Yale University
Department of Computer Science

Single Assignment Semantics
for Imperative Programs

Bjorn Lisper

YALEU/DCS/TR-703
May 1989

This paper is supported in part by The Office of Naval
Research under Contract No. N0O0014-86-K-0310. Tt was
written in August of 1988 and has just become a Yale TR.

Single Assignment Semantics for Imperative Programs
Bjorn Lisper

Computer Science Department
Yale University
New Haven, CT06520

Abstract

We give semantics for imperative while-programs by assigning a set of single-assignments
and a value function to each program. The semantics is shown to be consistent with Dijkstra’s
predicate transformers. Every program execution is seen to generate a set of events with data de-
pendencies. The events are the single-assignments and the data dependencies between them are
given by common input/output variables. Program parts that always generate isomorphic sets
can sometimes be effectively parallelized, using known methods for mapping sets of events with
static dependencies to a space-time. Thus, the semantics can be helpful for finding techniques
for compilation of while-programs to fine-grain parallel and pipelined target architectures. It
also shows the relationship between imperative languages and single-assignment languages.

1 Introduction

The advent of parallel computers has created new demands on programming languages and their
implementation, both from a theoretical and a practical point of view. In order to utilize the
extended computing power offered by parallel hardware, new techniques are required for speci-
fying and analyzing the task to be done. In areas like scientific computing, where the tasks are
computation-intensive, it is essential that the parallel hardware is utilized well.

Fine-grain parallelism is of interest in many contexts; one of them is the aforementioned scien-
tific computing. A theoretically appealing family of languages, suitable for fine-grain parallelity, is
single-assignment languages [1,23]. In such a language, a statement is executed only once. There-
fore, a variable can be assigned only once, thus explaining the term “single-assignment”. Since
variables are assigned only once, they stand for values, not memory locations. Whether two state-
ments in a single-assignment program can be executed in parallel or not depends on if any values
produced by one statement are used by the other. If there are, then there is a data dependency
from the first statement to the second and they must be executed in that way. If not, they can be
executed in parallel. Thus, parallellity is implicitly given by input/output variable relationships.

For various reasons, single-assignment languages are not frequently used in practice. Instead,
fine-grain parallel programming is usually done using some conventional imperative language (read:
FORTRAN). Even though such languages are of a sequential nature, parallellism can be introduced.
This can be done either by explicit language constructs, like “in parallel do” or vector operations,
or by a compile-time analysis of the dependencies in the program, to detect implicit parallelism
[14,15,16,27,28,31].

Semantics for imperative languages is usually based on a global state transition model, where
states are maps from program variables to values. The model may be explicit (the “interpretive”
and the “computational” model, [12]), implicit through propositional formulas [7,11] or predicate

transformers [6], or even more implicit as in denotational semantics (for an introduction, see [21]).
See also [9]. These semantics will, however, not provide a suitable support for the dependence
analysis preceding the possible parallelization of the program. This is since global state transition
models of this kind are inherently sequential.

In this paper we will develop an operational semantics for a simple but nontrivial class of im-
perative programs. Standard methods for dependence analysis of imperative programs consider
dependencies between imperative statements, which necessitates the introduction of several depen-
dence types such as data dependence, antidependence and output dependence [14,27,28,31]. This
obscures the analysis and restricts the parallelism that can be detected. The complications arise
from the fact that an imperative statement can be executed several times. The situation becomes a
lot simpler if we consider dependencies between statement ezecutions instead of statements. Every
statement execution takes values as inputs and occurs only once. If the atomic statements are
assignments, the statement executions can indeed be seen as single-assignments. Thus, the only
dependence between statement executions will be pure data dependencies. Our semantics can be
seen as a description of how a program will generate a set of statement executions. An imperative
program with assignment statements will therefore in principle generate a single-assignment pro-
gram. The semantics does have a state model, but the states are, rather than simple maps from
program variables to values, recordings of the execution as sets of single-assignments. Thus, a state
contains the true dependencies between the statement executions that have taken place so far.

This approach also has another interesting implication from a compiler-construction point of
view. If it is possible to predict that a certain state will be reached, then the execution of statements
up to that point can be scheduled, according to the partial ordering given by the data dependencies,
already at the time of prediction. Cases where future states can be predicted are straight-line code
and loops with branching-free bodies, where the steps and limits of the loop indices are known at
compile-time. Thus, their execution can be scheduled at compile-time. An interesting, recently
developed class of scheduling methods, seemingly applicable for this, are the so-called space-time
mapping methods. These methods were originally developed for the purpose of synthesizing syn-
chronous hardware [3,4,13,17,19,20,18,24,25,26,29,30]. It follows that such parts of a program can
be scheduled to execute, with an absolute minimum of overhead, on a tightly coupled synchronous
part of the system such as a vector pipeline or a systolic array. The approach therefore seems
particularly relevant when fine-grain parallelism is desired.

Let us finally mention, that the static single assignment form (SSA form) of a program has been
considered recently for use in optimizing compilers for conventional computers [2,5]. The SSA form
is essentially a description of how the single-assignments are generated, very much in accordance
with our semantics.

