data structures other than simple arrays. Examples: How effectively can tables
be searched using n-ary search? Intuitively, it seems that an n-ary search should
do quite well on a VLIW with n clusters. What if the tables need to be updated?
What about sorting? What about manipulating large objects like B-trees? How
well would various sparse matrix techniques work?

All the variations on the particular heuristics of trace picking and code gen-
eration need to be thoroughly explored. How do they affect bookkeeper copying?
Execution time? Code size? Similarly, the loop transformations for memory-
bank disambiguation and reducing loop overhead should be investigated more
thoroughly.

Chapter 8: Ezperiments 247

The other obvious set of experiments I’d like to run would measure the effect
of changing the machine models. For example, how well can the Bulldog compiler
utilize hardware as the number of clusters ranges from 2 to 32?7 What happens if
the bandwidth of crossbars and buses is changed? What happens if the machine is
made more asymmetric, such as if not all clusters have the same set of functional
units or if the cluster interconnections are skewed? Some measurements I made
of various programs showed that rarely were more than 8 or 9 operations initiated
per instruction, even though the 8-cluster ELI instruction is capable of initiating
many times that. So what would be the effect of replacing each cluster with a
pipelined sequential processor like the MIPS? Similarly, how many conditional
jumps are needed per instruction for optimal performance? Examining some of
the object code suggests that perhaps only 1 or 2 jumps per instruction would
be sufficient, especially if multicycle jumps are allowed to overlap.

These sorts of hardware questions aren’t crucial to my thesis, but rather ex-
plore the interaction between hardware, compiler, and program. Fully answering
the questions would constitute another dissertation.

248 Chapter 8: Ezperiments

249

Chapter 9
Final Thoughts

I've presented strong evidence in support of my thesis: Ordinary scientific pro-
grams can be compiled for VLIWs, yielding order of magnitude speed-ups over
traditional architectures. But this only begins to address the issues of making
VLIWs and trace scheduling compilers practical. There is a world of difference
between a prototype compiler constructed in academy for a simulated machine
and an economically successful product.

Other Domains

I’ve concentrated on scientific programs only. Are there other classes of programs
for which VLIWs and trace scheduling will work well?

The programs in the library that exhibited the least amount of parallel-
ism were also the programs that had the smallest and least regular data struc-
tures. Considering the limited scope of my experiments, it would be foolish to
make sweeping generalizations. But it does seem unlikely that VLIWs and trace
scheduling would do well on programs that don’t have large, regular control and
data structures.

The data structures wouldn’t necessarily have to be arrays. It’s certainly
possible that programs manipulating other regular data structures such as trees
and lists might do well on VLIWs with trace scheduling, provided there was a
high degree of regularity. However, even though systems and Al programs often
use these data structures, often they don’t spend a large fraction of their time
in the code manipulating them—much, if not most of the time of such programs
is spent in highly irregular control structures that have frequent conditionals
manipulating small data structures. Thus, I doubt whether most Al or systems
applications could take full advantage of VLIWs.

Scaling Up
My experiments only dealt with an 8-cluster VLIW offering roughly 8-fold par-
allelism. What about larger VLIWs?

With a little work, the current compiler could probably handle a 16-cluster
VLIW. The main impediment (for a compiler) to larger machines is loop unrolling
and the quadratic running time of the flow analyses and optimizations. In general,
loops must be unrolled a multiple of n times for an n-cluster machine; for n larger
than 16, the time of the flow analyses and optimizations becomes unacceptable.
I discussed in chapter 2 improved algorithms requiring substantially less time.
But even if they do prove to be better for large unrolled programs, I still doubt
it would be practicable in the next few years to compile for VLIWs much larger
than 64 or 128 clusters at the very most.

250 Chapter 9: Final Thoughts

Automating the Transformations

The current compiler requires the programmer to manually apply many non-
trivial source transformations. He must specify the amount of loop unrolling,
conditional jump probabilities, and assertions for memory-reference and memory-
bank disambiguation, and he must often significantly rewrite loops.

This extra work doesn’t make VLIWs and the current compiler impracti-
cal, however. Today many people find it necessary (and economical) to resort
to assembly language to get even adequate performance from LIWs and vector
machines, since their compilers don’t provide a good mapping from the source
language to the capabilities of the machine. But the Bulldog compiler lets the
programmer directly control VLIWs without descending to machine language;
while tuning a program might be time-consuming, it involves much less work
than programming a Cray-I or FPS-164 in assembly language.

Many of the simpler transformations could be automated without much dif-
ficulty. Adding obvious assertions, estimating jump probabilities, setting the
amount of unrolling, and some of the simpler bank-disambiguation transforma-
tions are not that hard to implement. However, the more sophisticated control
transformations needed for bank disambiguation are just now being researched;
whether they can be implemented as part of a production compiler, I don’t know.
Since there will always be some programs like FFT that are beyond the capabil-
ities of any near-future automatic methods, care must be taken to ensure that
the automatic transformations added in don’t preclude manually specified trans-
formations.

A Better Approach?

Though it may well be economical for the next few years, I don’t think that
adding more and more sophisticated transformations to a Fortran compiler is
the right long-term approach. I’'m suspicious of any programming system that
requires the programmer to translate his high-level intentions into a low-level
language, only to have the compiler try to discover the original high-level intent
of the programmer. Why not design a language more suited both for expressing
the programmer’s intentions and helping the compiler generate efficient code?

The time-critical kernels of most scientific programs consist mainly of array
manipulations. But Fortran requires the programmer to specify the operations in
terms of low-level scalar operations; he must specify many details irrelevant to the
correct execution of his original array-oriented algorithm. An APL-like notation,
where the programmer specifies the array operations directly, might be a better
programming language for these programs than Fortran. Even Fortran 8x [ANSI
81] might be better, though I'm always doubtful about committee efforts.

The advantages of such an approach are obvious: The compiler needn’t
discover the original high-level intention of the programmer before picking a good
implementation for the program. For example, current Fortran compilers for
parallel machines go to great lengths analyzing the different classes of loops that

Chapter 9: Final Thoughts 251

occur in Fortran programs. But a compiler for an APL-like language wouldn’t
need to do that analysis; the language’s operators explicitly indicate the type of
array operation and thus determine the classes of loops that could be used to
implement the operation.

Compilation for APL proper is quite difficult. But a subset of APL specif-
ically chosen for scientific programming could be compiled much more easily,
especially if various sorts of static declarations are added to the language. A
VLIW compiler for this language could analyze an array expression and gen-
erate an efficient intermediate-code implementation that by construction would
be automatically optimized, unrolled, disambiguated, and bank disambiguated.
(Many, if not most, of the optimization techniques of a standard Fortran com-
piler, such as loop induction variable simplification, loop invariant motion, and
common-subexpression elimination, serve mainly to optimize the low-level details
peculiar to a Fortran program.)

Budd has implemented an APL compiler for traditional vector machines
[Budd 84]. It’s quite likely that it could be adapted for use on VLIWs without
much difficulty. The APL compiler currently generates a machine-independent
intermediate vector code. From that code it wouldn’t be hard to generate good
scalar intermediate code of the sort expected by the Bulldog compiler. That
scalar code could then be fed directly into the trace scheduler.

Perhaps trace scheduling isn’t even necessary in this approach. By construc-
tion, the intermediate-code loops generated would fall into a few simple classes,
and the techniques used by the FPS-164 compiler might extend naturally to
larger VLIW machines. In either case, eliminating the expensive standard flow
analyses and optimizations would make larger VLIWs more practical.

Of course, there is a huge disadvantage in using a language that has no re-
semblance to Fortran. There are hundreds of millions of lines of Fortran code out
in the real world, a very real incentive to stick with Fortran-like languages. Any
alternative to Fortran must provide significant, clearly recognizable advantages
to induce industry to leave Fortran behind.

VLIWs Versus Vector Machines

If VLIWs and trace scheduling work well only with programs that have a high
degree of regularity in data and control, are VLIWs any better than vector ma-
chines?

So far, programs that run well on vector machines also run well on VLIWs.
However, there is at least one task a VLIW can perform much better than a vector
machine: The FFT shuffle is easy for a VLIW, but expensive on a vector machine
[Rodrigue 82]. Whether there are other such tasks, I don’t know. An advantage
of the VLIW/trace-scheduling combination is that there is a direct mapping
from the Fortran language level to the operations performed on the machine;
whereas a frequent problem with vector machines is that even the “enhanced”

252 Chapter 9: Final Thoughts

Fortran supplied by the manufacturer doesn’t always provide sufficient access to
the machine’s capabilities [Rodrigue 82].

Another problem with vector machines is that they aren’t as efficient when
manipulating short vectors. But my experiments indicate that maybe VLIWs
don’t do well with short vectors either.

Clearly, VLIWs can efficiently emulate the capabilities of vector machines.
And VLIWs have the potential to degrade more gracefully in the face of programs
only partially vectorizable, whereas vector machines are all-or-nothing. Unlike
vector machines, VLIWs don’t need two sets of hardware, one for normal scalar
computation and one for vectors; for example, VLIWs don’t have the large vector
registers, the complex vector control units, or the high-bandwidth central memory
controller needed for the Cray. Whether all this makes VLIWs economically
advantageous is an open question. At least one start-up company is trying to
make a commercial VLIW, so we should know more in a year or two.

Trace Scheduling for RISCs and LIWs

Trace scheduling would probably do better than traditional compilation for pipe-
lined reduced-instruction-set processors like the MIPS and the FPS-164 (the 164
is an LIW machine, but LIWs have the same essential characteristics as RISCs).

My experiments show that even for a sequential pipelined machine, there
is a significant payoff from trace scheduling. By unrolling the inner loops 2 to
4 times and picking traces that included several basic blocks, trace scheduling
obtained a 30 to 80% improvement for many of the library programs running
on the sequential ELI model. This improvement is in addition to the speed-up
obtained simply by pipelining the operations on a per-block basis; Hennessy and
Gross report that by generating code only one block at a time, they were able to
obtain 2 to 10% speed-ups for the MIPS, compared to not doing any pipelining at
all [Hennessy 83]. Of course, these speed-ups aren’t strictly comparable because
the MIPS and the sequential ELI are different machines and the benchmarks
run were quite different. But the point is that trace scheduling can yield quite
significant improvements in comparison to other methods, at least for scientific
code.

