Abstract

We present a technique for deriving bounds on the relative change in the singu-
lar values of a real matrix (or the eigenvalues of a real symmetric matrix) due
to a perturbation, as well as bounds on the angles between the unperturbed
and perturbed singular vectors (or eigenvectors). In particular, we consider the
class of perturbations 6B for which B + § B = Dy, BDg, for some non-singular
matrices Dy, and Dg. This class includes component-wise relative perturba-
tions of the entries in a bidiagonal or biacyclic matrix, and perturbations that
annihilate the off-diagonal block in a block triangular matrix. We show how
many existing relative perturbation and deflation bounds can be derived from
results for this general class of perturbations. We also present some new rel-
ative perturbation and deflation results for the singular values and vectors of
biacyclic, triangular and shifted triangular matrices.
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1. Introduction

We present a technique for deriving bounds on the relative change in the singular values
of a real matrix (or the eigenvalues of a real symmetric matrix) due to a perturbation, as
well as bounds on the angles between the unperturbed and perturbed singular vectors (or
eigenvectors).

Perturbation and deflation criteria based on such relative perturbation results can be in-
corporated into QR-type algorithms for computing the singular values and singular vectors
of dense or banded matrices, leading to highly accurate and efficient implementations. For
instance, the implementation of the Golub-Kahan algorithm in [5, 6] computes the smallest
singular values and associated singular vectors of a bidiagonal matrix to high relative ac-
curacy; and the implementation of Rutishauser’s QD algorithm in [11] computes all of the
singular values of a bidiagonal matrix to high relative accuracy. In general deflation criteria
enhance efficiency by breaking the problem up into smaller subproblems, which also makes
them suitable for the design of accurate parallel divide-and-conquer algorithms [3].

In the context of the singular value decomposition of a real matrix B, we consider the
class of perturbations § B where B + éB = DyBDpg for some non-singular matrices Dy,
and Dg (cf. [17], [1, p. 770]). This is the class of all perturbations that do not change the
rank of B. In particular it includes component-wise relative perturbations of a bidiagonal
or biacyclic matrices and perturbations that annihilate the off-diagonal block in a block
triangular matrix.

We show how many existing relative perturbation bounds for singular values and vectors
of bidiagonal matrices can be derived from general results for this class of perturbations. We
also present new relative perturbation results for the singular values and vectors of biacyclic,
triangular and shifted triangular matrices. Surprisingly, all of these results can be derived
from traditional absolute perturbation results.

The standard absolute perturbation result says that the eigenvalues of the real symmetric
matrices M and M + 6 M satisfy

XM + 6M] — Xi[M]| < ||6M]], (1.1)

where A;[X] denotes the i** largest eigenvalue of X and || - || denotes the two-norm (see [21,
Fact 1-11]). Moreover, if w is an eigenvector of M corresponding to A\;[M] and w' is an
eigenvector of M + §M corresponding to some eigenvalue X, i.e.,

Mw=M\Mw and (M+EM)w' =N,
then the sin §-Theorem [4] implies that
[[6M]]

|sin ] < ——, (1.2)
gap;




where 0 < 6 < 7/2 is the angle between the spaces spanned by w and by w’ and
gap; = min|A;[M] — X'|
J#
is the absolute gap (see [21, Fact 1-12]).

These absolute perturbation results are used in §2 in the context of the eigenvalue
decomposition to derive two relative perturbation results for perturbations of the form
M + 6M = DTMD, where D is a nonsingular matrix. Since this is the class of congru-
ence transformations of M, the inertia is preserved so that A;[M] and \;[M + §M] have the
same sign (or are both zero). The eigenvalue result

I\[M + 6M] — X[M]| < [N[M]||DTD - I

is relative because it bounds the relative perturbation in the eigenvalue. The eigenvector

result s
sinf < ———— + 5,

pilM] —~

provided that' p;[M] > v, where
g=|D~1I|, ~=|D"D-1|, &=|D'D|| DD -1,

and?

A [M] = N[ M]|

iM = )
pilM] = min ="

is relative in the sense that it depends on the relative gap p;[M].

