Abstract

We propose an algorithm for computing a class of least squares polynomials on polygenal regions
of the complex plane. An important application of this technique to solving large sparse linear
systems is considered. The advantage of using general polygonal regions instead of ellipses as was
done in previous work, is that elliptic regions may fail to accurately represent the convex hull of
the spectrum of the matrix A. An attractive feature of the algorithm is that it does not explicitly
require any numerical integration. Numerical experiments show that the least-squares based
methods for solving linear systems are competitive with the Chebyshev based methods and are
more reliable.
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1. Introduction

Consider the linear system of equations

Ax==f, (1)
where A is an arbitrary real matrix of size N. Note that {1) can be the result of a preconditioning
technique applied to another linear system. Many iterative methods for solving (1) amount to the

polyromial iteration

X, = Xq + s (A)r, (2)
where x is some initial approximation to the solution, rg=="f-Ax; and s_ is a polynomial of degree

n-1. The residual vector r o= f— Axn is such that:

r, = [[-As (A)r, =R (A)r, (3)
where R (X)==1-Xs (M) is 2 polynomial of degree n, known as the residual polynomial, which

satisfles the constraint
Rn(0)=1 . (4)

Clearly, one wants to find a polynomial s so that ||R (A)r,l| is as small as possible, where ||.||
represents the Fuclidean norm. Several methods are explicitly based on this formulation, in that
they attempt to compute the approximation x_ for which the Euclidean norm {ir | is minimal,
see e.g. [2, 5, 14]. However, the corresponding algorithms do not always constitute a good choice,
especially in the following situations

e When A is not positive real in which case some of these techniques may fail, see [2];
o In time dependent or parameter dependent problems where the conjugate gradient

techniques do not take advantage of the iteration parameters that have been

computed during the previous time steps;

e In some modern architecture machines, because the conjugate gradient type methods

are highly sequential in nature.

Assume that A is diagonalizable, and denote by o{A)={\} N 1ts spectrum. Expanding the

i=1,
initial residual vector ry in the basis of eigenvectors {u};__, \ 23

N
=L,

we obtain the following expansion for the vector r_

N
r, = 2 RN &y




Then it is clear that instead of minimizing the residual norm [|R (A)rgl], one is tempted to

minimize the discrete uniform norm

max |R (A 5
max (R ()], )
over all polynomials R of degree n satisfying the constraint (4). Clearly, the eigenvalues A of A
are usually not known so one replaces the spectrum o{A) by some region H of the complex plane

that includes o(A), and R is then chosen to minimize

max R (V)] ©
over all polynomials of degree n so that Rn(0)=1. Such polynomials will be refered to as the
minimax polynomials. A well known method based on this approach is the Chebyshev iteration
method studied by Wrigley [19], Manteuffel [7, 8, 8] and others. There, H is taken to be an
ellipse with center ¢ and focal distance d, which contains the convex hull of 6{A). If the origin is
outside the ellipse, the minimax polynomial reduces to the scaled and shifted Chebyshev

polynomial:

R,(\) =T/ T,(F) ()
When d and c are real, the polynomial (7) is known to minimize the uniform norm on an ellipse
centered at ¢ and with focal distance d, over all polynomials satisfying the constraint (4). The
three term recurrence of the Chebyshev polynomial induces an elegant algorithm for generating
the approximation x_ that uses only three vectors of storage. An adaptive algorithm that obtains
the optimal ellipse containing the convex hull of the eigenvalues of A was proposed by

Manteuffel [8], and was recently improved by Elman et al. [3].

There are, however, a few drawbacks to the Chebyshev iteration. The most serious drawback
is that the computed convex hull may have eigenvalues on bcth sides of the imaginary axis of the
complex plane as may occur when A is not positive real, i.e. when its symmetric part (A+AT)/ 2
is not positive definite. This situation is not toco uncommon, especially for precoenditioned
systems [2]. Since there is no ellipse containing the computed convex hull and excluding the origin
the method breaks down. Clearly, the computed spectrum can still be enclosed in two convex
regions of the complex plane each on one side of the imaginary axis and the difficulty can be
resolved by computing a polynomial which satisfies the constraint R (0) =1, and which is ‘small’

in the union of the two regions in some sense.

