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Abstract

We consider RTL, a linear time propositional temporal logic whose
only modalities are the & (eventually) operator and its dual—DO (al-
ways). Although less expressive than the full temporal logic, RTL is
the fragment of temporal logic that is used most often and in many
verification systems. Indeed, most properties of distributed systems
discussed in the literature are RTL properties. Another advantage of
RTL over the full temporal logic is in the decidability procedure; while
deciding satisfiability of a formula in full temporal logic is a PSPACE
complete procedure, doing that for an RTL formula is in co-NP. We
characterize the class of w-regular languages that are definable in RTL
and show simple translations between w-regular sets and RTL formu-
lae that define them. We explore the applications of RTL in reasoning
about communication systems and the relationship between RTL and
several fragments of Interval Modal Logic.

1 Introduction

Propositional Linear Time Temporal Logic (TL) was introduced in [Pnu77]
as a formal system for reasoning about concurrent programs. Recent trends
in program verification (e.g., [Var85], [VW86], and [AS85]) suggest using
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automata-theoretic approaches in program verification, i.e., applying tech-
niques developed in automata-theory in the temporal framework. The classi-
cal finite-state automata (see [RS59]) were used to define regular languages.
Later works (see [Buc62,McN66]) showed how they can be used to define
classes of infinite sequences. The resulting languages are termed w-regular.
TL was shown to be (expressibility-wise) a strict subset of the class of w-
regular languages. (This was first implied by a combination of several works,
for example [GPSS80] or [Kamé68] with [MP71] or [Tho81].)

The “strict subclass” of the w-regular languages which is equivalent to
TL is the language definable by w-star free regular expressions, which, in
turn, are equivalent to the w-non-counting languages. (Definitions and dis-
cussions of these w-regular languages appear in [Tho81,LPZ85,Zuc86].)

In most formal systems that allow temporal-like reasoning, the & (even-
tually) operator is used as the main modal operator. It is therefore natural
to consider a temporal logic that uses { as the only temporal operator.
We call the restricted temporal logic obtained RTL. At first glance RTL
seems to be a very limited language. Yet, if we are concerned with proper-
ties of concurrent programs, there are convincing indications that the RTL
language is adequate:

It was shown in [Sis85] that RTL is sufficient to define the set of strong
safety properties. Chandy and Misra conjectured that there is essentially
one class of interesting liveness properties of concurrent programs, namely,
the class of progress properties ([CM86]). In their propositional version,
progress properties are easily definable by RTL. Owicki and Lamport, when
giving proof rules for liveness properties, considered only formulae of the
form O(p — Og) ([OL82]), which provides another indication that RTL is
an adequate temporal language.

Indeed, most temporal properties of distributed programs discussed in
the literature are given in RTL. As shown in [SC85], the satisfiability prob-
lem for RTL formulae is NP complete, while the problem for general TL
formulae is PSPACE complete. Hence, using RTL instead of TL provides a
considerable advantage.

We characterize below the class of w-regular languages that are definable
in RTL. In particular, we show that every RTL formula is equivalent to a
finite union of some simply defined w-regular sets which we call temporal
sets, and that every union of such temporal sets is definable by some RTL
formula.




We then consider problems concerning theories of message buffers in
RTL. For example, we show that the theory of unbounded fifo buffers in
RTL is in co-NP; the corresponding theory in the full TL is II}-complete
(cf.[SCFM84)).

Finally, we consider the relationships between several simple extensions
of RTL and fragments of Interval Modal Logic (see [HS86]). For example,
we show that RTL, when interpreted over points in the (continuous) interval
[0,1], is equivalent to the fragment of Interval Modal Logic that uses only
the modality (E) . We show that the satisfiability problem for RTL that is
interpreted over the continuous line [0, 1] is NP-complete.

2 Notations and Definitions

2.1 Restricted Regular Sets and Temporal Sets

Let S be a finite set of states, II be a finite set of propositions, & = 2™ be
an alphabet, and I: S — X be an evaluation mapping each state s € S to
the set of propositions I(s) € L that are true in s. We assume that I is an
isomorphism. We hold S, II, £, and I fixed for the subsequent discussion.

We shall consider both finite and infinite sequences of states, i.e., se-
quences over S. Every sequence o over S can be mapped into a string I(o)
which is a sequence over T. Similarly, a string o over £ can be mapped to
a set of sequences I~!(o) over S. When there is no danger of confusion, we
shall interchange strings and sequences over S.

Let o0 = so,...,5; be a finite sequence over S and let o/ = sf),... be a
(possibly infinite) sequence over S. The concatenation of & and o' is the
(possibly infinite) sequence o0’ = sp, ..., Sk, 5p; - - ..

Let A be a subset of S. We define the following restricted regular sets
over S:

e A is a restricted regular set.

e A*, the set of all (possibly empty) finite sequences over A, is a re-
stricted regular set.

e At the set of all non-empty finite sequences over A, is a restricted
regular set.

e AY, the set of all infinite sequences over A, is a restricted regular set.




o A® = A* U AY, the set of all sequences over A, is a restricted regular
set.

e Let L, and L, be restricted regular sets. We denote by Lj o L the
concatenation of the two sets, defined by: LioLy = {o;0' |0 € LiNS*
and o' € Ly}U{o | 0 € L;NS“}. The set Lyo Ly is a restricted regular
set.