In §3 we derive analogous results for singular values and singular vectors by formulating
the singular value problem as a symmetric eigenvalue problem. The remaining sections are
devoted to applying these results to special classes of matrices and perturbations. In §4 we
consider componentwise relative perturbations of symmetric tridiagonal matrices with zero
diagonal elements, bidiagonal matrices, and biacyclic matrices. We obtain simple proofs of
many of the relative perturbation results in [1, 5, 8, 6] and solve an open problem in [8]. In §5
we consider perturbations that introduce zeros into a block triangular or bidiagonal matrix.
We give simple proofs of many of the deflation results in [2, 5, 6, 16, 20] and strengthen the
deflation result in [11]. In §6 we discuss some further applications.

Notation

All matrices are real. The identity matrix is denoted by I, and its k** column by e;.
The two-norm is denoted by || - ||, and the one-norm is denoted by || - ||;.

! Note that that A;[M] must be simple; otherwise p;[M] = 0 and this condition is not satisfied.
? We adopt the convention that p;[M] = +co when )\[M] = 0, in which case §/(p;[M]—7) = 0.




Let M be a n X n symmetric matrix. The eigenvalues {\;[M]}%, of M are numbered
in decreasing order so that A\ [M] > ... > A, [M]. Let N be a m x n matrix and let p =
min{m,n}. The singular values {o;[N]}._; of N are numbered in decreasing order so that
01[N] > ... > 6,[N] > 0. Also 0paz[N] = 01[N] and opmin[N] = o,[N].

By convention, A and A + 6A denote symmetric matrices; A; and ). denote the 7**
eigenvalues of A and A + §A, respectively; w; and w! denote unit eigenvectors associated
with \; and A{, respectively; §; denotes the angle (0 < §; < 7/2) between the subspaces
spanned by w; and by w!; and? ‘
pi = min ———I/\j il

T A
denotes the relative gap for the i** eigenvalue of A.

Similarly, B and B+ 6B denote general matrices; o; and o denote the ** singular values
of B and B + 6B, respectively; u; and u! denote unit left singular vectors associated with
Ai and A}, respectively; v; and v} denote the corresponding right singular vectors; 8% denotes
the angle (0 < 6} < 7/2) between the subspaces spanned by u; and by u/; 67 denotes the
angle (0 < 67 < 7/2) between the subspaces spanned by v; and by v!; and*

- . . IO’ §— O3 |
pi = min {2, I?é? —|Ui| } ,

denotes the relative gap for the i** singular value of B.

2. General Perturbation Results for the Eigenproblem

This section presents general relative perturbation results for the eigenvalues and eigen-
vectors of a symmetric matrix.

The first theorem is the basis for all of the eigenvalue and singular value results to come.
It contains the bound on the relative perturbation in the eigenvalues from which we derive

a bound on the relative perturbation in the singular values in §3.
THEOREM 2.1. Let A+ 8§A = DTAD, where D is a non-singular malriz. Then
|Ad] T
Ty < M S DD
[(DTD)~1|

and

X=Xl < IMIDTD — .

3 Again we adopt the convention that p; = +oo if A; = 0.
* We also adopt the convention that g; = +oo if ; = 0.




Proof: These inequalities are an immediate consequence of Ostrowski’s Theorem [14, Sec-

tion 4.5.9]; we include the proofs for completeness.

Since 0 is the 1™ eigenvalue of A — \;I, Sylvester’s Inertia Theorem [21] implies that 0
is the i** eigenvalue of
DT(A—X\I)D = (A+6A)— \DTD.

Using (1.1) with M = A+ 6A and M = —\; DT D gives
0= X|< || - \DTD
or
X< INIDT D).
The derivation of the lower bound is similar. Furthermore,
DT(A—NI)D = (A+6A—NI)+ )\ (I - DTD).
Using (1.1) with M = A+ 6§A — X\, J and §M = ); (I — DT D) yields
0 — (A; = M) < [|X(I = DT D)

or

X = Xl < INIDTD 1.

n

These bounds are tight. For example, they give equality when D is a multiple of an
orthogonal matrix.

The second theorem is the basis for all of the eigenvector and singular vector results to
come. It bounds the angle between the corresponding eigenvector and a perturbed eigenvec-
tor in terms of the relative gap.

THEOREM 2.2. Let A+ 8§A = DTAD, where D is a non-singular matriz, and let
B=|D-1I|, ~y=|D'D-1I|, and §=|DTD||DTD*-1I|.
Then

sinf; <

+ 5,
pi =

provided that p; > ~.
Proof: Let
M=A-XI, p=X-X, éM=XI-DTD™"), p=0, and @ = Duw

so that
Mw; = pw; and (M + 6M)w = 0w.