Also, the Bulldog compiler’s method for handling multicycle jumps (delayed
jumps) appears to be somewhat better than the heuristics used for the MIPS
[Gross 82]. Though benchmarks used for the MIPS were generally systems pro-
grams, not scientific programs, the fact that basic blocks in all programs tend
to be short suggest that trace scheduling would obtain larger improvements for
pipelined execution of jumps.

Trace scheduling should also work well for LIWs such as the FPS-164 and
the MARS-432. The current FPS-164 Fortran compiler can only compile the
simplest loops to take full advantage of the machine [Touzeau 84], whereas trace
scheduling would provide about the same speed-up for almost all the loops likely
to be run on the FPS-164.

253

Appendix A
The ELI Machine Models

This appendix contains the definitions of the realistic- and sequential-ELI ma-
chine models used in the experiments reported in chapter 8. See chapter 3 for
the general machine model implemented by the compiler.

The “definition language” consists of a few procedures and special forms
(macros) supplied by the compiler, plus Lisp itself. If you are familiar with Lisp,
you shouldn’t have any problem comprehending the gist of these definitions.

A resource class is defined using the special form:

(resource-class (name class-name) (size class-size))

This returns a Lisp object representing a resource class with the given size and
symbolic name. If the size clause is missing, a size of 1 is assumed.

A machine element (register bank, functional unit, or constant generator) is
defined using the special form

(me -parts-)

where -parts— is a list of name/value pairs specifying the various parts of the
machine element. For example:

(me (name '‘r1)
(type 'register-bank)
(size 32)
(read-ports 1)
(write-ports 2)
(read-resources (resource-class (name 'ri-read)

(size 2)))
(write-resources (resource-class (name ’'ri-write))

defines a 1-in/2-out register bank with 32 registers. As another example:

(me (name "f+)
(type *functional-unit)
(delay 2)

(resources (resource-class (name 'f+)))
(operators ’'(float fix fsub fadd fneg fabs fmin fmax fdiv flt
fgt feq fne fle fge frecip frsqrt fsc fsign-bit))))

defines a floating-adder functional unit with 3-cycle operations (a delay of O
- means the unit’s operations take 1 cycle). The operators clause lists the inter-
mediate-code operators implemented by the functional unit.

Machine elements are connected by using the -> primitive:

(-> mel me2 resource-class)

This connects the output of mel with the input of me2. The resource-class is
optional; if supplied, it is associated with the connection (see chapter 3). If mel

254 Appendiz A: The ELI Machine Models

or me2 or both are lists of machine elements, connections are made between all
pairs of elements taken from the respective lists. As a convenience:

(<-> mel me2 resource-class)
makes a two-way connection, and is equivalent to:

(-> mel me?2 resource-class)
(-> me2 mel resource-class)

The definitions of the realistic and sequential models share a module of
common definitions, the so-called “base” ELI model. The base definitions are
given last.

Appendiz A: The ELI Machine Models 255
The Realistic ELI

; REALISTIC ELI

; This code defines the realistic ELI model.

(eval-when (eval load)

(build ’(list-scheduler:base-eli-model)))
(eval-when (compile load)

(include list-scheduler:declarations))

(defun rem.register-bank:new (i &optional (read-ports 2) (write-ports 1))

(me (name (1t *ci'p))
(type 'register-bank)
(size 32) ,
(read-ports read-ports)
(write-ports write-ports)

(read-resources (resource-class (name (!! ’c i 'r-read))
(size read-ports)))

(write-resources (resource~class (name (!! °c i ’r-write))
(size write-ports)))))

(defun rem.adder-subcluster:new (i)
(let ((bank-a (rem.register-bank:new (!! i *f+a)))
(bank-b (rem.register-bank:new (!! i 'f+b)))
(adder (bem.adder:new i)))
(<-> adder bank-a)
(<-> adder bank-b)
*(,bank-a ,bank-b)))

(defun rem.multiplier-subcluster:new (i)

(let ((bank-a (rem.register-bank:new (!} i 'f*a)))
(bank-b (rem.register-bank:new (!! i *£*b)))
(multiplier (bem.multiplier:new i)))

(<-> multiplier bank-a)
(<-> multiplier bank-b)
‘(,bank-a ,bank-b)))

(defun rem.frontdoor-subcluster:new (i)

(let ((bank-a (rem.register-bank:new (!! i ‘ma)))
(bank-b (rem.register-bank:new (!! i ’'mb)))
(frontdoor (bem.frontdoor:new i))
(memory-alu (bem.memory-alu:new i)))

(<-> frontdoor bank-a)
(<-> frontdoor bank-b)
(<-> memory-alu bank-a)
(<-> memory-alu bank-b)
‘(,bank-a ,bank-b)))

256 Appendiz A: The ELI Machine Models

(defun rem.backdoor-subcluster:new (i)

(let ((bank-a (rem.register-bank:new (!! i ’'ba)))
(bank-b (rem.register-bank:new (!! i 'bb)))
(backdoor (bem.backdoor:new i))
(memory-alu (bem.memory-alu:new (1ri*p))))

(<-> backdoor bank-a)
(<-> backdoor bank-b)
(<-> memory-alu bank-a)
(<-> memory-alu bank-b)
‘(,bank-a ,bank-b)))

(defun rem.test-alu-subcluster:new (i)
(let ((bank-a (rem.register-bank:new (!! i ’ta)))
(bank-b (rem.register-bank:new (i! i ’tb)))
(test-alu (bem.test-alu:new i)))
(<-> test-alu bank-a)
(<-> test-alu bank-b)
‘(,bank-a ,bank-b)))

(defun rem.bus-subcluster:new (i)
*(,(rem.register-bank:new (11 i 'b) 2 2)))

(defun rem.cluster:new (i unique-subcluster)
(let*x((constant-generator (bem.constant-generator:nmew i))

(bus (rem.bus-subcluster:new i))
(subclusters
‘(,.bus
,,unique-subcluster
., (rem.adder-subcluster:new i)

,, (rem.frontdoor-subcluster:new i)
., (rem.test-alu-subcluster:new i)
,,(rem.multiplier-subcluster:new i)))

(crossbar
(resource-class (name (!! ’c i 'x)) (size 4))))
(-> subclusters subclusters crossbar)
(-> constant-generator subclusters crossbar)
bus))
;**
* kK

;¥%*% Here is where the realistic model is actually constructed
ME £ T

<ok

(machine-model.initialize)
(let ((clusters (list:vector

‘(,(rem.cluster:new 0 (rem.backdoor-subcluster:new 0))
, (rem.cluster:new 1 ())
,(rem.cluster:new 2 ())
,(rem.cluster:new 3 ())
,(rem.cluster:new 4 ())
,(rem.cluster:new 5 ())
,(rem.cluster:new 6 ())
,(rem.cluster:new 7 ())))))

Appendiz A: The ELI Machine Models 257

(loop (incr i from 0 to 7)
(bind i+1 (mod (+ i 1) 8)
i+3 (mod (+ i 3) 8))
(do
(<-> (] clusters i)
(0] clusters i+1)
1)
(<-> ({] clusters i)
({] clusters i+3)
1))))

{machine-model .finalize)

258 Appendiz A: The ELI Machine Models

The Sequential ELI

; A pipelined sequential model used for comparing with the realistic

; ELI model. One operation
; port can read and write

can be initiated every cycle, and the register

a value every cycle.

(eval-when (eval load)

(build ’(list-scheduler:base-eli-model)))

(eval-when (compile load)

(include list-scheduler:declarations))

(machine-model .initialize)
(let*((cycle
(resource-class
(register-bank
(me (name
(type
(size
(read-ports
(write-port

(read-resources (resource-class (name ’r-read) (size 3)))
(write-resources (resource-class (name ’'r-write) (size 1)))))

(constant-generator
(me (name
(type

(resources

(constraint

(ful
(me (name
(type
(delay
(resources
(operators

(fu3
(me (name
(type
(delay
(resources
(operators

(name ’cycle) (size 1)))

'1‘)
‘register-bank)
#.(*x 8 64))
3)

8 1)

'C)
'constant-generator)

(resource-class (name ’constant)))
~function
‘bem.me:constant:immediate?)))

*ful)

*functional-unit)

0)

cycle)

*(inot idiv isub ieq imax imin iadd ineg ior
ige ilt iand iabs bitrev iland ilor iash
ile ine ieOmod iexp igt isel fsel if-true
if-false if-ilt if-igt if-ieq if-ine if-ile
if-ige if-ieOmod fsign-bit isign-bit))))

*fu3)
'functional-unit)
2)

cycle)

'(float fix fsub fadd fneg fabs fmin fmax fdiv
flt fgt feq fne fle fge frecip frsqrt fsc
vbase ivload fvload ipload fpload ivstore
fvstore ipstore fpstore))))

Appendiz A: The ELI Machine Models

(fu4
(me (name *fud)
(type 'functional-unit)
(delay 3)

(resources cycle)
(operators ’(fmul imul)))))
(<-> register-bank
‘(,register-bank ,ful ,fu3 ,fu4))
(-> constant-generator
‘(,register-bank ,ful ,fu3 ,fu4d))
0>

(machine-model.finalize)

259

260 Appendiz A: The ELI Machine Models
The Base ELI Definitions

This module defines the basic units in common between the ideal and

; realistic ELI models.