A second drawback is that the optimal ellipse which encloses the spectrum, often does not

accurately represent the spectrum, which may result in slow convergence. Typical examples



reported in [17] are those of a boomerang shaped spectrum and a cross shaped spectrum in the

complex plane.

To overcome these two drawbacks, Smolarski and Saylor [17] proposed to use polygonal regions
having a relatively small number of edges instead of ellipses. Since the spectrum is discrete, it is
always possible to enclose it in a set H consisting of one or more polygonal regions. The problem
is then to find a polynomial s such that [R_ (M) is small inside and on the boundary of H. By the
maximum principle, the maximum modulus of {1-Xs (\)| is achieved on the boundary and
therefore it is sufficient to regard the problem as being defined on the boundary. Instead of
computing the best uniform polynomial on the polygon, Smolarski and Saylor suggest to use the
least squares residual polynomial, i.e. the polynomial R satisfying the constraint Rn(ﬂ)zl, and

minimizing the L,-norm |[1-As_(X)]| with respect to some weight w(\) on the boundary of H.

The method proposed in {17] for computing the least squares polynomial s, is based on classical
moments and on the use of the Kernel polynomial formulation of the least squares polynomial
due to Stiefel [18]. Such a process is unstable as was noted by Smolarski and Saylor. The reason
for this instability is that the moment matrix associated with the powers )\i, is highly ill
conditioned. In the context of computing orthogonal polynomials on real intervals, it is weil
known that a better approach is to use the modified moments <ti(>‘)’tj()‘)>’ where {tj.} is some
suitable basis of polynomials. This is the foundation of the well known modified moment method
for computing orthogonal polynomials in the real case [4, 15]. In this paper an algorithm using
explicitly the modified moment matrix will be developed for the problem of computing least
squares polynomials in the complex plane, which satisfy the constraint Rn(0)=1. We wiil see that
a reasonable basis {tj} is the basis of Chebyshev polynomials suitably shifted and scaled. The
polynomial s is directly expressed in the stable basis {tj} instead of the basis of the successive
powers as in [16, 17]. Moreover, our algorithm avoids computing roots of the residual polynomial
and using Richardson’s iteration. Furthermore, we will show that numerical integration is not

required, thanks to a technique adapted from [13].

Section 2 presents an algorithm based on the modified moments for computing the least
squares polynomial for solving linear systems. In Section 3 a hybrid method similar to the one

presented in [3] is outlined. Finally, Section 4 describes a few numerical experiments.



2. Computation of the least squares polynomial

When computing orthogonal polynomials PgsPy»---Ppy OF least squares polynomials in the basis
{1, \, >\2,.,.} one needs to factor the Gram matrix {<Ai'l,kj'l>} often refered to as the moment
matrix [16, 17]. This matrix can become very ill conditioned and any method based on this
approach will be limited to polynomials of low degree, e.g. not exceeding 10 [17]. A more reliable
alternative is to replace the basis {\"!} by a more stable basis of polynomials {tj()\)}, provided
for example by Chebyshev polynomials. The moment matrix is then replaced by the new Gram
matrix Mn={<ti’tj>}i,jz0,n which will be refered to as the modified moment matrix. In this
section we will formulate a method that uses the modified moment matrix to solve the least
squares problem introduced in the previous section. In order to define the problem properly and
provide the means for solving it, we will answer the following questions in turn:

1. How to compute the convex hull H and define a weight function w(\) on the

boundary of H?

2. How to choose a ‘stable’ basis of polynomials {tj()‘}}j:::o,l..n?

. . _ ,
3. How to compute the modified moment matrix M_ {<ti,tj> }i,j==0,n'

4. How to get the least squares polynomial in the basis {tj}?

2.1. The convex hull and the weight function

To obtain the convex hull of the spectrum of A, we need eigenvalue estimates. There are
various ways of obtaining estimates of cigenvalues of A, but it is clear that these estimates will
be obtained as the result of an adaptive method similar to those described in [8] and [3]. Let D
be a set of estimates to the eigenvalues of A provided by any such process. There are many ways
of obtaining the convex hull H of D. We will not describe any particular one of them but we
should point out that since we deal with real matrices the spectrum is symmetric with respect to
the real axis and we will only need the upper half part H* of the convex hull H. Suppose that the
p+1 points h, hl,...h” constitute the vertices of the upper part H of the convex hull H of
D. Clearly, the convex hull H is obtained from H* by symmetry, ie. by 2dding the points:

h# +k=hp-k’ k=1,..u, see Figure 2-1. Note that b, and h” are real and that h2” = h,.