2 Preliminaries

We assume that the reader is familiar with the basic concepts variables, formal expressions and
polynomials of universal algebra [8]. The expression composed from a function symbol f, with
arity n(f), and n(f) expressions pi,...,Py(s), is denoted f o (py,... sPn(f))- varset(p) is the set
of variables in the expression p. ¢ denotes the natural homomorphism that maps every expression
to its corresponding polynomial.

A substitution o in X is a partial function from the variables in X to expressions over X. o can
naturally be extended to general expressions: o(p) is the expression obtained, when all occurrences
in pof variables z for which o(z) is defined are replaced with o(z). The domain of o, dom(c), is
the set of all variables z for which o(z) is defined. The range of o, rg(o), is the set of all variables

that occurs in any o(z), i.e. |J(varset(o(z)) | z € dom(c)). A finite substitution is defined only
for a finite number of variables.

Definition 1 (Substitution composition) For all substitutions oy, o9

01002 = {z « 01(02(2)) | = € dom(a2) } U 01| dom (01)\dom(02)-

01| dom (o1)\dom (o) 18 1 Testricted to the variables in dom(oy) but not in dom(o3). It is not hard
to show, that oy 0 o3(p) = o1(02(p)) for all expressions p. Thus, composition of substitutions is
essentially composition of functions. For more detail, see [19].

Given a substitution ¢ in X, define the relation <, on X by: z <, y iff z € varset(c(y)). We
say that o is causal iff <} is well-founded (a strict partial order and no infinite decreasing chains
exist). For any causal o, we define ¢, as the unique substitution with domain dom(o) such that
e = P, 0 0. P, is well-defined due to the well-foundedness of <,. Call a substitution o closed iff
rg(o) C dom(o):

Lemma 1 If o is causal and closed, then rg(,) = 0.

Proof. By induction over <,. Consider all z in dom(v,) = dom(c). If z is minimal,
then o(z) is a ground term (since rg(c) C dom(c)). Thus, ¥,(z) = ¥ 0 o(z) = o(z), and
varset(Ys(z)) = 0. If z is not minimal, assume that varset(y,(z’)) = 0 for all 2’ <, z. Then
varset(s(x)) = varset(1, o o(x)) = (by [19, lemma D6]) = J(varset(v»(z')) | 2’ <» z). By the
induction hypothesis, this union is empty. The lemma follows. |

Let o be causal and closed. Let b be a boolean expression such that varset(b) C dom(c). Then
we write o |= b iff ¥,(b) = true. (Note, that ¢,(b) always will be a ground term under the given
conditions.)

3 A formalization of single-assignments

Single-assignment languages [1,23] have been considered for a while as a promising class of languages
for programming parallel machines. Their main attractive feature is the implicit parallellism; two
statements need to be executed in sequence only if there is a data dependence between them. This
is due to two basic restrictions put on these programs: the first is the single-assignment rule, that
states that a variable can be assigned at most once. Thus, a variable represents a value and not
a memory location. The second is that there are not to be any cycles in the dependence chain.
Therefore, a single assignment program can in principle be evaluated bottom up, successively, by
executing assignment statements as their right-hand side variables become available.

In this paper, we will adopt causal substitutions as a mathematical model of single-assignments.
Any pair (z,C(z)) in such a substitution C can be interpreted as an assignment z := C(z). Since
these assignments are part of a substitution (i.e. a partial function from variables) they adhere
to the single assignment rule. The causality ensures that there are no infinite dependence chains
downwards. The relation <¢ can be seen as a data dependence relation: if z <¢ y, then the
assignment producing y uses z as input and thus the one producing z must precede it in time. If
z Ac y and y A¢ z, then they can take place concurrently.

Let C be a causal substitution. Variables in dom(C) are called assigned variables and the others
are called free variables. The interpretation is that free variables provide inputs to the system from

somewhere outside. Assigned variables, on the other hand, are successively assigned their values
during the computation. A causal substitution can be considered as an equation system, that
successively defines the assigned variables in terms of the free variables. We can give very simple
semantics to causal substitutions when regarded as a set of single-assignments:

Definition 2 Let C be a causal substitution. c(z) is called the output expression of z under C.
The output function of z under C is ¢(¢pc(z)).

The meaning of every assigned variable is thus a function, a polynomial, in the free variables.
Note that the recursive definition of ¥¢ simulates the computation by a construction of the corre-
sponding expressions as the computation proceeds; for any free variable z it holds that ¢ (z) = z
(i-e. symbolic input of the corresponding value) and if z is assigned, then, for all 2’ <¢ z, ¥c(z')
is substituted for 2’ in C(z) in order to form ¢ (z). This is a symbolic evaluation of C(z) with
inputs z’.

4 A simple imperative language

In this section we will introduce a simple imperative language, that essentially consists of while
programs [9,12] enriched with if..then..else-statements. We will also give a standard weakest
precondition semantics.

4.1 Definition of the language

Since we are interested in the mathematical properties of programs rather than syntax-related
issues, we define the programs in the language to be mathematical objects rather than syntactical.
Let X be a set of program variables ranging over some domain D, let B(X) be the set of formal
boolean-valued expressions over X, and let us call the corresponding language L(X):

o skip € L(X) (empty statement).

e If o is a finite substitution in X, then o € L(X) (concurrent assignment).

If [,I' € L(X), then I;I' € L(X) (concatenation).

If b € B(X) and if [,I’ € L(X), then if b then [else I’ € L(X) (binary choice).

