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Neural Network Investigation of Effects of Neurogenesis on
Memory

Alison Austin and Lisa Malnick
Yale University, Department of Computer Science
New Haven, CT 06520

Abstract

We found that neural networks vary in the number of iterations necessary for
convergence when learning new data based on the construction of the network. Networks
that are asked to learn new data perform identically to networks that have new neurons
added, while networks that have lost neurons perform worse in a manner directly
proportional to the number of neurons lost. We also demonstrated that recall improved
with the addition of neurons, and worsened with their removal.

1. INTRODUCTION

Until recently, it was thought that humans were born with all of the neurons that they
would ever have. However, it has recently been found that new neurons are born and
differentiated in the hippocampus. Because of the involvement of the hippocampus in
short term memory, retrieval of long term memory, emotion, stress and many mental
illnesses, this finding may have a profound impact on the treatment of many forms of
mental illness {Chambers, 2001}. The effects of neurogenesis and apoptosis are largely
unknown. It is possible that the brain uses neurogenesis to speed up the learning process
because it may be that it takes less energy to differentiate new neurons than to perform
the restructuring which may be necessary when learning to behave under new
circumstances.

In our project, we investigated the effects of neurogenesis and apoptosis on
memory and learning. We first constructed a base neural network that used back-
propagation to learn a series of images. The precision of the network was used as the
base for all subsequent experiments. This base network was then tested with one image
and a noisy version of that image, and the outputs of those simulations were noted. We
also attempted to teach the base network a new set of images and determined the number
of iterations necessary to learn those new images. Finally, we tested the difference
between learning and recall in our base network and several networks that alter neuronal



content in various ways. We first added various numbers of new neurons to our base
network and examined the effects of the additions. We then removed various numbers of
neurons from the network and examined the learning and recall as compared to the
original network. Finally, we removed some neurons and added new ones to determine
the difference between differentiation of new neurons and restructuring old ones.

2. METHODS

2.1 Network Design

We created a feed-forward neural network that used gradient descent training with back-
propagation, a constant learning rate and no momentum. There are 3 layers; the input
layer has 225 neurons, the hidden layer has 50 neurons, and the output layer has 10
neurons. We used the hyperbolic tangent sigmoid transfer function as the gain function.

2.2 Training Data
For training data, we used a series of ten different letters, pixilated into a 15 x 15 grid.
Pictures of this data can be found in Section 6.

2.3 New Data
To test the ability of the network to learn new data, we added another series of 5 letters,
also pixilated into a 15 x 15 grid. This data can be found in Section 7.

3. EXPERIMENTS

3.1 Base Network

In this experiment, we constructed our base network as described in Section 2.1. We
trained the network with the training set described in Section 2.2 and noted the
performance of the network over 10,000 epochs. This network will be referred to as the
singly trained base network. We then further trained the network with the complete
training set of ten original and five new patterns described in Sections 2.2 and 2.3 and
noted the number of iterations necessary for the network to learn the new data set.
Finally, we tested the recall of both a clean and a noisy version of one of the initial
inputs.

3.2 Base Network Plus Five Neurons



Next, we added five neurons to the hidden layer of our singly trained base network. The
network is fully connected, and weights were randomly assigned. We then trained the
network with all fifteen patterns from Sections 2.2 and 2.3 and noted the number of
iterations necessary for this network to learn the new patterns. We also tested the recall
of both one original pattern and a noisy version of that pattern. This is a simulation of
neurogenesis with no accompanying apoptosis (cell death).

3.3 Base Network Minus Five Neurons

We then subtracted five neurons from the hidden layer of our singly trained base
network, retrained the network with the complete set of fifteen patterns from Sections 2.2
and 2.3 and noted the number of iterations necessary for this network to learn the new
patterns. We also tested the recall of one of the original patterns as well as a noisy
version of that pattern. This experiment was designed to simulate apoptosis without any
accompanying neurogenesis.

3.4 Reset Base Network

In addition, we reset the weights of our singly trained base network to random values and
taught the network the entire set of training data plus the five new patterns and noted the
performance of the network over 10,000 epochs. We also tested the recall of one pattern
from the initial training data set and a noisy version of that pattern. This experiment
simulated simultaneous neurogenesis and apoptosis to create a new network.

3.5 Base Network Plus Fifteen Neurons

We then added fifteen neurons to the hidden layer of our singly trained base network with
random weights, showed the network the complete set of training data plus the five new
patterns from Sections 2.2 and 2.3 and noted the number of iterations necessary for this
network to learn the new patterns. We also tested the recall of one pattern from the initial
training data set and a noisy version of that pattern. We used this experiment to
determine if the number of neurons added to the hidden layer would affect the
performance of the network.

3.6 Base Network Minus Fifteen Neurons

Finally, we subtracted fifteen neurons from the hidden layer of our singly trained base
network, showed the network the complete set of training data plus the five new patterns
from Sections 2.2 and 2.3 and noted the number of iterations necessary for this network



to learn the new patterns. Again, we tested the recall of one pattern from the initial

training data set and a noisy version of that pattern. We used this experiment to

determine if the number of neurons removed from the hidden layer would affect the

performance of the network.

3.7 Hebbian Learning

We created a neural network with the same dimensions as our base network, but with

Hebbian learning and a forgetting factor. Unfortunately, we were unable to get this

network to converge over 10,000 epochs, so we were unable to include any of these

results.

4. RESULTS

Table 1. Convergence Data

Network Activity Number of Iterations
Base Network Leamn Training Set 10000
Trained Base Network Learn Entire Data Set 2220
Trained Base Network + 5 Neurons Learn Entire Data Set 2220
Trained Base Network - 5 Neurons Learn Entire Data Set 2588
Reset Base Network Learn Entire Data Set 2220
Trained Base Network + 15 Neurons | Learn Entire Data Set 2220
Trained Base Network — 15 Neurons | Learn Entire Data Set 4138

Table 2. Recall Output

Base Network Trained With Trained Network Re- Base Network Trained With
10 Images Trained With All 15 Images All 15 Images
(Trained Network)
A Noisy A A Noisy A A Noisy A
-0.0058 0.1626 0.1306 0.1616 0.0059 0.2025
-0.0163 0.4305 0.0063 0.5591 -0.0056 0.5347
-0.0067 0.1902 0.1933 0.4607 -0.0071 0.1976
-0.0028 0.2278 -0.0883 0.1513 -0.0050 0.2252
0.0095 0.4988 0.2842 0.6332 0.0210 0.4191
0.0063 0.6205 -0.3668 0.1529 0.0188 0.4456
0.0106 -0.1010 0.7528 0.6846 0.0157 0.0740
0.0042 -0.2447 0.5337 0.1438 0.0239 -0.3441
0.0036 0.1616 -0.4505 -0.2876 0.0036 0.1399
0.9353 0.9415 0.8285 0.7956 0.9219 0.9140




Trained Network + | Trained Network + | Trained Network — | Trained Networks —
5 Neurons 15 Neurons 5 Neurons 15 Neurons

A Noisy A A Noisy A A Noisy A A Noisy A
0.0059 0.2026 0.0059 0.2026 0.0198 0.3057 0.0018 0.2897
-0.0056 0.5347 | -0.0056 0.5347 | -0.0243 0.2320 0.0096 0.4826
-0.0071 0.1976 | -0.0071 0.1976 0.0136 0.3645 | -0.0220 0.2557
-0.0050 0.2252 | -0.0050 0.2252 | -0.0107 0.3101 | -0.0367 0.1306
0.0210 0.4191 0.0210 0.4191 0.0097 0.1525| -0.0097 0.4036
0.0188 0.4456 0.0188 0.4456 0.0184 0.4770 0.0368 0.3259
0.0157 0.0740 0.0157 0.0740 0.0174 0.0387 0.0370 0.3353
0.0239 | -0.3441 0.0239 | -0.3441 0.0398 0.0604 0.0280 0.1171
0.0036 0.1399 0.0036 0.1399 | -0.0024 0.1816 0.0264 0.1453
0.9219 0.9140 0.9219 0.9140 0.9111 0.8726 0.8790 0.8442

5. CONCLUSIONS
We found that neurogenesis does not have any affect on the learning rate of a neural
network. Conversely, apoptosis significantly slows the learning rate proportional to the
number of neurons lost. The affects of apoptosis and neurogenesis on recall of learned
images were much more interesting. Our data indicated that a network that was trained
on an initial set of data recalls that data to a higher degree of precision when new neurons
are added before retraining the network then when the same network is presented with the
new data. We also demonstrated that recall gets proportionally less precise as more
neurons are removed from the network.

Through this project, we hoped to find interesting relationships between the
learning and recall in a rebuilt network versus a newly constructed network. We learned
that there is surprisingly little difference in learning rate between teaching an existing
network new data and rebuilding the network with all new neurons. We also learned that
recall of data is better when retraining the existing network then when rebuilding. We
feel that this information, combined with further study, may be helpful in determining the
clinical relevance of neurogenesis in treating mental illness as well as the biological
reasons for neurogenesis, which are as of yet unknown.




Figure 4. F

6. TRAINING DATA
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Figure 9. L
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Figure 11.
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Figure 15. Y
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8. NOISY IMAGE
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Predicting and Analyzing Voting Patterns In The US Senate

John Eure' and Jonathan Winer?
Yale University, Department of Computer Science
New Haven, CT 06520

Abstract

Politics makes strange, but perhaps not unpredictable, bedfellows. The vote
patterns of elected representatives are defined by the rough confluence of ideology,
constituent opinion, special interest lobbing, back-door deal making, and the broadly
defined art of politicking. As votes on particular pieces of legislation are binary
expressions of these influences, the relative authority of these influences is far from
transparent. This suppression hinders traditional predictive analysis. Here, we train an
artificial neural network to predict the voting patterns of the 107" session of the US
Senate. In so doing, we quantify the influence of various political lobbies (broadly
defined) and thus yield an insightful secondary analysis.

Keywords
neural network, back-propagation, US Senate, voting analysis, campaign finance

1. Introduction
1.1. “Vote Counting”

There are endemic inaccuracies in the rough speculation that comprise status quo
“vote counting.” For example, currently when members of the US Senate consider
bringing legislation to the floor, potential votes are estimated by their party’s Whip’s
office. These tallies, which often define the legislative agenda, are constructed by
intuition, informal conversations, and cursory analysis of previous vote patterns.
Consider further, a President deciding whether to veto a piece of legislation susceptible
to an override. Here important legislative decisions rely on congressional staffer gossip
and innuendo, filtered through executive-branch staffer innuendo and gossip. In contrast
to this glorified “tealeaf reading”, we aim to develop an artificial neural network to more
accurately and systematically predict voting patterns in the US Senate.

In predicting a vote on a particular piece of legislation, it is tempting, but not
sufficient, to ask simply how a senator has voted previously on similar issues, or
cynically to construe ideological alignments as determinative. While this may seem often
to yield accurate results, these heuristics are accurate primarily in situations that are not
our concern here. The much more difficult question on which we focus is predicting
votes in situations where values and political pressures conflict and where anomalous
results are the most important to predict. In understanding the relative weight of political
influences in these situations, training artificial neural networks based upon training data
derived from voting histories are particularly useful.

! John.eure@yale.edu
2 Jonathan.winer@yale.edu
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1.2. Formalizing the Legislative Process (Our Assumptions)

In order to consider the legislative process in a meaningfully quantitative way, we
first need to develop a creative and valid interpretation of the voting arena. The problem
here is to express a Senator’s vote on a particular bill in terms of the influences that
shape the vote. That is, to express legislation in terms of the political pressures it
engenders. If we can do this, we can express future legislation in the same manner and
predict a Senator’s vote based upon the opinions of a finite, defined set of entities. As
there is the potential for infinite complexity in amassing factors from political affiliation
to the weather the day a vote was cast, a formal model is defined by choices we make in
limiting the factors considered as influencing a vote.

Our assumptions in this regard are meant to demonstrate method, not necessarily
maximize accuracy. We consider a piece of legislation to be defined by the positions of
various political lobbies including think tanks, interest groups, and powerful lobbyists.
To make our system more accurate we would undoubtedly need to expand our definition
to account for other factors such as the position of the President, opinion polls of
constituents, and the type of legislation being considered.> We choose this definition of
legislation because it offers the best combination of intuitive appeal, pragmatic
feasibility, and flexibility in including broad points of view. The opinions of such groups
are precisely verifiable from published accounts, yet in choosing which organizations to
consider as data points, we include varied types of influence (lobbyist, scholarly, etc)
and broad and narrow ideological affiliations. It seems reasonable to expect that to a
significant degree the entities not explicitly referenced in our model, are highly
correlated to the positions of the organizations considered and thus implicitly referenced.
Finally, it is not a coincidence that the organizations we isolate as determinative of
voting patterns correspond to entities generally considered to exert great, and perhaps
undue, influence on the political process.

In defining a particular Senator’s vote on a piece of legislation, we only consider the
Senator’s vote on the “final passage” of a Senate resolution. This limitation is intended
to normalize for the numerous procedural votes leading up to final passage. This
assumption could be made more accurate by considering significant amendments as
separate legislation, or in a more sophisticated manner, by weighing political posturing
on amendments as scalar values multiplied against a Senator’s final vote.

2. Network Design

2.1 Perceptron with Back-Propagation

We experimented with several network configurations during this project, using
Matlab as our environment. Our input data consisted of 24 interest groups, and 15
different bills which they had opinions on, represented as spin variables with a -1
meaning "not in favor”", a 0 meaning "no opinion”, and a 1 meaning "in favor". The
target results were each senator's vote on each of those bills, as spin variables with a -1
meaning a vote of "Nay", a 1 meaning a vote of "Yea", and a 0 meaning "Not Voting" or
"Present”. The basic net was a 2-layer feed-forward network with 24 inputs, 10 hidden

* For example, a libertarian Republican might favor a particular alignment of political pressures when
considering economic legislation and a very different alignment in considering social issues.
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nodes, and 100 output nodes. We used the hyperbolic tangent sigmoid function as our
limiter for both layers (its range is from -1 to 1). After trying a number of different
learning algorithms, we settled on "resilient back-propagation” as the most suitable for
our net. It performed several orders of magnitude better (in speed and accuracy) than any
other appropriate algorithm. In particular, it was at least 5 orders of magnitude faster than
the standard gradient-descent algorithm.

Resilient back-propagation is an algorithm designed to eliminate some harmful
effects of sigmoidal "squashing" functions on the gradient-descent algorithm. Instead of
basing the amount of a weight or bias's change on the value of the gradient (which
approaches 0 for large inputs into a sigmoidal function, regardless of accuracy), it instead
changes each weight and bias by an individual value, and merely uses the gradient to
calculate the sign of the change. These values are increased by a fixed delta whenever
subsequent changes are in the same direction, and are reduced by a (potentially different)
fixed delta whenever subsequent changes are in opposite directions (i.e., when the
gradient oscillates).