If the convex hull H contains the origin then the residual polynomial R (A) will be a poor
polynomial. Indeed, by the maximum principle R_(\) will reach its maximun modulus on the

boundary 6H and since R (0)=1 this maximum will be no less than one. In this situation we
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Figure 2-1: The convex hull (A) and the ellipse of
smallest area containing it (B)




must redefine H to be the union of the convex hull H, of the ecigenvalues that have negative real
parts and the convex hull H, of the eigenvalues with positive real parts. This set consisting of

the two convex regions H, and H, will still be refered to as the convex hull by abuse of language.

The problem we would like to solve is to minimize some least squares norm of the polynomial
1-Xs (X) over all polynomials s of degree n-1, so we must define an inner product on the
boundary of the convex hull which will induce that norm. On each edge E  of the convex hull,
v==1,..p we must therefore choose a weight function w (}). Denoting by ¢, the center of the 1~th
edge and by d, its half width, i.e.

¢, =g(b,+h,) , d,=z(b-h, ) (@)

we will consider on each edge the weight w, defined by

w,(0) =2%1d%- (\-c /2 9)

This is nothing but a generalized Chebyshev weight, on each edge. The main reasca for the
choice of the above weight is simplicity as it will lead to Chebyshev polynomials. In fact we can
use any generalization of a classical weight function on an interval [-1,1], for which the

orthogonal polynomials are explicitly known.

We define w()\) as the function on the boundary of H whose restriction to each edge E, is
w (X). The inner product on the space of complex polynomials P of degree not exceeding n is

therefore defined by:

<pa>= [ o0 w0 N = £ [ pO00) w,0) [N (10)

An important remark is that if p and q have real coefficients then we need only compute the

integrals over the edges of the upper part of H because in this case:

<pa>=2Re( [ sNa(w0) 1N ) (11)
where 9H' denotes the upper part of the boundary 8H of H.




2.2. The basis of Ch@byshev polynomials

In approximation theory, it is well known that, in general, the use of the power basis
{l,k,)\z, ..... ,kn"} is to be avoided for stability reasons. Instead, if one is for example interested in
approximating a given function in the interval [-1,4+1], a better alternative is to use the

Chebyshev basis {Tj()\)} . If the interval is [a,8] then a good basis is {’I‘j{(l\"ﬁ)/&}} where

j=0,n
c=(f+a)/2, d=(F-a)/2. By analogy, assume that the convex huil H can be enclosed in an
ellipse centered at ¢, and having focal distance d and major semi axis a. Then a natural basis of

polynomials is the following:

60) = T,(A)/ T(3) j=0,1,.n . (12)
We have normalized the polynomial so that its maximum modulus on the ellipse is one, see [10].
The stability of a given basis can be measured by the condition number of the corresponding
Gram matrix. If the Gram matrix is highly ill-conditioned it will be difficult to compute the least
squares polynomials in the corresponding basis. As a comparison, pear-linear dependance of a
system of vectors is often measured by the ratio of the largest to the smallest singular values of

the system, i.e. by the square root of the condition number of its Gram matrix.

In what follows we would like to analyse the growth of the condition number of the modified
moment matrix M of the system (12) as n increases. Let the boundary dH of the convex huli H
consist in m edges, where m is not necessarily even as in the previcus section. We will denote by
&(c,d,a) the ellipse with center ¢, focal distance d and major semi axis a. In what follows, the
condition number of a symmetric matrix refers to its spectral condition number, i.e. the ratio of
its largest eigenvalue to its smallest eigenvalue. We can prove the following result [10].