Let 0 < 6 < 7/2 be the angle between the spaces spanned by w; and by @. By (1.2),
-1
sind < || ||I = D"TD™ (mm[)\ —)\'1)

By Theorem 2.1,

IXi| < |A| |IDTD|
and
i = X > A= X = [X = X > |\ = M| = |\ |1DTD = I,
so that
-1
sind < |\ |DTD| |1 - DT DY (mmu — x| =\ |1DTD - IH) - ;—5_—;.

To bound sin §;, we use the triangle inequality
sinf; < sinf + sin ¢,

where 0 < 6’ < 7/2 is the angle between the spaces spanned by @ and by w!. The second
summand is bounded above by

sin6' < ||o — wi|| = ||(D — Iwj|| < B.

3. General Perturbation Results for the Singular Value Problem

This section presents general relative perturbation results for singular values and singular
vectors. The results are derived by transforming the singular value problem to an eigenvalue
problem. This can be done in two ways. First, the positive square-roots of the eigenvalues
of BTB or BBT are the singular values of B, i.e., 0; = /N[BTB] = /\[BBT]. This
transformation is used in Theorem 3.1 to derive bounds on the relative perturbation in the
singular values. Second, the eigenvalues of the Jordan-Wielandt matrix

0 BT
A‘(B 0)

=)

is a unit eigenvector of A associated with \; = o; (see [10], [22, Theorem 1.4.2]). This

are +o; (and 0 if m # n), and

transformation is used in Theorem 3.3 to derive the result for the singular vectors.




THEOREM 3.1. Let B+ 6B = D BDg, where Dy, and Dy are nonsingular matrices.
Then

g

m <o <o || D) || Dr||-

Proof: Let C = Dy B. Apply Theorem 2.1 with A = CTC and D = Dg to get

xlcTe ;
I < MDH(CTC)DR = off < MOTC Dl
R
and again with A = BBT and D = DY to get
O',iz _ /\,'[BBT]

A ERRE < M[DL(BB)Dr] = M[CCT] < X[BB]||D|* = of || Dz ||*.

But \[CTC] = \[CCT] for 1 < i < min{m,n}. [
This result could also be proved by means of the inequalities
oiyj-1[DB] < 0j[D]oi[B]  and  0i4;1[BD] < 0i[ B] 05]D]
[15, Theorem 3.3.16] with j = 1. |

COROLLARY 3.2 (BARLOW AND DEMMEL [1, p. 771]). Let B+ 8B = Dy BDg, where
Dy, and Dg are nonsingular diagonal matrices. Then

Uz"mjinl(DL)jjl ~min |(Dr)w| < o7 < Ui'mjaxl(DL)jjl'm,f»XI(DR)kkl-

THEOREM 3.3. Let B + 6B = Dy BDg, where Dy, and Dg are nonsingular matrices,
and let :

B=max{|Df —I|,IDr~III}, 7 =max{|DLD] - I|,|DEDr — I||},
and .
§ = max{|| D DL, | DEDrl} - max{|I D DT - |, IDF* D — 1]}.
Then
lo; — oil <70y

and, provided that p; > 7,

max{sin 6,sin§°} < V2 (ﬁ' i 5 + ﬁ) .




Proof: Let

0 BT 0 (B+6B)T DT
A= = —_
(B o)’ A+o4 <B+6B 0 ) and D ( DR>’

so that

1 [ , 1 [l T
w;:E ws , w,-=$ ) ; and A+6A=D AD.

The bound for the singular values follows directly from Theorem 2.1. By Theorem 2.2,

Singi < +ﬂa
pi —
where
B=ID-1I|, ~y=|D'D-1I|, &§=|DTD|||D-TD~1|,
and
pi = min ————I/\l —ail
1 i o; )

provided that p; > v. But 8=,y =7, § = §, and p; = p; (recall that \, = +o; for some
7), so that

sinf; <

—— + 5,
pi—7
provided that p; > 5. Now

2sin%’— = |lui — ulf| < V2 ||wi — w}]| = 2v/2sin 5’2-
and, since 0 < §;,0* < 7 /2, this implies that
sin 0} < V2 sind;.
The derivation of the bound for sin 6? is similar. u

In the remaining sections, we apply the general perturbation results in this section and
the previous one to particular classes of matrices and perturbations.