We tried a variety of network structures, and found that increasing the hidden
layer's size beyond 10 neurons produced little benefit, while reducing its size led to
steadily-increasing errors in the final net. We also tried using no hidden layer at all,
treating the network as 100 individual 1-layer perceptrons.

2.2 Training data

Appendix A shows the data used in training the neural network that forms the
basis of our analysis. There were important constraints in compiling the data both with
respect to the votes considered and the political entities included. To date, there have only
been approximately 400 votes cast by the 107" session of the US Senate and of these
only 22 were deemed significant and sufficiently controversial to warrant inclusion. The
emphasis on confirmation votes reflects the role of nominations as an umbrella vote on
policies. The vote sample could be expanded by including previous sessions and
normalizing for more senior members voting histories.

In selecting which political lobbies to include in defining a piece of legislation,
we used a number of criteria. The sample set must be balanced and broad in ideological
disposition. Some entities are narrowly focused on specific issue areas while the majority
of groups have a broad focus. Finally, the set ranges from purely political to more
scholarly groups. Within these balancing constraints, we considered the groups generally
considered to be the most powerful lobbies.

3. EXPERIMENT

3.1 Hypothesis

Our hypothesis is that it is possible to accurately represent the voting patterns of
the United States Senate as a neural network, using the opinions of various interest
groups as input.

3.2 Description of Experiment

We obtained information from 24 interest groups about 15 separate Senate bills,
and obtained the results of the Senate votes on those bills from the Senate's web site,
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using an automated Perl script. We then used Matlab to train a variety of neural networks
using this data, varying the number of neurons in the hidden layer (0-15, and 100), and
varying the training algorithm used. After picking the most successful design, we tested
it 4 times by removing one data point, and seeing how well a net trained on that limited
data would handle the missing data point. As a further test, we used it to predict the
result of a vote that will soon be made.

3.3 Results

Increasing the number of neurons in the hidden layer led to an increase in
accuracy. This increase failed to be significant after 10 neurons, and there was only a
marginal gain in accuracy from having 100 hidden neurons.

Interestingly, the most accurate version of the network was the 1-layer perceptron,
using no hidden layers at all. On multiple occasions, it achieved a margin of error of less
than 0.000001, while the 2-layer nets never managed to achieve an error less than 0.001.
This result is quite interesting, as it suggests that the voting patterns of individual
senators are linearly separable in dimensions representing interest groups, and thus that
they follow patterns and are not subject to random chance or whim. Unfortunately, the
data we collected is too limited to draw strong conclusions, but some of our test results
are very promising. In particular, the test wherein we predicted the result of the
upcoming vote produces an answer extremely close to that predicted by political analysts.

3.3 Discussion of Difficulties

One of the chief problems in training the net was locating data. While the
senatorial votes were fairly easy to locate, and were standardized in format (thus allowing
a single Perl script to download arbitrary numbers of votes within seconds), data from the
interest groups was more difficult to obtain. Not all groups have opinions on all issues,
and not all of the issues they have opinions on translate directly into senatorial roll call
votes. Furthermore, each of the interest groups have their own means of presenting
information, thus necessitating a more individualized and complicated approach to data
collection.

This led to the second main problem, which was a lack of data. Our neural net
depends far too much on each of the individual pieces of data we've collected, as
evidenced by the massive error we get when removing even one vote. Another difficulty,
especially with the 2-layer nets, is that we used too many neurons for the amount of data,
and thus have overfitting. This is one of the reasons we used the single-layer perceptron
for our tests. There is, however, a strong indication that we may have Jjust enough data to
be accurate, since the 1-layer net's prediction of the upcoming vote lines up with that of
actual political analysts.

4. PREDICTION AND ANALYSIS

4.1 Predictions for the 107™ Session of the US Senate

To analyze the predictive accuracy of our neural net, we retrained the net
excluding one vote from the training sample. We then presented the excluded vote and
asked the net to predict output for each senator. Appendix B displays the results of this
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experiment. The four votes here represent opposite ends of our net’s spectrum of
accuracy. The campaign finance vote was dictated by political posturing. Further
precisely the advocacy groups that were in endangered by this bill define our sample set.
While our net’s accuracy in this case is in the 40 percentile, our errors are almost always
due to predicting inaccurate no votes. This is consistent with a self-interested data-set.
The Ashcroft vote was also highly political, owing as much to his personal relationships
as a former senator as to policy debate. Accordingly, our net was significantly inaccurate.
In votes largely defined by policy debates, such as the Anti-terrorism bill and the
Patient’s Bill of Rights, our net averaged 94% accuracy. This inconsistency points to the
narrowness of political lobbies as a data set.

If refined, the predicative power of this net has broad applications. Indeed,
currently a perfect test case presents itself in a vote anticipated today in the Senate. The
current Economic Stimulus bill is highly policy based and inspires spirited opinions from
varied political lobbies. Originally, Senate vote-counters anticipated a 51-49 majority
opposing the Bill. In December, President Bush traveled to the Capital to lobby moderate
Democrats. Three Senators have switched their allegiances, and the New York Times
reports this morning that vote counters now anticipate a 52-48 majority in support of the
Bill. This abrupt switch has lead majority leader Daschle to threaten a filibuster—
effectively requiring 60 votes to pass the Bill. The Bush administration must now decided
whether to attempt to lobby additional Senators at peril of being perceived as weak.
Given a profile of the Economic Stimulus Bill, our net makes the following predication.

Profile

Economic
Stimulus

AARP

ACLU

AFL-CIO

Air Transport Association of America
American Association of Health Plans
American Enterprise Institute

American Medical Association

American Public Power Association
CATO

Center for Constitutional Rights

Christian Coalition

Consumer Federation of America

Edison Electric Institute

Health insurance Association of American
Independent Insurance Agencies of America
National Association of Manufaturers
National Consumer Bankruptcy Coalition
National Federation of Independent Business
NRA

Nuclear Energy Institute

Public Citizen

The Brookings Institute

The Heritage Foundation

US Chamber of Commerce

- O

- O

= 2 2 000 20 2000000 200
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Vote Prediction

Akaka, Daniel (D - HI) -1 Corzine, Jon_(D - NJ) -1 #Hollings, Emest (D - -1 #Nelson, Ben (D - NE)
#Allard. Wavne (R -COQO) 1 «Craig. Larry (R-1D) 1 Hutchinson, Tim_(R - 1 $Nickies, Don (R - OK)
*Allen, George (R - VA) 1 «Crapo, Mike (R - 1D) 1 Hutchison, Kay Bailey 1 Reed, Jack (D-RD
Baucus, Max (D - MT) 1 ®Daschle, Thomas (D - -1 dnhofe, James (R - OK) 1 Reid, Harry (D - NV)
Bavh, Evan (D-IN) -1 ®Dayton, Mark (D - MN) -1 4nouye, Daniel (D - HD -1 Roberts, Pat (R - KS)
#Bennett, Robert (R - 1 DeWine, Mike (R - OH) 1 effords. James (I -VT) -1 Rockefeller 1V, John (D
Biden Jr. Joseph (D - -1 ®Dodd, Christopher (D - -1 aJohnson, Tim (D - SD) 1 #antorum, Rick (R -
Bingaman, Jeff (D - -1 ®Domenici, Pete (R - -1 #ennedy, Edward (D - -1 arbanes, Paul (D -
Bond. Christopher (R - 1 Dorgan, Byron (D - ND) -1 #erry, John (D - MA) -1 Schumer, Charles (D -
Boxer, Barbara (D - -1 @Durbin, Richard (D - L) -1 #«ohi, Herb (D - WhH 1 Bessions, Jeff (R -AL)
Breaux, John (D - LA) 1 €dwards, John (D - -1 Kyl Jon (R-AZ) 1 #Shelby, Richard (R -
Brownback, Sam (R - 1 “Ensign. John (R - NV) 1 dandriey, Mary (D-LA) 1 ©mith, Bob (R - NH)
Bunning, Jim (R - KY) 1 €nzi Mike (R-WY) -1 . eahy, Patrick (D-VT) -1 ®mith, Gordon (R - OR)
Burns, Conrad (R -MT) 0.831 #eingold, Russell (D - -1 «_evin, Carl (D-MDh -1 Snowe, Olympia (R -
#Byrd. Robert (D - WV) -1 #einstein, Dianne (D - 1 «_ieberman, Joseph (D - -1 Epecter, Arlen (R - PA)
«Campbell, Ben 1 Fitzgerald, Peter (R - 1 aincoln, Blanche (D - 1 Stabenow, Debbie (D -
«Cantwell, Maria (D - -1 #rist, William (R - TN) 1 aott, Trent (R - MS) 1 ®Stevens, Ted (R - AK)
«Carnahan, Jean (D - 1 Graham, Bob (D - FL) -1 sLugar, Richard (R -IN) -1 e homas, Craig (R -
«Carper, Thomas (D - -1 Gramm, Phil (R - TX) 1 #McCain, John (R - AZ) 1 e hompson, Fred (R -
«Chafee, Lincoin (R - 1 Grassley, Chuck (R - 1 #VicConnell, Mitch (R - 1 # hurmond, Strom (R -
Cleland, Max (D - GA) 1 Gregq, Judd (R - NH) 1 avlikulski, Barbara (D - -1 sl orricelli, Robert (D -
«Clinton, Hillary (D - NY) -1 #Hagel, Charles (R - 1 Miller. Zell (D - GA) 0.998 d/oinovich, George (R -
«Cochran, Thad (R - 1 #Harkin, Tom (D - I1A) -1 Murkowski, Frank (R- 0.984 dNarner, John (R - VA)
«Collins, Susan (R-ME) -0.44  &Hatch. Orrin (R - UT) 1 dMurray, Patty (D - WA) -1 aNellstone, Paul (D -
«Conrad, Kent (D - ND) -1 #Helms, Jesse (R - NC) 1 #Nelson, Bill (D-FL) -1 WNyden, Ron (D - OR)

Table #1: Vote Prediction for Economic Stimulus Bill

Our Net predicts a 54-46 majority in favor of the Bill—insufficient votes to
override the filibuster. Significantly, our net accurately anticipates the last-minute switch
by Democrats Breaux, Nelson, and Miller.

4.2 Analysis of Influence

Over our set of training data, the neural network described above converges to
assign a synaptic weight to each element of an input vector. Each element of the input
vector represents the policy position of a particular advocacy group. Thus, we conjecture
that the weight assigned to each element of the input vector for each senator reflects the
political influence of the given organization on that senator. To investigate this
hypothesis, we conducted a secondary analysis of the same converging net used in the
previous section to make predictions. We considered the voting pattern over our training
set of three well-known, senior senators (a Republican, a Republican/Independent, and a
Democrat). Below are the synaptic weights assigned to each element of the input vector
and the percentage of times over the set of training data a vote corresponded to the
element of the input vector when that input was not 0.
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i Daschle %Voted  Jeffords %Voted McCain %Voted

AARP -21.95 60% 15.88 50% 20.4 83%
ACLU -13.01  16.00% 1.83 28.50% -0.67 28.50%
AFL-CIO 0.86 62.50% -3.02 5550% 14.93 66.60%
Air Transport Association of America 33 66% 1.12 75% 11.03 66%
American Association of Health Plans -16.67 0% 8.07 75% -14.62 25%
American Enterprise Institute 2.16 54% 0.71 90% 0 80%
American Medical Association 16.07 100% -8.02 50% 14.72 100%
American Public Power Association 14.24 71.40% 20.29 87.50% 18.03 75%
CATO -12.03 44% 1.5 50% 0.12 30%
Center for Constitutional Rights 4.43 60% 0 25% -1.52 0%
Christian Coalition 3.1 44% 0.1 25% 0.1 0%
Consumer Federation of America -5.55 25% -34.45 25% -2 0%
Edison Electric Institute -30 0% 22.38 100% 10.76 100%
Health Insurance Association of American -6.56 25% -14.13 25% -26.78 40%
Independent Insurance Agencies of America 2.87 50% -1.19 50% 10.56 57%
National Association of Manufaturers -7.02 25% -1.12 50% 11.87 60%
National Consumer Bankruptcy Coalition 13.78 100% 14.41 100% 12.33 100%
National Federation of Independent Business -5.28 33% 4.94 66% 13.95 66%
NRA -2.09 40% -0.01 75% 6.28 80%
Nuclear Energy Institute -50.03 0% 0.96 100% 15.66 100%
Public Citizen -9.3 40% -18.9 20% -0.13 25%
The Brookings Institute -2.14 66% -0.45 33% 0.18 41%
The Heritage Foundation 247 54% 0.28 90% 0.34 70%
US Chamber of Commerce -39.6 0% 42.96 0% -24.04 0%
Correlation Coefficient 0.804083 0.699614 0.674126

Table #2: Analyzing influence of political lobbies

Finding a correlation here makes intuitive sense: we would expect that if a senator
often voted in a way a group approved of, then the weight between them would higher.
However, there are other factors that a simple correlation analysis does not take into
account. One such factor is the trend that input vectors with less data often have higher
weights. (That is, if a group has opinions on only a few bills, it tends to be ranked as
more influential on that bill.) This is an artifact of the learning algorithm not being able
to properly "judge" the true influence of the group from the limited data set.