If a set A is a singleton, e.g., A = {a}, we omit the braces and write, for
example, a* instead of {a}*.

Let s € S be an element of S. We denote by inf(s) the set of infinite
sequences where s appears infinitely many times. Similarly, for a subset

S' C S, we denote
inf(S") = ) inf(s)
s€S’
Let L C S“ be a restricted regular set over S and assume S’ C S. We
define Ling(sr) = L Ninf(S’), i.e., Ling(sv) is the set of (infinite) sequences of
L where every element of S’ occurs infinitely many times.

Note that the set of restricted regular sets defined above is a subset of the
set of w-regular sets, i.e., the sets of infinite strings languages accepted by
regular automata that accept infinite strings (for more elaborate definitions
see, e.g., [McN66,Buc62,SVW85,Zuc86)).

A restricted regular set L is called a A-set if
L=spoSfos108)0s80---085; _;08n-10S

for some S),...,8, € S and s;,...,5m—1 € S such that sp € S; and for

every t,1 <t <m,s; €S;— Sit1.

A restricted regular set L is called a temporal set if

” .
L= Liys)

=1
for some A-sets L!,...,L" and some S},...,S, C S.
2.2 Restricted Temporal Logic—RTL

A model for RTL is an infinite sequence of states o0 € S, i.e.,

O :80,815:++ s; €S



Usually, a model is generated by an underlying program; however, in our
discussions we shall not use this fact directly.

Given a model ¢ and a position ¢ > 0, we denote by o) the suffix of ¢
from the #’th position, i.e., o() = 8iy8i+1y--.. Similarly, we denote by o_;
the prefix of o until the ¢’th position, i.e., 0_; = sg,...,s;. We introduce a
temporal language over the propositional formulae in II using the boolean
connectives - and V, and the temporal operator O (eventually).

Temporal formulae are constructed by the following:

e T and F are RTL formulae..

e Every proposition @ € Il is an RTL formula.

e If p is an RTL formula, then so are ~p and Op.

e If p; and @y are RTL formulae, then so is 1 V 2.

We define a satisfiability relation |= between a model o and an RTL formula.
The satisfiability relation is defined inductively as follows:

o T and o £ F for every o € S¥.
For a proposition Q € I1, 0 = Q iff Q € I(s;).

o -p iff olEep.
cEpiVp: iff olEprorofEps.
okE=Op iff For some i >0, o() = .

Additional boolean connectives (such as A, —, =) can be defined in the
usual way. We define an additional temporal operator, O (always), by:
Op =09

Let ¢ be an RTL formula. If for some o € S¥, o |= ¢, we say that o
satisfies . If there is a model o that satisfies p, we say that p is satisfiable.
If all 0 € S¥ satisfy p, we say that ¢ is valid.

For a given RTL formula ¢, we denote by L£(p) the set of models that

satisfy o, i.e.,
L(p)={ceS5|o ¢}




3 From Temporal Sets to RTL

As mentioned above, for every TL formula there exists a regular set whose
members are exactly those sequences satisfying the formula. As RTL formu-
lae are special cases of TL formulae, it follows that for every RTL formula
©, L(p) is a regular set. In this section we show that every temporal set is

equivalent to L(yp) for some p €RTL, or, as we term it, every temporal set
is RTL-definable. ’

We first show that every A-set is RTL-definable. Let LS be a A-set
defined by:

LS =sp0Sf0osj0850s30---08_108nm-1085%

for some S;,...,8, C S and s;3,...,5m-1 € S such that sg € S; and for

every t,1 <t <m,s; €S; — Si41.
We define the following RTL formulae inductively:
Ym = D0OSm
and for every i, 1 <t < m,
¥i=0(S V Yis1).
Note that we use S; to denote V,es,(Ager(s) @ A Agen-1(:) ~@)-
m—

We next define a sequence {E; ‘-=11 of restricted regular sets, and a se-
quence {;}7;" of RTL formulae. The two sequences are defined inductively
by:

Em-1 = 3%—1 oS,
Pm-1 = Sm-1AD0 (sm—l A Dsm) A <>(_‘sm—l)
Foreveryi,1<i<m-1:
E; = s}" 0Si10Ein
pi = sADO(si Vi) AO(piv1)-

Our goal here is to show that for everyi=1,...,m - 1:
E; = L(p) (1)

from which we derive that LS = L(so A1 A1), i.e., that the A-set LS
is equivalent to the set of sequences that satisfy so A 93 A O

The following observations and claims are used to establish (1):
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Observation 3.1 Let p € T and let x be an RTL formula. Then the fol-
lowing holds:

1. L(p) =poS“.
2. L(OX) =80 L(x)-
8. If x = O for some RTL formula o, then L(O(pV x)) = p> o L(X)-

Proof We prove only part (3) of the Observation. In one direction, assume
g€ (O(pVx)),ie,o = O(pVx). There are two cases to consider: The
first case is when o |= Op, and then o € p“ and the claim is established.
The second case is when o | O—p. Let j > 0 be the minimal such that
ol |z —p, ie., o) = x. It follows that o = 01;02, where o1 (which consists
of the first j elements of ¢) is in p* and 02 € L(Ox) = L(x)-

In the other directions assume that 0 € p® o L(x). If 0 € p“ then
clearly o | Op. Otherwise, o € p* o L(x). Let ¢ be the minimal such that
o) € L(x). It follows that for all j,0 < j < i, o) = p. As ol) |= x and
x — Ox, for all § > i, 6\) = x. Hence, for all i > 0, o = pvx, and
therefore o = O(pV X). b4

Claim 3.1 For everyi:, 1<i1<m,
L(Y) = SFo0---08% 1085,

Proof The proof is by (decreasing) induction on i. The base case (i = m)
is trivial as Sy, is a singleton and therefore £(0Sm,) equals Sj,.

Assume that the claim is true for 1 = k + 1 < m, i.e., assume:
L(Yk+1) =SK10-0Sm-1 05,

By definition, ¥ = O(Sk V ¥k+1), hence, by Observation 3.1 (as ¢ = OX
for some x and S; is a singleton),

L(O(SkV ¥i+1)) = SE° o L(Yr+1)

From the induction hypothesis it follows that:
L(Yx) = Sf°o0---08;_108,.




Observation 3.2 For everyi, 1 <i < m the following holds:

1. p; — ;.
2. pi = Yip1-
3. Yi1 = ~Opi.

Proof

1. By definition, for evéry t, 1 <1 < m, p; implies O(s; V Yi41). As
s; €S; (i.e., s; = S;) and as ¥; = O(S; V ¥i+1), the claim follows.
2. The proof is by (decreasing) induction on i:

Base case (i = m —1): By ‘deﬁnition, ©m-1 — Sm-1 and sy —
=Sm, hence ppm—1 — =0OSp. As Yy = OSn, it follows that

Pm-1 — Y.

Inductive step: Assume that for some k, 1 < k < m — 1, pp4y —
—9k4+2. Assume to the contrary that there exists a model o € S¥

such that o = ok A Yr41. As o — sk sk € Skt1, Y41 —
O (Sk+1 V Yr+2), and Y49 is a O-formula it follows that o =

D 9k+2. By definition, px — Opr41, hence o0 = O (pr1AYR42),
which contradicts the induction hypothesis. Hence there exists
no model o such that o |= i A Y4+1. We can therefore conclude
that:

Ok = “Yr41-

3. Assume to the contrary that for some k, 1 < k < m, there exists a
model o € S“ such that o | Yr41 A Ok As Y41 is a O-formula, it
follows that for some ¢ > 0, 0(") |= ¢4 A pk, contradicting part (2)
of the claim. %)

Claim 3.2 For everyi=1,...,m -1, L(p;) C E;.
Proof The proof is by (decreasing) induction on 1.

 Base case (i = m — 1): Assume that 0 € p,—1. Recall that:
Pm-1 = Sm-1A O(sm-1V OSn) A O(—8m-1)

By Observation 3.1, it follows that:




(a) 0 € 51 08“.

(b) o €s2_,0855.

(c) 0 €85*o(—8m-1)0 5%,

(c) implies that o & s¥_,, and together with (a) and (b) it follows
that o € s},_; 0 S%. Hence 0 € Ep—y.

Inductive step: Assume that the claim is true for t = k + 1 < m, i.e., as-
sume:

L(pk+1) € Exs1
Let o be a sequence such that o | ¢y, i.e.,

o k= sk A O (s V Yr41) A O(Pr+1)-

By definition, @347 — Sk41. As Spy1 # Sk (since sp € Si4+1 and
Sk+1 € Sk+1) it follows that o € S* o L(pk+1). Using similar reasoning
to the base case, we derive that:

(a) o € s o L(Yr+1)-
(b) o € s} 05* o0 L(pr+1)-

The induction hypothesis implies that L(@r+1) € Eg+1. Claim 3.1
implies that L(Yx41) = S5, © L(¥r+2). Putting it all together, we
derive that:

(a) o €sf oSSR, o L(Yr42)-
(b) o € sf 0S5* 0 Egyy.

We can distinguish between the following two cases:

case 1: 0 € s} 0 S}, 0 Etyy. Then trivially o € Ej.
case 2: 0 = 0,;03, where o) € s} oS}, and 03 € L(¥r+2)NS*0Epy1.
By Observation 3.1, this implies that

02 F Yr+2 A OPk+1,
which contradicts Observation 3.2 (part 3).
We may therefore conclude that o € E;. (%]

Claim 3.8 For everyi=1,...,m—1, E; C L(p).
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Proof The proof is by (decreasing) induction on 1.

Base case (i = m — 1): Let 0 be a model such that 0 € Ep,—1, ie., 0 €
st _10S%. Observe that:

1. 0 € s;u—1085“ and hence, by Observation 3.1 (part 1), 0 = spm—1.