4. Componentwise Relative Perturbations

This section deals with perturbations that cause componentwise relative changes in the
non-zero elements of tridiagonal matrices with zero diagonal elements, bidiagonal matrices,
and biacyclic matrices. By applying the results in §2 and §3 we get simple proofs of many
of the relative perturbation results in [1, 5, 8, 6] and solve an open problem in [8].




4.1. Eigenvalues and Singular Values

Symmetric tridiagonal matrices with zero diagonal elements are symmetric permutations

0 BT
B 0)’

where B is bidiagonal. They result from formulating the singular value problem as a sym-

of matrices of the form

metric eigenvalue problem (see §3). We begin by bounding the effect of a relative change in
a single pair of nonzero elements.

COROLLARY 4.1 (KAHAN [18], DEMMEL AND KAHAN [6, THEOREM 2]). Let A be a
symmetric tridiagonal matriz with zero diagonal elements, and let A+ 6A equal A except for

the off-diagonal elements ar 1 = agy1 that are perturbed to cap sy = @agyry for some
a#0. Then

1
— <M< Al
1+n‘ | <X < (147) A

where n = max{|e|,1/|a|} — 1.
Proof: Let

Eook+1
D=disg (- va 1/Va va va 1y va ),

so that A+ 6A = DTAD (see [1, p. 770]). Now apply Theorem 2.1 and note that |[DTD| =
[(DTD) | =1 +n. m

By repeated application of this result we can bound the effect of relative changes in every
pair of nonzero elements (see [6, Corollary 1]). The result is analogous to the following result
for bidiagonal matrices.

COROLLARY 4.2 (BARLOW AND DEMMEL [1, THEOREM 1], DEIFT ET AL. [5, THE-
OREM 2.12], DEMMEL AND KAHAN [6, COROLLARY 2]). Let

b1 b2 a1bin  agbyo
by, . b ..
B= @ and B+6B= et ,
. bn—l,n . Q2p-2 bn—l,n
bnn Q2p—1 bnn

where aj # 0. Then

(<ol <(1 :
1+,,70- —01—( +77)0"

where n = Hj_:l max{|a;|,1/|e;|} — 1.




Proof: Let

. 103 Q1305 01030507
Dy, = diag | o, , , ye oo
Qs 451821 Qo040

and

. Qy Qg Q0406
Dpg = diag (1, —, —_ )

R yeo
ap a3 a1a3as

so that B + 6B = Dy BDg (see [1, p. 770]). Now apply Theorem 3.1 and note that
IDcll IDrIl £ 1+ 7 and | DY |IDFY) < 1+ 9. .

Biacyclic matrices are a generalization of bidiagonal matrices in which the underlying
bipartite graph can be any acyclic bipartite graph [8]. Only biacyclic matrices have the
property that relative perturbations of the matrix elements cause relative perturbations in
the singular values that are independent of the values of the elements 8]

COROLLARY 4.3 (DEMMEL AND GRAGG [8, THEOREM 1]). Let B be biacyclic, and

let B+ 6B be a componentwise relative perturbation of B, i.e., [B + §B]x, = ok obi o for all
k and £, where ay, # 0. Then

0','<0'£S 1+ g,
T4q % S (1+mn)

where n = ku,,;éo max{|akel,1/|arel} — 1.

Proof: By Lemma 1 in [8] there exist diagonal matrices Dy, and Dpg such that B + §B =
D1BDg, where the diagonal entries of Dy, and Dy are quotients of products of distinct Qe g
and each o}, can only appear either in the numerators of D; and the denominators of Dgr

or in the numerators of Dg and the denominators of Dy. Now apply Theorem 3.1 and verify
that || Dr|| [|Drll <1+ n and D7 [IDR < 1+ 1. u

4.2. Eigenvectors and Singular Vectors

The corresponding results for eigenvectors and singular vectors again follow directly from
the results in §2 and §3.

COROLLARY 4.4. Let A be a symmetric tridiagonal matriz with zero diagonal elements,
and let A+ 8A equal A except for the off-diagonal elements Gk k+1 = Qg41,k that change to
Qg k41 = QG415 for some a > 0. Then

sinf; < nd+m) + 2,
pi—n 2
where n = max {a,1/a} — 1, provided that p; > 7.
Proof: Define D as in the proof of Corollary 4.1 so that A + §4 = DTAD. Now apply
Theorem 2.2 and note that

B = max{|vea - 1|,|1/vVa-1]} < g>
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vy = ma,x{la — 1|, ll/a — ll} =1,

and
6 = max{e,1/a} max{|la —1|,|1/a = 1|} < (1 +7)7.