If b€ B(X) and if I € L(X), then while b do [€ L(X) (iteration).

Properties of programs in L(X') can be proved by induction on program structure, according
to the inductive definition above.

4.2 Weakest precondition semantics

Following Dijkstra [6] we can give weakest precondition (wp) semantics to L(X). In the following
b€ B(X),l,lI' e L(X), and Q denotes an arbitrary predicate in program variables:

(wpl) wp(skip,Q) <= Q.
(wp2) wp(0,Q) <= 0(Q).
(wp3) wp(L1,Q) <= wp(l,wp(l',Q)).

(wp4) wp(if b then [else I',Q) <= (b == wp(l,Q)) A (=b = wp(l',Q)).

(wp5) Define Ho(Q) <= QA-bandforall k>0 Hy(Q) <= wp(l, Hr_1(Q))V (Q A-b). Then
wp(while b do [,Q) <= 3k > 0[HL(Q)).

(wp2) is the obvious generalization of wp for assignment statements to concurrent assignments.
(wp4), (wp5) are obtained from Dijkstra’s wp’s for the guarded commands IF and DO restricted to
deterministic binary choice and iteration respectively. (wp5) can be defined equivalently as follows:

(wp5’) Define Go(Q) <= Q A -b and Gi(Q) <= wp(l,Gr-1(Q)) for all k¥ > 0. Then
wp(while b do 1,Q) <= 3k > 0[Gx(Q)].

The proof of the equivalence between (wp5) and (wp5’) is omitted here. It relies on that the
while statement is deterministic. As an immediate spinoff from (wp2) we obtain the following
~result for composing chains of concurrent assignment statements.

Proposition 1 wp(oy;...;0,,Q) <= wp(oy0---00,,Q) for all predicates Q and concurrent
assignments 0y,...,0y,.

Proof. The result follows immediately from a repeated application of (wp3), (wp2), and the
associativity of substitution composition. |

Proposition 1 can be used to transform chains of assignments into one equivalent assignment.
The resulting right-hand expressions can then be treated at compile-time to yield a maximally
efficient evaluation pattern. This is an important technique in parallelizing compilers [31] and
it can also be used in conventional compilers to improve the performance for techniques such as
detection of common subexpressions. The composed substitution oy o --- 0 g, can be successively
computed using 1.

5 Single assignment semantics

SA (single-assignment) semantics is an operational semantics, that models execution by construct-
ing a causal substitution as the execution goes on. Every execution of an assignment statement adds
single-assignments to the previously generated causal substitution. Variables representing the old
values of the program variables are substituted for the program variables in the expressions in the
right-hand side of the assignment. Distinct variables, representing new values of assigned program
variables, are substituted for these in the left-hand side. The result is distinct single-assignments.
If the above is to work, we must be able to generate fresh variables every time a program
variable is assigned a new value. Thus, we postulate a countable set sX, such that X C sX,
of so-called value variables and an injective successor function s:sX — sX \ X. s will provide
a distinct variable each time a fresh variable is needed. s can also be seen as a relation on sX:
¢’ s 2" <= 2" = s(z'). The transitive closure s of s is easily seen to be a strict partial order
(which consists of one linear order for each z € X). For any set of variables Y C sX, we define
st(Y)={z|yst 2 Ay €Y} From the above, we deduce the following lemma:

Lemma 2 Forany z,y € sX, ¢ ¢ sT({z}), and furthermore z # y = st({z})nst({y}) = 0.

We must at every point keep track of which value variable that represents the current value
of every program variable. To do this we will use value functions, which are injective functions
X — sX. Note that a value function formally is a substitution.

Definition 3 The set of states for X, S(X), is the set of pairs (C,v) where C is a causal, closed
substitution in sX, v is a value function X — sX and the following holds:

1. v(X) C dom(C).
2. sT(v(X)) N dom(C) = 0.

Note, that lemma 1 and 2 in definition 3 above implies that ¢ o v(z) is a ground term for any
z € X. Thus, a state binds every program variable to a value. The SA-semantics for a program in
L(X) can now be given by the aid of a partial function:

S:(S(X) x L(X)) — S(X).

S maps pairs of states and programs to states and is thus a state transition function. For any state
t and program [, we define (Cs(t,1),vs(t,1)) = S(¢,!). In the following definition, (C,v) ranges
over S(X). As usual, b € B(X) and [,I' € L(X).

(SA1) S({C,v), skip) = (C,v).
Cs({C,v),0) = CU{s(v(z)) « voo(z)]|z € dom(o)},

s(v(z)), z € dom(o)

(SA2) vs((C,v),a')(a:) = ’U(III), z ¢ dom(o).

(SA3) S((C,v), i) = S(S(C,v),1),1').

8(<Ca v)al)9 c |: v(b)
s((C, o)), C k= -w(b).

S((C,v),l;while b do), C |=v(b)
(C,v), C = ~w(b).

(SA4) S((C,v),if b then [else I') = {

(SA5) S((C,v), while b do 1) = {

Note that since b in (SA4) and (SA5) is a boolean expression in X, the truth value of C |= v(b)
will always be well-defined for any state (C,v). Then S({C,v),l), as will be seen later, is defined
exactly when ! terminates with “input” (C,v).