Proposition 1: Assume that the convex hull H is enclosed the ellipse é(c,d,a) and
that the boundary OH encloses the ellipse E{c,dI,aI) with dlgd. Then the condition
number 1(M, ) o f the modi fied moment matriz M, satisfies the inequality

a-t+ 3,2——dl2 2n

el ) 9

The proof of this result along with a more detailed analysis of the condition numbers of the

AM )< 2m (n~!~1)2(

modified moment matrices can be found in [10]. A similar formula can be shown for the case
when the condition d1_<_d is not satisfied, and also for the case where the two ellipses have
different centers. In what follows we will refer to the coefficient which is elevated to the power

2n in (13) as the growth factor.



It is not known whether this upper bound is sharp. The result shows only that if H is well
approximated by an ellipse, i.e. when a is close to 2, then the condition number of M_ will not
increase too rapidly. It strongly suggests that the ellipse &(d,c,a) must be the ellipse closest to aH
in some sense, in order to have a small growth factor. We will discuss the choice of a good
enclosing ellipse in more detail shortly. To illustrate the result, suppose for example that H is a
rectangle centered at c, on the real axis, having half-length L on the real axis, and half-width 1.
Let us take the ellipse €(c,dI,L) with semi major axes L and ! as the inner ellipse, where
dlz--—-Lz—l2 and the ellipse {(c,d;,a) passing by the points (czL)+il as the outer ellipse. It is then
easy to show that the growth factor becomes (\/E«%-\/l—)/(\/L_H) This is close to one when I< <L.
For [=0.1, L=1, and n=10 we get 1'(Mn)$9.1x104. For n=20 the bound becomes
1(Mn)$3.1x107. These are only upper bounds and we can expect the actual condition numbers to

be much smaller in general.

Another consequence of (13) is that it indicates that the condition number is likely to increase
geometrically with n and that some caution must be taken in order to avoid a too high degree
n. In practice this is relatively easy to achieve by performing the Choleski factorization in a
progressive way. As will be seen in the next section, the moment matrix M, can be built column
by column. As column j+1 becomes available we can use the Choleski factorization of the
moment matrix of size }, to get the Choleski factorization of that of size j+1. This is often
refered to as a frontal method. The relative size of the diagonal elements encountered during the
factorization gives an indication of the condition of the corresponding modified moment matrix.

As soon as a diagonal element 1. is considered too small we stop the process and work with

j+Lj+1
the jxj modified moment matrix Mi instead of M, i.e. we work with polynomials of degree j-1
instead of n. Note that the cost of the Choleski factorization of the modified moment matrix is a
negligible amount of the total cost of solving large linear systems. One can even afford to
actually compute the inverses of the triangular factors at each step in order to get a good

estimate for the condition number of the matrix M_ in order to stop at the appropriate degree.

We now address the question of selecting good parameters ¢ and d. A simple idea is to use the
paramters ¢ and d of the ellipse of smallest area that contains H because we would like the
ellipse to fit the convex hull as closely as possible, as is suggested by the above discussion. We
restrict ¢ to be real and d to be either real or purely imaginary. This means that the ellipse will
be centered on the real axis and that its main axis is either along the real axis or the imaginary

axis. It can be easily shown by induction that t has real coefficients even when d is purely



imaginary, see [11]. Chebyshev polynomials have the additional advantage of satisfying a three
term recurrence which facilitates the computation of s (AJv. Manteuffel has proposed an
algorithm for computing the parameters of the ellipse that maximizes some complicated
convergence ratio [6]. Such an ellipse is different from the ellipse of smallest area containing H,

which is far easier to determine. An algorithm for determining such an ellipse is described in [9)].

2.3. Computing the modified moment matrix
A critical part of the computation of the least squares polynomials lies in the computation of

the (n+1)x(n+1) Gram matrix M_ whose elements m, ; are defined by:

my; = <ty 4> Li=12.0+L (14
and of its Choleski factorization. Note that {from (11) and the fact that t has real coefficients,

the coefficients m, , are all real. Therefore, M is a symmetric positive definite real matrix.

]

Normally, the computation of (14) requires numerical integration but, as will be seen, this can
be avoided by resorting to an idea developed in [13] in another context. We should point out that
although we use a Chebyshev basis, the matrix M, is still likely to become increasingly ill-
conditioned as its size n+1 increases. Any error in the numerical integration may therefore be

amplified, which could result in an inaccurate optimal polynomial.