(eval-when (compile load)

(include list-scheduler:declarations))

(defun bem.memory-alu:new (i)

(me (name (1! *c i 'm+))
(type *functional-unit)
(delay 0)

(resources (resource-class (name (!! ’c i ’'m+))))
(operators ’(inot isub iadd ineg ior iand iabs bitrev iland
ilor iland ilor iash))))

(defun bem.test-alu:new (i)

(me (name (11 "c i "t+))
(type *functional-unit)
(delay 0) '

(resources (resource-class (name (!! *c i ’t+))))

(operators *(inot idiv isub ieq imax imin iadd ineg ior ige ilt
ile ine ieOmod iexp igt iand iabs iland ilor isel
fsel iland ilor if-true if-false if-ilt if-igt if-ieq
if-ine if-ile if-ige if-ieq if-ine if-ile if-ige
if-ieOmod fsign-bit isign-bit))))

(defun bem.adder:new (i)

(me (name (11 *c i *f+))
(type *functional-unit)
(delay 2)

(resources (resource-class (name (!! ’c i 'f+))))
(operators '(float fix fsub fadd fneg fabs fmin fmax fdiv flt
fgt feq fne fle fge frecip freqrt fsc fsign-bit))))

(defun bem.multiplier:new (i)

(me (name (1t *'c i *£%x))
(type *functional-unit)
(delay 3

(resources (resource-class (name (!! ‘¢ i °fx))))
(operators ’(fmul imul))))

(defun bem.frontdoor:new (i)

(me (name (1! ’ci 'm))
(type *functional-unit)
(delay 2)

(resources (resource-class (name (!! ’c i 'm))))
(operators ’(vbase ivload fvload ipload fpload ivstore
fvstore ipstore fpstore))

Appendiz A: The ELI Machine Models

(bank i)
(constraint-function
'bem.me:vn:ok~for-frontdoor?)))

(defun bem.backdoor:new (i)

(me (name (1t *c i °bd))
(type 'functional-unit)
(delay 5)

(resources (resource-class (name (!! *c i ’bd))))
(operators ’'(vbase ivload fvload ipload fpload ivstore
fvetore ipstore fpstore))))

(defun bem.constant-generator:new (i)
(me (name (1t ’¢c i 'e))
(type ‘constant-generator)
(resources (resource-class (name (!! ’c i ’¢c))))
(constraint-function
‘bem.me:constant :immediate?)))

(defun bem.me:constant:immediate? (me constant)
(?((inump constant)
(&& (< constant 2047)
(> constant -2048)))
((= 0 constant)
t)
((consp constant)
(== ’address (car constant)))
(t
0l

(defun load-constant? (constant)
(if (bem.me:constant:immediate? () constant) (then
(1== ’load *1ls.immediate-constant-action*))
(else

)))

(defun bem.me:vn:ok-for-frontdoor? (me vn)
(1] (1 xfa.disambiguate-banks?*)
(== (me:bank me) (oper:part (vn:oper van) ‘bank))))

261

262 Appendiz A: The ELI Machine Models

263

Appendix B
Some of the Benchmark Programs

This appendix contains the Tinylisp and Fortran code for some of the bench-
mark programs. For programs that required major source transformations for
memory-reference and memory-bank disambiguation, I've included both the orig-
inal Tinylisp version and the transformed version used in the experiments. Un-
fortunately, space prevents me from including all the programs.

264 Appendiz B: Some of the Benchmark Programs
MATMUL

The original Tinylisp:

; Matrix Multiply

(def-block (abn) (c)
(declare (a b ¢) float ((1 56) (1 56)))
(declare (n i j k) integer)

(loop (incr i from 1 to n) (do
(loop (iner j from 1 to n) (do
(:= (e i j)
(vector-reduce (incr k from 1 to n)
(unroll *unrollx*)

+0.0(*(aik)(®kjid)I)I))II)))

Appendiz B: Some of the Benchmark Programs

The transformed Tinylisp for MATMUL.:

265

3
1)
’
[}
’
o
’
1)

Matrix Multiply

Modified to minimize bank conflict.

(def-block (abn) (c)
(declare (n i j k) integer)
(declare (a b c) float ((1 56) (1 56)))
(declare (80 si s2 s3 s4 sb 86 s7) float)

(loop (iner i from 1 to n) (do
(loop (incr j from 1 to n by 8) (do

(assert (=0-mod (- j 1) 8))

(:= 80 (:=81 (:=82 (:=83 (:=84 (:=85 (:= 86 (:= 87 0.0)))))}))

(loop 1
(incr k from 1 to n)

(do

(if
(if
(if
(if
(if
(if

(if

(unroll *unrollx)

(assert (=0-mod (- k (unroll-index 1)) *unrollx*))
(:=80 (+80 (*x (aik) (bk (+
(:=81 (+ 81 (* (aik) (bk (+
(:=82 (+82 (x (aik) (bk (+
(:= 83 (+83 (*x (aik) (bk (+
(=84 (+ 84 (* (aik) (bk (+
(:= a5 (+ 85 (x (aik) (bk (+
(:=a6 (+ 86 (x (aik) (bk (+
(:=87 (+ 87 (* (aik) (bk (+
(c i j) 80)

(<= (+ j 1) n) .1 (then
(:c=(cdi (+j 1)) s1)))

(<= (+ j 2) n) .1 (then

(c=(c i (+32))s2)))

(<= (+ j 3) n) .1 (then
(:c=(ci (+33))83))

(<= (+ j 4) n) .1 (then
(i=(ci (+3j4))sd))

(<= (+ j 5) n) .1 (then

(:= (ci (+jB)) sB)))

(<= (+ j 6) n) .1 (then
(:=(ci(+j6)) s6)))

(¢<= (+ j 7) n) .1 (then

(=2 (ci(+3imT)sD)I)I)I))

i

e e s s s G, L

0)
1)
2)
3)
4)
5)
6)
7)

N W N N N\

A VA A" A W L W P

N N N N N N

Nt W N NN N\

266 Appendiz B: Some of the Benchmark Programs
FFT

The original Fortran:

c
C FFT from "Introduction to Discrete Systems" by Kenneth Steiglitz
c

Generates test signal S and obtains DFT F using FFT algorithm

aaaa

DIMENSION S(1024)
COMPLEX F(1024)
N = 32
DO1J=1, N
S(J) = SIN(FLOAT(J - 1) * 3.141593/8.)
1 CONTINUE
CALL FTRANS(S, F, N)
DO2J=1, N
FABS = CABS(F(J))
IM=J -1
WRITE(6, 3) JM, S(J), F(J), FABS
3 FORMAT(* *, I6, *® SIGNAL=', F14.7, ® F=', 2F14.7,
* * FABS=’, F14.7)
2 CONTINUE
STOP
END

c
C Places Fourier transform of N-point signal § in F.
c
SUBROUTINE FTRANS(S, F, N)
DIMENSION S(1024)
COMPLEX F(1024)
CALL SHUFF(S, F, N)
LENGTH = 2
1 CONTINUE
DO 2 J =1, N, LENGTH
CALL COMBIN(F, J, LENGTH)
2 CONTINUE

LENGTH = LENGTH + LENGTH
IF (LENGTH .LE. N) GOTO 1
RETURN
END

c

C "Bit-reverses" the S array. N (number of points) any power of 2.
C Result is put in F to prepare transform iteration.

c

c

C Combines trasforms in F(J) - F(N/2+J-1) and F(N/2+J) - F(N+J-1)

Appendiz B: Some of the Benchmark Programs

SUBROUTINE SHUFF(S, F, N)
DIMENSION S(1024)
COMPLEX F(1024), CMPLX
DO &5 IFORT = 1, N
I = IFORT ~ 1
J=0
M2 = 1
CONTINUE
M1 = M2
M2 = M2 + M2
IF (MOD(I, M2) .LT. M1) GOTO 3
J=J3+ N/ M2
CONTINUE
IF (M2 .LT. N) GOTO 1
JFORT = J + 1
F(IFORT) = CMPLX(S(JFORT), 0.)
CONTINUE
RETURN
END

C into transform in F(J) - F(N+J -1)

c

SUBROUTINE COMBINC F, J, N)
COMPLEX F(1024), EMJT, Z, CEXP
EMJT = CEXP((0., -1.) * (6.283185/FLOAT(N)))
N2=N/2
DO 1L =1, N2
LOCL =L + J -1
LOC2 = LOCL + N2
Z = EMJT #* (L - 1) = F(LOC2)
F(LOC2) = F(LOCL) - Z
F(LOCL) = F(LOCL) + Z
CONTINUE
RETURN
END

267

268 Appendiz B: Some of the Benchmark Programs

The original Tinylisp for FFT:

; FFT adpated from "Introduction to Discrete Systems" by Kenneth Steiglitz

; This version uses precomputed complex exponentials.

(def-block (s n emjt) (£)
(declare s float ((1 1024)))
(declare n integer)
(declare emjt complex float ((1 1024)))

(declare f complex float ((1 1024)))
(declare (z f1) complex float)
(declare (i j 1 locl loc2 length) integer)

(loop (incr i from 1 to n)
(unroll *unrollx)
(do
(:= j (bit-reverse (- i 1) n))
(:= (f i) (complex (s (+ j 1)) 0.0))))

(loop (step length from 1 using (+ length length)
while (<= (* 2 length) n))
(do
(loop (incr j from 1 to n by (* 2 length)) (do
(loop (incr 1 from 1 to length)
(unroll *unrollx)
(do
(assert (>=1 1))
(assert (<= 1 length))

(:=1loetl (+1 (-3 1)))
(:= loc2 (+ locl length))

(:=z (* (emjt (+ length (- 1 1))) (f loc2)))
(:= £f1 (£ locl))

(:= (£ loc2) (- £f1 z))

(:= (f loc1) (+ £12))) D)))))

Appendiz B: Some of the Benchmark Programs 269

The transformed Tinylisp for FFT (the specially transformed shuffle follows):

; FFT1 adpated from "Introduction to Discrete Systems" by Kenneth Steiglitz

; This version uses precomputed complex exponentials and unrolls the main

; loop specially.