For a given state ¢ and statement /, define S°(¢,l) = ¢ and S™(t,1) = S(S"~1(t,1),1) for n >
0; define further (C%(t,1),v2(t,1)) = S™(t,!). The following lemma will be used when proving
properties about S({C, v), while b do [).

Lemma 3 S((C,v),while b do 1) is defined ezactly when there exists some k > 0 such that:
o Forall0 < j <k, CL(C,0),0) |= vL((C,v),1)(b)

o C5((C,v),]) E ~w§((C,0),)(b)
o Sk((C,v),1) is well-defined.

Furthermore, S({C,v),while b do) = S¥({C,v),1) when defined.

Proof. The lemma is shown using a least fixpoint argument. (SA5) can be seen as a recursive
definition of a function f in the arguments (C,v), b, I:

F(C o)1) = if(C F v(B), F(S(C,0),1),b,1),(C,v))
= r[A(C v, b.D),

6

rewriting (SA5) using (SA3) and the if-function, that returns its second argument if its first is true
and its third otherwise.
We first show that f({C,v),b,l) always is defined when some k according to above exists.

§ is assumed to be naturally extended, and it is thus monotonic [22]. Furthermore, the well-
definedness of S¥({(C,v),!) implies the same for S¥=1((C,v),!) and recursively for S¥((C,v),1), for
0 < j < k. Thus, the truth values of the conditions of form C’ |= v'(b) are also well-defined, for
(C',v") = §7((C,v),1), 0 < j < k. It follows that we will not have to worry about the monotonicity
of “=". The iffunction is monotonic. Thus, the least fixpoint f* of the functional T exists and
we take S((C,v),while b do !) = f*((C,v),b,l). Define the approzimation functions f7, j > 0 by:
f? = Q and f/ = 7[f~1] for j > 0. We obtain, denoting C%({C,v),1) by C% and vs((C,v),!) by
Vs,

oC,v),b,l) = w

fl((cv v),b,) = f(CE v(b),fO(S((C, v),1),b,1),(C,v))
if (C§ | v5(b),w,(Cs,5))
FHC,0),b,0) = f(C I v(b), FASUC, v),1),b,1), (C,)

= zf(C’g = 'l)g(b), Zf(Cé I= v‘ls(b)»w’ (Cs,95)), (Cg7 vg))

Il

It is not hard to see that if k fulfils the conditions, then f*+1((C,v),b,1) = S*((C,v),l) # w. It
follows that f*((C,v),b,1) = f*+1((C,),b,1) = S¥((C,v),l) (otherwise f* cannot be a Lu.b. of the
approximation functions).

If, on the other hand, we assume that S((C,v), while b do) = f*((C,v),b,!) is defined, then
there must be some k > 0 such that f**1((C,v),b,1) = f*({C,v),b,]) # w (again since f* is a
Lu.b.). Furthermore, there must be a least such k. It follows that for all 0 < j < k holds that
CL = —L(b), Ck |= vE(b), and f*((C,v),b,1) = S¥-1((C,),1). |

Define, for any ! € L(X), I° = skip and (¥ = [¥=1;] for k > 0. It is easily seen that S(t,I¥) =
S*(t,1). So if S(t,while b do [) is defined, then S(t,while b do) = S(¢,I¥) for some k. In
induction proofs of properties of S, the step for while b do ! can then be proved using the result
for skip, the induction hypothesis for /, and repeatedly the result for concatenation.

We will now justify definition 3 of states, by showing that S(X) is closed under S:

Theorem 1 Ift € S(X), then, for alll € L(X), holds that S(t,1) € S(X) whenever defined.
Proof. By induction over program structure. Let (C,v) = t.
o | = skip: trivially true.
o | = o: denote {s(v(z)) — voo(z) |z € dom(o)} by ¢. By (SA2) follows that
vs({C, v),0)(dom(a)) € s(v(X)) (1)

and
vs({(C,v),0)(X \ dom(o)) C v(X). (2)

Injectivity of vs((C,v), o) follows from (1), (2), injectivity of v, injectivity of s and s(v(X)) N
v(X) = 0, which follows from property 1 and 2 of definition 3. Injectivity of v and s ensures

that c is a well-defined substitution. C is by assumption a well-defined substitution. dom(c) C
sT(v(X)) and property 2 then implies that

dom(c) N dom(C) = 0, (3)

ie. Cs({C,v),0) = cUC is a well-defined substitution. We show causality of ¢ U C by
showing that no cycles are introduced in <¢ when ¢ is added (since c is finite, this suffices to
ensure well-foundedness). By (3) and the closedness of C follows that dom(c) N rg(C) = 0.
Furthermore, since rg(¢) C v(X), 1 and 2 in definition 3 yields dom(c) N rg(c) = 0. It follows
that for any z € dom(c) there is no z’ such that 2 <. ¢ z’. Thus, no cycles are introduced.
Closedness of cUC follows from the closedness of C, dom(C) C dom(cUC) and rg(c) C v(X) C
dom(C). 1 in definition 3 for S((C, v), o) follows, for X \ dom(o), from the same property for
C, and for dom(o) it follows from vs({C,v),0)(dom(c)) = dom(c) C dom(cU C). Property
2 for §({C,v),0), finally, is proved by the following: since s*(vs({C,v),c)(X)) C s*(v(X))
(easily proved from (SA2)), it holds, by property 2 for (C,v), that s*(vs({C,v),0)(X)) N
dom(C) = (. Furthermore (SA2) yields dom(c) C vs({C,v),0)(X). Lemma 2 then implies
that sT(vs((C,v), o) (X))Ndom(c) = §. It follows that sT(vs({C,v),o)(X))Ndom(cUC) = 0.

e Inductive cases: for ;1" the result follows directly from the induction hypothesis on I’ and
. For if b then !’ else " it also follows from the induction hypothesis, observing that the
truth value C |= v(b) is well-defined. The validity for while b do I’ follows from a repeated
application of the result for concatenation.