Deift et al. [5, p. 1472] prove that
/
Sln9 S _M
relgap; — '’

where
A = A

il + 1Al
provided that relgap; > 7’. If p; is small, then relgap; ~ p;/2. Hence, if 7 is also small, then

n'=e"—1 and  relgap; = mm

this bound is slightly weaker than the bound in Corollary 4.4.

COROLLARY 4.5. Let
bir b2 a1y azbiz
. b .
B= b and B+ 6B = st ,
: bn—l,n " a2n—2bn—1,n

bnn Qa2p—-1 brm

where a; > 0. Then

max{sin 6° sm0”}<\/_( 71 + ) 2>,

-n
— 2n-1 . —
where n = [[;Z]" max {a;,1/a;} — 1, provided that p; > .
Proof: Let
1 .. Q103 Q10305 O 03507
Dy = — diag | a1, , , yeue
Qg (o7 Qo0 QoyQg
and
(12 QoQry QoQ4Qg
Dpr = ag diag —_ ...,
al Q13 Q1303

so that B+ 6B = D BDp (see [1, p. 770]). Choose ap to minimize
max {(Dr)ii, (Dr)si, (DL )i, (DR’ )ii}

so that )
i < (Dr)iis (DR)iis (D7Y)iiy (DRYii < /14 1.

Now apply Theorem 3.3 and note that 3 < Z, ¥ < 7, and § < n(1 + ) (cf. the proof of
Corollary 4.4). ]

:
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Deift et al. [5, Theorem 2.12] prove that

! 1 /
max{sin §?,sinf}} < vV2—— 11 '+ 1) ,
relgap; — '
where |
'=e"-1  and  relgap; = min 2 =%
n=e an relgap; = rﬁfl P

provided that relgap; > 7. Again, when p; and 7 are small, this bound is slightly weaker
than the bound in Corollary 4.5.

The following result solves an open problem in [8]; the proof is similar to the proof of
Corollary 4.5.

COROLLARY 4.6. Let B be biacyclic, and let B + §B be a componentwise relative
perturbation of B, i.e., [B + 6Blis = ok ebrys for all k and £, where oy > 0. Then

b 1
max{sin §,sin '} < V2 (U(__‘f‘_’?) + Q) ,
pi—1n 2
where ) = ku 120 max{oge, 1/ake} — 1, provided that p; > 1.

5. Perturbations that Change the Sparsity Pattern

This section presents bounds on the relative perturbation in the singular values and
singular vectors of a block triangular or bidiagonal matrix when an off-diagonal block is
changed. This change is called deflation if the off-diagonal block is set to zero. By applying
the results in §2 and §3 we get simple proofs of many of the deflation results in [2, 5, 6, 16, 20]
and strengthen the deflation result in [11].

5.1. Block-Triangular Matrices

First we derive bounds on the relative perturbation in the singular values and vectors
of block-triangular matrices. Then we derive bounds on the singular values of the diagonal

blocks.
LEMMA 5.1. Let B+ éB = DB or B+ 6B = BDg, where

k m-—k k n—k
k I X k I X
Dy = = . .
L m—-k( I ) or Dr n—k( I )
Then
1

<ol < (1 :
PR EEDL
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and‘

!
o; — il <oy,

where n = || X||. Moreover,

1
max{sin §},sin 67} < \/—( n(d+7) + ’7) ,
pi—n 2
where n' = €" — 1, provided that p; > 7'.

Proof: We treat the case B + § B = D B; the other cases are similar. Since

-X
(')

we have ||Di|| = ||[D;'|| < 1+ 5. To get the first pair of inequalities, apply Theorem 3.1
with Dr = I. The second inequality follows immediately. The final inequality follows from
Theorem 3.3 after noting that

0 X\[_ __[fo X \|..
o o)™ TT|\xT xTtx/|="

=[G rden )l (G )| <eem,

where we have used the fact that
0 «
a o

when a > 0. (]

B:

and

Igea—l

When B is block triangular, we can bound the effect of setting the off-diagonal block to