2. 0 € §* 05y, 05%, and since spu—1 & Sy, Observation 3.1 (parts 1
and 2) implies that o | O(—sm)-

3.0 € s;7_1 085, and hence, by Observation 3.1 (part 3), o
O(Sm-1V OSm).

It follows that o = sm—1 A O(sm-1V OSp) A O(=sm-1), ie., 0 E
©m-1. We may therefore conclude that:

Epn- C ﬂ(Som-l)-

Inductive step Assume that for all i, k+ 1< ¢ < m, E; C L(p;). Let o
be such that o € Ej, i.e., 0 € s',:' © Sg+1© Eg41. Similar reasoning to
that of the base case establishes that:

1. 0 = 8.
2. 0 E O(-sk)-

3. By the induction hypothesis, o € s} o Sp.; o L(k+1). From
Observation 3.2 it follows that o € sf o S, o L(1k4+1). From
Claim 3.1 it follows that

Si+1 © L(Yr+1) € L(Yr41),

and therefore o € s} o L(Wk+1). Since Yr41 is a O-formula, we
can apply Observation 3.1 and derive that o |= O (sg V Yr+1)-

Putting it all together, it follows that o € ¢, hence:

Ex C L(pr).

The above two claims establish:

Corollary 3.1 For everyi=1,...,m— 1, E; = L(p;).
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The following lemma establishes that LS is RTL-definable:

Lemma 3.1
LS = L(so A1 A1)

Proof In one direction, let o be such that o € LS, i.e., 0 € s90S]oE;. From
Claim 3.1 it follows that o |= sp A ¥;. From Corollary 3.1 and Observation
3.1 it follows that o = O, hence 0 € L(so A 1 A O1).

In the other direction, let o be such that o = (so A Y1 A Op1). From
Corollary 3.1 and Observation 3.1, it follows that we can distinguish between
the following two cases:

case: 0 € spo S} o E;. Obviously, o € LS.

case: 0 = 0);02 Where o) € 9057, 02 € L(12), and g2 € S*oE;. It follows
that o2 | Y2 A O, contradicting Claim 3.2 which established that
P2 — O

We may therefore conclude that o € spo S} o E; and hence o € LS. >

The following theorem establishes that every temporal set is RTL-definable:

Theorem 3.1 Let L be a temporal set, s.e., let

n
L = | Liysy
=1
such that for every i = 1,...,n, L' is a A-set and S; C S. Then L is
RTL-definable.

Proof It suffices to prove the theorem for the case n = 1. Let L be defined
by L = LSiqt(sr) where LS is a A-set and S' € S. Let x be the RTL-
formula defining LS (whose construction is described above). Let 6 be the
RTL-formula defined by:

0 = x A /\ 0os.
s€s’
Obviously, L = L£(6). Thus L is RTL-definable. (%
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4 From RTL to Temporal Sets

Let ¢ be an RTL formula. Following Fischer and Ladner ([FL79)]), we define
the closure of p, CL(p), to be the smallest set of formulae containing ¢ and
satisfying:

T,F € CL(p)

—~ € CL(p) & Y eCL(p) (we identify ——p with o)
Y1V €CL(p) = 1,92 € CL(p)

Oy e CL(p) = $eCL(p)

An atom is a set of formulae A C CL(p) such that:

e T € A

e Forevery y €CL(p), v €EA & Y & A.

e Forevery ¥y Vo € CL(p), 1 VP2 €A & (Y1 € Aor Y € A).
e Forevery OY € CL(p), v €A = OY € A.

The set of all atoms is denoted by At. An atom A that contains g is
called #nitial. The procedure for checking satisfiability attempts to construct
a structure of atoms, interpreted as states, which contains a path satisfying
©. When interpreting atoms as states we take the natural evaluation I
defined by I(A) = ANTI, i.e., the propositions taken to be true in A are all
the propositions contained in A. Similarly, for a subset At' C At of atoms,
we denote I(At') = Ugearr{I(A)}. We assume that the set of propositional
variables in p is exactly II.

We construct a structure 4 = (At, R) which is a graph whose nodes are
all the atoms and whose edges are defined by the relation R:
(A,B)€ER
iff
For every Oy € CL(p),
OYveA & YpyeAor Oy € B.

The following claims establish properties of paths and (maximal) strongly
connected components (SCC’s) in the structure 4. These claims shall be
used when we describe how to construct the temporal set that equals to

L(p).

Observation 4.1 Let 7 = Ag,... be a (possibly infinite) path in A and
assume Oy € CL(p). Then:
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1. If Oy & Ap then for every i 2 0, Oy € A;.
2. If for some 1 2 0, OY € A;, then forall j,0< 5 <1, OY € Aj.

Proof

1. By definition, for every ¢ 2 0, O € A, and (A;, Ai+1) € R imply that
Oy & Aiy1. The claim trivially follows. -
2. Follows immediately from (1). b4

The following corollary establishes that all the atoms in a SCC of 4 have
the same future subformulae.

Corollary 4.1 Let C be a SCC of A, and let A and B be atoms in C. Then
for every Oy € CL(p):

OYeA RS OY € B.