We will now use S to define the meaning of a program when started from “scratch”, with
the program variables initialized to some values. Let idx be the identity function on the set of
program variables X (note that idx is a value function) and let init be a function X — D that
binds every program variable to some value in D. init can be interpreted as a substitution in sX,
and it is causal and closed since rg(init) = 0. idx(X) = X = dom(init) and lemma 2 implies that
st (idx (X)) N dom(init) = @. Thus, (init, idx) is a valid state according to definition 3.

Definition 4 The meaning of a program | in L(X) is, for every possible init, S((init,idx),!).

By theorem 1 follows that S((init,idx),l) always is a state when defined. Therefore, S really
deserves the name single-assignment semantics; for any given initialization of the program variables,
i.e. input to the program, the execution will be described as a set of single-assignments, that is:
the causal substitution Cs((init,idx),!).

6 SA semantics and wp semantics

In this section we will prove a result regarding the relation between SA semantics and weakest
preconditions. It essentially says that the truth values of a program variable predicate @ and
wp(l,Q) are the same, when taking into account the changes in the values of the program variables
given by S({C,v),l). Since this is the expected behavior of a predicate transformer, the result
shows that SA semantics is consistent with wp semantics. First we need a simple lemma:

Lemma 4 C C Cs((C,v),l) for all (C,v), l.

Proof. The result follows trivially from induction over program structure (the only case when
single-assignments are added to C is the assignment statement). |

Theorem 2 For all states (C,v), all | € L(X) and all program variable predicates Q,

Cs((C,v),1) = o(wp(l,Q)) == vs({C,0),1)(Q)
whenever S({C,v),1) is defined.

Proof. By induction over program structure.
o | = skip: v(wp(skip,Q)) <= v(Q) < vs((C,v), skip)(Q) for any (C,v).
o 1= 0 o(up(0,Q)) <= v(0(Q)) = voo(Q). By (SA2),

Cs({C,v),0) Fvoo(z) = 'US(<C’”>,U)($)

when z € dom(c). When z ¢ dom(o), it holds that voo(z) = v(z) = vs({(C,v),o)(z). Thus,
v(wp(0,Q)) <= voo(Q) <= vs((C,v),0)(Q).

In the inductive cases we assume that the theorem holds for I’ and /. We further assume that the
equalities in Cs({(C,v),!) hold.

o [=1";1": then
Cs({C,v),l1) = Cs({C,v),l';1")
Cs(S({C,v),1"),1")

= CS(<CS((C’ ’l)), l,)a ’Ug((C, ’U), ll))’ l”)
2 CS((C>v>7l,)> (4)

so then the equalities in Cs((C,v),!") hold as well. Thus,

v(wp(l';1",Q)) wp(l', wp(”, Q))

by the induction hypothesis for I, lemma 4, (4)
vs({C,v), I')(wp(l",Q))

by the induction hypothesis for "

vs({Cs({C,v), 1), vs((C,), 1)), 1")(Q)
vs({C,v),I;1")(Q).

rreree

e [=if b then !’ else I": here the proof is by a case analysis. By (SA4)

{C,s((C, v),1) = Cs({C,v),1'), C [v(b) (5)
Cs({C,v),l) = Cs({C,v),I"), C = -v(b)

and
{'vs((C, v)’l) = 'US((C) v>’l,)> CE ’U(b) (6)
vs({C,v),1) = vs({C,v),I"), C | —w(b).

or

Thus,

v(wp(l,Q)) (v(b) = v(wp(l',@))) A (~v(b) = v(wp(l”,Q)))

by the induction hypothesis, (5)

(v(d) == vs({C,v),!')(@)) A (=v(b) == vs({C,),I")(Q))

by (6)

(v(b) == vs((C,0),1)(Q)) A (-v(b) == vs({C,v),1)(Q))
’US(<C"”)’I)(Q)'

| = while b do !": Since we only consider the case when S((C,v),!) is defined we can use
lemma 3. Furthermore, by (wp5’), wp(l,Q) <= 3k > 0[Gk], where Go <= Q A -b and

Gr < wp(l!',;Gr-1) for k > 0. There exists a k such that G exactly when there exists a
least such k, thus

pgreed

wp(l,Q) <= 3k > 0[Gx AV0 < i < k[-G}]] (7)
We now prove the following by induction over j: for all j,
C3({C,0),1) F 0(Gy) &= v5((C,0),1)(@ A =b) (8)

7 =0:9(Go) == v2((C,v),I')(Q A).
j > 0: assume as induction hypothesis for j that

C5(C,0), 1) E v(Gj) <= v5((C,0),1)(Q A ~b)

for all (C,v). From a repeated application of lemma 4 follows that Cs((C,v),!') C
C§+1((C, v),1"). Thus it follows, from the induction hypothesis on !, that

CE(C, o)1) [0(Gir) = ws((C0),1)(G). (9)
Directly from the induction hypothesis on j follows that
C3(SU(C,o), 1), 1) [vs((Co), 1)(G) <= w5(S((Cy0), 1), 1)@ A -b),

C:;'-i-l((C, ’l)),l,) |: ’US((C, U), l,)(G]) — ,vgi-l(c, v, l')(Q A "Ib). (10)
(9), (10) finally gives
CEP((C, o)1) E (Grr) <= E(C o, 1)@ A).