(def-block (8 n emjt) (£)

(declare s float ((1 1024)))
(declare n integer)
(declare emjt complex float ((1 1024)))

(declare f complex float ((1 1024)))
(declare (z f1) complex float)
(declare (i j 1 locl loc2 length) integer)

(loop 1la
(incr i from 1 to n)
(unroll *unroll*)
(do
(assert (=0-mod (- i (unroll-index la)) *unrollx))

(:= j (bit-reverse (-~ i 1) n))
(:= (£ i) (complex (s (+ j 1)) 0.0))))

(:= length 1)
(loop 11
(incr j from 1 to n by (* 2 length))
(unroll *unrollx*)
(do
(assert (=0-mod (+ -1 (- j (* 2 length (- (unroll-index 11) 1))))
unroll))

(:=11)

(assert (>=1 1))

(assert (<= 1 length))

(:=1ocl (+1 (-3 1)))

(:= loc2 (+ loci length))

(:= z (* (emjt (+ length (-1 1))) (f loc2)))
(:= £1 (f locl))

(:= (f loc2) (- £1 2))

(:= (£ locl) (+ £f1 2))))

(:= length 2)

(loop 12
(incr j from 1 to n by (* 2 length))
(unroll *unroll//2*)

270 Appendiz B: Some of the Benchmark Programs

(do
(assert (=0-mod (+ -1 (- j (* 2 length (- (unroll-index 12) 1))))
unrollx))

(:=11)

(assert (>=1 1))

(assert (<= 1 length))

(:=locl (+1(-j 1))

(:= loc2 (+ locl length))

(:= z (* (emjt (+ lemgth (- 1 1))) (f loc2)))
(:= £1 (f locl))

(:= (f loc2) (- £1 z))

(:= (f locl) (+ £f1 2))

(:=12)

(assert (>=1 1))

(assert (<= 1 length))

(:=1locl (+1 (-j 1)))

(:= loc2 (+ locl length))

(:= z (* (emjt (+ length (-1 1))) (f loc2)))
(:= £f1 (f locl))

(:= (f loc2) (- f1 z))

(:= (£ locl) (+ f12))))

(:= length 4)
(loop 14
(incr j from 1 to n by (* 2 length))
(unroll *unroll//4#)
(do
(assert (=0-mod (+ -1 (- j (* 2 length (- (unroll-index 14) 1))))
unrollx))

(:=11)

(assert (>=1 1))

(assert (<= 1 length))

(:=locl (+1 (-5 1))

(:= loc2 (+ loci length))

(:= z (* (emjt (+ length (- 1 1))) (f loc2)))
(:= £f1 (f locl))

(:= (f loc2) (- f1 z))

(:= (£ locl) (+ £f1 z))

(:=1 2)

(assert (>=1 1))

(assert (<= 1 length))

(:=1loel (+1 (-3 I

(:= loc2 (+ locl length))

(:=z (* (emjt (+ length (- 1 1))) (f loc2)))
(:= f1 (f locl))

(:= (£ loc2) (- f1 2))

(:= (£ locl) (+ f1 2))

Appendiz B: Some of the Benchmark Programs 271

(:=1 3)
(assert (>=1 1))
. (assert (<= 1 length))
(:= loel (+1 (-3 1)))
(:= loc2 (+ locl length))
(:= z (* (emjt (+ length (- 1 1))) (f loc2)))
(:= f1 (f locl))
(:= (f loc2) (- £f1 z))
(:= (£ locl) (+ £f1 z))

(:=14)

(assert (>=1 1))

(assert (<= 1 length))

(:=loel (+1 (-3 1)))

(:= loc2 (+ locl length))

(:= z (* (emjt (+ length (- 1 1))) (f loc2)))
(:= £1 (f locl))

(:= (f loc2) (- £1 2))

(:= (£ locl) (+ £f1 2))))

(loop (step length from 8 using (+ length length)
while (<= (* 2 length) n))
(do
(assert (=0-mod length 8))

(loop 1b (incr j from 1 to n by (* 2 length)) (do
(assert (=0-mod (- j (unroll-index 1b)) *unrollx*))

(loop lc
(incr 1 from 1 to length)
(unroll *unrollx)
(do
(assert (=0-mod (- 1 (unroll-index le)) *unrollx*))
(assert (>=1 1))
(assert (<= 1 length))

(:=loct (+1 (-3 1)))
(:= loc2 (+ locl length))

(:= z (* (emjt (+ length (- 1 1))) (f loc2)))
(:= £f1 (f locl))

(:= (f loc2) (- £f1 2z))

(:= (f loel) (+ £12)))))))))

272 Appendiz B: Some of the Benchmark Programs

The transformed shuffle of FFT; I've elided the middle sections:

;- FFT SHUFFLE

; This is a special 64-unrolling of the shuffle part of FFT. The bank
; of every memory access is known at compile time.

(def-block (s n emjt) (£)
(declare s float ((0 1023)))
(declare n integer)
(declare emjt complex float ((0 1023)))

(declare £ complex float ((0 1023)))
(declare (z f1) complex float)

(declare (i j 1 locl loc2 length d) integer)

(declare (i0 i1 i2 i3 i4 ib5 i6 i7) integer)

(assert (=0-mod n 64))

(:=d (// n8)
(assert (>=d 8))
(assert (=0-mod d 8))

(loop (incr i0 from 0 to (- d 1) by 8) (do
(:= i1 (+ 10 d))
(:= i2 (+ i1 d))

(:= i3 (+ i2 d))

=14 (+ 13 4))

i (+ 14 d))

i6 (+ i5 d))

i7 (+ i6 d))

N NN

. .

(assert (=0-mod i0 8))

(:=1 (+ i0 0)) (:= j (bit-reverse i n))
(assert (=0-mod (- j 0) 8)) (:= (f i) (complex (s j) 0.0))
(:=41i (+i0 1)) (:= j (bit-reverse i n))
(assert (=0-mod (- j 0) 8)) (:= (£ i) (complex (s j) 0.0))
(=1 (+i0 2)) (:= j (bit-reverse i n))
(assert (=0-mod (- j 0) 8)) (:= (f i) (complex (s j) 0.0))
(:=1i (+ i0 3)) (:= j (bit-reverse i n))
(assert (=0-mod (- j 0) 8)) (:= (f i) (complex (s j) 0.0))
G=1i (+1i0 4)) (:= j (bit-reverse i n))
(assert (=0-mod (- j 0) 8)) (:= (f i) (complex (s j) 0.0))
(:=i (+ i0 B)) (:= j (bit-reverse i n))
(assert (=0-mod (- j 0) 8)) (:= (f i) (complex (s j) 0.0))
(:=41i (+ i0 6)) (:= j (bit-reverse i n))
(assert (=0-mod (- j 0) 8)) (:= (£ i) (complex (s j) 0.0))

Appendiz B: Some of the Benchmark Programs

;=i (+i0o 7))

(assert (=0-mod (- j 0) 8))

(:=1i (+ i1 0))
(assert (=0-mod (-
(:=4 (+ i1 1))
(assert (=0-mod (-
=i (+ i1 2))
(assert (=0-mod (-
(:=i (+ i1 3))
(assert (=0-mod (-
(=4 (+ i1 4))
(assert (=0-mod (-
(:=1i (+ i1 B))
(assert (=0-mod (-
(:=3i (+ i1 6))
(assert (=0-mod (-
(:;=41 (+ i1 7))
(assert (=0-mod (-

. and so on for i2,

(:= i (+ i7 0))
(assert (=0-mod (-
(=i (+i7 1))
(assert (=0-mod (-
(=i (+i7 2))
(assert (=0-mod (-
(:= i (+i7 3))
(assert (=0-mod (-
(:= i (+i7 4))
(assert (=0-mod (-
(:=i (+ i7 B))
(assert (=0-mod (-
(:= 41 (+ i7 6))
(assert (=0-mod (-
(=1 (+4i7 7))
(assert (=0-mod (-

))))

i

j

4)
4)
4)
4)
4)
4)
4)

4)

i3, i4,

N
7
7)
7)
7)
7
7

p)

8)
8)
8)
8)
8)
8)
8)

8)

8)

(:= j (bit-reverse

(:= (£ i) (complex (s j) 0.0))

(:= j (bit-reverse
(:= (£ i) (complex
(:= j (bit-reverse
(:= (f i) (complex
(:= j (bit-reverse
(:= (f i) (complex
(:= j (bit-reverse
(:= (£ i) (complex
(:= j (bit-reverse
(:= (£ i) (complex
(:= j (bit-reverse
(:= (£ i) (complex
(:= j (bit-reverse
(:= (£ i) (complex
(:= j (bit-reverse
(:= (£ i) (complex

iS5, and ie...

(:= j (bit-reverse
(:= (£ i) (complex
(:= j (bit-reverse
(:= (£ i) (complex
(:= j (bit-reverse
(:= (£ i) (complex
(:= j (bit-reverse
(:= (£ i) (complex
(:= j (bit-reverse
(:= (£ i) (complex
(:= j (bit-reverse
(:= (£ i) (complex
(:= j (bit-reverse
(:= (£ i) (complex
(:= j (bit-reverse
(:= (£ i) (complex

in))

in))
(s j) o
in))

(s j) 0.

in))
(s j) o
in))
(s j) o
in))
(s j) o
in))

(s j) 0.

in))
(s jD O
in))
(s j) o

in))

(s j) 0.

in))

(s j) O.

in))
(s j) O
in))
(s D0
in))

(s j) 0.

in))
(s j) O
in))
(s j) 0
in))

(s j) 0.

.0)

0)

.0)
.0)

.0)

0)

.0)

.0)

0)

0)

.0)

.0)

0)

.0)

.0)

0)

273

274 Appendiz B: Some of the Benchmark Programs
TRID4

(2]

The original Fortran:

PARAMETER N1=800
PARAMETER N2=400
PARAMETER LMAX=20, LMIN=21, LMAXP=21

DIMENSION A(N1), B(N1), C(N1), D(N1), X(N1)
DIMENSION SCA(N2),SCB(N2),SCC(N2),SCD(N2)

DIMENSION RB(N1)

DIMENSION NL(LMAXP), ML(LMAXP), IO(LMAXP), JO(LMAXP)
REAL CYC1,CYC2,CYCLES,CYCPP

INTEGER ORDER

OPEN (UNIT=6,DEVICE="TTY:")

WRITE(6,63)
63 FORMAT(®* ORDER. CYCLES (TOTAL). CYCLES PER POINT.’,
1 * REL. ERROR IN 2- AND MAX-NORMS.'/1X,79('=')/)

DO 25 ICOUNT = 1,1
RORDER = 200. * ICOUNT
ORDER = 200 * ICOUNT

DIAG = 11.
SUB = ~3.
SUPER= -5.

B(1) = DIAG

DO 1 I = 2,0RDER

B(I) = DIAG

A(I) = SUB
1 €(I-1) = SUPER

A(1) = 0.

C(ORDER) = 0.