Z€ero.
THEOREM 5.2. Let
k n—k

k Bn B]g B“ )
B = d B+ 6B = )
n — k ( ng ) an + ( B22

where Byy or By, is non-singular. Then
/ <
IO‘,- - 0;] so:n,

where

|| Baz| ‘
max{Omin[B11], Omin[Baa] }

n
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Moreover,
! /
max{sin 4} 51n0"}<\/_( 'l +77)+ ),
pi—n' 2
where ' = €" — 1, provided that p; > n'. Finally, if Omin|B11] > Omaz[Ba2], then
|| Brz|l :
<oi—oiBp| <oy 22 j <<k
0 =7 7 [ 11] =7 amin[Bll] '
and
|| Bzl :
< o Bao] — i < i ’ l1<i<n- k
0 < 0i[Ba2] — 0k4i < Oky — 1<n

Proof: If By; is non-singular, then

(Bn B12) (I *BﬁlBlz) _ (Bn )
B, 1 By )’

1Bull
min[Bll]

and by Lemma 5.1,

I —oi| <o ”Bl Bs|| £ o

If B,; is non-singular, then
(I —3123«;21) (Bu B12) _ (Bn )
1 B, By )’

|| B12|| .
min[-B22]

This proves the first inequality. The second inequality follows from Lemma 5.1.

and by Lemma 5.1,
l 0'1| < ag; ”BlgB “ <

If Omin[B11] > Omaz[Baa], then

IN

0",- = O'i[Bn], ISZ k,

Ullc+i = O'i[ng], 1_<_Z

IN
3

—k,
and
maxX{Omin[B11], Omin[B22]} = Omin[B11)-

The lower bounds in the last two sets of inequalities follow from the Interlacing Theorem for
singular values [13, Corollary 8.3.3]. L

Weaker bounds on the singular values appear in [2].

COROLLARY 5.3 (CHANDRASEKARAN AND IPSEN [2, THEOREM 5.2.1]). With the
notation of Theorem 5.2, assume that Omin[B11] > Omaz[B22]. Then

|| Bi2|

T; Byl -0 i| < Omaz B !
l [ 22] k+| [ 22]0'min[Bll} —O'ma,a:[B22]

1<:<n-k.
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Proof: By Theorem 5.2,

|| Baz||
0<0‘,’B — 0 ,‘SO‘ S ———
< 0y[Ba) — 0k4i < ks —T
Thus
Okyi < 0i[Bas) < Opmas[Ba2),
and the result follows immediately. |

By applying Theorem 3.1 directly, we get the following result.

COROLLARY 5.4. With the notation of Theorem 5.2, assume that By; is non-singular
and ||B22” < Umin[Bll]- Then

|| Baz|?
Omin [311]2 - ”B22”2

1/2
oi[Bi1) < 0; < (1 + ) oi[Bul, 1<:<k

and

1+ || Biz|? N _1/20.[3 ] < ok < 0i[Byg) 1<i<n-—=k
Omin[B11)? — || Ba2||? 122 = Tk = ilPazh == :

Proof: By Theorem 5.2, we have 0;[B11] < ;. Let p = ||Baz||/0min[B11] < 1. Since By, is

nonsingular,
By, 312) (Bll ) (I BﬂlBlz) A a
B = = = BD.
( B22 %322 pI

~

By Theorem 3.1 with Dy = I, B = B, and Dp = b, we have o; < ai[B] ||f7|| Since
G'maz[% B2‘2] = amin[Bll]a

0‘,'[3] = o'i[Bll], 1 S 1 S k.

Now

1D

— _ 1/2
max <1 ‘7.7'[3111312] <max 1+ Uj[BulBlZ]2>
j p J 1 —p?

_ 1/2
S (Rt Ry (P L
1 —p? - Omin[B11]? — || Baz||?