We now apply (8) to v(wp(l,Q)) according to (wp5’) for j = k and for j = ¢, ¢ < k. If we
furthermore observe that C% C C% for all ¢ < k, then we obtain, denoting v%({C,v),!') by v%,
v(wp(l,Q)) <= v(3k[Gk AVi < k[-Gi]])

<= Jk[(Gr) AV < k[-v(G))]]

< Jk[E(Q A =b) A Vi < k[-w5(Q A -b)]]

= IKWEQ) A E(B) AV < K(=05(@) Vo). (11)
But, according to lemma 3,

Vi < K'[v5(0)] A 08 (b) A S(C,0), 1) = S ((C,),)] (12)

Both k and k' above are uniquely determined and it follows that k = k’. Thus, v%(b) will be
false, all v%(b) will be true and from (11), (12) we obtain

v(wp(l,Q)) = v5(Q) += v£(Q) += vs((C,v),)(Q).

10

At a first sight theorem 2 may seem a little surprising, since it essentially states that @ and
wp(l,Q) are equivalent. Note, though, that this equivalence holds only under the equalities in
the causal substitution Cs({C,v),!). In v(wp(l,Q)), the variables in v(X) are substituted for the
corresponding program variables and in @ the variables in vs({C,v),)(X) are substituted for them.
These variables are linked to each other through the equalities in Cs({C,v),1).

7 Second order expressions

The language L(X) treated so far lacks one important feature, namely second order expressions
by which we mean expressions that evaluate not to values, but to variables. Examples are pointer
expressions and subscripted array variables. In this section we will augment L(X) and its semantics
with second order expressions.

7.1 The general case

At this stage, all we will assume about the second order expressions is that they form a set h(X)
and that there is an evaluation function e:(h(X) x (X — D)) — X, that for every “machine state”
(i.e. function X — D) assigns a (first order) variable to every second order expression. Note that
every state (C,v) defines a function X — D through ¢ o v. First we define “mixed expressions”,
that are formed from both ordinary, first order expressions and second order expressions. We also
extend ¢ to mixed expressions:

Definition 5 H(X) is defined by:

e F(X)C H(X).

e h(X)C H(X).

o If f is an operator, with arity n(f), in the underlying algebra, and if py,... » Pn(s) belong to

H(X),then f @ (p1,...,Pn(s)) € H(X).

€ is extended to a function (H(X) X (X — D)) — X in the following way (F € X — D): for
allp € H(X),

o Ifpé¢ h(X) and p € X, then ¢(p, F) = p.

o Ifp ¢ h(X) andp = fo(p1,...,Pn(s)), then €(p, F) = f o (e(p1, F),- .., €(Pn(s), F))-
o Ifp € h(X), then ¢(p, F) is given as before.

A second order substitution is a partial function h(X)UX — H(X). In our augmented version of
L(X), we take the concurrent assignment statements to be second order substitutions. Furthermore,
we now allow the logical expressions in if...then-statements and while-statements to be second
order expressions. The resulting language is called L4 (X).

Definition 6 For any second order substitution o, its evaluated substitution with respect to F €
X — D is {e(h,F) — €(o(h),F) | h € dom(c)}. It is denoted by €(o, F).

In order to avoid problems with improperly defined substitutions, we assume that every €(h, F)
in definition 6 evaluates to a distinct variable for the substitutions under consideration. Note that
this assumption always is fulfilled, if assignments of second order expressions are restricted from
concurrent assignments to assignment of a single variable.

11

7.2 SA semantics for L, (X)

In this subsection we will define SA semantics for Ly(X). The difference to the SA semantics
for L(X) is that every expression, since it now may contain second order expressions, must be
evaluated with respect to the current state instead of being used directly in the definition. Thus,
(SA1) and (SA3) remain the same. In (SA4) and (SA5), v(b) is replaced by v(e(b, 3¢ o v)). (With
a slight abuse of notation, ¢ o v denotes the function X — D that it defines.) A new version of
(SA2) is given below.

Cs({C,v),0) = CEJ Es)(;;(:c)) <€—d'v o E(Er,ng) v)g;:) | z € dom(e(o,%c 0 v))},
_ [s(v(z)), @€ dom(e(o,9cov
vs({Cv),0) = {v(w), z ¢ dom(e(o, e o v)).