Proof Follows immediately from Observation 4.1 as A, B € C imply that
there exists a path from A to B and a path from B to A. ™

The following corollary establishes that every SCC is a clique.

Corollary 4.2 Let C be a SCC of A, and let A and B be atoms in C. Then
(A,B) €R.

Proof By Corollary 4.1, for every Oy € CL(p), OV € A if Oy € B.
From the definition of R it follows that Oy € A = Oy € B implies that
(A,B) €R. ‘ >

The following corollary establishes if an atom is R-connected to an atom
in a SCC, then it is R-connected to all the atoms in the SCC.

Corollary 4.8 Let C be a SCC of A, let A; and Ay be atoms in C, and let
B be an atom in At. Then

(B,A1) €ER = (B,A2) € R.

Proof As (by Corollary 4.1) A; and A contain the same future formulae,
the claim follows immediately from the definition of R. %

The following observation establishes that if an edge connects two dis-
joint atoms then these atoms differ in some propositional formula.

13




Observation 4.2 Let A and B be two atoms such that (A,B) € R. Then:

A#B =  I(A)#I(B).

Proof Let A, B € At be such that (A, B) € R and A # B. Hence, there
exists a formula ¢ € CL(p) such that ¥ € A and ¢ € B. Let x be such
a formula whose length is minimal. We distinguish between the following
cases:

case: x is propositional. Then I(A) # I(B) follows.

case: x = 60, V 0. Then either ; € A or 62 € A and 6,,0, & B. Hence at
least one of #; and 65 is both shorter than x and distinguishes between
A and B, contradicting the minimality of |x|.

case: x = -8 where x is not propositional. We distinguish between the
following subcases:

subcase: § = 0; V 0. This subcase is symmetric to the previous case
(i.e., x = 601 V 63) and hence contradicts the minimality of |x|.

subcase: 0 = $6;. Then =06, € A and OF; € B. This contradicts
Observation 4.1. ‘

case: x = Ob. ie,, OF € A and OF ¢ B. From the definition of R it
follows that 6 € A. From the definition of atoms, it follows that
0 € B. Hence at 6 is both shorter than x and distinguishes between
A and B, contradicting the minimality of |x]|.

It follows that 4 is propositional and therefore I(A) # I(B). (%

Corollary 4.4 Let C be a SCC of A, and let A and B be such that (A,B) €
R, A¢C and B €C. Then for every B' € C, I(A) # I(B').

Proof Follows immediately from Corollary 4.3 and Observation 4.2. b
Let C be a set of atoms. C defined to be self-fulfilling if for every formula
Oy € A € C there exists an atom B € C such that ¢ € B.

Let C be a self-fulfilling set of atoms. We define 7(C) to be the set of
C’s subsets such that for every F € (C), F is self-fulfilling and no proper
subset F' C F is self-fulfilling.
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Observation 4.3 Let C € 4 be a self-fulfulling SCC. Then for every F €
F(C), |F| = O(|¢]).

Proof Let F be an element of #(C). Then for every A € F there exists
some Oy € CL(p) such that ¢ € A and for every A' € F — {A}, v & A'.
The claim immediately follows. b

The following observation establishes that every self-fulfilling SCC C € 4
can be uniquely identified by its set of propositions.

Observation 4.4 Let C1,Cs € 4 be self-fulfilling SCC’s. Then:

I(Cl) = I(C2) = (C;=0Cs.

Proof Assume to the contrary that I(C,) = I(C2) and that C; # C2. Let
Aj,..., A, € At and B,,...,B, € At be C;’s and C2’s atoms respectively.
As I(C;) = I(C3), we can choose the A;’s and B;’s such that for every i,
1 <1< n, I(A) = I(B;). As Cy # Cy, there exists some 5, 1 < j < n,
such that A; # B;. For each such j, let ¢; € CL(p) be the minimal length
formula such that ¢; € A; and v; & B;. Let ¢ = ¢y be the shortest among
the 1; formulae. As I(A;) = I(B;), ¥ is not propositional. It is obvious that
4 is not a disjunction. Therefore, we can assume that ¢ = Ox for some
X € CL(p). As C; is self-fulfilling and Ox € Ay € €y, it follows that for
some Aj € C1, x € Ax. As C; is a SCC, it follows (from Corollary 4.1) that
X € Bi. Hence x € CL(yp) is a formula which both distinguishes between
Aj and By and is shorter than v, contradicting the minimality of 1. (%]

Let # = Ag,A;,... be an infinite path in A, i.e., for every ¢ > 0,
(Ai, Ai+1) € R. Denote by inf(r) the set of atoms which appear in 7 in-
finitely many times. Note that the set inf(7) defines a SCC C € 4.

The following proposition establishes the relation between L(yp) and
paths in 4. It is a collection of results that were originally established
in [SC85) and extended in [VW86] and in [Zuc86].

Proposition 4.1 For every model 0 = so,..., 0 |= @ iff there ezists a path
T = Ag,... tn A such that the following holds:

1. Ap 13 an intial atom.
2. inf(7) s self-fulfilling.
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8. I(r) =0, t.e., for everyi >0, I(A4;) = I(s;).