Conclusion
The powerful applications of predicting voting patterns through neural networks
are demonstrated by our net’s prediction of today’s Economic Stimulus  bill.
Nevertheless, we repeatedly encountered errors and difficulties that suggest the need for a
more accurate definition of the voting arena. That is, a definition of a bill broader than the
positions of various political advocacy groups. Our study suggests such exploration could

yield highly accurate predictions.
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APPENDIX A: SUMMARY OF TRAINING DATA

S. 1052 Patient Grarm Campaign Finance t 64 Bankrupcy Farm Security Act Death Tax Senate 53- Ashcroft
Protection Act Amendment to ReformWt 36 (S. of 2001 HR 2646 39 Nomination
AARP 1 1 1 0 0 1
ACLU 0 0 -1 0 0 0
AFL-CIO -1 -1 1 1 0 0
Air Transport Association of America 0 0 -1 0 0 0
American Assodiation of Health Plans -1 1 0 0 0 0
American Enterprise Instifute -1 -1 -1 1 1 1
American Medical Assodiation 1 -1 0 0 0 0
American Public Power Assodiation 0 0 -1 0 0 0
CATO -1 -1 -1 0 -1 1
Center for Constitutional Rights 0 0 0 0 0 0
Christian Coalition 1 1 -1 0 1 1
Consumrer Federation of Arrerica 1 1 0 -1 0 0
Edison Blectric Institute 0 0 0 0 0 0
Health Insurance Assodiation of American -1 1 -1 0 0 0
Independent Insurance Agencies of Arerica -1 1 -1 0 0 0
National Assodiation of Menufaturers -1 -1 -1 0 0 0
National Consumer Bankruptcy Coalition 0 0 0 1 0 0
National Federation of Independent Business -1 -1 0 0 0 0
NRA 0 0 -1 0 0 0
Nudear Energy Institute 0 0 0 0 0 0
Public Citizen 0 0 1 -1 0 1
The Brookings Instifute 1 1 1 0 1 -1
The Heritage Foundation -1 -1 -1 0 -1 1
US Chamber of Commerce 0 0 -1 0 0 0
Passangers’ Tax Relief Act Olson  Nomination Health  Insurance Supplemental Gregory Muefler 254 N
Bill of Rights _ Vt. 165 Vt. 167 Vt. 220 Appropriations 228 Nomination Nomination Truck R
AARP 0 1 0 1 0 0 o]
ACLU 0 0 0 -1 0 0 0
AFL-CIO 0 0 0 1 0 0 0
Air Transport Association of America -1 0 0 0 0 0 0
American Association of Health Plans 0 0 0 -1 0 0 0
American Enterprise Institute -1 1 1 0 0 1 1
American Medical Association 0 0 0 1 0 0 0
American Public Power Association 0 0 0 0 1 0 0
CATO 1 1 -1 0 0 0 0
Center for Constitutional Rights 0 0 -1 0 0 1 -1
Christian Coalition 0 1 1 0 0 1 1
Consumer Federation of America 0 0 0 0 0 0 0
Edison Eiectric Institute 0 0 0 0 0 0 0
Health insurance Association of American 0 0 0 1 0 0 0
independent Insurance Agencies of America 0 0 0 1 0 0 0
National Association of Manufaturers 0 0 0 0 0 0 0
National Consumer Bankruptcy Coalition 0 0 0 0 0 0 0
Nationat Federation of Independent Business 0 0 0 0 0 0 0
NRA 0 0 1 0 0 0 0
Nuclear Energy Institute 0 0 1 0 0 0 0
Public Citizen 1 0 0 0 0 -1 0
The Brookings Institute 1 -1 -1 1 0 -1 -1
The Heritage Foundation 0 1 1 0 0 1 1
US Chamber of Commerce 0 0 0 0 0 0 0
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APPENDIX B: VOTE PREDICTION

Patient Protection £ Prediction Campaign Finance  Prediction Ashcroft Nomiation Prediction Anti-Terrorism Prediction

Akaka, Danie] (D - Hi) 1 1 1 -1 -1 1 1 1
Allard, Wayne (R-CO) -1 -1 -1 -1 1 1 1
Allen, George (R - VA) -1 -1 -1 -1 1 1 1 1
Baucus, Max (D - MT) 1 1 1 -1 -1 1 1 1
Bayh, Evan (D-IN) 1 1 1 -1 -1 1 1 1
Bennett, Robert (R- UT) -1 -1 -1 -1 1 1 1 1
Biden Jr, Joseph (D-DE) 1 1 1 -1 -1 1 1 1
®ingarman, Jeff (D - NM) 1 1 1 -1 -1 1 1 1
Bond, Christopher (R - MO) -1 -1 -1 -1 1 1 1 1
Boxer, Barbara (D - CA) 1 1 1 -1 -1 1 1 1
Breaux, John (D-LA) 1 1 -1 -1 1 -0.5511 1 1
Brownback, Sam (R - KS) -1 -1 -1 -1 1 1 1 1
Bunning, Jim (R- KY) -1 -09726 -1 -1 1 1 1 1
Bums, Conrad (R-MT) -1 -1 -1 -1 1 1 1 1
Byrd, Robert (D-W) 1 -0.9988 1 -1 1 1 1 1
<Carrpbeil, Ben Nighthorse 0 1 -1 -1 1 1 1 1
Cantwell, Maria (D - WA) 1 0.9735 1 -1 -1 1 1 1
«Camahan, Jean_(D - MO) 1 1 1 -1 -1 1 1 1
«Carper, Thomas (D - DE) 1 1 1 -1 -1 1 1 1
«Chafee, Lincoln (R-RI) 1 1 1 -1 1 1 1 1
Cleland, Mex (D- GA) 1 1 1 -1 -1 1 1 1
Clinton, Hillary (D - NY) 1 1 1 -1 -1 1 1 1
Cochran, Thad (R-MS) -1 -1 1 -1 1 1 1 1
Colins, Susan (R-ME) 1 1 1 -1 1 1 1 1
Conrad, Kent (D - ND) 1 -0.9946 1 -1 1 1 1 1
Corzine, Jon (D -NJ) 1 1 1 -1 -1 1 1 1
Craig, Lanry (R-1D) -1 -1 -1 -1 1 1 1 1
Crapo, Mike (R-ID) -1 -0.9993 -1 -1 1 1 1 1
) Daschle, Thomas (D - SD) 1 1 1 -1 - 1 1 1
; Oayton, Mark (D- MN) 1 1 1 -1 -1 1 1 1
Dewine, Mke (R - OH) 1 -1 -1 -1 1 1 1 1
Ooad, Christopher (D-CT) 1 1 1 -1 1 1 1 1
Domenid, Pete (R- NM) 0 1 1 -1 1 1 0 1
organ, Byron (D - ND) 1 1 1 -1 1 -1 1 1
Ourbin, Richard (D - IL) 1 1 1 -1 -1 1 1 1
Edwards, John (D - NC) 1 1 1 -1 -1 1 1 1
€nsign, John (R-NV) -1 -0.995 -1 -1 1 1 1 1
€nzi, Mke (R-WY) -1 -1 -1 -1 1 1 1 1
Feingoid, Russell (D-W) 1 1 1 -1 1 1 -1 1
#einstein, Dianne (D - CA) 1 1 1 -1 -1 -1 1 1
¥itzgerald. Peter (R-IL) 1 1 1 -1 1 1 1 -1
#rist, William (R- TN) -1 -1 -1 -1 1 1 1 1
Graham Bob (D-FL) 1 1 1 -1 1 1 1 1
Gramm, Phil (R-TX) 0 1 -1 -1 1 1 1 1
Grassley, Chuck (R-14A) -1 0.2732 -1 -1 1 1 1 1
Gregg, Judd (R-NH) -1 -04151 -1 -1 1 1 1 1
#agel, Charles (R-NE) -1 -1 -1 -1 1 1 1 1
Harkin, Tom (D-JA) 1 1 1 -1 -1 1 1 1
Hatch, Omin (R- UT) -1 -1 -1 -1 1 1 1 1
Helrs, Jesse (R- NC) -1 -1 -1 -1 1 1 0 1
Hollings, Emest (D - SC) 1 -1 -1 -1 -1 1 1 1
#utchinson, Tim (R- AR) -1 0.9802 -1 -1 1 1 1 1
#utchison, Kay Bailey (R - -1 1 -1 -1 1 1 1 1
anhofe, James (R- OK) -1 -1 -1 -1 1 1 1 1
anouye, Daniel (D - HI) 1 1 1 -1 -1 1 1 1
«effords, James (1-VT) -1 1 1 -1 1 -1 1 1
Yohnson. Tim (D - SD) 1 1 1 -0.9954 -1 1 1 1
¥ennedy, Edward (D - MA) 1 1 1 -1 1 1 1 1
Kerry, John (D- MA) 1 1 1 -1 -1 1 1 1
*ohl, Herb (D-W) 1 1 1 -1 -1 1 1 1
«yl, Jon (R-AZ) -1 -1 -1 -1 1 1 1 1
dandrieu, Mary (D - LA) 1 1 1 -0.9997 -1 1 1 1
Leahy, Patrick (D-VT) 1 1 1 -1 1. 1 1 1
<evin, Carl (D-M) 1 1 1 -1 -1 1 1 1
“iebermen, Joseph (D-CN 1 1 1 -1 -1 1 1 1
4incoln, Blanche (D-AR) 1 1 1 -1 -1 0.9962 1 1
dott, Trent (R-MS) 0 1 -1 -1 1 1 1 1
“Lugar, Richard (R-IN) -1 -1 1 -1 1 1 1 1
McCain, John (R-AZ) 1 1 1 -1 1 1 1 1
dMcConnell, Mitch (R-KY) -1 -1 -1 -1 1 1 1 1
dvikulski, Barbara (D - MD) 1 1 1 -1 -1 1 1 1
aviller, Zell (D-GA) 1 1 1 -1 1 1 1 1
Murkowski, Frank (R - AK) 0 1 -1 -1 1 1 1 1
Murray, Patty (D- WA) 1 1 1 -1 -1 1 1 1
aNelson, Bill (D-FL) 1 1 1 -1 -1 1 1 1
dNelson, Ben (D- NE) 1 -1 -1 -1 1 1 1 1
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APPENDIX B: VOTE PREDICTION CONTINUED

Patient Protection £ Prediction

#Nickles, Don_(R - OK) -1
Reed. Jack (D-RI) 1
Reid, Harry (D - NV) 1
Roberts, Pat (R - KS) -1
Rockefelier [V, John (D - 1
Cantorum, Rick (R - PA) -1
Carbanes Paul (D - MD} 1
Schumer, Charles (D - NY) 1
Bessions Jeff (R- AL} -1
Shelby, Richard (R - ALY -1
€mith, Bob (R - NH) -1
Smith, Gordon (R - OR) 1
©nowe, Olympia (R - ME) 1
Gpecter, Arlen (R - PA) 1
Etabenow, Debbie (D - MD) 1
Stevens Ted (R - AK) -1
Thomas, Craig (R - WY) -1
sThompson, Fred (R - TN} -1
#Thurmond, Strom_ (R - SC) -1
*Torricelli, Robert (D -~ NJ) 1
#oinovich, George (R - OH) -1
dVarner, John (R - VA) 1
W\ellstone, Paul (D - MN) 1
#Vyden Ron (D - OR) 1
Total Red

Total Green

% Correct

Sum Deviation

11

89
28.8

Campaign Finance Prediction
1
1
-1
1
-1
1
1
-1
-1
-1
-1
1
1
1
1
-1
1
-1
1
-1
-1
1
1

References

Ashcroft Nomiation Prediction
1
-1
-1
1
-1
1
-1
-1
1
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Anti-Terrorism Prediction
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Would You Like to Play a Game? - An Evolutionary

Programming Approach to Three-dimensional Tic-Tac-Toe

Matthew Herberg and Andrew Lovett
Yale University, Neural Networks
New Haven, CT 06520

Abstract

We attempt to create an ideal three-dimensional tic-tac-toe player. Examining
the strengths and weakness of previous game-playing algorithms, we explore the
plausibility of combining these algorithms in order to create a player which
trains against a specific adversary until it becomes as skilled as possible at
defeating that opponent. We do this by implementing a genetic algorithm that
uses a marker-based encoding system patterned loosely off actual DNA
structures. This algorithm uses crossover and mutation to find the ideal neural
network. We compare this to simpler genetic algorithms which have previously
been used to play tic-tac-toe. We test our algorithms against Al opponents of
varying difficulty to see whether our networks can learn to beat the adversaries.
Keywords — neural networks, genetic algorithms, evolutionary programming,
sexual selection, mutation, marker-based encoding, three-dimensional tic-tac-toe,

qubic

1. INTRODUCTION

When studying game learning, it is often most enlightening to examine
human strategies. Though we can imagine Kasparov or a similar expert in a
game “computing” a solution by searching deeper and deeper among possible
game trees, in reality one study experts in chess reported that a move just
appears to them as being correct (deGroot, 1965). In fact, deGroot found that
most chess masters have spent thousands of hours staring at chess boards
studying chess and that they have stored in memory the moves from thousands
of games. They do not, as one would expect, search any more moves than a

novice player would. Instead, their choice in moves is based off a kind of pattern
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recognition. Moriarty and Miikkulainen (1995) adopted a similar “human-like”
pattern recognition strategy to train neural networks to play Othello. Without
any heuristics, game strategies, or look-ahead, they successfully taught a
network to look at a board and return a “good” move. Their network even
successfully generated strategies for beating artificial intelligence algorithms. In
our project, we hope to emulate their success with the game of three-dimensional
tic-tac-toe.

Three-dimensional tic-tac-toe is derived from traditional tic-tac-toe, which
is a very simple game in which two players alternate moves placing a symbol on
the board thereby hoping to make a line of three of their symbols in a row. On
the traditional board of nine squares, there exist only eight possible lines of three
symbols. Three-dimensional tic-tac-toe, on the other hand, has a far larger state
space and consequently is far more complicated and can be played on any N x N
x N board. For purpose of our project, we have decided to use the two most
common variations. The first variation is played on a 3 x 3 x 3 board and the
second is known as “qubic” and is played on a 4 x 4 x 4 board. For example, in
qubic the board consists of 64 squares and there are 76 possible winning lines of
four symbols in a row. An example of an ending to one particular game can be

found in Figure 1.

&= &=
ﬁﬁﬁﬁ
’
5

Figure 1: Player “O” fills in a spot to create three in a row, “X” blocks “O”, and “O"

completes a line of four, winning the game.

In typical artificial intelligence (AI) implementations of a computer player,

game playing rules are hard-coded. One such example is when the Al examines
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at every possible move and determines the priority of each move. Such
implementations also often look-ahead at all possible responses to their moves
(often using minimax and alpha-beta pruning to eliminate some of the possible
moves) and use a formula, called a heuristic estimator, to evaluate their resulting
positions (Russell & Norvig, 1995).

There are a few problems with the traditional Al approach. First of all,
state space pruning usually assumes the opponent is making the best possible
moves (according to its heuristic). Consequently, it is possible to trick the
traditional player by using unconventional strategies. Similarly, because the
heuristic estimator is hard-coded, a change in the dimensions of the game would
almost necessarily require rewriting the estimator. In many cases it has been
shown that game playing techniques that combine evolutionary algorithms with
neural networks can be successful, even when limited training is given to the
network (Chellapilla & Fogel, 1999). The goal of this paper is to discuss and
examine strategies for training neural nets to play tic-tac-toe against specific
opponents on three-dimensional boards of any size.