Proceeding as in [13] we express the polynomials tj()\) in terms of the Chebyshev pelynomials

A—c
T. Y= T8 ,i=0,1..], 15
,(%) (€) j (15)

for each of the m edges E , v==1,.p. Notice that the variable £ is real for X\ belonging to the

edge E . In other words for each v, v==1,2..,, we express each t.(\), j=0,1,..n,.. as
14 J

40 =T 70, (16)
i=0 ’
A=
where ¢ = is real. (17)
v

Each polynomial tj will have p expressions of this type, one for each edge Eu’ i==1,..pt. Clearly,
these p expressions are redundant in that it is possible to obtain p-1 of them from a single one,
e.g. from the first. However, the process of changing bases can be unstable and will not be

considered.
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In order to build the moment matrix M, we need to be able to compute the expansion
coefficients 'yg’? of (18). This can be done thanks to the three term recurrence of the polynomials

(12), which we write in the form:

et 1) = (3 = o Sy (M) bty (M- (18)
Using the defining expressions (16) and (17) we obtain for each edge E :

BtttV = (d,€+e,~ o) z AR T - 6, z Ay TLE)
which provides the expression for tk +1 from those of ty and t, ; by noticing that

ET(8) = L[ T, (O+T, (O] >0
ET,(€) = T,(6).

Thus, we have proved the following proposition.

Proposition 2: For each v, v=1,2,..n, the expansion coefficients ')'('Z satisfy the
Sollowing recurrence relation with respect to k:

d,
B 'fg,1:+)1 = —"[ fi% Kt 'f( 1]+ (e~ ( ) by v(k)l, i=0,1,.. k+1

with the notational conventions
7(l)k = 7( L *,{”k)=0 for i>k.

Once the coefficients 'y ) of (18), have been computed with the help of the above proposition,
one can then compute the modified moment matrix by using the following result.
Proposition 3: Assuming the expressions (16) for t , 7==0,1,. ,n, the coefficients of

the modi fied moment matriz M, are given by

= ) (u) “(u ‘L .
L TO RS 2 Re { E—_"l kzo ki )} i==0,1,...j.

where Z')’ i8 defined by
k=0

SIJ’a =2 a +:‘]‘a
ko K 0" = k

Proof: Follows from the remark (11), the change of variables (17) and the orthogonality of the
(regular) Chebyshev polyncemials [

The computation of an n+1 by n+1 Gram matrix M using the above two propositions
requires O(p n%/3) multiplications. Remember, however, that this cost is not too significant in
comparisoen with that involved in the linear system as n and g will usually be much less than the

dimension N of the matrix. In a typical code the upper limit for g could be, for example, 8 while
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the upper limit for n could be set to 40.

2.4. Getting the least squares polynomial s ,, in the Chebyshev basis
Once the modified moment matrix M is available, our next task is to solve the least squares

problem
min {|1-3s,0) I, (19)
For the purpose of stability, the solution s will be directly expressed in the basis (16), i.e.
z-1
s, (A) = [)3) 7, (). (20)

Therefore, the problem is to find 5= (no, r;l,..nn_l)T so that

) =[1- s, " (21)
is minimum. This optimization problem will be sclved by translating it into a least squares

matriz problem of dimension n+1.

Denoting by (.,.) the complex inner product in C**!, and letting

p(\) = g)qiti()\) and g\ = Eogiti()‘)
be any two polynomials of degree not exceeding n, it is clear that
<p,q>=(M_n, b (22)

where 9= (1, nl,..nn)T and 6= (4, 91,..&0)1‘.
Consider now the n'? degree polynomial As (M) which satisfies

A5 (\) = g:; 7 N (M) ==z,; w; [y gty OO (M) + B8 (V) ]
This equality can be translated as follows: if Yi:(%’ﬂp-- ”n—l)T represents the vector of the
coefficients of the polynomial s in the basis t;, i==0,..n-1, then the polynomial As (X) is
represented in the basis t,i=0,1,..n by the vector T, m where T is the n+1 by n tridiagonal

matrix
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By e &
By @,
Tn = .. 6n_1
ﬂn-l an’l
| "