D(1) = B(1) + ¢(1)

DO 15 I = 2,0RDER -
15 D(I) = A(I) + B(I) + c(1)

D(ORDER) = A(ORDER) + B(ORDER)

---------- call tridiagonal solver —----------

CYC1 =0

CYC2 = 0

call timer(cycl)

call tridag(order,a,b,c,d,x)

Appendiz B: Some of the Benchmark Programs

cxkx%%CUT ONE****%

200

NC=ORDER

N = NC

LEVEL = 0
IO(LEVEL + 1) = N
JO(LEVEL + 1) = 0

DO 600 L = 1, LMAX
I1 = 10(L)
J1 = Jo(L)
NL(L) = N
IF (N .LE. LMIN) GO TO 600
M= (N+1) / 2
MM = M - 1
ML(L) = M
I=1I1
J=J1 -1
DO 200 II =1, M
I=1+1
J=J+2
B(I) = B(J)
D(I) = D(J)
RB(I) = 1.0/B(J+1)

I =11
J=J1

DO 210 II = 1, MM
I=1I+1
J=J+ 2
SCA(II) = A(J+1) * RB(I)
SCC(II) = C(J-1) = RB(I)

A(I+1) = A(J) * SCA(II)
C(I) = C(J) * SCC(II)

A(I+1) = -A(I+1)
c(I) = -c(I)

SCB(II) = C(J) * SCA(II)
SCD(II) = D(J) * SCA(II)

B(I+1) = B(I+1) - SCB(II)
D(I+1) = D(I+1) - SCD(II)

SCB(II) = A(J) * scc(II)
SCD(II) = D(J) = Scc(II)

B(I) = B(I) - SCB(II)
D(I) = D(I) - ScD(II)

275

276 Appendiz B: Some of the Benchmark Programs
210 CONTINUE
c CALL BOTCHD(...)

IF (2«M .NE. N) GO TO 220

TA = A(J1+1) / B(J1+N)
TC = C(J1+N-1) / B(J1+N)

A(TI1+1) = - TA * A(J1+N)
B(I1+1) = B(I1+1) - TA * C(J1+N)
D(I1+1) = D(I1+1) - TA * D(J1+N)
B(I1+M) = B(I1+M) - TC * A(J1+N)
C(I1+M) = = TC * C(J1+N)
D(I1+M) = D(I1+M) - TC * D(J1+N)

GOTO 230
220 A(I1+1) = A(J1+1)
C(I1+M) = C(J1+N)
230 CONTINUE
Io(L+1) = IO(L) + M
Jo(L+1) = JO(L) + N
N =M
= LEVEL + 1

500 LEVEL
c ;
c
c
600 CONTINUE
c
caokkkkCUT TWOkkk%k%
c
NB = N
NM = NBI- 1

DO 6010 I = 1, NB
IF (B(J1+I) .EQ. 0.D+0) B(J1+I) = 1.0D-38
6010 CONTINUE

SCA(J1+1) = 1.D0 / B(J1+1)
DO 6016 I = 2, NM
6015 SCA(J1+I)=1.D+0 / (B(J1+I) - A(J1+I) * C(J1+I-1) * SCA(J1+I-1))
c
¢ Invert tridiagonal part on Q
c
SCB(J1+1) = A(J1+1) * SCA(J1+1)
DO 6020 I = 2, NM
6020 SCB(J1+I) = - A(J1+I) =* SCB(J1+I-1) * SCA(J1+I)
SCB(J1+NM) = SCB(J1+NM) + C(J1+NM) * SCA(J1+NM)

Appendiz B: Some of the Benchmark Programs

DO 6030 J = 2, NM
I=NB-J
6030 SCB(J1+I) = SCB(J1+I) - C(J1+I) * SCA(J1+I) * SCB(J1+I+1)
RCAQ = 1.D+0 /
1 (B(J1+NB) - C(J1+NB) * SCB(J1+1) - A(J1+NB) * SCB(J1+NM))
c
¢ End precomputation. The following are all the calcs invovling D
c
X(J1+1) = D(J1+1) * SCA(J1+1)
DO 6040 I = 2, NM
6040 X(J1+4I) = (D(J1+I) - A(J1+I) * X(J1+I-1)) * SCA(J1+I)

DO 6050 J = 2, NM
I=NB-J
6050 X(J1+I) = X(J1+I) - C(J1+I) * SCA(J1+I) * X(J1+I+1)

X(J1+NB) = (D(J1+NB)-C(J1+NB)*X(J1+1)-A(J1+NB)*X(J1+NM))*RCAQ
DO 6060 I =1, NM
6060 X(J1+I) = X(J1+I) - X(J1+NB) * SCB(J1+I)
[
ckkkkkCQUT TWO*kkkx
c -
IF (LEVEL .EQ. 0) RETURN

(2]

DO 900 LL = 1, LEVEL
L = LEVEL + 1 - LL

M = ML(L)

N = NL(L)

I1 = I0(L)

Ji = Jo(L)

I =11
J=J1-1
DO 800 ITI = 1, M
I=TI+1
J=J+2

800 X(J) = X(I)

MM =M -1

I =11

J=J1

DO 810 II = 1, MM
I=I+1
J=J+2

SCA(II) = A(J) = X(J-1)
SCC(II) = C(J) * X(J+1)
SCB(II) = D(J) - SCA(II)

277

278 Appendiz B: Some of the Benchmark Programs

SCD(II) = SCB(II) - SCC(II)
810 X(I) = SCD(II) = RB(I)

IF (2*M .EQ. N)
1 X(J1+N) = (DQJ1+N) - AQJ1+N)*X(J1+N-1) -C(J1+N)*X(J1+1))
2 / B(J1+N)

900 CONTINUE

CYCLES = CYC2 - CYC1
CYCPP = CYCLES / ORDER

ERRMAX = 0.
ERR2 = 0.
DO 3 I = 1, ORDER
ABSERR = ABS(1.-X(I))
ERR2 = ERR2 + ABSERR*ABSERR
3 ERRMAX = AMAX1(ERRMAX,ABSERR)
RELERR = SQRT(ERR2) -/ SQRT(RORDER)

WRITE(6,62)ORDER, CYCLES,CYCPP,RELERR,ERRMAX
62 FORMAT(1X,I6,2E16.5,5X,2E16.5)

25 CONTINUE

STOP
END

Appendiz B: Some of the Benchmark Programs 279

The transformed Tinylisp for TRID4:

; Tridiagonal Solver using cyclic reduction.

(def-block (

abcdorder) (x)

(declare (a b ¢ d) float ((1 20000)))
(declare order integer)
(declare x float ((1 20000)))
(declare (x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) float)
(declare (sca scb scc scd) float ((1 10000)))
(declare rb float ((1 20000)))
(declare (nl ml i0 jO) integer ((1 21)))
(declare (i i1 ii j j1 1 level 11 lmax lmin m mm n nb nc nm) integer)
(declare (rcaq ta tc sca-ii scb-ii scc-ii scd-ii prev-sca prev-scb
prev-x)
float)
(:= 1lmin 21)
(:= lmax 20)
(:= j1 0 ;*%* J1 is live here, but live analysis doesn’t know
;**%* that the loops execute > O times. To avoid a minor
;¥*%x compiler bug, we assign J1 to force it to be live.
; kK
;*¥*¥*% cut one
§ Fk Kk
(:= nc order)
(:=n nc)
(:= level 0)
(:= (i0 1) n)
(:= (jo 1) 0)
(loop 11 (incr 1 from 1 to lmax) (do
(:= i1 (1o 1)
(:= j1 (50 1))
(:= (nl 1) n)
(if (<= n 1min) (then

(leave 11 0)))

(:=m (// (+n 1) 2))

(:= mm (-m 1))
(:= (m1 1) m)
(loop 12

(incr ii from 1 to m)

280

Appendiz B: Some of the Benchmark Programs

(incr i from (+ il 1))
(iner j from (+ j1 1) by 2)
(unroll *unroll2*)
(do
(assert (>= (- i j) 10))
(assert (=0-mod (- i (unroll-index 12)) *unroll2x))
(assert (=0-mod (- j -1 (* 2 (unroll-index 12))) *unroll2x*))

(:= (b i) i)
(:= (4 i) (a j»
(c=(bi) (//at0@®EjI)I))I))

(loop 13
(incr ii from 1 to mm)
(incr i from (+ il 1))
(incr j from (+ j1 2) by 2)
(unroll *unroll2*)

(do
(assert (>= (- i j) 10))
(assert (=0-mod (- ii (unroll-index 13)) *unroll2x))
(assert (=0-mod (- i (unroll-index 13)) *unroll2*))

(assert (=0-mod (- j (* 2 (unroll-index 13))) *unroll2#))

(:= sca-ii (*x (a(+3j1)) @i)))
(:= scc-ii (* (c (-3 1)) (zbi)))
(:=(a (+11)) (- (* (a j) sca-ii)))
(:= (c i) (- (* (c j) scc-ii)))
(:= scb-ii (* (c j) sca-ii))

(:= scd-ii (* (d j) sca-ii))

(:=(b (+11)) (- (b (+1i 1)) scb-ii))
(= (A (+i1)) (- (@ (+1i1)) sed-ii))
(:= scb-ii (* (a2 j) scc-ii))

(:= scd-ii (* (d j) sec-ii))

(:= (b i) (- (b i) scb-ii))

(:= (d i) (- (d i) Bcd-ii))

(:= (sca ii) sca-ii)

(:= (scb ii) scb-ii)

(:= (scc ii) scc-ii)

(:= (scd ii) s;d-ii)))

(if (= n (* 2 m)) (then
(:= ta (//n (a (+ j1 1)) (b (+ ji1n))))
(:= tc (//n (c (- (+ j1n) 1)) (b (+ jin))))

(:= (a (+ i1 1)) (- 0.0 (x ta (a (+ jin)))))

(ass;rt (=0-mod ji 8))

(=

(:=nm (- nb 1))

(:= (b (+
(:=(d (+
(:= (b (+
(:= (c (+
(:= (d (+
(else
(:= (a (+
(:= (c (+

Appendiz B: Some of the Benchmark Programs

i1 1)
i1 1)
il m)
il m)
il m)

i1 1)
il m)

N W 2\

)
)

(-
(_
(-
(*.
(_

(a
(c

(:= (i0 (+ 1 1)) (+ (io
(= (GO (+1 1)) (+ (jO 1) n))
m)
(+ level 1))