We will design and implement two different genetic algorithms. The first
one, based on Fogel’s experiments with two-dimensional tic-tac-toe, will use
simple mutation to reproduce neural networks. The second one, based on
Othello-playing strategies developed by Moriarty and Miikkulainen, will evolve
networks using marker-based encoding, a system that allows networks to
reproduce sexually. These two algorithms will be tested against a variety of

adversaries, some based on proven artificial intelligence techniques.
2. EXPERIMENT ONE

2.1.1. A Simple Model

David Fogel has conducted extensive experiments using evolutionary
programming and neural networks to play two-dimensional tic-tac-toe (Fogel,
1993; Fogel, 2000), Although this is a much simpler game, many of the concepts
he applied to the creation of his neural net are worth examining because Fogel's
strategies can be applied to higher-dimensional tic-tac-toe. Fogel's feed-forward

net had nine input values. These values corresponded to the state at each spot
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on a 3 x 3 tic-tac-toe board. Each value could be [-1, 0, 1], representing an “X”, an
empty square, and an “O.” The input layer was completely connected to a
hidden layer consisting of 1 to 9 neurons. These neurons, in turn, were
connected to an output layer of nine neurons. This layer was a modification of
the input layer that suggested the next move through competition, i.e. the neuron
with the highest weighted sum represented the suggested legal move. The
algorithm began by creating a family of 50 neural networks. It trained the neural
networks by testing every net in the family against an AI tic-tac-toe player. Each
generation, the nets that performed especially well produced offspring through
mutation, in which the weights of the offspring mutated randomly and there was
a chance that the hidden layer would increase or decrease by one neuron. Those

nets that performed the worst were dropped.

2.1.2. Applying Fogel's Model to a Three-dimensional Space

For our initial attempt, we decided to create a relatively simple neural
network, loosely based on Fogel's work. The first genetic algorithm was
designed to work with boards of all size, but as our initial attempts involved only
a3 x 3 x 3 board, we will describe it in the terms of such a board. This
completely connected feed-forward net consisted of 27 inputs, a hidden layer
with 54 neurons, and 27 outputs. We decided to use a much greater number of
hidden neurons than Fogel used because of the significantly greater complexity
of our game. We decided it was unnecessary to vary the number of neurons in
the hidden layer because the possibility of the outputs from a given neuron
having weights of or close to 0 had the same effect. All weights, including biases,
were initially set to a value between -5 and 5 determined randomly when the net

was created. Our gain function returned 1 or -1 for the output of each neuron.

2.1.3. Implementing our First Genetic Algorithm

The genetic algorithm used a family of 20 neural nets. Each generation,
these 20 nets played 50 games against the adversary. Each net's total fitness was
the average of its fitness scores over all the games. This fitness in a given game
was determined in the following manner using the total number of moves made

in a given game (t):
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1. If the neural net won, the score was 128 - t.

2. If the neural net lost, the score was -128 + t.

3. In the case of a tie, the score was 0.
This system was chosen because we wanted a win in a smaller number of moves
or a loss in a greater number of moves to be recognized as an improvement, but
we also required there to be a clear distinction between any win and any loss.

After the fitness of each net in the family was determined, the family was
sorted according to fitness. The bottom three quarters were discarded. Each net
in the top quarter was replicated three times and mutated to replace the
discarded families. Neural networks were mutated by adding a random value
from the set of either {-1, 0, 1} or {-2, -1, 0, 1, 2} to each weight. The next

generation then commenced using the new family.

2.2. Results

We first tested our genetic algorithm by training our neural nets to play against a
random player. This player randomly selected a legal move each turn. Our genetic
algorithm worked very well against this adversary on a 3 x 3 x 3 board. As Figure 2
shows, after merely 50 generations, the highest-performing net in the family achieved a
fitness of around 121. This means that, on average, the neural net was defeating the

random player in just 7 moves. In repeated tests, these results always held.
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First Genetic Algorithm vs. Random Player
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Figure 2: The first genetic algorithm easily beat the random player, stabilizing on a
fitness of 120 by the 50™ generation

We next trained our neural nets to play against a simple Al opponent.
This player moved to block or take a win whenever it had the option of doing so
or otherwise moved randomly. The genetic algorithm was also successful in
overcoming this adversary, although the training time was much greater. After
543 generations, the top neural net of the first genetic algorithm consistently
scored a fitness level above 120 (Figure 3). This meant that the algorithm was

winning in approximately 7 to 9 moves.
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Genetic Algorithms vs. Simple Al
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Figure 3: The performance of both genetic algorithms against a simple Al algorithm

We next used a more complicated AI which analyzed the board and found
the move with the highest priority based partially on ideas presented in a article
from an online artificial intelligence website (Kao, http:/ / www.generation5.org).

Initial tests against this adversary were also very promising. However, we soon

discovered that much of our success was due to flaws in the Al's design. Indeed,
we have concluded that one of the greatest uses of neural networks may be
testing Al algorithms, as they are able to quickly find any weaknesses. All we
had to do was examine how the net which had been training against the Al
played to determine what the Al was doing wrong. We eventually managed to
fix most of the flaws in the Al only to discover that our neural nethad a
considerably greater amount of difficulty training against the new AL It was
able to reach a fitness of around 30, meaning it was playing slightly better than
the Al without too much difficulty, but it was unable to improve beyond this
level. Unlike playing a simpler Al in which it won in an average of 7 moves, a

fitness of 30 implies that it took on average close to 90 moves to win.
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3. EXPERIMENT TWO

3.1.1. Marker-based Encoding

Marker-based encoding is a direct encoding of a neural network onto a
chromosome consisting of integer alleles (Moriarty & Miikkulainen, 1995).
Certain allele values act as start markers or end markers. The neural network
generated is defined by node definitions, which are read sequentially from the
chromosome. Each node is begun by a valid start marker and ends only when
terminated by a valid end marker (any start markers within a node definition are
ignored).

Inspired by the biological structure of DNA, Moriarty and Miikkulainen
used markers to define separate nodes in a neural network. Each node, or gene,
contained a start and end marker. In between these two markers were 8-bit
integers that represented keys, labels, and weights. The first value was the label,
which specified the identity of that particular neuron. Key-label-weight triplets
followed that specified the connections between that neuron and the input layer,
the output layer, and other neurons. Neurons could even send input to
themselves. Recurrency was implemented so that a net could adapt to a specific
opponent’s strategy during a game. The input and output layers, rather than
being specified by the genes, were created beforehand. There were 128 inputs
representing the board’s current state. The 128 inputs represented all the spaces
on the 8 x 8 board taken by white pieces and all the spaces taken by black pieces
(those inputs for spaces that were taken were set to 1). There were 64 outputs,

representing the weight given to each potential move.
p g ghtg P

3.1.2. Defining Our Encoding System
Our marker-based encoding system was similar to the one used by
Moriarty (Figure 4). Our algorithm constructed a neural net from a string of 5000
bytes (numbers between the values of -128 and 127), using these values to build
the hidden layer connecting the input and output layers. Genes representing
neurons in the neural network were found between start markers and end
markers. If the value of a number MOD 25 was 1 it was a start marker, and if the

value of the number MOD 25 was 2 it was an end marker. The first label
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Second Algorithm vs. Flawed AI
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identified the neuron, and the remaining values in the gene describe connections
to inputs, outputs, and other hidden neuron. Because labels for neurons were

bytes, there could be up to 256 neurons in the hidden layer.

Start | Label | Key, | Label, | W, IL__> l Key, I Label, l W, ' End '

Figure 4: A typical “gene” as defined by our marker-based encoding system

The main difference was that we eliminated the recurrency. Moriarty
himself stated that the recurrency was not necessary and was only used in the
Othello program to aid the net in adapting to specific opponents'’ strategies.
Because we planned to train our net against specific opponents, this seemed
unnecessary. In order to avoid recurrency, we ensured that each hidden neuron
could only receive input from other hidden neurons with lower labels. This
meant that, as in Moriarty's model, the neural net could have anywhere from one
to 256 hidden layers, but that as long as the neurons were updated in order,
according to their labels, no neuron would be updated before another neuron
from which it received input. All neurons, however, could receive input from the
input layer or send output to the output layer. Because all input values were

either 1 or 0, we switched to a gain function that returned 1 or 0.

3.1.3. Implementing Our Second Genetic Algorithm

In our genetic algorithm, we created a family of 50 networks. Again, these
networks played 50 games each against an adversary, and the fitness was
determined in the same manner as before. After sorting the networks according
to fitness, we followed Moriarty's strategy of taking the top 12 networks and
reproducing each of them with another one of the top 12 to produce two child
networks. These 24 new networks replaced the 24 networks from the previous
generation with the lowest fitness. Reproduction occurred by picking two points
at random along the genetic string of 5000 bytes representing the nets. The net
consisted of a combination of the bytes that came between the two points in one
parent string and the bytes found outside of those two points on the other parent

string. There was a 10% chance that each byte would mutate by having a value
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between -5 and 5 added to it. We choose these values for mutation because they
were similar in scale to mutations done in similar literature and worked well in

practice.

3.2. Improving Our AI Adversary

To aid in testing our new genetic algorithm, we modified the Al to play on
a4 x 4 x 4 board. Remembering our problems with our old Al we changed our
board analysis to use a ranking system. Under this system, a move which gave
the Al four-in-a-row was awarded the top rank of 20. Moves which
accomplished lower-priority goals, such as blocking an opponent's four-in-a-row
(19), achieving three-in-a-row in two directions (18), blocking an opponent's
four-in-a-row in two directions (16), etc, were given lower ranks. It should be
noted that modifying the Al to play on a 4 x 4 x 4 board took a considerable
amount of effort. One of our initial points was that a genetic algorithm is better

suited for adapting to changes in board size than an artificial intelligence player.

3.3. Results

The second genetic algorithm performed even better than the first against random
tic-tac-toe players. On both a 3 x 3 x 3 board and a 4 x 4 x 4 board, the algorithm trained
a network with a fitness of around 120 in under 10 generations. The algorithm also
performed well against the simple Al on a 3 x 3 x 3 board (Figure 3). It produced a
network with a fitness near 100 in just 10 generations. Unlike the first genetic algorithm,
it did not manage to consistently score a fitness of 120 within the first 600 generations.
However, it did manage to achieve an average fitness of about 110.

The real test came when we pitted it against our 4 x 4 x 4 AL In the initial
run, the algorithm performed well, reaching an optimal fitness (Figure 5).
However, we discovered that it was taking advantage of a flaw in the AI's
program which caused it to miss diagonals that transcended all three
dimensions. After we corrected this fault, the Al became unbeatable. Even after
2000 generations, the best neural net was unable to perform at a fitness level
above -106. While this was an improvement over the initial fitness of -118, it was

clear that the net was not improving beyond this level. We tried weakening our
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Al somewhat by eliminating its ability to recognize anything with a lower
priority than blocking opponent's three-in-a-row (in other words, it could not
recognize the chance to get two-in-a-row), but the genetic algorithm still
performed poorly, reaching a fitness above -90 only after 4,000 generations
(Figure 6).

4. CONCLUSION

Both of our genetic algorithms created populations of networks that
slowly improved by means of mutation. Our second genetic algorithm also
generated new networks by using sexual selection and encouraging stronger
networks to recombine with each other. The success of our algorithms against
both a random opponent and a simple AI demonstrates the advantage of using
these strategies.

The difference between the performances of our two genetic algorithms
shows the strengths and weaknesses of the algorithms. The second algorithm
was able to achieve a high fitness level quickly because of its use of sexual neural
net reproduction to combine strong neural nets. However, this algorithm had
greater difficulty actually achieving the optimal fitness level against a simple Al
opponent. The greater changes introduced in the offspring of the neural nets,
resulting both from the use of sexual reproduction and in the greater sensitivity
to minute changes in the gene structure, allowed the nets to adapt quickly but
made it difficult for them to undergo the slight changes required to achieve
perfection.

Our lack of success against more skilled Al algorithms shows that we are
a long way from teaching a neural network to play well enough to defeat a
human. There are several possible reasons for this failure. It is difficult to
determine the ideal level of mutation. A greater amount of mutation might have
aided our networks in converging on a high fitness value. It is also possible that
our neural networks were not complex enough to store all the rules required to
play three-dimensional tic-tac-toe. The second algorithm was designed to allow
a wide range of complexities, with up to 256 hidden neurons, but neural nets

produced from a string of 5000 bytes generally had closer to 60 neurons.
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Modifications to the gene interpretation strategy may aid the algorithm in
learning more rules at a greater rate.

One of our biggest problems was the difficulty of accurately determining a
network’s fitness. Even after playing 50 games and averaging the fitness, the
genetic algorithms tended to produce fitness scores that could fluctuate wildly.
A given network could score a fitness of 100 one generation and then score a
fitness of 60 the next. This certainly would have interfered with our algorithms,
which depended on their ability to pick the networks with the highest fitness in
each generation. We are unsure how exactly to deal with this problem. We have
tried increasing the number of games played to 100, but this slows down the
algorithm significantly and does not appear to greatly improve the accuracy of
fitness levels. It is possible that the fitness scoring system is inherently flawed.
Before further study is done, we ought to examine this system and determine
whether there is a superior alternative.

There have been several successful studies demonstrating the potential of
neural nets and evolutionary algorithms in the area of game-playing. Our project
adds to this body of research by demonstrating how the adaptability of neural
networks can be used. While most games can only be played on board of a fixed
size, three-dimensional tic-tac-toe can be played on a board of any size. We
worked mainly with 3 x 3 x 3 boards and 4 x 4 x 4 boards because these are the
only sizes for which an Al can reasonably be constructed. Our genetic algorithms
were able to deal with both these sizes easily, and they could have adapted to a
significantly larger board. They truly followed a “human-like” approach to
learning. In continuing on the lines of this research, it is worth see how marker
based encoding can be applied to other problems. This technique may have great
potential since it does not require the knowledge of the appropriate network

structure for the problem being solved, yet produces very good results.
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Neural Nets for Sissies

Matthew R. Johnson' and Alexander M. Kass?
Yale University, Department of Cognitive Science
New Haven, CT 06520

Abstract

In this project we attempt to generate a realistic artificially intelligent network through
the use of a genetic algorithm that has direct application to a game from current popular
culture. Sissyfight 2000° is a multiplayer, turn-based, non-zero-sum game played in the
world of cyberspace through the use of the Shockwave™ browser plug-in. Here, we
attempt to evolve a net which, given the state of a four-player Sissyfight game, returns the
move with the greatest chance of resulting in eventual victory.

Keywords - neural networks, genetic algorithms, online gaming, artificial intelligence,
Sissyfight, self-esteem, evolutionary programming, live-and-let-live strategies

1. INTRODUCTION

The popularity of computerized gaming is increasing with every passing year.
Nearly every game that is created requires some sort of artificial intelligence (Al) to
control computer players in such a way that they will remain competitive with their
human opponents, thus keeping the interest of the latter engaged. This kind of Al has
been successfully implemented in the past through the use of neural networks which are
intended to mimic the behavior of a human player and thus make computerized adversar-
ies both interesting and defeatable (Baba et al., 1996).