As a consequence the polynomial 1-Xs (M) has coefficients e;~T n in the basis {ti}ize o Where
e1=(1,0,0,..0)T. Using (22), we have

J('?)2= {el‘TnW]HMn[el"Tnﬂ]-

H

where x*" represents the transpose of the conjugate of x. Let

11T
M =LL (23)
be the Choleski factorization of Mn. Then

) = ILT [e,=T n]ll .
Noticing that LTel = iuelE(lu,O,O,...O)T and deroting by F_ the n+1 by » upper Hessenberg

matrix F | = LTTn we get the following expression for J(n):

I(n) = I luel - Fn nil. (29)
The minimizer n* of (24) is best computed by reducing the Hessenberg matrix F_ to upper
triangular form using plane rotations. Note that a similar problem occurs in the GMRES

method [14].

An alternative technique for solving the least squares problem (19) uses the Kernel polynomial
formulation for getting R (M) and then obtains the approximate solution from the Richardson
iteration after computing the roots of R, [16, 17, 18]. Indeed, the polynomial R, is known to

satisfy the formula:
RN =[Zp0pMN]/[ EIp0)]
=0 =0
where p;y i==0,..n is the sequence of orthogonal polynomials with respect to the weight w. By this

method we would have first to compute the orthogonal polynomials, using the Choleski

factorization of the modified moment matrix, and then get R . Once R is obtained, its roots
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must be calculated to compute x by the Richardson iteration. This last part of the process is not

numerically reliable.

3. A hybrid method for solving linear systems of equations

As was already pointed out, a method based on the polynomial iteration {2) alone has a limited
practical value, because the eigenvalues of the matrix of A are not known beforchand. A
common approach to deal with this difficulty is to combine the polynomial iteration with an
adaptive scheme which will obtain eigenvalue estimates. Manteuffel’s adaptive Chebyshev
algorithm constitutes such a process. Another method, devised by Elman, Saad and Saylor 3],
combines Chebyshev iteration with the GMRES method of [14] which is used to simultaneously
compute eigenvalue estimates and improve the current approximation to the solution. We
propose to replace the Chebyshev iteration of the hybrid method of [3] with the new polynomial
iteration (2), where s_ is the least squares polynomial, while retaining the same adaptive step

based on GMRES.

Let x, be an approximation to the solution obtained from 2 certain number of iteraticus of the
form (2), and let v, be the normalized residual v,==r./|[r.||, with rs==f-Ax,. The adaptive step
starts by generating an orthomormal basis of the m-dimensional Krylov subspace

span{vl,Avl,..Am’lvl} by an iteration of the form :

b = Av, - T hyv,

j+Li vj+1 el T
known as Arpoldi’s method [1, 12]. The orthonormal matrix V_=[v,v,,.v_] and the upper
Hessenberg matrix Hmﬁ[hij] are such that Vg AV _=H_ . The eigenvalues of H_ are known to

provide estimates for the outmost eigenvalues of A [12].

An important feature of the hybrid technique is that the information from Arnoldi’s method
can be taken advantage of for improving the approximation x,. Indeed, one can compute the
.cetor X belonging to the affine space x,+K  which achieves the minimum of the residual norm
|| f-AX]||. Let ﬁm denote the m+1 by m matrix obtained by appending to H  a row with single

nonzero entry h in position m-+1,m. Then it can easily be shown [14] that X is given by:

m+1,m
X=X+ V_y_

where y_ minimizes :

Il Bey - H v, Il with g=lir.]].
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This is the generalized minimum residual method (GMRES) algerithm proposed by Saad and
Schultz [14]. The new hybrid method will therefore have the following general structure:

The Hybrid algorithm

1. Start: Choose x,, compute ry:=={-Ax,
Until convergence do:

2. Adaptive step: Set v,:=r [|r/||. Perform k steps of the Arnoldi/ GMRES process i.e.
compute the GMRES improved solution X from x,, and the eigenvalue estimates from the
Hessenberg matrix H . From the computed eigenvalues get a set H containing the spectrum of A
but not the origin. Compute the least squares polynomial s, of degree n-1 based on H. Set Xgi ==X,

roz-——--f-—Axo.