Let {C;}! and {C; } 2, be sequences of atoms and of SCC’s respec-
tively. We say that C = ({C;}25!, {Ci}™,) is a A-structure if the following
holds:

1. Cp € C; is an initial atom.

2. Cm is self-fulfilling.

3. For every 1,1 <1 < m,C; €C; — Ciy1 and C; is R-connected to some
node A € Ci4;.

From Observation 4.1 and Corollary 4.1 it follows that if C = ({C;}7?,
{Ci},) is a A-structure, then for every i = 1,...,m — 1, the set of O-
formulae in C; (i.e., {¢p | OY € CL(p) and Oy € A € C;}) is a strict
superset of the set of O-formulae in €. As the number of O-formulae is
linear in ¢, we conclude:

Observation 4.5 Let C = ({C;}™5!,{C:},) be a A-structure. Then m =
O(l¢l)-

Let C be a A-structure as above. We associate with C a restricted
regular set L(C) defined by:

L(C) = I(Co)oI(C1)*oI(Cy)o - 0I(Cm-1)0I(Cm)®.

Observation 4.6 Let C and L(C) be defined as above. Then L(C) s a
A-set.

Proof It suffices to show that for every ¢, 1 < ¢ < m, I(C;) & I(Cit+1),
i.e., that for every A € Ci41, I(C;) # I(A). By definition, C; is R-connected
to Ci+1. As C; &€ Ci41, the claim follows immediately from Corollary 4.4.

Let C be a A-structure as above. We define

Lc= U L©Cntury)-
FEF(Crm) -
From Observation 4.6 it follows that L is a temporal set. As 4 is a finite
structure, there are finitely many disjoint A-structures that A defines. Let
C(4A) denote the set of all these A-structures. We show below that L(yp)
equals to the union of the temporal sets defined by C(4)’s elements. From
this we derive that £(p) is a temporal set.
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Theorem 4.1

L) = U Lc
CeC(4)

Proof In one direction, let o be such that o = . From Proposition 4.1 it
follows that there exists a path # = Ap,... in A such that Ao is an initial
atom, inf(7) is self-fulfilling, and I(r) = 0. The path 7 can be partitioned
into fragments 7,...,m, such that # = m;...; 7y, and for some SCC’s
A1y..., Am the following holds:

1. Forevery i, 1 <i < m, 4; # Ai41.

2. For every ¢, 1 < i < m, 7; includes only atoms from 4;, and ends in
an atom A’ € 4; — Ai41.

3. inf(r) defines a self-fulflling SCC 4,, € 4.

Define A° = Ay. The structure C = ({A*}75}, {4;}™,) is a obviously a A-
structure which is in C(4). By construction, I(r) € L(C). Moreover, since
Am 2 inf(7), it follows that I(r) € Lg. As I(m) = o, the claim follows.

In the other direction, assume that C = ({C;}5}, {Ci}2,) € C(4).
Let o = sp,... be a sequence such that ¢ € Lg. From Corollaries 4.2 and
4.3, and Observations 4.2 and 4.4, it follows that o identifies a unique path
T = Ap,...in A such that I(r) = o and Ap is an initial atom. Moreover,
from the definition of o it follows that inf(7) is self-fulfilling. Consequently,
by Proposition 4.1, o |= . b

The corollary below will play a major role in the section discussing mes-
sage buffers:

Corollary 4.5 Let o be such that o = @. Then there ezists a A-set LS
defined by:

L=gy0S]08085)080:--08, _;08n-10S5,,

such that for some S' C S, 0 € LSipq(s7) and m,|S'| = O(|p|)

Proof Follows immediately from Observations 4.3 and 4.5, and Theorem
4.1.
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5 PFairness in RTL

A concurrent (or distributed) program is usually associated with a set of
fairness properties. This set corresponds to the properties which every com-
putation of the program is assumed to satisfy. Verifying that all executions
of a program P satisfy a property ¢ usually means verifying that all fair
executions of P satisfy . Fairness properties play a major role in verifi-
cation of liveness properties, where very often the property would not hold
over computations which are not fair. An example of a fairness property
is tmpartiality which asserts that every process which is permanently en-
abled is eventually activated. Impartiality thus requires that every process
which has not terminated eventually perform some action. In this section
we present a normal-form for fairness properties that are RTL-definable.

A set L C S¥ is defined to be a Fairness-set (or simply F-set) if for
every o € L the following holds:

1. Forevery i >0,0() € L, i.e., every suffix of o is also in L.
2. For every o’ € S*, 0';0 € L, i.e., the string obtained by attaching any
finite string as a prefix to o is also in L.

Claim 5.1 Let L be an F-set which is definable by LSiy5(sr) for some A-set
LS and S' C S. Then there exists p1,...,Pn,q1,---,qn € & such that:

L = £(A(GOpADGE).

i=1
Proof As LS is a A-set it is definable by
L=sg0S]0s1085080:---08_,08n-10°S55

for some S;,...,8n € S and sg,...,5m-1 € S.
Let o7 be the RTL formula defined by:

oL = O0I(Sm) A A\ OOI(s).

s€eS!