(:= level
))

5 kKoK

;%% cut two
s dededk

nb n)

(loop 14
(incr i from 1 to nb)
(unroll *unrollix)

(do

(M (+i1 1)) (*x ta (c
(d (+ i1 1)) (* ta (d
(b (+ i1 m)) (* tc (a
0.0 (* tc (c
(d (+itm)) (*x tc (4

(+ j1 1)))
(+j1n))))))

1) m))

(+
(+
(+
(+
(+

j1
j1
j1
j1
j1

(assert (=0-mod (- i (unroll-index 14)) *unrollix))

(:= (b (+ j1 i)) (select (= 0.0 (b (+ j1 i)))

1.0e-38
(b (+3j1i))))))

HH PP
A

(:= prev-sca (:= (sca (+ j1 1)) (//n 1.0 (b (+ j1 1)))))
(loop 15
(incr i from 2 to nm)
(unroll *unrollix)

(do

(:= érev-scb (:= (8cb (+ j1 1)) (* (a (+ j1 1)) (sca (+ j1 1)))))

(assert (=0-mod (~ i 1 (unroll-index 15)) *unrollix))
(:= prev-sca (:= (sca (+ j1 i))
(//n 1.0 (- (b (+ j1i))

(x (a (+ j1 i)) (e (- (+ j1 i) 1))
prev-sca)))))))

< sk ok

;%% Invert tridiagonal part on Q ---

s ok ok

(loop 16
(incr i from 2 to nm)
(unroll *unrollix)

(do

N N S\

N N

Nt N s\

281

282 Appendiz B: Some of the Benchmark Programs

(assert (=0-mod (- i 1 (unroll-index 16)) *unrollix))
(:= prev-scb (:= (scb (+ j1 i))
(- (*+ (a (+ j1 i)) prev-scb (sca (+ j1 i))))))))
(:= (scb (+ j1l nm)) (+ (8cb (+ j1 nm))
(* (c (+ j1 om)) (sca (+ jiom)))))

(:= prev-scb (scb (+ j1 mb -1)))
(loop 17
(incr j from 2 to nm)
(decr i from (- nb 2))
(unroll *unrollix)
(do
(assert (=0-mod (- j 1 (unroll-index 17)) *unrollix))
(assert (=0-mod (+ i 1 (unroll-index 17)) *unrollix))
(:= prev-scb (:= (sBcb (+ j1 i))
(- (seb (+ j1 i))
(* (c (+ j1 i)) (sca (+ j1 i)) prev-scb))))))

(:= rcag

(//a 1.0 (- (- (b (+ j1 nb))

(* (¢ (+ j1ob)) (scb (+ j1 1))))
(* (@ (+ j1 ob)) (scb (+ j1om))))))

; Aok

;*¥%* End precomputation. The following are all the calcs invovling

; k%% D,

5 KAk
(= prev-x (:= (x (+ j1 1)) (* (d (+ j1 1)) (sca (+ j1 1)))))
(loop 18

(incr i from 2 tec nom)
(unroll *unrollix)
(do
(assert (=0-mod (- i 1 (unroll-index 18)) *unrollix))
(:= prev-x (:= (x (+ j1 i))
(x (- (@ (+ j1i)) (* (a (+ j1 i)) prev-x))
(sca (+ j1 i)))))))

(:= prev-x (x (+ j1 nb -1)))
(loop 19
(incr j from 2 to nm)
(decr i from (- nb 2))
(unroll *unrollix)
(do
(assert (=0-mod (- j 1 (unroll-index 19)) *unrollix))
(assert (=0-mod (+ i 1 (unroll-index 18)) *unrollix))
(:= prev-x (:= (x (+ j1 i))
(- (x (+§11)) (x (c (+j1i)) (sca (+ j1i))
prev-x))))))

(:= (x (+ j1 nb))
(* (- (- (d (+ j1 nb))

Appendiz B: Some of the Benchmark Programs

(* (¢ (+ j1 mb)) (x (+ j1 1)))
(* (a (+ j1ab)) (x (+ jiom))))

rcaq))

(loop 110
(incr i from 1 to nm)
(unroll *unrollix)
{do

283
)

(assert (=0-mod (- i (unroll-index 110)) *unrollix))

(= (x (+ j1 1))

(- (x (+ j1 i)) (= (x (+ j1 ob)) (scb (+ j1 i)INN

2 %k %k

2
; k%% cut two
M % %k Xk

(if (1= level 0) (then

(loop 111 (incr 11 from 1 to level) (do

(=1
(:=m
(:=n
(:= i1
(:= j1

(ml 1))
(nl 1))
(io 1))
(jo 1))

(loop 112

(= (+ level 1) 11))

(incr ii from 1 to m)

(incr i from
(incr j from

(+ i1 1))
(+ j1 1) by 2)

(unroll *unroll?2*)

(do

(assert (>= (- i j) 10))

(assert (=0-mod
(assert (=0-mod

(- i (unroll-index 112)) *unroll2*))
(- j -1 (* 2 (unroll-index 112))) *unroll2*))

C=(x j) (x1i))))

(:=mm (-m 1))
(loop 113

(incr ii from 1 to mm)

(incr i from
(incr j from

(+ i1 1))
(+ j1 2) by 2)

(unroll *unroll2x)

(do

(assert (>= (- i j) 10))

(assert (=0-mod
(assert (=0-mod
(assert (=0-mod

(:= (sca ii) (=
(:= (scc ii) (=
(:= (8cb ii) (-

(- ii (unroll-index 113)) *unroll2+))
(- i (unroll-index 113)) *unroll2x))
(- j (+ 2 (unroll-index 113))) *unroll2#))

(@aj) (x(Cj1
(c§) (x (+j1)
)

)))
)))
(@ j) (sca ii)))

284 Appendiz B: Some of the Benchmark Programs

(:= (secd ii) (- (scdb ii) (scc ii)))
(:= (x j) (* (Bed ii) (rb i)))))
(if (=0 (* 2 m)) (then
(:= (x (+ j1))
(//2 (- (- (d (+ j1 n))
(* (a (+ j1n)) (x (- (+3j1n)1))))
(* (¢ (+ j1n)) (x (+ j11))))
(M +jta))))))

)))))

Appendiz B: Some of the Benchmark Programs

NEWRZ

aaaan

aaaaan

The original Fortran:

SUBROUTINE NEWRZ(DTN, DTNPH, R, Z, U, V, AJ, ENERGY, P, Q, TEMP,
X RHO, DTAU, MASS, NBC, KMN, LMN, KMX, LMX)

this routine calculates the new velocities, coordinates,
and the density and change in specific volume for each zone.

REAL R(33,33)
REAL Z(33,33)
REAL U(33,33)
REAL V(33,33)
REAL AJ(33,33)
REAL ENERGY(33,33)
REAL P(33,33)
REAL Q(33,33)
REAL TEMP(33,33)
REAL RHO(33,33)
REAL DTAU(33,33)
REAL MASS(33,33)
REAL NBC(33,33)

COMMON /MAIN/ C
X R(33,33),2(33,33),U(33,33),V(33,33),AJ(33,33)
X,ENERGY(33,33),P(33,33),Q(33,33) ,TEMP(33,33)
X,RHO(33,33) ,DTAU(33, 33) ,MASS(33,33) ,NBC(33,33)

COMMON /KLSPACE/ KMN,LMN,KMX,LMX
DATA P1D6 /0.166666666666667/ C
DATA VCUT /1.0E-5/ C

P1D6 = 0.166667
VCUT = 1.0E-6

compute acceleration and new velocities

DO 100 L=LMN,LMX
DO 110 K=KMN,KMX
AU = (P(K,L)+Q(X,L)) * (Z(K,L-1)-Z(K-1,L)) +
(P(K+1,L)+Q(K+1,L))*(Z(K+1,L)-Z(K,L-1)) +
(P(K,L+1)+Q(K,L+1))*(Z(X-1,L)-Z(K,L+1)) +
(P(K+1,L+1)+Q(K+1,L+1)) = (Z(X,L+1)-Z(K+1,L))
A¥ = (P(X,L)+Q(X,L)) = (R(X,L-1)-R(K-1,L)) +
(P(K+1,L)+Q(K+1,L)) * (R(K+1,L)-R(K,L-1)) +
(P(K,L+1)+Q(K,L+1)) * (R(K-1,L)-R(K,L+1)) +
(P(K+1,L+1)+Q(K+1,L+1)) * (R(K,L+1)-R(K+1,L))
AUYW = RHO(K,L)*AJ(K,L)+RHO(K+1,L)*AJ(K+1,L)

ol

e

285

286 Appendiz B: Some of the Benchmark Programs

X +RHO(K,L+1)*AJ(K,L+1)+RHO(K+1,L+1) *AJ(K+1,L+1)

AUW = 2. /AUW
AU = -AU*AUW
AW = AWXAUW
U(K,L) = U(K,L)+DTN*AU
V(K,L) = V(K,L)+DTN*AW
IF(ABS(U(K,L)) .LE. VCUT) U(K,L) = 0.0
IF(ABS(V(K,L)) .LE. VCUT) V(K,L) = 0.0

110 CONTINUE

100 CONTINUE

c advance coordinates to time (n+1)

DO 200 L=LMN,LMX
DO 210 K=KMN,KMX
R(K,L) = R(X,L)+DTNPH*U(K,L)
Z(K,L) = Z(K,L)+DTNPH*V(K,L)
210 CONTINUE
"200 CONTINUE

c jacobian area in (r,z) plane
c volume = volume/2pi (cm*#*3/radian)
c mass = mass/2pi (gm/radian)

KMNP = KMN + 1
LMNP = LMN + 1
DO 300 L=LMNP,LMX
DO 310 K=KMNP,KMX
AJ1 = R(K,L)* (Z(K-1,L)~Z(K,L-1))

X + R(K-1,L)* (Z(K,L-1)-Z(X,L))
X + R(K,L-1)*(Z(K,L)-Z(K-1,L))

AJ3 = R(K-1,L)*(Z(K-1,L-1)-Z(K,L-1))
X + R(K-1,L-1)%(Z(K,L-1)-2(K-1,L))
X + R(K,L-1)*(Z(K-1,L)-Z2(K-1,L-1))

AJ(K,L) = 0.5%x(AJ1+AJ3)
VOL = P1D6+((R(K,L)+R(K-1,L)+R(K,L-1))*AJ1 +
X (R(K-1,L)+R(K-1,L-1)+R(K,L-1))*AJ3)

VN = 1.0/RHO(K,L)
RHO(K,L) = MASS(K,L)/VOL
VNP = 1.0/RHO(K,L)
DTAU(K,L) = VNP-VN

310 CONTINUE

300 CONTINUE

RETURN
END

Appendiz B: Some of the Benchmark Programs

The transformed Tinylisp for NEWRZ:

287

; NEWRZ, from SIMPLE

; This routine calculates the new velocities, coordinates, and the density

; and change in specific volume for each zone.