Frequently, these algorithms are either simply programmed models of human
heuristics for playing a game or brute-force attacks which attempt to map out complete
sets of moves and evaluate them using some sort of numerical system devised by the
programmers. Neither of these designs, however, is truly able to escape the influence of
the programmer and his own conception of the optimal methods for winning the game;
they require him to embody his own strategy in the algorithm followed by computerized
players. However, as Chellapilla and Fogel (1999) have shown, it is possible to evolve a

! matthew.r,johnson@yale.edu, AIM: MattTheGr8, Sissyfight moniker: Bobette
2 alexander kass@yale.edu, AIM: Kasskicked, Sissyfight moniker: DJ Cannola
5 http://www.sissyfight.com
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neural network which plays at a near-expert level in some games (their example used
the game of checkers) without programming in any additional expert knowledge of
gaming strategies. We hope, then, that creating a program which evolves in such a
fashion will result in a player robust enough to compete successfully against a number
of different strategies without being subject to the pitfalls of a particular heuristic
method of play; evidence for the strength of genetically-evolved neural networks in this
regard comes from the famous example of the Iterated Prisoner’s Dilemma (IPD). In
the original programming competition designed by Robert Axelrod, the most successful
algorithm was a simple one named Tit-for-Tat, which won two consecutive contests
(Axelrod, 1984). However, it has been shown that neural networks evolved with no
prior knowledge of the known optimal strategies for solving the IPD, e.g. Tit-for-Tat
and its closest competitors, were able to perform on par with Tit-for-Tat itself
(Chellapilla and Fogel, 1999).

To this end, we intend to develop a player defined by a feed-forward neural
network which is evolved through a model genetic process governed by survival of the
fittest. This method is particularly useful for a turn-based game of indefinite length. If
one is designing a neural network which takes the state of the game as input and returns
the player’s next move, it is difficult to use a teaching method such as back-propagation
when the ultimate impact of the player’s move is not immediately apparent.

To create our player, we had four criteria for the kind of game to simulate. In
order to demonstrate the potential applications of our methods, we sought a game cur-
rently played by human beings in the real world. To implement the game strategy with a
neural network of reasonable size, we sought a game in which each player could be
simulated by a neural network that could be given a set of parameters for the current state
of the game and then return one decision for the player’s next move. To keep the empha-
sis of the experiment on the players’ strategies alone, we sought a game which was
independent of random factors but which instead, like classic games such as checkers,
chess, and Othello, began each game in the same state and relied only on the players’
different strategies to determine the outcome of the game. Finally, to keep the network
simple enough that it could be defined by a relatively small number of inputs and outputs,
thus keeping computational time down to a reasonable level, we sought a game with a
reasonably small set of parameters. One game that fulfilled these four factors was
Sissyfight, an online game designed to use the Macromedia Shockwave plug-in which is
commonly used with conventional web browsers. The game is also somewhat interesting
in a vein similar to that of the IPD; in fact, some of the game’s moves are quite reminis-
cent of the IPD’s cooperate-or-defect alternatives. However, it also includes a variety of
moves which do not coirespond directly to outright cooperation or defection; this kind of
inclusion, when tested by networks playing extended versions of the IPD, has caused less
mutual cooperation and the generation of more sophisticated and subtle strategies
(Darwen and Yao, 2001). Simply by virtue of being a multiplayer game, Sissyfight also



incorporates some of the complexity of the N-person IPD, which is a variant of the IPD
containing more than a mere two players (Darwen and Yao, 1995a).

Section 2 sets forth the basic rules of Sissyfight and the version of the game we
shall be using in this simulation. Section 3 presents the implementation of the neural
networks and controlling shell program that will play the game and evolve the players,
respectively. Section 4 contains data indicating our success at creating evolved networks
that win games with increasing frequency, and Section 5 details the relevance of these
results to the gaming industry and possible further steps.

2. SISSYFIGHT

2.1 Official Sissyfight mission statement
According to the front page of the Sissyfight website, the essential purpose and
definition of Sissyfight is as follows:

“SiSSYFiGHT 2000 is, like, an intense war between a bunch of girls who are all out to
ruin each other’s popularity and self-esteem. The object is to physically attack and
majorly dis your enemies until they are totally mortified beyond belief. You’ll never
come out on top without making the right friends, so be careful who you’re nice to.
Because in the end, only the shrewdest will survive with their social status intact!” (http://
www.sissyfight.com, 2001)

2.2 Elucidation of official Sissyfight mission statement

Sissyfight, as played on the Internet by individual human players who connect to
the site, takes place on a virtual playground between three to six players at a time*. The
players are simulated schoolgirls whose goal is to reduce the self-esteem points of all of
the other players to zero. Each player begins with ten self-esteem points and has the
opportunity to raise or lower her and her opponents’ points through the moves she makes
in each turn. A single turn consists of each player choosing a move; when all players have
selected a move for the turn, the moves are executed simultaneously, and their results —
which can vary depending on the interactions of different characters’ moves — are dis-
played onscreen; for the next turn, players’ self-esteem points are adjusted.

When a player’s self-esteem point total reaches zero, she is forced to drop out of
the game. Thus, in a four-player game, the demise of one player results in a smaller three-
person game which continues until another player is eliminated. Once only two players
remain in the game (or, if multiple players are eliminated on the same turn, one or zero

¢ For the purposes of reducing computational time, our network is only designed to work with a game of
four or fewer players; this should not be considered a large limitation since a four-player game is perfectly
valid within the Sissyfight universe. Furthermore, our network design simply designates four input neurons
for each opponent and does not otherwise distinguish between them, so the extension of the experiment to
simulate a six-person game would only require the addition of a few more input and output neurons in the
same basic pattern of the four-person model, and thus we should not expect a signicant difference in
successful strategies for dealing with five opponents versus those dealing with three.
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players could be all that are left standing), the match is over; any players with self-esteem
points > 0 are declared winners. A game with no winners is thus possible although not
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Figure 1. A screen shot from a Sissyfight game in progress; the menu displays all available moves.

very common. The game as played on the website allows collaboration between players
through the use of onscreen chat which nonetheless remains visible to all players (secret
communication via phone, ICQ, AIM, etc., is strictly prohibited); clearly, though, this
level of sophistication is outside the scope of our mission to design an artificially intelli-
gent neural net to succeed on a purely algorithmic basis. Beyond this, any human or
artificial strategy, however good, is quickly and easily defeated if it happens to be fight-
ing against three players who already knew each other prior to the game and had agreed
to simply cooperate and destroy the first unknown player to join them. In this sense, our
networks’ competitions are like those between newcomers to the Sissyfight world who
have yet to form lasting relationships with other Sissyfighters and thus must contend
through strategy alone against an entire battery of players whose methods are unknown.
We can liken this sort of situation, rather than to a chess tournament, professional base-
ball game, or match between frequent Sissyfighters where the players form a society and
are familiar with one another’s playing styles, to a competition like the television show
Survivor, wherein contestants begin competition with no knowledge of each other’s
personalities and mustvbegin formulating strategies and alliances before they really know
the people against whom they are playing.

38



2.3 Moves and rules of Sissyfight

Aside from the general outline provided above, there are obviously quite a few
specific rules of Sissyfight that are essential to understanding the game. These rules
mostly concern the evaluations of moves on each turn. The basic moves of the game are
as follows: '
2.3.1 Grab

When one player grabs another, the player who is grabbed is prevented from
making any other offensive or defensive move (see below) during that turn. Grabbing in
itself, however, does not affect either player’s self-esteem points. The only exception is in
the case of two different players both executing a grab on the same victim; in this cir-
cumstance, the victim loses one self-esteem point. Thus, grab might be considered an
intermediate step between cooperation and defection, a strategy which is intended to
defend one from harm while attempting not to provoke additional attack.

2.3.2 Scratch

The scratch maneuver is the simplest attack; when one player scratches another,
the victim loses one self-esteem point. If the victim is already being grabbed by another
player, she then loses two self-esteem points for every scratch. Thus, scratch is a direct
attack which might inspire retaliation; yet though it is more offensive than grabbing, it is
still a relatively weak maneuver which may not factor heavily into other players’ consid-
erations of whether to hold a grudge.

2.3.3 Tease

A rease move by itself inflicts no damage on the intended target player; however,
if two or more players collaborate to tease a single girl, then the victim loses two self-
esteem points for each girl that feases her (thus, a successful rease attack results in a loss
of at least four self-esteem points). Thus, this move, when used properly, simulates
cooperation of two players in simultaneous defection against another.

2.3.4 Cower

Cowering is the basic defensive move; although it prevents the player from
attacking anyone else during a turn, it also defends against a single physical attack such
as grab or scratch. However, if multiple players attack a victim who is cowering, all but
one of the attacks can still penetrate the cower defense. Cowering does not defend against
teasing. In addition, if a player cowers for two consecutive turns without good reason on
either turn (i.e., if she is not attacked by any other player during those turns), she will lose
one self-esteem point. Cowering is a maneuver which, though useful in self-defense,
neither lends itself to provoking nor allying oneself with other players.
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2.3.5 Lick your lolly

Licking your lolly is the only method by which a player can recover self-esteem
points. Ordinarily, if a player licks her lolly during a turn, she will recover two lost self-
esteem points; however, her total number of self-esteem points can never exceed ten.
Each player is limited to three lo/ly licks per game. However, if a player is /icking her
lolly and is scratched or grabbed by one or more other players, she will choke on the
lollypop and suffer two self-esteem points of damage from each assailant. This, too, is
primarily a defensive move largely unrelated to one’s relationships with her opponents.

2.3.6 Tattle on everyone

Tattling is the game’s only method of attacking more than one player at a time.
When one player tattles, any player who is not cowering or licking her lolly during that
move loses three self-esteem points; in addition, any player sustaining damage from
attacks instigated during a lolly lick is implicated in the conflict and therefore loses an
additional three points due to the tattling. Tattles are limited to two per player per game.
However, if two or more players attempt to tattle in the same turn, they will each lose
three points without damaging the self-esteem of the other, non-zattling players. Tattle,
then, bears a striking similarity to the basic cooperate/defect choice in the IPD, since a
player tattling (defecting) alone is highly benefitted by his opponents’ loss of points,
whereas two players fattling simultaneously are both punished.

2.3.7 Extended ramifications of the above

Clearly, the rules above are only a sketch of how moves are evaluated in the
actual game; in complex circumstances involving multiple simultanseous grabs and so
forth, the outcome of the moves cannot be fully described by the summary above. Al-
though the minutiae of move evaluation are insignificant to discussion of the problem,
they are implemented in the real Sissyfight game as well as our network simulation,
described below.

3. IMPLEMENTATION

3.1 Outline

Our implementation was programmed entirely in ANSI C and run on an original
Macintosh iMac/233 and a Macintosh G3/450. It consists of two main parts: the control-
ling shell and the neural network players. These parts are described in detail below.

3.2 The controlling shell

The controlling shell essentially plays the same role as the Shockwave plug-in
does for human players Sissyfighting over the Internet; it takes moves from the players as
input and returns a new state of the game back to the players as its output. However,
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unlike the Internet game, our shell has the additional job of generating the players, select-
ing which ones are allowed to survive at the end of a given round, and mutating them so
as to perpetuate the process of evolution.

In the beginning, the shell generates 200 neural network players as described
below and sets all of their synaptic weights and biases to random values. The shell then
conducts 2500 Sissyfight games per generation, each with four players; the combinations
are selected randomly but are distributed in such a way that each player participates in
exactly 50 Sissyfight games in that generation. When all the games are completed, the
shell preserves the 50 players with the best winning records and discards the rest. The
next generation takes as its first 50 players these winning networks without alteration.
Another 50 players are mutated versions of these 50, with the mutations being defined as
a random value added to or subtracted from each of the synaptic weights and biases; this
number varies inversely with the winning rate of the parent network. As an example, a
parent neuron has a victory rate each generation defined as:

v= (games won) / (games played)

and then the mutation rate of the neuron is defined as:
m= 1-v)/4

such that for each synaptic weight in the network,
Awij = (2*rand()-1)/m

where rand() is the standard function returning a random decimal value between 0 and 1,
and thus

wij(n) = wij(n -1+ Aw,, where -1 < wij(n -+ Aw, <1
-1, where w@m-1)+ Aw, < -]
I, where 1 < wij(n -+ Awij

Thus a network whose v in the previous generation was 1.00 will not mutate at all (muta-
tion rate of 0) and will produce an offspring identical to itself; a parent network with a v
of only .6 (m=.10), however, will allow mutation of between -0.10 and 0.10 in each of its
synaptic weights (-.10 < Aw, < .10). The final 100 players of each generation are simply
more networks whose synaptic weights are generated completely randomly; this is done
in order to make sure that the winning neurons have competed against a wide variety of
opponents’ strategic styles and to make sure that the gene pool of the population stays
sufficiently varied. This also allows for the emergence of novelty. Without these outsiders
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continually entering the realm of competition, genetically evolved networks tend to
compete well against each other but fail when novel strategies are encountered (Darwen
and Yao, 1995b).

3.3 The neural network players

Each of our neural network Sissyfight players was defined as follows: The input
layers consisted of 16 input neurons with values all normalized so that they ranged from
0 to 1; these values corresponded to the differing values of the 16 different variables used
to describe the state of a Sissyfight game at any given time. The network then had a
hidden layer of 30 neurons to ensure that its strategy could be sufficiently complex; these
all fed into an output layer consisting of 12 neurons corresponding to each of the 12
moves that a player could make at any given point. The move which was returned to the

Hidden
Input Layer Layer Output Layer
(16 neurons) (30 neurons) (12 neurons)

Energy Level
PPy
0.1, ..., 1.0
Grab p 7Py

Licks Left
PPy

0,.333,.667, 1.0 Scratchp y-p

e Yadea Ve d oV d o

O
Tattles Left O Tease p 7Py
4 I—P 4 O
0,.5, 1.0
O Cower
O Lick
Cower Status O Tattle
4 I—P 4
0, 1 O
O

Figure 2. A diagram of one of our neural network Sissyfight players.
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controlling shell as the player’s move for that turn was selected on a winner-take-all basis
among the 12 output neurons; i.e., the output neuron with the highest value was selected
as providing the move for that turn. In cases where a network returned a move that was
illegal at that time (e.g., attempting to scratch a player that had already been eliminated

from the game), the next-highest value neuron was selected until an acceptable move was
found.