We establish the claim by showing that £(pr) = L. In one direction, if
o € L then obviously o = 1. In the other direction, assume that o = .
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o has a suffix 0" such that 0" = OI(Sm)AA,est OI(s). Hence, there exists
some finite sequence o' € S* such that o';0” € L. As L is an F-set, every
suffix of o/;0" is in L, in particular, 6” € L. Similarly, since L is an F-set,
any finite string attached as a prefix to ¢” is also in L; in particular, it
follows that o € L, which establishes the claim. >

The equivalence between temporal sets and RTL-definability together
with the above claim yield:

Corollary 5.1 Let ¢ be an RTL formula such that L(p) s an F-set. Then
@ 18 equivalent to some RTL formula of the form: ’

V(A ©oriaood)

=1 j=1

for some p!,q{EE t=1,...n,5=1,...,n;).

6 Reasoning about message buffers in RTL

In this section we consider the problem of axiomatizing different message
buffers in RTL. Message buffers model communication between processes
through message passing and are of special importance to distributed com-
puting. The problem of characterizing message buffers in TL was studied in
[SCFM84]. It is shown there that the theory of bounded buffers is axiomati-
zable in TL, while the theory of unbounded fifo buffers is IT}-complete (and
hence not axiomatizable). We consider the theory of unbounded message
buffers in RTL and show that for both the fifo and the unordered case these
theories are in co-NP (and hence axiomatizable in RTL). This is of practical
significance as fifo buffers is the most widely used model of communication.
The results in this section provide more evidence that reasoning in RTL is
both easier and more plausible than reasoning in the full TL.

A message buffer is characterized by the set of read/write operations
allowed on it. A write operation writes a message onto the buffer. A read
operation reads a message and deletes it from the buffer. Reading from an
empty buffer is not allowed. We consider both unbounded fifo buffers where
a read operation reads the last message written, and unbounded unordered
buffers where a read operation can read any message that was written (and
is still in the buffer).
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Let A = {0,1} be the message alphabet. We extend II to include the set
s = {Ro,Wo, R1,W1}. We similarly extend the evaluation such that for
every s € S there exists exactly one operation P € Il such that P € I(s),
i.e., with each s € S we associate one read/write operation.

Let 0 = sp,s1,... be a (possibly finite) sequence of states. We define
W (o) to be the sequence of messages written in o and R(c) to be the
sequence message read in o. For every § € A and X € {R,W}, let §X;(0)
denote the number of X operations in o.

Let FIFO denote the set of sequences over S that consist of valid opera-
tions in a fifo buffer, and UNOR denote those that consist of valid operations
in an unordered buffer. Formally:

FIFO = {0 € S“ | For every i > 0, R(0—;) < W(o-;)}
and

UNOR = {0 €S |Foreveryi>0and § €A, §Rs(0-i) < Ws(0—i)}

The theory of fifo buffers in RTL, T (fifo), is the set of all RTL formulae
¢ such that for every model ¢ €FIFO, o | ¢. Similarly, the theory of
unordered buffers in RTL, T (unor), is the set of all RTL formulae ¢ such
that for every model 0 EUNOR, o = ¢.

Let T be the complement of T (fifo), i.e.,
T = {p € RTL | For some o €FIFO, o |~ p}.

The following claim enables us to show that the T is in NP.

Claim 6.1 Let o € T be such that |p| = n— 1 for some n > 1. Then there
ezists a sequence o EFIFO such that o = 01;0% where |o1],|02] = O(n) and

o= —p.

Proof As ¢ € T, there exists a sequence a = s9,s!,... €FIFO such that
a | —p. From Corollary 4.5, it follows that there exists a A-set LS defined
by:

LS =s9p0S 0s3085,0820---08,,_;08p-1085%

such that a € LSjp¢(sr) for some S’ C S where m,|S| = O(n).

Let 0 = 19 < ;3 < ... < i1 be such that for every 7,0 < 5 < m,
s' = s; and for every 7,0 < j < m — 1, for every k, t; < k < tj41, st e S;.
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(As o € LS, the existence of such ¢;’s is guaranteed. ) The sequence o, is
constructed by taking the sequence s',...,s'-1, and adding states to it
such that the resulting sequence preserves the fifo properties and is a prefix
of some model that satisfies ~p. The states are added as follows:

For every j, 0 < j < m, if for some z € {0,1}, R, € I(s'i) then, as
a € FIFO, there exists some k < {; such that W, € I(s*) and R(a—; J) =
W(a_.k) Moreover, since a € LS, there ex1sts some ! < j such that 1} <
k < 4141. If k # 1;, then we add the state s* to the sequence and place it
arbitrarily between s and s¥+1.