3. Polynomial iteration: Compute x ==x, + sn(A)ro. If satisfied stop else set xj:==x_, compute
ry:==f—Ax, and go to 2.

We woeuld like to indicate how the vector x, is computed in step 3 of the algorithm. Recall
that s_ is computed in the form of the expansion (20) in the basis of Chebyshev polynomials b
which satisfy the three term recurrence relation (18). We therefore need to compute the vectors

w,= t,(A)r, and simultaneously accumulate the linear combination (20) as follows:
1. Start: W, =Ty, X =0

2. Iterate: for i=1,2,..n-1 do:

e
Wi+1‘“Bi__i_l[AWi'aiwi"éiwi-l] (25)
Xip1 =X 1 Mgy Vi (26)

The above iteration requires four vectors of storage (one for x, one for forming the products
A v, and two for saving w, and w, ;). Each step requires 4N multiplications. Note that a more
economical version that will cost 3N multiplications instead of 4N, consists in computing directly

the sequence 7, W, , instead of w;, in order to save N multiplications in (26).

Clearly, one is limited in choosing the degree of the polynomial iteration by the fact that the

moment matrix becomes difficult to compute and to factor as the degree n increases. A classical



15

solution to this problem is to compound several times a small degree polynomial. This is done by

performing the iteration (2) several times, restarting with x:== X, Tg==T after each inner loop.

4. Numerical experiments

The tests reported in this section have been performed on a VAX-11/780 using double precision
corresponding to a unit round off of nearly 6.93x10°18. We compare the performances of the Least
squares hybrid method described in Section 3 with competitive methods, including the
nonsymmetric conjugate gradient-like methods, Manteuffel’s algorithm [8] and the Hybrid
Chebyshev-GMRES method [3].

In order to be able to build matrices with specified shapes of spectra, we begin with a class of
test matrices which are block diagonals with 2x2 or 1x1 diagonal blocks. To prevent the matrices

from being normal each block is of the form:

r a b/2

i -2b a
and has eigenvalues azib. The eigenvalues are chosen to randomly fill the unions of rectangles.
Thus, the first test matrix is 200 by 200 and is selected to have 100 eigenvalues in the rectangle

R, with vertices at 0.3:t5i, 0.5:£5i, and 100 eigenvalues in the rectangle R, with vertices
0.54:0.11, 5.040.11 .

In order to make a fair comparison of several methods, we simulate a five point matrix by
counting each matrix by vector product as costing 5N multiplications. Indeed, it would be unfair
to compare the total number of multiplications in this example because the matrix by vector
multiplication costs very little (2N at most). We compare the following methods:

1. The hybrid least squares method (CHEBLS), using 10 Arnoldi vectors. The
polynomial s_is of degree n==60, and is obtained by compcunding 4 times the least

squares polynomial of degree 15.

2. The Hybrid least squares method using the 'exact’ region H consisting of the two
rectangles R, and R,. The polynomial is again of degree 80 and is obtained by

compounding polynomials of degree 15.

3. The hybrid Chebyshev-GMRES method method (CHEBA), using 10 Arnoldi vectors

and a maximum number of steps before adapting of 60.

4. The restarted GMRES method [14] using 10 vectors, and then 5 vectors.
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The iteration is stopped as soon as the residual norm is decreased by a factor of 10°°. The right
hand side of the system is random and the initial vector is taken to be the null vector. In both
methods 1 and 3 the eigenvalues are computed dynamically and the convex hull is constructed
from these eigenvalue estimates. In method 2, the optimal region H=R,UR, is provided and the

least squares polynomial is computed from that region.

We have also tested Manteuffel’s adaptive Chebyshev method (CHEB thereafter) but without
success as some of the computed eigenvalues have negative real parts thus causing the method tov
break down. Note that the matrix of this example is not positive real which explains why
Manteuffel’s adaptive code produced eigenvalues with negative parts. This could also happen
with any of the adaptive methods including CHEBA and CHEBLS. If such a situation arises
CHEB and CHEBA would fail but CHEBLS would compute two convex hull regions one on each

side of the imaginary axis and would continue.

The plot in Figure 4-1 shows the performances of the above four methods. The final! upper half
part of the convex hull produced by the adaptive Chebyshev least squares method is a triangle
having vertices at 0.24, 0.24+4.9i, and 4.94. Despite the difference in the regions used in

methods 1 and 2 the convergence behavior is not too different.