4. RESULTS

Generally, our neural nets evolved to a certain point of game-winning success in a
certain number of generations and then exhibited little dramatic variation for the remain-
ing generations. This plateau effect occurred after relatively few generations, as the
average number of wins for the 100 evolved nets (fifty winners copied directly from the
previous generation and fifty of their mutant offspring) in each generation steadily in-
creased for approximately the first ten generations. After these initial generations, the win
count of the evolved group of nets stayed essentially even-keel, hovering near 27 wins
per generational tournament, a 54% win ratio (see Figure 3). We then calculated for each
generation the difference between the average win count for the evolved group of nets
and the average win count for the other 100 nets which were randomly created in each
new generation. This difference followed a pattern somewhat similar to the win count of
the evolved nets, initially increasing rather sharply for a few generations and then level-
ing off substantially in later generations, ultimately showing a true separation of approxi-
mately 7 wins’ difference between the evolved nets and their randomized, newly-created
counterparts (see Figure 4). Such evidence showcases the successful learning process of
the group of 100 evolved nets and duly supports the notion of how the genetic algorithm
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Figure 3. Average wins (out of 50) for evolved nets over 250 generations.
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Figure 4. Average win difference for evolved vs. naive groups.

produced more successful offspring with each generation. Additionally, the most success-
ful network of each generation garnered an average of around 36 wins, ranging from 33
to 42 throughout the 250 tournament runs. Interestingly enough, when one graphs the
average performances of these top players over many generations to eliminate some of
the tournament-to-tournament variation, these winners’ success ratios continue to change
and, ultimately, grow with less of a plateau effect than the entire evolved group. Figure 5
shows, for each generation, the win total of the top players from the 20 generations
preceding and 20 generations following all averaged together with that generation’s own
winner. For example, at generation 50, the graph shows the average number of wins for

37 Vi\v/\.'/\ff

36.5 AN WA AVIV\

Wins (out of 50)

36

38.5

35

19 17 25 33 41 49 57 65 73 8! 89 57 105 113 121 129 137 145 153 1671 169 177 185 193 201 209
Generation

Figure 5. Smoothed graph of tournament champion win totals.
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the best players of generations 30 through 70. These tournament champions were almost
always drawn from the pool of evolved networks, demonstrating that evolved nets actu-
ally do perform above and beyond their naive opponents.

At an early level in the implementational process, we discovered that certain
combinations of players produced effective stalemates, wherein each of the four nets
would choose a move that would result in each round of the game giving rise to an
identical round, with no changes to the game state that served as the input for the neural
network players. Because each computer player would then receive the same input every
round, the players would repeat the same combination of moves ad infinitum, thus failing
to converge toward an end of the game. In order to eliminate these live-and-let-live
circumstances and ensure that each game eventually reached a conclusion, we introduced
a rule that would force each of the players to make a random move for one round when-
ever the shell determined that the game state was no longer changing, and thus some
small degree of noise was added to the progression of moves in games that became too
static. By recording the number of times this noise addition was needed in the course of
many games and many generations, we found that the overall amount of random noise
needed to bring games to a conclusion decreased in later generations, with another pla-
teau pattern, this one exhibiting initial sharp dropoff and an eventual period of near-
saturation (see Figure 6).

Of course, complete elimination of the need for this randomized correction is
impossible, since half of the networks in each generation were newly created with ran-
dom synaptic weights and were not necessarily good enough players to avoid these live-
and-let-live states. Thus, it seems as if the evolved networks took greater responsibility
for moving the game along in many of their matches; we could interpret this effect in a
few different ways. In one sense, we could say that the playing strategies of the evolved
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Figure 6. Overall number of random moves required in each generation’s tournament.
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nets became more aggressive; after all, a static game state is one in which none of the
players is effectively attacking any of the others. In such states, a net which attacks its
opponents and attempts to make the state of the game more favorable to itself at a time
when the others are making more complacent moves or following a live-and-let-live
pattern has a distinct advantage over the rest and would be more likely to survive to the
next generation. Additionally, we might conjecture that the evolved nets were more
sensitive to changes in the game state and developed more subtle strategies to respond to
slight variations in their input, since a net that behaved in this way would be less likely to
make the same move over and over and thus allow the game state to reach a condition of
stasis. In order to investigate this possibility, we would need to make a close study of the
exact patterns of moves used by evolved nets and random nets in individual games
throughout their evolution.

5. CONCLUSION

Artficial intelligence is an ever-expanding field whose applications are wide-
ranging. Eventually, work in Al promises many uses in designing machines with intelli-
gent behavior and creating models of the human intellect, but advances of this type are
still far from completion. For now, however, Al still has quite a few practical applica-
tions, including the field of computer games. Neural networks may still prove to have
great applicability in this particular arena, especially with games that depend more on
human decision and judgment than probability and computation. The Iterated Prisoners’
Dilemma, mentioned earlier, is a perfect example of this; despite many top scientists’ and
programmers’ efforts to provide complex algorithmic solutions for maximizing success at
the game, the best solution for a long time was brief and easily put into simple English:
Do whatever your opponent did last time (Axelrod, 1984). Although this strategy required
great insight to reach, similar solutions were found through the use of evolved neural
networks. Thus, we have attempted to accomplish a similar effect with a game that is far
more complex as well as more interesting to the entertainment-oriented gamer, and we
have done so with some degree of success.

Through the use of genetic algorithms, we have managed to evolve players that
perform consistently better than randomly-generated networks, with the best players in
each generation performing consistently at around a 75% winning ratio, with these rates
coming from competition against both their fellow evolved networks and naive ones.
Although the direct comparison of these results with human Sissyfight players is not
currently possible since online Sissyfight games can vary from 3 to 6 players instead of
being fixed at 4, we can still see that even a master Sissyfighter is nowhere near perfect,
as compared with a human chessmaster who can easily defeat the vast majority of the
chess-playing population. Visual inspection of the All-Time Champs section of
Sissyfight.com reveals that even the highest-ranked Sissyfighters of all time have win-
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ning percentages that fall mainly between about 55% and 75% (www.sissyfight.com,
2001). Of course, this comparison with our neural networks also does not take into
account the advantages human players have in learning their most frequent opponents’
strategies, collaborating with other players via onscreen text, and covertly conspiring via
other means, also known as cheating.

From the results presented here, though, there are many aspects of the Sissyfight
problem left open to further investigation. Our algorithms is clearly capable of generating
nets with consistently high win ratios, but the overall win ratio of the evolved group is
still significantly below that of their best members. Does the evolved group at large
simply need more time to hone its skills to the level of the best performers? Or does
competition among the evolved nets prevent more than a few of them from performing
exceptionally well, resulting in a limited number of dominant leaders who become the
Big Berthas of the neural network Sissyfighting world?

Recent preliminary results may actually point the way towards answers to the
above questions; in an effort to lessen the high level of fluctuation between the win ratios
of successive evolved generations, we made a small test run of 50 generations using the
same program but decreasing the maximum amount of mutation by a factor of 2.5. By
setting this less genetically varied group loose into the jungle with the other naive nets as
before, we indeed obtained a much smoother graph of win rates among evolved nets (see
figure 7). These win rates also do not level off as sharply as did those of nets with higher
mutation rates, and it remains to be determined whether running more generations will
“~resultin continued performance improvement. In fact, the average difference between the
win totals of the evolved and naive groups may also have shown some improvement; as
with the win rates of the evolved nets alone, the graph levels off much less sharply than
before and may continue to increase with further generations. In these 50 generations
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Figure 7. Average win total for evolved groups with a lower mutation rate than before.
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Figure 8. Average win difference for evolved vs. naive groups with lowered mutation rate.

alone, we can see more frequent peak differences above 8 than in our previous tests with
higher mutation rates, but this, too, requires further investigation to determine if it is
indeed a continuting trend.

Of course, true analysis of the reasons behind the networks’ performance would
require inspecting the nuances of computer move patterns in an effort to determine which
such patterns might result in better generational success rates. To this end, we could
randomly instill patterns of moves into specific nets and subsequently record whether or
not such a change has a positive or negative effect on the nets’ win-loss records. Doing so
would entail subtle programming twists, such as setting a temporally-based parameter
that determines if a series of generations has been producing approximately the same win
distribution in its evolved nets, and, if so, necessarily introducing the shake-up pattern in
an attempt to better equip a handful of nets.

As for our nets’ effect of requiring less noise to complete games in later genera-
tions, it may be most helpful to look within each game to determine the strategies of the
networks which eventually find success. Through careful analysis, we might hope to
discover if the more evolved nets’ decreased need for random intervention to keep the
game moving is actually based upon more aggressive strategies, greater sensitivity to
small variations in game state, or other reasons entirely. If prominent patterns are found,
then perhaps we could force these patterns upon newly-created random nets and predict
that they would also become relatively successful; such a discovery, of course, would
allow for smarter and smarter nets to continually compete against themselves, which
would lead evolutionarily to certain subgroups of these nets employing more subtle
versions of this strategy to overcome the other subgroups, thus taking the evolution of the
algorithm one step further.
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As with many areas of investigation, research into neural network players of
Sissyfight has created as many questions as it has answered. We know now that it is
possible to create players of higher playing ability through the use of genetic algorithms,
although recent results suggest that we may not have reached the limit of potential im-
provement. We are also left wondering what the strategies employed by our networks
actually are and how these strategies impact upon the need for noise to advance the state
of the game. Like our networks, we must revise and refine our techniques based on our
findings in order to fully understand their behavior.
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Am I Hot or Not?
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Abstract

This research project attempts to build a neural net that can capture what makes a
person's face beautiful. A feed forward neural net with a back-propagation learning
algorithm was used for this. Exemplars from the website www.hotornot.com were used to

train the neural net. To test the neural net, several plastic surgery websites containing
before and after photos of patients were used, as well as non-exemplar rated images from
www.hotornot.com. This software can serve as a useful tool for plastic surgeons, hair

stylists, and any other application concerned with physical appearance.
Keywords- Face Detection, Face Extraction, Skin Chromaticity, Image Processing,
Image Sampling, Imaging Software, Plastic Surgery, Feed Forward.

1. INTRODUCTION

What makes a person beautiful? Can a neural net be trained to capture it or is beauty
really as they say: "In the eye of the beholder"? This is exactly what this research is
about; build and train a neural net that given a picture, outputs that person’s beautifulness
on a scale from 1.0 to 10.0. Then with the use of any third party software’, a few changes
such as face shape or different nose can be made to the picture to get its new rating.

This net will make a very useful tool for plastic surgeons, in aiding the decision of
what modifications to make to a persons face. It will be helpful not only in situations
were a person’s face has been disfigured, either from a birth defect, disease or accident;
but also for the more common case were a person would like to improve their
attractiveness. The net will also make a good tool for hair stylists, to know what hair cut
and hair color fits a person best; make-up consultants and any other profession concerned
with physical appearance.

! hitp://www.nausoft.net/eng/products/plastic/index html
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2. EXEMPLARS/IMAGE PROCESSING

2.1 Exemplars for the Neural Net
Photos from the website www.hotornot.com were used as exemplars. This website lets a

person post their photo, and anyone who visits the website can rate that person’s beauty
on a scale from 1.0 to 10.0. Then it tells you the average rating and the number of people
that have rated that picture. This was useful for this research, since photos that hadn’t
been rated by too many people were eliminated.

The first step was to write a script that filtered through each web page from
www.hotormot.com and fetched a picture with its rating. Since this website has a cookie
based security system this wasn't possible. To solve this problem, 300 distinct images and
their rating were saved manually from this website. Whole body pictures were not used
as exemplars, since a person’s body instead of only face might have biased the rating
given to that person.

Before using an image as an exemplar, it has to go through a series of pre-
processing steps. This is done to filter noise from the exemplars to improve convergence.

Pre-processing steps:

1. Face extraction from image (see 2.2)
2. Locating of eyes and mouth (see 2.3)
3. Rotation of face (see 2.4)

4. Sampling (see 2.5)

2.2 Face Extraction from an Image:

Skin color retains certain properties regardless of a person’s race or living environment.
Sampling a large number of people’s skin color leads to the conclusion that skin color
stays within certain chrominance boundaries. In the commonly used RGB space it is
tricky to distinguish skin colors from the background. So the image must be filtered into a
different color space to solve this problem.
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Figure 1. Skin’s dispersal in different color spaces
(each point represents an individual’s skin color)

There are several different color spaces in which an image can be represented: such as
RGB, YCbCr, L*a*b* and HSV. RGB is the most widely used, each pixel in an image is
a combination of the intensity of three colors: Red, Green and Blue. Each one of the three
elements has an intensity that ranges from 0 to 255. YCbCr measures Luminance, Red
Chromaticity, and Blue Chromaticity for each pixel. The other two less common color
spaces are L*a*b*, which measures Red-Green Sensation (colors from red to green),
Yellow-Blue Sensation (colors from yellow to blue), and Brightness; and HSV, which
measures Hue, Saturation, and Value.
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Figure 2. 2-Dimensional Slice of skin chromaticity in YCbCr

53



It is clear from Figure 1 that in an RGB space, skin color is unbounded, only the R and B
elements are confining; in other words, the R and B elements don’t vary very much in the
sample set of people as shown in Figure 1. So the RGB space is not very useful for
extracting the face from an image. After converting the image into the YCbCr space, a
clear boundary exists which can be used to locate skin colored pixels within an image
(see Figure 2).

To convert a pixel from RGB to YCbCr the following formula is used:

Y 0.29900 0.88700 0.11400 R
Cr | =1 050000 —0.41889 —0.0831 G

—0.16874 — 0.33126 0.50000 B

R,G and B are variables that stand for the intensity of each element (0-255).

Figure 3. An image in left)RGB space, right)After skin filtering via YCbCr space using a
threshold (0=skin, 255=non-skin).

It can clearly be seen from Figure 3 that in the YCbCr color space the pixels belonging to

the face are easily distinguishable from the rest of the image. The skin appears as a dark

region as opposed to the rest of the image, which is white.

2.3 Locating of eyes and mouth

Rotating and rescaling of an image is done based on the location of the eyes and mouth.
Locating the eyes and mouth within an image can be solved using a technique similar to
the one used for face extraction. First the face is converted into the YCbCr space. An
analysis of the chrominance components indicates that high Cb and low Cr values are
found around the eyes, and that high Cr values are found in the mouth areas.
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In our eye detection algorithm, we run a concentric circle filter over the eroded
skin map. The eroded skin map is produced by removing lone unwanted pixels through a
series of min/max blendings of neighboring regions. Eye regions are the areas which
represent tight circular regions in the skin map. False eye regions are filtered out through
simple heuristics such as the fact that eyes are relatively horizontal and nearby which
removes spurious (invalid) possibilities through deduction. This includes deciding which
regions have the largest number of concentric circles surrounding them.

=

Figure 4. Eye detection, left) original image, center) skin map, right) eye candidates.

The eyes will appear near each other as two separate blobs. If we draw a line from one
eye to the other, the middle point between them will represent the top of the nose.