Similarly, for every j, 0 < j < m, if for some z € {0,1}, W, € I(s%)
and there exsits a k > ¢, k # 1j41,.. ,im-l, such that R, € I(s¥) and
R(a—i) = W(a—;;), we add the state s¥ to the sequence and place in the
' appropriate locatlon

We define 0, to be the resulting sequence. Clearly, |o3] < 2-m. We
construct o, as follows: We first construct as set S” C S such that |S"| < 4
by choosing one representative for each operation that is performed by some
state that is in inf(a). Note that if both writes (i.e., Wp and W) are
represented in S” then either none or both of the reads are represented. We
construct a sequence o2 such that:

e If S” has no read states (i.e., states representing read operations), we
take o2 to be any sequence that contains one occurrence of each of S'’s
elements.

o If S” has one read state, then we take o2 to be a concatenation of two
sequences, o} and o3, such that o} contams one or more occurrence of
each write state that is in S'U S”", and 0% contains all the read states
that are in s € S'U S". Note that |o}| > |o3].

e If S” contains both read operatlons, then we take az to be a con-
catenation of two sequences, o3 and o3, such that o} contaxns one or
more occurrence of each write state that is in S'US", 02 contains one
or more occurrence of each read state that is in s € ' US", and if
ol =Wg,,...,W,, then o3 =R:,,...,R;

Note that |o2| = O(n) and that 0% is a fifo sequence.

Let 0 = 01;04. Obviously, |01],02] = O(n). From the construction it
follows that ¢ € FIFO and that o € LSip¢(s’). Consequently, 0 = —p.

From Claim 6.1 we establish:
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Theorem 6.1 T(fifo) is in co-NP.

Proof It suffices to show that there exists a procedure in NP that decides
whether a given formula ¢ €RTL where |p| = n is in T (fifo). The procedure
guesses two sequences of states o) and o9 such that |oy|, |o2] = O(n), checks
whether 0,;0% is in FIFO, and checks whether o = . The latter can be
done in time which is polynomial in n. (This is established in [SC85].)

Similar arguments establish:

Theorem 6.2 T (unor) is in co-NP.

7 Relationship between IML and RTL

Propositional Modal Logic of Intervals, or, Interval Modal Logic (IML) was
introduced in [HS86], where it has been proposed to reason about the be-
havior of dynamic systems over intervals of time. While satisfiability of TL
formulae is defined over discrete time models, satisfiability of IML formulae
is defined over time tntervals. In this section we define several Continuous-
time RTL’s and show how each corresponds to some subset of IML.

7.1 IML

The work in [HS86)] considered different time structures that have “linear
intervals®. We, however, consider only the time structure T = ([0,1], <)
where [0, 1] is the closed interval included between the points 0 and 1 on the
real line, and < is the usual total ordering relation on these points. A model
M for IML is a pair (J,I) where J is the set of all closed intervals in [0, 1]
(i.e., J = {[t1,t2) | 0 £ t; < ta < 1}), and I: J — 2" is an evaluation that
associates with each interval 5 € J the set of atomic propositions that are
true in it.

We introduce an IML language over the propositional formulae in IT
using the boolean connectives = and V, and the IML operators (B), (E),
(B), and (E). IML formulae are constructed by the following:

e Every proposition Q € Il is an IML formula. | . _
e If o is an IML formula, then so are -, (B)p, (E)p, (B)p, and (E)e.
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e If p; and p; are IML formulae, then so is ¢ vV pa.

We define a satisfiability relation |=; between a model M, an interval
J = [t1,t2) € J and an IML formlua. We omit the model M whenever it is
understood from the context. The satisfiability relation is defined as follows:

For a proposition Q € II,
[t1,t2) =i @ iff Q € I([t1,t2]).
[t1,t2] k=i iff [t1,t2] F5i -
[t1,22) i o1 V2 iff [ta,t2] =i o1 or [t1, 2] =i 2.
[t1,t2) |=i (B)e  iff For some i3, t; < t3 < 12, [t1, 3] =i -
[t1,t2] =i (B)e  iff For some t3 > 1y, [t1,13] =i .
[t1,t2] k=i (E)  iff For some t3, t) < t3 < 1y, [t3,22] |=i -
[t1,t2) i (E)  iff For some t3 < t1, [t3, t2] |=i -
Note that the semantics above does not coincide with that of [HS86).

For X C {{E),(B),(E),(B)} let IML(X) denote the fragment of IML
that uses only the modal operators that are in X.

7.2 Continuous Time RTL

Cosider a Continuous-time RTL (CRTL) which is similar to RTL. CRTL
formulae are interpreted over points in time structure T = ([0, 1], <), where
we assume an evaluation I':[0,1] — 2 that maps each point t € [0,1] to
I'(t), the set of propositions true in it. The satisfiability relation between a
point t € [0,1] and an CRTL formula is denoted by |=c and defined in the
obvious way.

Assume ¢ € IML({E)), and let R, be the RTL formula obtained by
replacing every occurrence of (E) in ¢ by &. Let M be a model of IML
such that for every t € [0,1], I([t,1]) = I'(t).

Lemma 7.1 For everyt € (0,1}, [t,1] |=i ¢ iff t Fc Ryp-
Proof The proof is by induction on the structure of ¢. The base case is
when ¢ is propositional, and then, as I([t,1]) = I'(t), the claim is trivially

true. Assume the claim is true for ' such that |¢'| < |p|. We distinguish
between the following cases:

case: @ =y, i.e., R, = -R,. This case is trivial.
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