In the second examples the matrix A is of dimension 100 and is defined in a way similar to the
previous one, with 20 eigenvalues enclosed in the rectangle R, with vertices —1.04:0.1i, -0300.1i,
and 80 eigenvalues in the rectangle R, having vertices 0.1::0.1i, 4.04-0.1i. Since the matrix has
eigenvalues with both negative and positive real parts, we cannot use the other adaptive
Chebyshev methods CHEB and CHEBA. We have compared the Hybrid Chebyshev least squares
method using 10 vectors versus GMRES(10), ORTHOMIN(5), ORTHOMIN(10). The least
squares polynomial is again of degree 60 and is obtained by compounding 4 times a least squares
polynomial of degree 15. Note that GMRES(10), ORTHOMIN(5) and CHEBLS all use about the
same storage while ORTHOMIN(10) uses about twice as much. The results are plotted in Figure
4-2. Observe the non converging behavior displayed by ORTHOMIN(5) and ORTHOMIN(10)
which is quite common for non positive real matrices. Although this may also happen with

GMRES, our experience is that this is more common with ORTHOMIN.

In this example the conjugate gradient method applied to the normal equations is faster than
any of the other methods. Note however that as soon as good eigenvalue estimates are found,

CHEBLS outpaces the conjugate gradient method.
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The third example is a more realistic one and is derived frem the five peint discretization of

the following partial differential equation which was described in H. Elman’s thesis [2].
—(bu ) —(cu ) +du +{du) +e u + (eu)y+ fu=g (27)
on the unit square, where
b(x’Y) = e—.xy: C(ny) = eV d(ny) = ﬂ(x + .Y))

e(x,y) = A{x+y) and f(xy) = L./(1+x+y)
subject to Dirichlet boundary conditions u==0 on the boundary. The right hand side g was

chosen so that the solution is known to be xe™sin{nx) sin(ry).

We take 40 interior nodes on each side of the square and y==30, #==-10. This yields a matrix of
dimension N==1600. The system is preconditioned by the MILU preconditioning applied on the
right, i.e. we solve A M™! (Mx) = f where M is some approximation to A~! provided by an
approximate LU factorization of A see [2]. The process is stopped as soon as the residuzl norm is
reduced by a factor of e=10"8. The plot in Figure 4-3 compares the results obtained for
CHEBLS CHEBA, CHEB, all using 7 Arroldi vectors, GMRES({10), ORTHOMIN(10) and the
conjugate gradient method applied to the normal equations. The polynomial based methods
perform better that the conjugate gradient type methods. An interesting observation concerning
this problem is that convergence is faster with the ILU preconditioning than with the more
elaborate MILU. This fact is illustrarted in the plot 4-3 where we added the the results for
ORTHOMIN(1) with the ILU preconditioning (curve E).

Generally, one observes that when a problem is well behaved then the methods based on
approximations from the same Krylov subspace have similar performances. The MILU-
preconditioned problem of this example is well conditioned in the semse that the ratio of its
largest to its smallest eigenvalue is not large, as can be juged from the (simplified) convex hull

that was computed from CHEBLS:
hO == 1138 ; hl = 1.138 + 0.6441 ; h2 == 1.525 + 1.967 1 ;

h3 == 3.053 + 3.100 i ; h4 == 10.5448
Note that the eigenvalues h, from which the above convex hull is built have at least 3 digits of

accuracy.

The reason why ORTHOMIN and the other conjugate gradient like methods do not perform as
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well as might be expected from this nice distribution is simply due to the fact that the
preconditioned matrix is not positive real. Note that Arnoldi’s method for computing eigenvalues
may then yield eigenvalues with negative real parts, because the computed eigenvalues are only
known to lie inside the field of values of the matrix. Experience seems to suggest that this risk
can be lessened by taking a larger number of vectors in the projection step, but no proof of this
fact seems to be available. Practically, one can be more selective and base the convex hull only
on the eigenvalues that have a certain minimum accuracy. Note that the residual norms of the
cigenpairs are available from the Hessenberg matrix and so the eigenvectors of the iteration

matrix need not be computed [12].
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