The mouth region contains more red component and smaller blue component than
other facial regions. Hence, the chrominance component Cr is greater than the Cb near
the mouth areas. We further notice that the mouth has a relatively lower response in the
Cr/Cb feature but a high response in Cr* (Cr square). Therefore, the difference between
Cr? and Cr/Cb can emphasize the mouth regions. Adding this heuristic to the eroded skin
map generator creates the Eye/Mouth map as shown in Figure 5. Again heuristics are
used to filter out spurious false positive, such as removing smaller ring regions that are
distanced from the densest ring regions, or removing non-concentric rings that happen to
be near each other.
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Figure 5. Eye and Mouth Detection, left) O
right) eye/mouth detection using bounding circles.

riginal Image, center) enhanced skin region,

2.4 Rotation of face

Once the eyes and mouth have been located, we are ready to take the original image and
make a series of transformations. First the distance between the eyes and mouth is
calculated using the middle point between the eyes (see above) and the mouth. Then
rotate the image either left or right until the eyes are level - the mouth should be directly
beneath the eyes as a result, as follows:

’

x cos® -—sin® ¢ |l x
V' |=|sin® cos6 ¢ |y
1 0 0 141

Above is the standard matrix for 2-dimensional translation and rotation. Applied to each
point in the face map, we can rotate and move the face as necessary. x and y are the
coordinates of a pixel P. X’ and y’ represent P’s coordinates after rotation (by angle
Theta) and translation (in the x and y directions represented by ty and ty).

After rotating the image, it is resized to the desired exemplar image size. This is
done by shrinking the image by a factor proportional to the distance between the eyes, so
that after resizing all the images have the same distance between the eyes. Then a “box”
is cut out which contains the eyes, mouth, and some area above the eyes which includes
the forehead and hair. We also include some area below the mouth to get the chin and
part of the neck. Rather than just using the detected facial region, we choose this “box”
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that contains the whole area immediately surrounding the face. The main reason is to
ensure any hair around the face is included in the exemplar.
The size of the box depends on the number of desired inputs for the neural net.

2.5 Sampling

Now we have to decide how we are going to sample the images. For instance we can
choose to keep the face in the RGB coordinate system (the way we see things, 3 values
used for each pixel), or we can convert it to a grayscale format. Grayscale results in
storing one number per pixel as opposed to 3 numbers. Also the width and length of each
exemplar in pixels must be specified.

For instance if we take only 64 by 64 pixels in monochrome format we get
64*64*1=4096 inputs. Optionally we could take 32 by 32 pixels in RGB format giving us
32*32*3=3072 inputs. In both cases, each input value is normalized by dividing it by
255, the maximum intensity value in the monochrome and RGB format. After
normalization each input value will range between 0 and 1.

Experimentally, our optimal input image is a 40 x 25 grayscale image. This size allows
for reasonable convergence times for our chosen database. This also equates to exactly
1000 inputs for the neural net. We also specifically choose a subset of images that vary in
ratings from 1.7 to 9.9 on the www.hotornot.com rating scale to serve as exemplars. This

wide scale provides the weights in the neural net with more leverage in deciding which
features are attractive and which are not.

Here are some of the actual sample images as they appear in our exemplar database
(before the grayscale conversion to the luminance field)

3. THE NEURAL NET

3.1 Back-Propagation Network

We will use a feed forward neural net with a back-propagation learning algorithm. It will
consist of three layers: one input layer, one hidden layer and one output layer. The input
layer consists of 1000 input neurons. The hidden layer will contain 200 neurons, which is
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approximately 20% of the number of inputs. The output layer will have only one output,
that will be a value between 0.1 and 1. This value will then be multiplied by 10 to get the
picture’s rating on a scale from 1 to 10.

Inputs

O

O Hidden layer

Figure 6: Structure of the Feed Forward Net

The weights of the neural net will be initialized to a random value between —1 and 1.
Also each neuron is going to have an extra input with a value of —1. This is to take the
bias into account. The weight of the bias will also be initialized to a random value. For
the activation function the logistic function will be used. The slope parameter a will be
0.5, so the output y of each neuron will be:

y= 1 (where v is the sum of the weighted inputs)
1+e™

3.2 Training of the Neural Net

The images obtained from the website (which have already been processed) will then be
used as inputs for the net and the weights will be updated using the back-propagation
algorithm. Since there are 3 layers, the variable k in the formula below varies from 0 to 2.
Also the learning rate M will be 0.1.
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Change in weights:
AwrE! = - * g * y*1 (M= learning rate, y= output of a neuron, k denotes the k’th layer)

Gradient for output layer:
d=e*y  where e =y-d (difference between actual output y and desired output d)

Gradient of other layers:
¥ = yr+ 3T+ WKk (W = weight matrix)

3.3 Testing of the Neural Net
To test the neural net, we will use several images from the website www.hotornot.com

that weren’t already used as exemplars. If the output of the neural net is within a
reasonable distance from the expected rating for that picture, the neural net has
successfully captured what makes a person beautiful and now it can be used to give a
rating for a “never before seen image”.

Some of these “never before seen images™ will be already used exemplars, but
these will have some modifications done to them to get a new rating. Modification will be
made using existing commercially available programs. There are various software
packages that create different hairstyles, hair color and facial modifications. If we cannot
get a copy of these commercial software packages, we will use Photoshop to make the
modifications. Also several before and after images will be used from plastic surgery
websites. These websites contain before and after images of people who have had several
kinds of surgeries such as nose, eyelids and others done to them. (Since the after photo
was taken at a later time, things such as hair color might be different) We can keep
modifying a picture until we get a rating close to 10, which will mean that the person’s
attractiveness will have improved by a lot after these modifications.

4. THE APPLICATION

4.1 Current Application

This is a screenshot from our current application, which was developed in Visual C++ 6.0
to run in Windows 2000. This program allows the user to select an image file, run image
filters, and then use it to train a neural net for a given rating.
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Finished Filters

Figure 7. Screenshot of application at work.

Our code consists of several C++ classes including one for the image pre-processing and
a separate one for the neural network. This modularity allows us to change pre-processing
options and/or the neural net without the need to rebuild the entire application. The lower
image shows the raw bitmap before any pre-processing occurs. The top-right image
represents the eroded skin-map, and the top-left image represents the detected eye
candidates before heuristics that are applied. All images (except for the original source
file) are stored and manipulated in RGB-24 format for ease of use.

5. CONCLUSIONS

5.1 Test Setup

Our final neural network ended up with a learning rate of 0.1, 2=0.5, a threshold of 0.02,
and 50 exemplar images. Converging took approximately 7 hours on an AMD Athlon 1.2
GHz machine after 5860 iterations. It seemed unfeasible to add any more exemplars
since the time to compute convergence grows exponentially as the number of exemplars
increases. In addition a tighter threshold than 0.02 (representing 0.2 points on the rating
system), would require exponential more iterations.
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The image pre-processing worked for many of the sample images. However, the
algorithm was unable to detect eyes on at least one third of our sample set because of
poor photo quality, over-exposed lighting conditions, or partially occluded faces. This
was an unfortunate feature of the images on the website. Therefore some of our images
were pre-processed by hand using Corel Photoshop. A more time-consuming and robust
eye detection algorithm based on neural nets would likely have solved this problem.
However due to time constraints this was infeasible. However, our eye detection
algorithm performed very rapidly and could be applied to many motion video
applications.

5.2 Plastic Surgery Results

Figure 8. Before(left) and after(right) nose surgery pictures.

These two pictures were downloaded directly from a plastic surgeon’s website”. The
before surgery picture on the left received a rating of 2.1 from the neural net. The after
surgery picture on the right received a rating of 6.3 from the neural net. We had similar
results with other before and after pictures. Only in one tested case was no increase in
rating detected after plastic surgery. The trained neural net seemed to agree with the
plastic surgeons’ opinions.

5.3 www.hotornot.com Results

We tested the predicting capability of our trained neural net on several rated images from
the website. An image which was actually rated by people as 3.5 on the website, our
neural net produced an output result of 4.4. For the image which had received a 6.1, the
computed rating was 5.1. And finally for the image that received a 9.3 on the website, our
neural net produced a result of 6.3. These results provide evidence that the trained neural
net did indeed learn some basic attractiveness prediction capabilities. Although the final
test was off by 3 entire points, the order of attractiveness among the images was
maintained.

? http://www.facialsurgery.com/PPgbeforeafters_intro.html
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—&—— PredictedRating
& HotornotcomRating

Figure 9. Comparison of Computed Results versus Exemplar Ratings (Hotornot.com
Ratings)

5.4 Improving our Results

Clearly a larger exemplar database could have helped produce better results. For instance,
if we wished to test a dark-skinned individual there were very few similar exemplars for
the net to base its prediction on. In addition, there are a plethora of different face types
and facial features that were not part of our exemplar set.

The large variety of different test images also made it difficult for the neural net
to learn because of vastly different lighting conditions and other factors as mentioned
before. Perhaps a better image normalization filter could help lower this entropy leading
to better results.

A larger exemplar image size would certainly have aided in improving the
database. Many facial features were in effect removed from the images since they were
constrained to such a small sampling area. Unfortunately, the computation time grows
exponentially with larger image sizes.

The rating system on the website was also quite arbitrary. Some very similar
images had been rated less than the others (i.e. low precision), and others were clearly
rated according to something other than the face that appeared in the image. We
attempted to alleviate this risk by choosing images that emphasized the facial region.
However, there is clearly no absolute rating for any individual. Therefore the sample set
is intrinsically flawed.
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5.5 Overall Results

Overall, our results were convincing and our results demonstrate that a neural network
can indeed be used to rate attractiveness. Plastic surgeons and hair stylists could use this
type of software to see how attractive someone is before and after a transformation.
However, comparing two very different individuals is always difficult and not always
accurate despite how large and ideal the exemplar database is.
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Neurogenesis Can Help Reduce Noise

F. Anthony Lazenka and Dimitrios Panagoulias

Yale University, Dept. of Computer Science
New Haven, CT 06520

Abstract

An associative memory consisting of a neural network was built on which to test the
effects of neurogenesis on learning and recall. Recognizable input patterns and noisy
patterns were trained on the network. It was found that the network could recall the
initial input with less distortion after neurogenesis followed by retraining than by

retraining alone.
Keywords - neurogenesis, associative memory, neural networks

1. INTRODUCTION

It has only been within the past five years that neurogenesis has become a surveyable
neurophysiological phenomenon. Neurogenesis in rats, mice, monkeys and humans
occuré in the dentate gyrus of the hippocampal formation, allowing the birth of neuronal
stem cells which may differentiate into either glial supporting cells, or into actual
neurons. These neurons achieve dendritic arborization and axonal synaptic connections
capable of neurotransmission [Chambers, 2002]. Neurogenesis has thus been classified
as a "turboplastic” mechanism -- a short-term change in the brain that causes long-term
effects. To date, investigations of neurogenesis have been limited to post-mortem

studies, and have not yet established a biological significance of stem cell birth [Eriksson,
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1998]. This paper proposes a neural network model to study mechanisms and effects of
neurogenesis.

Neural network simulations can provide simplified models of complex
neurophysiological events. These can then be formally studied due to their mathematical
basis. A recent model for schizophrenia proposed by Hoffman [1997] used a four-layer
neural network to examine the effects of cell death and synaptic elimination on linguistic
processing.

Specifically, phonetic patterns were input to a network, fed through a hidden layer,
and output in the form of patterns classifiable as syntactic and semantic representations of
English words. A temporary storage layer was connected to a hidden layer to simulate
cognitive mechanisms of working memory. The network was then trained on a fixed set
of phonetic representations. In the trained network, Hoffman found that if he reduced the
number of synaptic connections between the hidden layer and the temporary storage
layer, accuracy of word recall increased to a point, and then developed into
"hallucinations" -- defined as spurious outputs of the network when input was a zero-
vector. Both of these results are consistent with psychological studies of synaptic
pruning. Moreover, "hallucinations” were non-random and were evoked only by pruning
connections between the temporary storage layer and hidden layer, supporting recent
psychological evidence that working memory plays a role in schizophrenia.

Hoffman examined several plausible mechanisms of synaptic pruning and cell death
in his study, including Darwinian competition and excitotoxicity, respectively. We
propose to model corresponding hippocampal mechanisms of neurogenesis and
turboplasticity, including cell birth and death mechanisms. The intent will be to
demonstrate, in a more general way than Hoffman, the impact of neuronal loss or birth on

learning and recall in a neural network.

2. PROCEDURE
An auto-associative memory, defined as a memory which retrieves a stored stimulus
when cued with a similar stimulus [Haykin, 1999], will be implemented on a fully
connected, single-layer neural network. The network will initially consist of a collection
of zero-valued synaptic_ weights, which will be masked with a random pattern. A set of
8x8 black and white character patterns (Fig 1), with Vaiues either 1 or -1, will then be
used to train the network employing Hebb's rule of learning:
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Aw = nyx — oawy
The right-hand term contains a "forgetting factor" to prevent saturation of the network.
The factor will be chosen based on empirical measures of the maximum weight expected

to result from the training of any single pattern.

HD=Y

Fig 1: The patterns corresponding to letters A, X, D, Y. Dark intensities have value 1,

light intensities value -1.

To simulate random turboplastic events, the network will be trained on a set of
random noise patterns in a manner similar to that of the input patterns; however the
training using noise will be for iterations several times longer than the training using
input patterns. This should have an adverse effect on recall of the network. To counter
these effects, two methods will be tried and compared: 1) Implementation of
neurogenesis (defined as the resetting of targeted neurons' weight-values), followed by
retraining with the input; and 2) retraining without neurogenesis. Specifically,
neurogenesis will be implemented on the quarter of the neurons in the network with the
greatest sum of input weights. Physiologically this is consistent with excitotoxic effects
along the synapse. New weights will then be set based on the weight average of
neighboring synapses, corresponding to neighboring neurons in the input pattern. This is
consistent with effects of "synaptic leaking", a phenomenon recently observed in

hippocampal tissue [Vogt, 1999].

2a. COMMENTS ON NEUROGENESIS
It is plausible that the methods of neurogenesis described above will grant indirect
benefits to the network. Excitotoxic elimination will target those weights that noise will
affect the most, namely weights which carry the most information from the input. This
will remove the noise effects that are concentrated in these synapses, and allow cleaner
retraining. Averaging t’:he weight values of neighboring neurons to recalculate the

weights of a targeted neuron will also tend to "average-out" the effects of noise.

67



Effects of synaptic leaking are relevant to character recall since, in intensity bitmaps
of characters, pixels tend to cluster alongside pixels of similar intensity according to the
form of the character (Fig 2). Thus, in the network representation of the letter "E", a
neuron adjacent to another neuron representing pixels in the top horizontal line would

likely be connected along weights of similar value.
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Fig 2: Performance after training followed by neurogenesis when setting weights to the

average of the nearest neighbors is compared to random weight settings. The output of
the network on the pattern corresponding to the letter A is shown after weights were reset
48 times according to the averaging rule (left) and to the random rule (set to a value

between -1 and 1). Note that the form of the pattern is preserved on the left.