(SA2;)

7.3 Array element variables

An important kind of second order expressions are subscripted array elements. The usual approach
is to treat arrays as the basic entities instead of the elements, so that for instance an assignment
of an array element is seen as an operation on the array as a whole [6]. Here we will instead use
the approach above. We will consider an array element a(i) as a second order expression, formed
by the array name a and the mixed expression i. The variables in X that the evaluation function
€ maps to are of the form a(z), where i € I,, the index set of a. I, is a subset of D. It can for
instance be a finite, consecutive subset of the integers. € is defined as follows:

Definition 7 For all array names a, mized expressions i of proper sort and functions F: X — D,
€(a(i), F) = a(¢'(i, F)), where €':(H(X) X (X — D)) — D, is given by:

o Ifi¢g h(X) andi€ X, then €(i, F) = F(i).
o Ifi ¢ h(X) andi= fe (pl,... ,pn(f)>, then g'(i,F) =feo (e'(pl,F),... ’el(pn(f)’F»'
o Ifi=a(l), then €(i,F) = F(a(¢({, F))).

It is assumed, for a given expression a(i), that €(i, F) will always evaluate to a value in I,.
Whenever there can be no ambiguity, we will write a(z) for e(a(i), F').

7.4 SA semantics vs. wp semantics for arrays

We will now show the counterpart to theorem 2 for programs with arrays. In order to be able to
formulate the new theorem, we must extend the evaluation function € to assertions about program
variables. This is readily done. For simplicity, we will only consider assignments where a single
variable is assigned.

The weakest precondition for assignments of arrays is usually defined with the aid of a function,
that maps triples of arrays, index values and array element values to new arrays [10]. The value of
the new array is defined as follows: (a:¢:¢€)(i) = e, and (a:¢:e)(j) = a(j) whenever i # j. The
weakest precondition for the assignment statement a(i) < p is then defined, using this function:

(wp2,) wp(a(i) < p,Q) == {a—(a:i:p)HQ)
Note that the substitution {a@ < (@ :1i: p)} operates on array names, not on program variables.
Theorem 3 For all states (C,v), alll € Ly(X) and all program variable predicates Q,
Cs((C,0),1) = v(e(wp(l, @), %0 0 v)) <= vs((C,0),1)(e(Q,%c 0 v))
whenever S({C,v),l) is defined.

12

Proof sketch. The only case that needs to be nontrivially reconsidered, is the assignment
statement a(i) «— p for array elements. Consider

v(e(wp(a(i) — p,Q),%c 0v)) = v(e({a « (a:i: p)}(Q),%c 0 v)).
The interesting subterms of Q are of the form a(i’). For every such subterm, the corresponding
subterm of v(e({a « (a:1: p)}Q),%c o)) is

o(el{a — (a2 p)}(a(i), o 0 0)) = o(e((a s P, o 0 v).
By the definition of (a : i: p), if €(i,%¢c o v) = €(I', ¥¢ o v), then this term equals v(e(p, ¢ o v)),
otherwise it equals v(e(a(1’),¥c o v)) = v(a(7')).
Consider now
vs((C,v),a(i) « p)(e(Q, ¥c o v)).

dom(e(a(i) « p,v¥c o v)) = {e(a(i),vc o v)} = {a(?)}, thus, for any subterm a(i') of @, (SA24)
implies that if a(i') = a(i) (which is the case exactly when € (i',%¢ o v) = €(i,%c o v)), then the
corresponding subterm of vs({C,v),a(i) « p)(€(Q,%c o v)) equals s(v(a(7))), otherwise it equals
v(a(?')). But by (SA2;), Cs({C,v),a(i) «+ p) contains the equality

s(v(a(2))) < v(e(p,¥c 0 v))-
Thus, in all cases, the interesting subterms of v(e(wp(a(i) « p,Q),¥c o v)) and vs((C,v), a(i) <
p)(€(Q,%c o v)) will be equal under the equalities in Cs({C,v),a(i) «— p). It follows that the
assertions themselves must be equivalent under those conditions.
A more formal proof could be carried out by induction over program assertions and their
subexpressions. n

8 Conclusions

We present a new semantics for a imperative languages. The semantics is for reasons of presentation
defined only for a simple language, L, (X), but it can be extended to richer languages. It describes
how an imperative program, for a given input, generates a set of single-assignments (a causal
substitution) during its execution. Every execution of an assignment statement generates single-
assighments, one for each assigned variable. The semantics thus demonstrates the relationship
between imperative and single-assignment languages. We show that the semantics always is well-
defined for all possible executions. We also show that it is consistent with conventional weakest
precondition semantics.

Since the execution order of single-assignments is limited by the data dependencies only, SA
semantics also indicates, in a simple way, how the execution of an imperative program can be par-
allelized. This is done in the same way as for a single-assignment program. Statement executions
without data dependencies can be carried out in parallel. Present methods for finding parallelity in
imperative programs consider dependencies between statements, rather than statement executions.
Therefore, other dependence types have to be introduced. This makes the analysis unnecessarily
cumbersome and restrictive. We believe that SA semantics can aid the development of new tech-
niques for compiling imperative programs to parallel machines, especially in the light of the recent
development of space-time mapping methods. A crucial point here is that we make the effort to
define the semantics also for programs with arrays. A correct and efficient treatment of arrays is
essential for the compilation of scientific code. We also think that SA semantics may be helpful in
the further development of single-assignment languages, since it shows what the basic imperative
control constructs translates into in a single-assignment context.