; The argument KMN is assumed = 2 to make the bank disambiguation work

; correctly.
; SIMPLE code.

This is a realistic assumption, as far as I can tell from the

(defmacro def-column-major (name)
‘(def-tinylisp-macro ,name (x y)
(list ’,(atomconcat name ’-array) y x)))

(def-column-major
(def-column-major
(def-column-major
(def-column-major
(def-column-major
(def-column-major
(def-column~major
(def-column-major
(def-column-major
(def-column-major

(def-block (dtn dtnph r-array z-array u-array v-array aj-array

T)
z)
u)

p-array

g-array rho-array mass-array kmn lmn kmx lmx)
(uil vi1 ril z11 ajil rhoil dtaull)

(1
Q1
(1
(1
(1
1
(1
(1
(1
Q1

#H WU

.¥newrz.max-e*)
.¥newrz.max-g*)
.¥newrz.max-s*)
.Xnewrz.max-e*)
.¥newrz.max-ex*)
.¥newrz.max-g*)
.*Newrz.max-s*)
.¥newrz.max-s*)
.¥newrz.max-e*)
.¥newrz.max-e*)

(declare (dtn dtnph) float)
(declare (kmn kmx lmn lmx) integer)
(declare

(declare r-array float
(declare z-array float
(declare u-array float
(declare v-array float
(declare aj-array float
(declare p-array float
(declare g-array float
(declare rho-array float
(declare dtau-array float
(declare mass-array float
(declare

(declare

(declare

(1
(1
(1
(1
(1
(1
(1
(1
(1
(1

(aji‘ajS au auw aw pld6é ukl vcut vkl vol
(1 1-1 1+1 k k-1 k+1 kmnp lmnp) integer)

(pkl pkl+1 pk+il pk+11+1) float)

(uil vii ri1l z11 ajil rhoil dtaull) float)

.knewrz.max-s*)))
.*newrz.max-ex)))
.*newrz.max-s*)))
.*newrz.max-s*)))
.Xnewrz.max-s*)))
.knewrz.max-e*)))
.knewrz.max-s*)))
.¥newrz.max-sx)))
.*newrz.max-s*)))
.*newrz.max-sx)))

H O H R WS

vn vap) float)

288

Appendiz B: Some of the Benchmark Programs

(declare (qkl gkl+1 gqk+1l qk+11+1) float)
(declare (rhokl rhokl+i rhok+1il rhok+1l+1) float)
(declare (ajkl ajkl+l ajk+1l ajk+11+1) float)

(declare (zk-11-1 zkl-1 zk-11 zkl zk+1l) float)
(declare (rk-11-1 rkl-1 rk-11 rkl rk+1l) float)

(:= pldé 0.166667)
(:= vcut 1.e-5)

;¥%*% compute acceleration and new velocities
; KAk
(loop (incr 1 from lmn to lmx) (do
(:=1-1 (-1 1))
(:=1+1 (+ 1 1)))

(:= pk+11 (p kmn 1))
(:= pk+11+1 (p kmn 1+1))

(:= qk+11 (q ¥mn 1))
(:= gk+11+1 (q kmn 1+1))

(:
(:

rhok+11l (rho kmn 1))
rhok+11+1 (rho kmn 1+1))

ajk+1l (aj kmn 1))
ajk+11+1 (aj kmn 1+1))

(
(:

(:= zkl (z (- kmn 1) 1))
(:= zk+11 (z kmn 1)

(:= rkl (r (- xmn 1) 1))
(:= rk+1l (r kmn 1))

(loop 11
(incr k from kmn to kmx)
(unroll *unrollx)
(do
(assert (=0-mod (- k (unroll-index 11) 1) #*unrollx))

(:= k-1 (- k 1))
(:= k+1 (+ k 1))

(:= pkl pk+11)

(:= pkl+i pk+il+l)

(:= pk+11 (p k+1 1))
(:= pk+11+1 (p k+1 1+1))

= gkl qk+11)

gkl+l gk+11+1)
gk+1l (q k+1 1))
qk+11+1 (q k+1 1+1))

(:
(:
(:
(:

rhokl

rhokl+
rhok+1
rhok+1

NN NN

ee ee ee as

ajkl

ajkl+l
ajk+1l
ajk+il

NN NN

e es ee se

zk-11
zkl
zk+11

~ N~
s on ws
[]

rk-11
rkl
rk+1l

~ o~
na B

(:= au

(+ (+

(x
(+ (+

(*
(:= auw

(+ (+

au (*

~ o~
s ee ae
a4

vkl (+

~ NN~
A
B UM

Appendiz B: Some of the Benchmark Programs

rhok+11)
1 rhok+11+1)
1 (rho k+1 1))
1+1 (rho k+1 1+1))

ajk+1l)

ajk+11+1)

(aj k+1 1))
+1 (aj k+1 1+1))

zkl)
zk+11)
(z k+1 1))

rkl)
rk+1l)
(r k+1 1))

(+ (* (+ pkl gkl)

(* (+ pk+1l qk+11)
(* (+ pkl+1l gkl+1)
(+ pk+11+1 qk+11+1)

(+ (* (+ pkl qkl)

(* (+ pk+1l gk+1l)
(* (+ pkl+i gkl+1)
(+ pk+11+1 gk+11+1)

(_
(_
(_
(..

(..
(_
(...
(..

(z k 1-1) zk-11))

zk+11 (z k 1-1))))
zk-11 (z k 1+1))))
(z k 1+1) zk+11))))

(r k 1-1) rk-11))
rk+1l (r k 1-1))))
rk-11 (r k 1+1))))
(r k 1+1) rk+11))))

(+ (* rhokl ajkl) (* rhok+1l ajk+1l))
(* rhokl+1l ajkl+1)) (* rhok+1l+1 ajk+11+1)))

auw (//n 2.0 auw))

(- au) auw))

aw (* aw auw))

ukl (+ (u k1) (* dtn auw)))

(v X 1) (x dtn aw)))

;*%%x advance coordinates to time (n+1)

5 kK

(loop (imcr 1 from lmn to lmx) (do

(loop 12

(incr k from kmn to kmx)

(unroll
(do

*unrollx)

(u k 1) (select (<= (abs ukl) vcut) 0.0 ukl))
(v k1) (select (<= (abs vkl) vcut) 0.0 vkl))))))

(assert (=0-mod (- k (unroll-index 12) 1) *unrollx))

(:=(r k1) (+ (r k1) (* dtoph (u k 1))))

289

290 Appendiz B: Some of the Benchmark Programs
(:=(z k1) (+ (z k1) (* dtoph (v k 1))))))))

;%%* jacobian area in (r,z) plane
;%%% volume = volume2pi (cm**3radian)
;¥%% mass = mass2pi (gmradian)

< deokok

= kmop (+ kmn 1))
:= 1lmnp (+ 1lmn 1))

(
(

(loop (incr 1 from lmnp to lmx) (do
(:=1-1 (-1 1))
(i=1+1 (+ 1 1))

(:= rkl-1 (r (- kmnp 1) 1-1))
(:=xkl (r (- kmnp 1) 1))

(:= zkl-1 (z (- kmop 1) 1-1))
(:= 2kl (z (- kmop 1) 1))

(loop 13
(incr k from kmnp to kmx)
(unroll *unrollx)
(do
(assert (=0~mod (- k (unroll-index 13) 2) *unrollx))

(:= k-1 (- k 1))
(:= k+1 (+ k 1))

(:= rk~11-1 rkl-1)

(:= rkl-1 (r k 1-1))
(:= rk-11 rkl)

(:= rkl (r k 1))

(:= zk-11-1 2zkl-1)

(:= zkl1-1 (z k 1-1))
(:= zk-11 zkl)

(:= zkl (z k 1))

(:= aj1
(+ (+ (* rkl (- zk-11 zkl-1)) (* rk-11 (- zkl-1 zkl)))
(* rkl-1 (- zkl zk-11))))
(:= aj3
(+ (+ (* rk-11 (- zk-11-1 zkl-1))
(* rk-11-1 (- zkl-1 zk-11)))
(* rkl-1 (- zk-11 zk-11-1))))
(:= (aj k1) (* 0.5 (+ aj1 aj3)))
(:= vol
(* p1dé
(+ (x (+ (+ rkl rk-11) rkl-1) aji1)
(* (+ (+ rk-11 rk-11-1) rkl-1) aj3))))
(:=vn (//n 1.0 (zho k 1)))

Appendiz B: Some of the Benchmark Programs 291

(:= (rho k 1) (//n (mass k 1) vol))
(:= vap (//n 1.0 (zho k 1)))
(:= (dtau k 1) (- vap vn))))))

= ull (u 11))
(:= vit (v 11))
(:=r11 (r 11))
(:= z11 (z 11))
(:= aji1 (aj 11))
(:= rholl (rho 1 1))
(:= dtaull (dtau 3 3)))

292 Appendiz B: Some of the Benchmark Programs

293

References

[Aho 77]

[Allen 84]

[ANSI 81]

[Banerjee 79|

[Barrett 79]

[Budd 84|

[Chow 84]

[Fisher 79]

A. V. Aho and J. D. Ullman.
Principles of Compiler Design.
Addison-Wesley, 1977.

John R. Allen and Ken Kennedy.

Automatic loop interchange.

In Proceedings of the SIGPLAN ’84 Symposium on Compiler
Construction, pages 233-246. Association for Computing Ma-
chinery, June 1984.