2b. COMMENTS ON THE NETWORK
Hebbian learning, because it is a completely local mechanism, loses simplicity on a
network of more than one layer. Larger networks are better suited to a backpropagation
algorithm, and in fact a network of more than one layer allows that input patterns do not
interfere with each other if they are linearly inseparable. Linear inseparable patterns can
be compared to noisy ﬁattems in that both are inputs that have an adverse effect on the
network; they can be contrasted in that effects due to noise patterns can be reduced,

whereas effects due to linear inseparability cannot in a simple associative model.
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Although a fully connected one-layer network is limited in its computability by effects of
inseparability, its high degree of storage redundancy makes it robust against effects of
noise. In this experiment, the patterns for the letters A, D, X, and Y were found in a test

network to be linearly separable.

3. RESULTS
For the experiments in which the network was trained on noise for iterations four-
and eight-times that of the input patterns, the network performed better after neurogenesis
followed by retraining than by retraining alone (Fig 3). Distortion comparisons of the

results of the two networks are shown for the four-times paradigm in Fig 4.

Network trained on 2x noise Network trained on 4x noise
#pixels distorted in output #pixels distorted in output
input pattern  w/o neurogenesis W/ neurogenesis | w/o neurogenesis  w/ neurogenesis
X 2 3 8 6
D 3 3 12 10
A 0 0 | 1
Y 3 4 12 10
15 iterations of 15 iterations of | 25 iterations of 20 iterations of
retraining until retraining until | retraining until retraining until
perfect recall perfect recall perfect recall perfect recall

Network trained on 8x noise
#pixels distorted in output
input pattern  w/o neurogenesis w/ neurogenesis

X 13 14
D 18 14
A 8 7

Y 20 17

55 iterations of 55 iterations* of
retraining until retraining until
perfect recall perfect recall

Fig 3: Shown numerically, the network trained after neurogenesis, when presented with
the original input patterns, had fewer distorted pixels in its output in comparison to the

network trained without neurogenesis.
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AL = v
HEL ="+

Fig 4: Neurogenesis results for A, D, X, Y are on top, and are less distorted than the

results for the network trained without neurogenesis (bottom).

For the experiments in which the networks were trained on noise for iterations two times
that of the input patterns, the network with neurogenesis performed no better than the
network without. This suggests that neurogenesis targeted on the most-active neurons
may have a negative effect on a network presented with a low level of noise. Fig 5 shows
the results of retraining the two kinds of neural networks on the four-times noise
paradigm after certain numbers of iterations. For all the noise paradigms, it took a
similar number of total iterations to accurately retrain both networks. This is consistent
with the quick convergence of training that is a property of most associative memories
[Hassoun; 1993]. The fact that recall was eventually possible on both networks suggests
that the positive effects of neurogenesis weren't related simply to effects of dispelling
Hebbian saturation along the synapses. Interestingly, the network to which the most
amount of noise was introduced (the network trained on 8x noise in Fig 3) and on which
neurogenesis was then implemented could not accurately recall the input pattern
corresponding to the letter "X" regardless of more than 100 iterations of retraining. This
was most likely a result of saturation, since the distortion in the output pattern was

limited to a single pixel.
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Progress of retraining, 4x noise
iteration of  #noisy outputs

retraining  w/0 neurogenesis w/ neurogenesis
5 X,D,AY X,D,AY

10 X,D,Y X,D,Y

15 D, Y Y

20 Y Y

25 Y None

30 None None

Fig S: The letters that could be recalled after certain amounts of retraining are compared

for the two types of networks.

4. DISCUSSION

In terms of neurophysiology, the training of noise patterns on a network is analogous
to an undesired turboplastic result. In terms of cognitive psychology, this training is
perhaps analogous to the learning of undesirable information. It was shown in this paper
that neurogenesis can be used to dispel the effects of noise on neural networks, and that
recall of input patterns can be measurably better in a network retrained after neurogenesis
than in a network retrained straight away. By analogy, neurogenesis may be the brain's
mechanism for efficiently relearning information after that information has been
degraded in memory. Further research in this area can be directed to more complex

networks and to different learning paradigms.
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Distributed Colony Learning

Benjamin Lerner and Benjamin Wallace
Department of Computer Science
Yale University
New Haven, CT 06520

We investigate the interaction of feed-forward networks by defining a colony of simple,
dynamically interacting and learning networks. Working within the metaphor of an ant colony,
each simple unit of this network is an ant. Each ant will learn by observing other ants, and
interfacing with the environment. We conclude that the rate of convergence is coupled to the
number of teachers present and the class size.

Keywords: group learning, neural network

1. INTRODUCTION

In real life, if one were to watch a single ant wandering about, feeding, working, resting etc, one
would quickly become rather bored. But if one were to watch an entire colony of ants, one
would be astounded to find the scale of productivity and diversity of action that the colony
displays. Further, one would find that the colony is robust, in that the loss of any single ant’s
work will have little or no effect on the colony as a whole. Yet the colony performs complex
tasks which apparently require global levels of coordination. This takes place despite the severe
limitations on each ant, namely that no ant can gauge what the colony as a whole is doing, but
rather can only observe its local neighborhood.

Local information has been shown to be sufficient for solving some classes of complex problems
in computer vision, and control tasks. In many of these solutions, the task is broken apart and a
small section of the input data is passed to interconnected nodes. Each node examines its piece
of the data and its neighbors’ actions are doing, then updates its own state by some simple
preprogrammed algorithm. In this case, the algorithm that processes the data is predefined —
most likely determined in some fashion by the genetic makeup of the animal. But what would
happen if that algorithm were not preprogrammed, but rather learned? Consider the case of a
“newborn” ant. How does a newborn ant learn how to process local data and thus assimilate into
the complex colony? Could imitation of other ants in the environment be sufficient to teach the
new ant? We construct an experiment based on this principle, testing whether a collection of
untrained ants can learn a complex behavior based on imitation of other ants in its neighborhood.
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2. PRELIMINARY EXPERIMENTS

2.1 Local information and convergence: Definition

We start by showing that for a simple case using local information, a collection of networks can
converge to isomorphic networks in weight space. In other words, given the same input vector,
each network will produce the same output. Further, if we include a “teacher” in the collection,
the entire collection will converge to reproducing the teacher’s behavior. . This teacher provides
constant example data, creating a stable focus for the learning algorithms to follow.

We begin by formalizing the concept of a colony of ants, where each ant responds to local
stimulus. A colony is a collection of independent, randomly weighted but structurally identical
neural networks, which we will call ants. During simulations, some ants will be continuously
learning, while some others have their output patterns fixed (i.e., the network is fully trained and
1s merely computing output without update). We choose a feed-forward net for each ant.

Hidden Layers

Schematic diagram of a feed-
forward network

We let the gain function be the logistic function, so we can use the Back Propagation algorithm
to train each ant. In order for Backprop to work, we need a desired output to compute the error
and propagate it backwards through the network. While this would normally come from a
predefined set of exemplars, we will define the desired output based on the outputs of other ants
in the colony. We will call the set of ants that a given network uses to compute its desired output
that network’s neighborhood. Now we can define the desired output of a given network to be the
average output vector of all the ants in the given network’s neighborhood. Averaging over
several networks reduces the convergence time by making the desired outputs more resistant to
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random variations.

Finally, we define two measures of the convergence of the collection of networks based on the

mean squared error. If there are p networks in the collection, and § ;(n) 1is the output vector of

network j at time ¢, then:

AD=—3F,0

Diversity;(t)= | > (y,-(t)—A,~(t))2

iecolony

The diversity is defined as the root mean square of the output’s difference from the average
output, and is a useful measure of how far away the networks are from each other. (This
measure differs from the standard deviation in that we do not divide by the colony size; it is more
useful to see the total error in the colony, not the average error.)

When we do have a teacher in the collection, we measure how far the collection is from learning

the teacher’s behavior: If the desired (teacher’s) output is J then:

Error(t) = \/Z(d,-(t) -A (f))2

This measure shows how far away the group consensus is from the desired output, and is
essentially the diversity measurement as seen by a teacher. This measure will be used from here
on, as it is the most useful measure of the convergence of the colony.

2.2 Local information and convergence: Method
For each time step ¢, we let the input be a random vector of length n with each component an

evenly distributed binary variable with expected value 0.5.

input = (x;, X, ,..., X, )
x, €{0,1}

We defined the output to likewise be a binary vector.

We tested defining a netwérk’s neighborhood both statically, as a biconnected graph (for
example people sitting around a table where the two people on either side of a person are that
person’s neighborhood), and dynamically (any randomly selected pair of people at that table).
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Dynamically creating the neighborhood has some interesting effects on the rate of convergence
of a colony.

As with any updating scheme, one can implement it synchronously or asynchronously. While
the asynchronous method is much easier to code, by iterating through each network in turn, the
synchronous case is much more representative of a real world scenario, as independent people
can “update” whenever they so choose, and not according to any schedule. (This may seem
counterintuitive. Synchronicity merely means that each person does not have access to the
updates made by other people to inform his own update. Regardless of whether the actions took
place at identical times or not, if each person only has his own information available, it is
essentially synchronous updating.) To achieve this, we first compute the dynamic neighborhood
for each network, and then generate the average output of that neighborhood over all the data in
an epoch. (Each epoch is suitably randomized set of each input-output vector pair.)

The Backprop algorithm requires two parameters to function — the learning rate and the
momentum constant. Due to numerical instabilities and implementation issues, we left the
momentum constant at zero, and compensated by taking a small learning rate of 7=0.3. To
prevent saturation problems, we cut back the desired outputs, from 0 and 1 to 0.005 and 0.995, in
accordance with a well-known heuristic.

Network Output for Teacher-less

Convergence
0.516 -
0.514
0.512 - —<0,0>
0.51 - —<0,1>
0.508
0.506 - <1,0>
0.504 <1,1>
0.502 -
0.5 -
QO O O O O O O O O O o o o o o
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Epoch

Figure 1 — Output of network stabilizes by epoch 10000.
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RMS Error for Teacher-less Convergence
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Figure 2 — Error for each net converges to zero.

2.3 Local information and convergence: A colony without teachers

First we demonstrate that a collection of untrained networks can indeed converge to each other.
Since we are not trying to teach the ants anything, we assign no significance to the input or
output. We merely want to show that after learning from each other, for any given input, all of
the ants will exhibit the same output. We used a very simple template for each network,
consisting of two inputs, one hidden layer with two neurons, and a one-neuron output layer. We
found that the collection of networks actually converged quite quickly (figures 1, 2). The
collection converged for both static and dynamic neighborhoods, but converged more quickly for
dynamic selection. Though the outputs of all the networks became equivalent after training, we
never found a pair of networks with the same internal weights.

2.4 Local information and convergence: Learning XOR

Next, we wanted the input and output to be meaningful, and for the collection to learn a specified
behavior. Using the same network template, we taught one to three networks the XOR problem,
then placed them, as trained teachers, in a collection of random networks. We then varied the
ratio of such teachers to students from 1:9 to 1:3, and the size of any student’s neighborhood
from 9 to 3 (i.e. each student could see every other student in the class). In most cases the
collection converged to correct solutions, except when there were too few teachers, and the
neighborhood was too large. We believe this is because adding the output vector of a single
teacher does not change the average over a very large neighborhood significantly enough for
Backprop to move in that direction fast enough to converge. When the ratio of teachers to
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students is higher, a large neighborhood size will likely have a larger fraction of teachers to
students, so this converges well. Likewise if the ratio of teachers to students is small and the
neighborhood is small, the network will converge well. We believe this is because if a teacher is
part of the observed neighborhood then it has a greater effect on the output vector, giving
Backprop a sufficiently large error gradient to move down. See figures 3, 4:

Student Network Output With One
Teacher and Two Students

— <0,0>
—<0,1>
~<1,0>

e <1, 1>

Figure 3 - Student converges to correct outputs for the XOR function.

RMS Error of Student Networks

0.25
0.2:

0.15:

Figure 4 — Student errors converge to zero
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3. EXPERIMENT

3.1 Introduction

The construction of our network and the successful convergence of the colony to the XOR
function leads to the generalization of attempting to model any arbitrary Boolean logic function.
Though this may not seem like a large improvement, the capacity to model any such function
implies that this colony can learn to compute any function to sufficient accuracy, as Boolean
logic is isomorphic to digital computers, which can do so. (In Future Research, we present a
possible method for mapping programs on a digital computer to neural network inputs.)

3.2 Details of the experiment
We chose to simulate the four-input Boolean function —(a <> b) A(cvd). (Thereisno

particular significance to this function. It was selected by randomly choosing outputs for each of
the possible sixteen input vectors. Any other function could have worked as well.) To
accommodate the larger input size, we expanded our network template to include two hidden
layers each with four neurons. We added the second layer on the assumption that a conjunction
of two terms might require one layer to compute the terms and one to compute the conjunction.
This assumption may or may not be founded; nevertheless these networks will converge, as will
be seen shortly.

The inputs and output were again chosen to be binary variables, with the same displacement
from O and 1 as before. The learning rate and momentum constant were held the same as in the
prior experiments.

We ran the experiment twice, using a teacher-student ratio 3:6, and a dynamic neighborhood (as
explained above) of size three.

3.3 Expectations

Based on our experiences with the XOR problem, which took approximately 16000 epochs to
converge, we expected these larger networks would converge, but would likely take much
longer, perhaps nearly ten times as long. Also, having observed the various problems that arose
the few times that the XOR networks did not converge, we anticipated that the network would
correctly classify most of the inputs (i.e. produce outputs of approximately 0.005 or 0.995), but
would not quite classify some of them, with outputs around 0.25 or 0.75. If the output of the
network were to be used in a discrete simulation, then hard-limiting of these values would indeed
produce the correct answers. We chose not to hard limit our results, as we felt the uncertainties
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in the answers reflected the possible uncertainties in actual group learning, and were therefore a

benefit as opposed to a source of error.

3.4 Results

The networks did indeed converge, but did not take as long as we had expected, nor did they

misclassify any inputs. On both runs of the experiment, the networks converged in

approximately 16000 epochs, or about as long as the XOR networks did, to within an rms error

of 0.04. However, unlike the XOR networks of the prior experiment, which ultimately

converged to within 4x10” of the desired output after one million epochs, these networks never

converged much closer than 0.02 in the same time span. (See figures 5,6,7).

Student Network Output with Three Teachers
and Six Students

Output value

- <0,0,0,0>
-—<0,0,1,0>
—<0,1,0,0>
<0,1,1,0>
e <1,0,0,0>
—<1,0,1,0>
w—<1,1,0,0>
—_—<1,1,1,0>
—<0,0,0,1>
<0,0,1,1>
<0,1,0,1>
<0,1,1,1>

e <1,0,0, 1>
e < .0,1,1>
—<1,1,0,1>
- <1,1,1,1>

Figure 5 — Student’s output converges to the outputs for =(a <> b) A(cv d).
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