13

9 Acknowledgements

I would like to thank prof. David Gries for his kindness to supply me with references about the
formal treatment of assignment of arrays. I would also like to thank the referees for the very
initiated and detailed comments on the paper. Their suggestions have been most helpful. This
work was in part supported by the Office of Naval Research, under contract N00014-86-K-0564,
while the author was with the Department of Computer Science at Yale University.

References

[1] W. B. Ackerman. Data flow languages. Computer, 15:15-25, February 1982.

[2] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in programs. In
Proc. POPL, pages 1-11, ACM, January 1988.

[3] P. K. Cappello and K. Steiglitz. Unifying VLSI Array Design with Linear Transformations of
Space-Time. Research Report TRCS83-03, Dept. Comput. Sci., UCSB, 1983.

[4] M. C. Chen. Transformation of parallel programs in Crystal. In H.-J. Kugler, editor, IN-
FORMATION PROCESSING 86, pages 455-462, Elsevier Publishers B.V. (North-Holland),
1986.

[5] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An efficient method of
computing static single assignment form. In Proc. POPL, pages 25-35, ACM, January 1989.

[6] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N.J., 1976.

[7] R. W. Floyd. Assigning meaning to programs. In J. T. Schwartz, editor, Proc. Symp. Applied
Mathematics, vol. 19: Mathematical Aspects of Computer Science, pages 19-32, American
Mathematical Society, Providence, R.I., 1967.

[8] G. Gritzer. Universal Algebra. Springer—Verlag, New York, NY, 1979.

[9] L. Greif and A. R. Meyer. Specifying the semantics of while programs: a tutorial and critique
of a paper by Hoare and Lauer. ACM Trans. Program. Lang. Syst., 4(1):44-82, January 1982.

[10] D. Gries. The Science of Programming. Springer-Verlag, 1981.

[11] C. A.R. Hoare. An axiomatic basis for computer programming. Comm. ACM, 12(10):576-580,
583, October 1969.

[12] C. A. R. Hoare and P. E. Lauer. Consistent and complementary formal theories of the seman-
tics of programming languages. Acta Inf., 3:135-153, 1974.

[13] P. Hudak, J-M. Delosme, and I. C. F. Ipsen. ParLance: A Para-Functional Programming
Environment for Parallel and Distributed Computing. Research Report YALEU/DCS/RR-
524, Dept. Comput. Sci., Yale University, March 1987.

[14] D. J. Kuck. A survey of parallel machine organization and programming. Computing Surveys,
9(1):29-59, March 1977.

14

[15] D. J. Kuck, Y. Muraoka, and S. C. Chen. On the number of operations simultaneously
executable in Fortran-like programs and their resulting speedup. IEEE Trans. Comput., C-
21:1293-1310, December 1972.

[16] L. Lamport. The parallel execution of DO loops. Comm. ACM, 17:83-93, February 1974.

[17] J. Li, M. C. Chen, and M. F. Young. Design of Systolic Algorithms for Large Scale Mul-
tiprocessors. Technical Report YALEU/DCS/TR-513, Dept. Comput. Sci., Yale University,
February 1987.

[18] B. Lisper. Synthesis and equivalence of concurrent systems. Theoretical Computer Science,
58:183-199, 1988.

[19] B. Lisper. Synthesis of Synchronous Systems by Static Scheduling in Space-time. Volume 362
of Lecture Notes in Computer Science, Springer-Verlag, Heidelberg, May 1989.

[20] B. Lisper. Time-Optimal Synthesis of Systolic Arrays with Pipelined Cells. Research Re-
port YALEU/DCS/RR-560, Dept. Comput. Sci., Yale University, September 1987.

[21] M. G. Main. A powerdomain primer. Bullentin of the European Association for Theoretical
Computer Science, (33):115-147, October 1987.

[22] Z. Manna. Mathematical Theory of Computation. McGraw-Hill, New York, 1974.

[23] J. R. McGraw. The VAL language: description and analysis. ACM Trans. Program. Lang.
Syst., 4(1):44-82, January 1982.

[24] W. L. Miranker and A. Winkler. Spacetime representations of computational structures. Com-
puting, 32:93-114, 1984.

[25] D. I. Moldovan. On the analysis and synthesis of VLSI algorithms. IEEE Trans. Comput.,
C-31:1121-1126, October 1982.

[26] D.I. Moldovan and J. A. B. Fortes. Partitioning and mapping algorithms in fixed size systolic
arrays. IEEFE Trans. Comput., C-35:1-12, January 1986.

[27] D. A. Padua, D. J. Kuck, and D. H. Lawrie. High-speed multiprocessors and compilation
techniques. IEEE Trans. Comput., C-29(9):763-776, September 1980.

[28] D. A. Padua and M. J. Wolfe. Advanced compiler optimizations for supercomputers. Comm.
ACM, 29(12):1184-1201, December 1986.

[29] P. Quinton. The Systematic Design of Systolic Arrays. Research Report RR 216, INRIA,
Rennes, July 1983.

[30] S. V. Rajopadye, S. Purushotaman, and R. Fujimoto. On Synthesizing Systolic Arrays from
Recurrence Relations with Linear Dependencies. Detailed summary, Dept. Comput. Sci., Uni-
versity of Utah, 1986.

[31] R. A. Towle. Control and data dependence for program transformations. PhD thesis, Dept.
Comput. Sci., University of Illinois at Urbana-Champaign, March 1976.

15