Proposals approved for Fortran 8x.
American National Standards Institute, Inc., 1981.
Cited in Allen [Allen 84].

Uptal Banerjee.

Speedup of ordinary programs.

Technical Report UIUCDS-R-79-989, University of Illinois De-
partment of Computer Science, October 1979.

Cited in Nicolau [Nicolau 84].

William A. Barrett and John D. Couch.
Compiler Construction: Theory and Practice.
Science Research Associates, Chicago, 1979, pages 581-587.

Timothy A. Budd.

An APL compiler.

ACM Transactions on Programming Languages and Systems
6(3):297-313, July 1984.

Frederick Chow and John Hennessy.

Register allocation by priority-based coloring.

In Proceedings of the SIGPLAN ’84 Symposium on Compiler
Construction, pages 222-232. Association for Computing Ma-
chinery, June 1984.

J. A. Fisher.

The optimization of horizontal microcode within and beyond ba-
sic blocks: An application of processor scheduling with re-
sources.

U.S. Department of Energy Report COO-3077-161, Courant
Mathematics and Computing Laboratory, New York Univer-
sity, October 1979.

294 References

[Fisher 80]

[Fisher 81]

[Fisher 82]

[Fisher 83|

[Fisher 84]

[Fisher 84b]

[Forsythe 77]

[Foster 72]

Joseph A. Fisher.

2"-way jump microinstruction hardware and an effective instruc-
tion binding method.

In The 18th Annual Microprogramming Workshop, pages 64-75.
Association for Computing Machinery and IEEE Computer
Society, November 1980.

Joseph A. Fisher.
Trace scheduling: A technique for global microcode compaction.
IEEE Transactions on Computers C-30(7):478-490, July 1981.

Joseph A. Fisher.

Computer systems architecture at Yale.

Research Report 241, Yale University, Department of Computer
Science, July 1982.

Joseph A. Fisher.

Very long instruction word architectures and the ELI-512.

In The 10th Annual International Symposium on Computer Ar-
chitecture, pages 140-150. IEEE Computer Society and Asso-
ciation for Computing Machinery, June 1983.

Joseph A. Fisher and John J. O’Donnell.

VLIW machines: Multiprocessors we can actually program.

In Compcon 84, pages 299-305. IEEE Computer Society, Febru-
ary 1984.

Joseph A. Fisher, John R. Ellis, John C. Ruttenberg, and Alexan-
dru Nicolau.

Parallel processing: A smart compiler and a dumb machine.

In Proceedings of the SIGPLAN ’84 Symposium on Compiler
Construction, pages 37-47. Association for Computing Ma-
chinery, June 1984.

George E. Forsythe, Michael A. Malcolm, and Cleve B. Moler.
Computer Methods for Mathematical Computations.
Prentice-Hall, 1977.

C. C. Foster and E. M. Riseman.

Percolation of code to enhance parallel dispatching and execu-
tion.

IEEE Transactions on Computers 21(12):1411-1415, December
1972.

Cited in Nicolau [Nicolau 84].

References 295

[FPS 82] APALG64 Programmer’s Guide.
Floating Point Systems, Portland, Oregon, 1982.

[Gross 82] Thomas R. Gross and John L. Hennessy.
Optimizing delayed branches.
In 15th Annual Workshop on Microprogramming, pages 114-120.
IEEE Computer Society and Association for Computing Ma-
chinery, December 1982.

[Harrison 77] William H. Harrison.
Compiler analysis of the value ranges for variables.
IEEE Transactions on Software Engineering SE-3(3):243-250,
May 1977.

[Hennessy 82| J. L. Hennessy, N. Jouppi, J. Gill, F. Baskett, A. Strong, T. R.
Gross, C. Rowen, and J. Leonard.
The MIPS machine.
In Compcon 82, pages 2-7. IEEE Computer Society, February
1982.
Cited in Hennessy [Hennessy 83].

[Hennessy 82b]
John Hennessy.
Symbolic debugging of optimized code.
ACM Transactions on Programming Languages and Systems
4(3):323-344, July 1982.

[Hennessy 83] John Hennessy and Thomas Gross.
Postpass code optimization of pipeline constraints.
ACM Transactions on Programming Languages and Systems
5(3):422-448, July 1983.

[Jones 80] Anita K. Jones and Edward F. Gehringer, editors.
The Cm* multiprocessor project: A research review.
Technical Report CMU-CS-80-131, Computer Science Depart-
ment, Carnegie-Mellon University, July 1980.

[Kuck 72] D. J. Kuck, Y. Muraoka, and S.-C. Chen.
On the number of operations simultaneously executable in For-
tran-like programs and their resulting speedup.
IEEE Transactions on Computers C-21(12):1293-1310, Decem-
ber 1972.
Cited in Nicolau [Nicolau 84].

296 References

[Kuck 78]

[Lah 83]

[Landskov 80]

[Linn 83]

[Lisp-84 84]

[Martin 83]

[Micro-12 79]

[Micro-16 83]

David J. Kuck.
The Structure of Computers and Computations.
John Wiley and Sons, New York, 1978, pages 312.

Jehkwan Lah and Daniel E. Atkins.

Tree compaction of microprograms.

In The 16th Annual Microprogramming Workshop, pages 23-33.
Association for Computing Machinery and IEEE Computer
Society, October 1983.

David Landskov, Scott Davidson, Bruce Shriver, and Patrich W.
Mallet.

Local microcode compaction techniques.

ACM Computing Surveys 12(3):261-294, September 1980.

Joseph L. Linn.

SRDAG compaction: A generalization of trace scheduling to in-
crease the use of global context information.

In The 16th Annual Microprogramming Workshop, pages 11-22.
Association for Computing Machinery and IEEE Computer
Society, October 1983.

Association for Computing Machinery.
Conference Record of the 1984 Symposium on LISP and Func-
tional Programming, August 1984.

Joanne L. Martin, Ingrid Y. Bucher, and Tony T. Warnock.

Workload characterization for vector computers: Tools and tech-
niques.

Technical Report LA-UR-82-3213, Los Alamos National Labora-
tory, 1983.

Cited in Fisher [Fisher 84b)].

Association for Computing Machinery.
12th Annual Microprogramming Workshop, November 1979.

Association for Computing Machinery and IEEE Computer So-
ciety.
The 16th Annual Microprogramming Workshop, October 1983.

[Nicolau 81]

[Nicolau 84]

[Numerix 83|

[Padua 80|

[Piessens 83]

[Rau 81]

[Rau 82]

References 297

Alexandru Nicolau and Joseph A. Fisher.

Using an oracle to measure parallelism in single instruction
stream programs.

In The 14th Annual Microprogramming Workshop, pages 171~
182. Association for Computing Machinery and IEEE Com-
puter Society, October 1981.

Alexandru Nicolau.

Parallelism, Memory Anti-aliasing and Correctness Issues for a
Trace-Scheduling Compiler.

PhD thesis, Yale University, December 1984.

MARS-482 Programmer’s Reference Manual.
Preliminary edition, Numerix Corporation, Newton, Massachus-
setts, 1983.

D. A. Padua, D. J. Kuck, and D. H. Lawrie.

High speed multiprocessors and compilation techniques.

IEEE Transactions on Computers 29(9):763-776, September
1980.

Cited in Nicolau [Nicolau 84].

R. Piessens.
QUADPACK: A Subroutine Package for Automatic Integration.
Springer-Verlag, New York, 1983.

B. R. Rau, C. D. Glaeser.

Some scheduling techniques and an easily schedulable horizontal
architecture for high performance scientific computing.

In The 14th Annual Microprogramming Workshop, pages 183—
198. Association for Computing Machinery and IEEE Com-
puter Society, October 1981.

B. Ramarkrishna Rau, Christopher D. Glaeser, and Raymond L.
Picard.

Efficient code generation for horizontal architectures: Compiler
techniques and architectural support.

In The 9th Symposium on Computer Architecture, pages 131-
139. IEEE Computer Society and Association for Computing
Machinery, April 1982.

298 References

[Riseman 72] E. M. Riseman and C. C. Foster.
The inhibition of potential parallelism by conditional jumps.
IEEE Transactions on Computers 21(12):1405-1411, December
1972.
Cited in Nicolau [Nicolau 84].

[Rodrigue 82] Garry Rodrigue (editor).
Parallel Computations.
Academic Press, 1982.

[Ruttenberg 83]
J. C. Ruttenberg and J. A. Fisher.
Lifting the restriction of aggregate data motion in parallel pro-
cessing.
In Tenth Annual International Symposium on Computer Archi-
tecture, pages 211-215. Association for Computing Machinery,
March 1983.

[Ruttenberg 85)
John C. Ruttenberg.
Delayed-Binding Code Generation for a VLIW Supercomputer.
PhD thesis, Yale University, June 1985.
Expected.

[Sandewall 78]
Erik Sandewall.
Programming in the interactive environment: The Lisp experi-
ence.
ACM Computing Surveys 10(1):35-72, March 1978.

[Sites 78] Richard L. Sites.

Instruction ordering for the Cray-I computer.

Technical Report CS-023, Department of Electrical Engineering
and Computer Science, University of California at San Diego,
July 1978.

I remember reading this six years ago. I've talked to Sites, who
remembers his work on this problem quite well, but doesn’t
remember writing the tech report. I've also talked to the sec-
retary responsible for distributing UCSD Computer Science
reports, and she claims this report really does exist. But I
haven’t yet received a copy.

[Steele 84]

[Steiglitz 74]

[Touzeau 84|

[Tjaden 70]

References 299

Guy L. Steele, Jr..
Common Lisp: The Language.
Digital Press, Maynard, Massachussetts, 1984.

Kenneth Steiglitz.
An Introduction to Discrete Systems.
John Wiley and Sons, New York, 1974.

Roy F. Touzeau.

A Fortran compiler for the FPS-164 scientific computer.

In Proceedings of the SIGPLAN ’84 Symposium on Compiler
Construction, pages 48-57. Association for Computing Ma-
chinery, June 1984.

G. S. Tjaden and M. J. Flynn.

Detection and parallel execution of independent instructions.
IEEE Transactions on Computers 19(10):889-895, October 1970.
Cited in Nicolau [Nicolau 84].

	1
	2
	3