The second inequality follows in a similar fashion from the identity

A B11 BIZ) (pI -—Bl—llBlg ) (an ) A
BD = = = B.
( Bs, I By,
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Mathias and Stewart [20, Theorem 3.1] prove the slightly weaker results

|| B1z|?
Omin [Bll]2 - ”‘B22”2

-1/2
oi[Bu] < o; < (1 - ) oi[Bu), 1<:<5k%

and

1 LT " By) < < oi[B 1<i<n-—k
— amin[B“P _ ”322“2 O'i[ 22] S Okyi S 0,'[ 22], <1<n-—

that are used in their analysis of the URV decomposition. For the special case where B
is bidiagonal and k = n — 1, Demmel and Kahan [6, Theorem 5] prove the slightly weaker

result that
|| Baz|?

o -0l <20
loi =il < 20t Bl

5.2. Bidiagonal Matrices

This section applies the results of §5.1 to bidiagonal matrices. In particular, we derive

the deflation criteria used in [5, 6] to split a matrix into independent submatrices.
THEOREM 5.5. Let
k n—k

k Bll bk k+1 6k6’ir (Bll )
B = ' d B+é6B=
n—k < Bys an + B;,

be non-singular bidiagonal matrices. Then

)Uia
where
N = |brp41] - min{|| By ex|l, || B3 exl|}-

Moreover,

I
max{sin 8},sin 6} } < \/_( /El +:) + 2) ,

where n' = " — 1, provided that p; > 7'.

Proof: As in the proof of Theorem 5.2, we apply Lemma 5.1 with B + 6B = BDg and
X = —byr41 B erel so that
X1 < [bk,es1] | Bry'exll;

or with B+ 6B = Dy B and X = —b k+1eke’{B 2 50 that
X1 < [brksal || B3 el

The result follows immediately. ]
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Now we show that the above theorem justifies Convergence Criterion 1 from [5, 6],
which is used in the zero-shift Golub-Kahan algorithm for computing the singular values of
bidiagonal matrices to high relative accuracy.

COROLLARY 5.6. Assume that
bll bl2
b
B= A :
: bn—l,n

bnn
is nonsingular, and let B + 6B equal B ezcept that the (k,k + 1) entry is set to zero. Let

N = |beksr| - min {||S e, IS ezenall}

where
[ 0 b \
bin 0 b2
b .
S 12 0 ,
bn—l,n
bn—l,n 0 bnn
\ b 0/
and let n’ = €" — 1. Then
o

<o <(14n)o;.
Th7 S i<(1+n)

Moreover,

! !/
max{sin 6,sin 6’} < v/2 (17_;_1""_7;7') + g) :

provided that p; > 7. Finally, these results hold when n and o' are replaced by

M = |beesr| - min {|S7 eanlls, [[S eansall}  and  gp=em -1,

Proof: Let
k n—-k

k B,y By,
B = .
n — k ( B22 )
From Theorem 5.5 it suffices to show that

1B eell =[S ekl  and By erll =[S ezrnal.

S_P(B )P,

But
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where the permutation matrix P represents the mapping

P:(1 23 4 ... 2n-1 2n)— (1 n+l 2 n+2 ... n 2n).

_ Bl B_lek B'lek
Slegk=P(B_T )PTezkzP( 0. ):P(O:_k),

where 0; represents a j X 1 zero vector, and

B! 0, Optk
S le =P( )PTe =P( ):P( " )
2k+1 B_T 2k+1 B—T6k+1 22Tel

The final result follows from the vector-norm inequality || - || < || - ||1- m

Hence

Demmel and Kahan [6, Theorem 4] prove that

eV < ol < eV oy,

which is slightly stronger than the bound in Corollary 5.6 when 7 is small.? Deift et al. [5,
Theorem 4.7] prove that

_g <oi<(1+7)0;

1 I "7, >0 > 1y

which is slightly weaker.
Deift et al. [5, Theorem 4.7] also prove that

! 1 !
max{sin 0%, sin 07} < L0 £T)

relgap;, — 7’ ’
and
. . [2n +5 pi(14+7) 1 [ 1),
0¥ 6} < — |1 - = ,
max{sin 6},sin6?} < PR p— + 7 +4/n 5| ™
where
|oj — ai

lgap, = min ———.
e =T o o
If p; and 7 are small, then relgap, = p;/2 and 5’ & n so that these bounds are slightly weaker
than the bounds in Corollary 5.6.

5.3. Shifted Matrices

Faddeev, Kublanovskaya, and Faddeeva [9] and Chandrasekaran and Ipsen (2, 16] present
an unshifted QR algorithm for computing the singular values and vectors of a triangular
matrix B. The algorithm is a generalization of the Golub-Kahan algorithm [12] for bidiagonal
matrices because it does not form BT B or BBT. All of the deflation criteria presented in §5.1

5 This bound can be obtained by sharpening the bound on ||Dy|| or ||Dz|| in in Lemma 5.1 to e7/V2,
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